Skip to main content

Advertisement

Log in

Self-Supported Graphene Nanosheet-Based Composites as Binder-Free Electrodes for Advanced Electrochemical Energy Conversion and Storage

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Graphene is composed of single-layered sp2 graphite and has been widely used in electrochemical energy conversion and storage due to its appealing physical and chemical properties. In recent years, a new kind of the self-supported graphene nanosheet-based composite (GNBC) has attracted significant attention. Compared with conventional powdered materials, a binder-free electrode architecture has several strengths, including a large surface area, enhanced reaction kinetics, and great structural stability, and these strengths allow users to realize the full potential of graphene. Based on these findings, this review presents preparation strategies and properties of self-supported GNBCs. Additionally, it highlights recent significant developments with integrated binder-free electrodes for several practical applications, such as lithium-ion batteries, lithium-metal batteries, supercapacitors, water splitting and metal-air batteries. In addition, the remaining challenges and future perspectives in this emerging field are also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [46]. Copyright 2014, Elsevier

Fig. 4

Reproduced with permission from Ref. [47]. Copyright 2013, Elsevier

Fig. 5

Reproduced with permission from Ref. [50]. Copyright 2014, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [51]. Copyright 2014, The Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [52]. Copyright 2014, Elsevier

Fig. 8

Reproduced with permission from Ref. [21]. Copyright 2019, Elsevier

Fig. 9

Reproduced with permission from Ref. [78]. Copyright 2020, Wiley

Fig. 10

Reproduced with permission from Ref. [92]. Copyright 2017, American Chemical Society

Fig. 11

Reproduced with permission from Ref. [94]. Copyright 2017, American Chemical Society

Fig. 12

Reproduced with permission from Ref. [98]. Copyright 2015, American Chemical Society

Fig. 13

Reproduced with permission from Ref. [101]. Copyright 2020, Elsevier

Fig. 14

Reproduced with permission from Ref. [114]. Copyright 2017, The Royal Society of Chemistry

Fig. 15

Reproduced with permission from Ref. [117]. Copyright 2019, Wiley

Fig. 16

Reproduced with permission from Ref. [118]. Copyright 2020, American Chemical Society

Fig. 17

Reproduced with permission from Ref. [123]. Copyright 2018, Wiley

Fig. 18

Reproduced with permission from Ref. [126]. Copyright 2018, The Royal Society of Chemistry

Fig. 19

Reproduced with permission from Ref. [134]. Copyright 2020, The Royal Society of Chemistry

Fig. 20

Reproduced with permission from Ref. [135]. Copyright 2020, Elsevier

Similar content being viewed by others

References

  1. Ma, Y.F., Chen, Y.S.: Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2, 40–53 (2015). https://doi.org/10.1093/nsr/nwu072

    Article  CAS  Google Scholar 

  2. Cao, X.H., Yin, Z.Y., Zhang, H.: Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7, 1850–1865 (2014). https://doi.org/10.1039/c4ee00050a

    Article  CAS  Google Scholar 

  3. Chabot, V., Higgins, D., Yu, A.P., et al.: A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564 (2014). https://doi.org/10.1039/c3ee43385d

    Article  CAS  Google Scholar 

  4. Xia, X.H., Chao, D.L., Zhang, Y.Q., et al.: Three-dimensional graphene and their integrated electrodes. Nano Today 9, 785–807 (2014). https://doi.org/10.1016/j.nantod.2014.12.001

    Article  CAS  Google Scholar 

  5. Xia, X.H., Chao, D.L., Fan, Z.X., et al.: A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. Nano Lett. 14, 1651–1658 (2014). https://doi.org/10.1021/nl5001778

    Article  CAS  Google Scholar 

  6. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  7. Stankovich, S., Dikin, D.A., Dommett, G.H.B., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006). https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  8. Nair, R.R., Blake, P., Grigorenko, A.N., et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). https://doi.org/10.1126/science.1156965

    Article  CAS  Google Scholar 

  9. Lee, C., Wei, X.D., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  10. Tian, J., Liu, Q., Asiri, A.M., et al.: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136, 7587–7590 (2014). https://doi.org/10.1021/ja503372r

    Article  CAS  Google Scholar 

  11. Xia, H., Huang, Z.P., Lv, C., et al.: A self-supported porous hierarchical core-shell nanostructure of cobalt oxide for efficient oxygen evolution reaction. ACS Catal. 7, 8205–8213 (2017). https://doi.org/10.1021/acscatal.7b02320

    Article  CAS  Google Scholar 

  12. Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015). https://doi.org/10.1038/nmat4170

    Article  CAS  Google Scholar 

  13. Li, C., Shi, G.: Three-dimensional graphene architectures. Nanoscale 4, 5549–5563 (2012). https://doi.org/10.1039/c2nr31467c

    Article  CAS  Google Scholar 

  14. Wang, B., Ruan, T.T., Chen, Y., et al.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004

    Article  Google Scholar 

  15. Tsang, C.H.A., Huang, H.B., Xuan, J., et al.: Graphene materials in green energy applications: recent development and future perspective. Renew. Sustain. Energy Rev. 120, 109656 (2020). https://doi.org/10.1016/j.rser.2019.109656

    Article  CAS  Google Scholar 

  16. Ando, Y., Zhao, X., Ohkohchi, M.: Production of petal-like graphite sheets by hydrogen arc discharge. Carbon 35, 153–158 (1997). https://doi.org/10.1016/S0008-6223(96)00139-X

    Article  CAS  Google Scholar 

  17. Kim, H., Wen, Z.H., Yu, K.H., et al.: Straightforward fabrication of a highly branched graphene nanosheet array for a Li-ion battery anode. J. Mater. Chem. 22, 15514–15518 (2012). https://doi.org/10.1039/c2jm33150k

    Article  CAS  Google Scholar 

  18. Miller, J.R., Outlaw, R.A.: Vertically-oriented graphene electric double layer capacitor designs. J. Electrochem. Soc. 162, A5077–A5082 (2015). https://doi.org/10.1149/2.0121505jes

    Article  CAS  Google Scholar 

  19. Lisi, N., Giorgi, R., Re, M., et al.: Carbon nanowall growth on carbon paper by hot filament chemical vapour deposition and its microstructure. Carbon 49, 2134–2140 (2011). https://doi.org/10.1016/j.carbon.2011.01.056

    Article  CAS  Google Scholar 

  20. Li, B., Li, S.M., Liu, J.H., et al.: Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium–sulfur batteries. Nano Lett. 15, 3073–3079 (2015). https://doi.org/10.1021/acs.nanolett.5b00064

    Article  CAS  Google Scholar 

  21. Hu, Z.L., Li, Z.Z., Xia, Z., et al.: PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Mater. 22, 29–39 (2019). https://doi.org/10.1016/j.ensm.2018.12.020

    Article  Google Scholar 

  22. Li, N., Jin, S.X., Liao, Q.Y., et al.: ZnO anchored on vertically aligned graphene: binder-free anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 20590–20596 (2014). https://doi.org/10.1021/am507046k

    Article  CAS  Google Scholar 

  23. Mori, T., Hiramatsu, M., Yamakawa, K., et al.: Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition. Diam. Relat. Mater. 17, 1513–1517 (2008). https://doi.org/10.1016/j.diamond.2008.01.070

    Article  CAS  Google Scholar 

  24. Bo, Z., Mao, S., Han, Z.J., et al.: Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44, 2108–2121 (2015). https://doi.org/10.1039/c4cs00352g

    Article  CAS  Google Scholar 

  25. Bo, Z., Yang, Y., Chen, J.H., et al.: Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 5, 5180 (2013). https://doi.org/10.1039/c3nr33449j

    Article  CAS  Google Scholar 

  26. Bo, Z., Yu, K.H., Lu, G.H., et al.: Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission. Energy Environ. Sci. 4, 2525–2528 (2011). https://doi.org/10.1039/c1ee01140e

    Article  CAS  Google Scholar 

  27. Malesevic, A., Vitchev, R., Schouteden, K., et al.: Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19, 305604 (2008). https://doi.org/10.1088/0957-4484/19/30/305604

    Article  CAS  Google Scholar 

  28. Zhu, M.Y., Wang, J.J., Holloway, B.C., et al.: A mechanism for carbon nanosheet formation. Carbon 45, 2229–2234 (2007). https://doi.org/10.1016/j.carbon.2007.06.017

    Article  CAS  Google Scholar 

  29. Zhao, J., Shaygan, M., Eckert, J., et al.: A growth mechanism for free-standing vertical graphene. Nano Lett. 14, 3064–3071 (2014). https://doi.org/10.1021/nl501039c

    Article  CAS  Google Scholar 

  30. Shimabukuro, S., Hatakeyama, Y., Takeuchi, M., et al.: Preparation of carbon nanowall by hot-wire chemical vapor deposition and effects of substrate heating temperature and filament temperature. Jpn. J. Appl. Phys. 47, 8635–8640 (2008). https://doi.org/10.1143/jjap.47.8635

    Article  CAS  Google Scholar 

  31. Behura, S.K., Mukhopadhyay, I., Hirose, A., et al.: Vertically oriented few-layer graphene as an electron field-emitter. Phys. Status Solidi A 210, 1817–1821 (2013). https://doi.org/10.1002/pssa.201329172

    Article  CAS  Google Scholar 

  32. Guo, X., Qin, S.C., Bai, S., et al.: Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties. J. Phys. D Appl. Phys. 49, 385301 (2016). https://doi.org/10.1088/0022-3727/49/38/385301

    Article  CAS  Google Scholar 

  33. Zeng, J., Ji, X.X., Ma, Y.H., et al.: 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30, 1705380 (2018). https://doi.org/10.1002/adma.201705380

    Article  CAS  Google Scholar 

  34. Ji, X.X., Lin, Z.J., Zeng, J., et al.: Controlling structure of vertically grown graphene sheets on carbon fibers for hosting Li and Na metals as rechargeable battery anodes. Carbon 158, 394–405 (2020). https://doi.org/10.1016/j.carbon.2019.11.002

    Article  CAS  Google Scholar 

  35. Guo, X., Li, Y.L., Ding, Y.Q., et al.: Direct patterned growth of intrinsic/doped vertical graphene nanosheets on stainless steel via heating solid precursor films for field emission application. Mater. Des. 162, 293–299 (2019). https://doi.org/10.1016/j.matdes.2018.11.056

    Article  CAS  Google Scholar 

  36. Zheng, Z.M., Zhang, X., Pei, F., et al.: Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries. J. Mater. Chem. A 3, 19800–19806 (2015). https://doi.org/10.1039/c5ta05183e

    Article  CAS  Google Scholar 

  37. Zhu, J.X., Sakaushi, K., Clavel, G., et al.: A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 137, 5480–5485 (2015). https://doi.org/10.1021/jacs.5b01072

    Article  CAS  Google Scholar 

  38. Wang, L.E., Zhang, W., Samavat, S., et al.: Vertically aligned graphene prepared by photonic annealing for ultrasensitive biosensors. ACS Appl. Mater. Interfaces 12, 35328–35336 (2020). https://doi.org/10.1021/acsami.0c08036

    Article  CAS  Google Scholar 

  39. Park, C.M., Kim, J.H., Kim, H., et al.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115 (2010). https://doi.org/10.1039/b919877f

    Article  CAS  Google Scholar 

  40. Xiao, X.C., Liu, P., Wang, J.S., et al.: Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem. Commun. 13, 209–212 (2011). https://doi.org/10.1016/j.elecom.2010.12.016

    Article  CAS  Google Scholar 

  41. Li, G.Z., Huang, B., Pan, Z.F., et al.: Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ. Sci. 12, 2030–2053 (2019). https://doi.org/10.1039/c8ee03014f

    Article  CAS  Google Scholar 

  42. Sun, H.Y., del Rio Castillo, A.E., Monaco, S., et al.: Binder-free graphene as an advanced anode for lithium batteries. J. Mater. Chem. A 4, 6886–6895 (2016). https://doi.org/10.1039/c5ta08553e

    Article  CAS  Google Scholar 

  43. Wu, Z.S., Ren, W.C., Xu, L., et al.: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463–5471 (2011). https://doi.org/10.1021/nn2006249

    Article  CAS  Google Scholar 

  44. Rojaee, R., Shahbazian-Yassar, R.: Two-dimensional materials to address the lithium battery challenges. ACS Nano 14, 2628–2658 (2020). https://doi.org/10.1021/acsnano.9b08396

    Article  CAS  Google Scholar 

  45. Wang, C.D., Li, Y., Chui, Y.S., et al.: Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. Nanoscale 5, 10599 (2013). https://doi.org/10.1039/c3nr02872k

    Article  CAS  Google Scholar 

  46. Li, N., Sonsg, H., Cui, H., et al.: SnO2 nanoparticles anchored on vertically aligned graphene with a high rate, high capacity, and long life for lithium storage. Electrochim. Acta 130, 670–678 (2014). https://doi.org/10.1016/j.electacta.2014.03.081

    Article  CAS  Google Scholar 

  47. Jin, S.X., Li, N., Cui, H., et al.: Growth of the vertically aligned graphene@ amorphous GeOx sandwich nanoflakes and excellent Li storage properties. Nano Energy 2, 1128–1136 (2013). https://doi.org/10.1016/j.nanoen.2013.09.008

    Article  CAS  Google Scholar 

  48. Huang, D.L., Chen, Y.S., Cheng, M., et al.: Carbon dots-decorated carbon-based metal-free catalysts for electrochemical energy storage. Small 17, 2002998 (2021). https://doi.org/10.1002/smll.202002998

    Article  CAS  Google Scholar 

  49. Lu, J.J., Yin, S.B., Shen, P.K.: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2019). https://doi.org/10.1007/s41918-018-0025-9

    Article  CAS  Google Scholar 

  50. Jin, S.X., Li, N., Cui, H., et al.: Embedded into graphene Ge nanoparticles highly dispersed on vertically aligned graphene with excellent electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces 6, 19397–19404 (2014). https://doi.org/10.1021/am505499x

    Article  CAS  Google Scholar 

  51. Li, N., Song, H.W., Cui, H., et al.: Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability. J. Mater. Chem. A 2, 2526 (2014). https://doi.org/10.1039/c3ta14217e

    Article  CAS  Google Scholar 

  52. Li, N., Jin, S.X., Liao, Q.Y., et al.: Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy 5, 105–115 (2014). https://doi.org/10.1016/j.nanoen.2014.02.011

    Article  CAS  Google Scholar 

  53. Han, J.T., Huang, Y.H., Goodenough, J.B.: New anode framework for rechargeable lithium batteries. Chem. Mater. 23, 2027–2029 (2011). https://doi.org/10.1021/cm200441h

    Article  CAS  Google Scholar 

  54. Yao, Z.J., Xia, X.H., Zhou, C.A., et al.: Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 (2018). https://doi.org/10.1002/advs.201700786

    Article  CAS  Google Scholar 

  55. Xia, Q.Y., Jabeen, N., Savilov, S.V., et al.: Black mesoporous Li4Ti5O12–δ nanowall arrays with improved rate performance as advanced 3D anodes for microbatteries. J. Mater. Chem. A 4, 17543–17551 (2016). https://doi.org/10.1039/c6ta06699b

    Article  CAS  Google Scholar 

  56. Guo, B.K., Yu, X.Q., Sun, X.G., et al.: A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ. Sci. 7, 2220–2226 (2014). https://doi.org/10.1039/c4ee00508b

    Article  CAS  Google Scholar 

  57. Deng, S.J., Chao, D.L., Zhong, Y., et al.: Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Mater. 12, 137–144 (2018). https://doi.org/10.1016/j.ensm.2017.11.018

    Article  Google Scholar 

  58. Lin, Y., Wu, J.B., Huang, X.H., et al.: Boosting fast lithium ion storage of Li4Ti5O12 by synergistic effect of vertical graphene and nitrogen doping. J. Energy Chem. 51, 372–377 (2020). https://doi.org/10.1016/j.jechem.2020.04.037

    Article  Google Scholar 

  59. Shen, S.H., Guo, W.H., Xie, D., et al.: A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7-based core/shell arrays. J. Mater. Chem. A 6, 20195–20204 (2018). https://doi.org/10.1039/c8ta06858e

    Article  CAS  Google Scholar 

  60. Yao, Z.J., Xia, X.H., Zhong, Y., et al.: Hybrid vertical graphene/lithium titanate-CNTs arrays for lithium ion storage with extraordinary performance. J. Mater. Chem. A 5, 8916–8921 (2017). https://doi.org/10.1039/c7ta02511d

    Article  CAS  Google Scholar 

  61. Li, X.L., Zhou, J.W., Zhang, J.X., et al.: Li–CO2 batteries: bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li–CO2 batteries. Adv. Mater. 31, 1970279 (2019). https://doi.org/10.1002/adma.201970279

    Article  CAS  Google Scholar 

  62. Jin, T., Han, Q.Q., Jiao, L.F.: Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. 32, 1806304 (2020). https://doi.org/10.1002/adma.201806304

    Article  CAS  Google Scholar 

  63. Hou, J.H., Tu, X.Y., Wu, X.G., et al.: Remarkable cycling durability of lithium–sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host. Chem. Eng. J. 401, 126141 (2020). https://doi.org/10.1016/j.cej.2020.126141

    Article  CAS  Google Scholar 

  64. Wang, T.Y., Su, D.W., Chen, Y., et al.: Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium–sulfur batteries. Chem. Eng. J. 401, 126079 (2020). https://doi.org/10.1016/j.cej.2020.126079

    Article  CAS  Google Scholar 

  65. Hu, Z., Liu, Z.M., Zhao, J.G., et al.: Rose-petals-derived hemispherical micropapillae carbon with cuticular folds for super potassium storage. Electrochim. Acta 368, 137629 (2021). https://doi.org/10.1016/j.electacta.2020.137629

    Article  CAS  Google Scholar 

  66. Ding, H.B., Zhou, J., Rao, A.M., et al.: Cell-like-carbon-micro-spheres for robust potassium anode. Natl. Sci. Rev. 8, nwaa276 (2021). https://doi.org/10.1093/nsr/nwaa276

    Article  CAS  Google Scholar 

  67. Zhang, Q.F., Cheng, X.L., Wang, C.X., et al.: Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries. Energy Environ. Sci. 14, 965–974 (2021s). https://doi.org/10.1039/d0ee03203d

    Article  CAS  Google Scholar 

  68. Bouchet, R., Maria, S., Meziane, R., et al.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). https://doi.org/10.1038/nmat3602

    Article  CAS  Google Scholar 

  69. Xu, W., Wang, J.L., Ding, F., et al.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k

    Article  CAS  Google Scholar 

  70. Lin, D.C., Liu, Y.Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  Google Scholar 

  71. Wang, T.Y., Li, Y.B., Zhang, J.Q., et al.: Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 11, 5429 (2020). https://doi.org/10.1038/s41467-020-19246-2

    Article  CAS  Google Scholar 

  72. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  Google Scholar 

  73. Guo, Y.P., Li, H.Q., Zhai, T.Y.: Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017). https://doi.org/10.1002/adma.201700007

    Article  CAS  Google Scholar 

  74. Noh, J., Tan, J., Yadav, D.R., et al.: Understanding of lithium insertion into 3D porous carbon scaffolds with hybridized lithiophobic and lithiophilic surfaces by in-operando study. Nano Lett. 20, 3681–3687 (2020). https://doi.org/10.1021/acs.nanolett.0c00618

    Article  CAS  Google Scholar 

  75. Zhang, Y.J., Liu, S.F., Wang, X.L., et al.: Composite Li metal anode with vertical graphene host for high performance Li–S batteries. J. Power Sources 374, 205–210 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.057

    Article  CAS  Google Scholar 

  76. Song, Q., Yan, H.B., Liu, K.D., et al.: Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation. Adv. Energy Mater. 8, 1800564 (2018). https://doi.org/10.1002/aenm.201800564

    Article  CAS  Google Scholar 

  77. Shen, X.W., Li, Y.T., Qian, T., et al.: Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10, 900 (2019). https://doi.org/10.1038/s41467-019-08767-0

    Article  CAS  Google Scholar 

  78. Dong, L., Nie, L., Liu, W.: Water-stable lithium metal anodes with ultrahigh-rate capability enabled by a hydrophobic graphene architecture. Adv. Mater. 32, 1908494 (2020). https://doi.org/10.1002/adma.201908494

    Article  CAS  Google Scholar 

  79. Wang, G.P., Zhang, L., Zhang, J.J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  80. Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  81. Salanne, M., Rotenberg, B., Naoi, K., et al.: Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70

    Article  CAS  Google Scholar 

  82. Chen, J., Li, C., Shi, G.: Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 4, 1244–1253 (2013). https://doi.org/10.1021/jz400160k

    Article  CAS  Google Scholar 

  83. Bo, Z., Wen, Z.H., Kim, H., et al.: One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50, 4379–4387 (2012). https://doi.org/10.1016/j.carbon.2012.05.014

    Article  CAS  Google Scholar 

  84. Ji, J.Y., Li, Y., Peng, W.C., et al.: Advanced graphene-based binder-free electrodes for high-performance energy storage. Adv. Mater. 27, 5264–5279 (2015). https://doi.org/10.1002/adma.201501115

    Article  CAS  Google Scholar 

  85. Zhang, Y., Zou, Q.H., Hsu, H.S., et al.: Morphology effect of vertical graphene on the high performance of supercapacitor electrode. ACS Appl. Mater. Interfaces 8, 7363–7369 (2016). https://doi.org/10.1021/acsami.5b12652

    Article  CAS  Google Scholar 

  86. Bo, Z., Zhu, W.G., Ma, W., et al.: Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater. 25, 5799–5806 (2013). https://doi.org/10.1002/adma.201301794

    Article  CAS  Google Scholar 

  87. Du, X., Skachko, I., Barker, A., et al.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008). https://doi.org/10.1038/nnano.2008.199

    Article  CAS  Google Scholar 

  88. Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., et al.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008). https://doi.org/10.1103/physrevlett.100.016602

    Article  CAS  Google Scholar 

  89. Seo, D.H., Han, Z.J., Kumar, S., et al.: Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 3, 1316–1323 (2013). https://doi.org/10.1002/aenm.201300431

    Article  CAS  Google Scholar 

  90. Miller, J.R., Outlaw, R.A., Holloway, B.C.: Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010). https://doi.org/10.1126/science.1194372

    Article  CAS  Google Scholar 

  91. Liao, Q.Y., Jin, S.X., Wang, C.X.: Novel graphene-based composite as binder-free high-performance electrodes for energy storage systems. J. Materiomics 2, 291–308 (2016). https://doi.org/10.1016/j.jmat.2016.09.002

    Article  Google Scholar 

  92. Zheng, S.H., Li, Z.L., Wu, Z.-S., et al.: High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors. ACS Nano 11, 4009–4016 (2017). https://doi.org/10.1021/acsnano.7b00553

    Article  CAS  Google Scholar 

  93. Yen, H.F., Horng, Y.Y., Hu, M.S., et al.: Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors. Carbon 82, 124–134 (2015). https://doi.org/10.1016/j.carbon.2014.10.042

    Article  CAS  Google Scholar 

  94. Li, N., Huang, X.K., Zhang, H.Y., et al.: Transparent and self-supporting graphene films with wrinkled-graphene-wall-assembled opening polyhedron building blocks for high performance flexible/transparent supercapacitors. ACS Appl. Mater. Interfaces 9, 9763–9771 (2017). https://doi.org/10.1021/acsami.7b00487

    Article  CAS  Google Scholar 

  95. Wu, C.Z., Lu, X.L., Peng, L.L., et al.: Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 4, 2431 (2013). https://doi.org/10.1038/ncomms3431

    Article  CAS  Google Scholar 

  96. Yu, G.H., Hu, L.B., Vosgueritchian, M., et al.: Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11, 2905–2911 (2011s). https://doi.org/10.1021/nl2013828

    Article  CAS  Google Scholar 

  97. Yang, L., Cheng, S., Ding, Y., et al.: Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett. 12, 321–325 (2012). https://doi.org/10.1021/nl203600x

    Article  CAS  Google Scholar 

  98. Liao, Q.Y., Li, N., Jin, S.X., et al.: All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9, 5310–5317 (2015). https://doi.org/10.1021/acsnano.5b00821

    Article  CAS  Google Scholar 

  99. Semenikhin, O.A., Ovsyannikova, E.V., Ehrenburg, M.R., et al.: Electrochemical and photoelectrochemical behaviour of polythiophenes in non-aqueous solutions: part 2. The effect of charge trapping. J. Electroanal. Chem. 494, 1–11 (2000). https://doi.org/10.1016/S0022-0728(00)00304-1

    Article  CAS  Google Scholar 

  100. Levi, M.D., Gofer, Y., Aurbach, D., et al.: EIS evidence for charge trapping in n-doped poly-3-(3,4,5-trifluorophenyl) thiophene. Electrochim. Acta 49, 433–444 (2004). https://doi.org/10.1016/j.electacta.2003.08.027

    Article  CAS  Google Scholar 

  101. Zhang, H.H., Tang, X.H., Zhao, D.K., et al.: Suppressing charge trapping effect in ambipolar conducting polymer with vertically standing graphene as the composite electrode for high performance supercapacitor. Energy Storage Mater. 29, 281–286 (2020). https://doi.org/10.1016/j.ensm.2020.04.024

    Article  Google Scholar 

  102. Subbaraman, R., Tripkovic, D., Strmcnik, D., et al.: Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011). https://doi.org/10.1126/science.1211934

    Article  CAS  Google Scholar 

  103. Liu, Y.Y., Wu, J.J., Hackenberg, K.P., et al.: Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2, 17127 (2017). https://doi.org/10.1038/nenergy.2017.127

    Article  CAS  Google Scholar 

  104. Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008). https://doi.org/10.1126/science.1162018

    Article  CAS  Google Scholar 

  105. Gray, H.B.: Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009). https://doi.org/10.1038/nchem.141

    Article  CAS  Google Scholar 

  106. Wu, Y.Y., Liu, Y.P., Li, G.D., et al.: Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 35, 161–170 (2017). https://doi.org/10.1016/j.nanoen.2017.03.024

    Article  CAS  Google Scholar 

  107. Long, X., Lin, H., Zhou, D., et al.: Enhancing full water-splitting performance of transition metal bifunctional electrocatalysts in alkaline solutions by tailoring CeO2-transition metal oxides-Ni nanointerfaces. ACS Energy Lett. 3, 290–296 (2018). https://doi.org/10.1021/acsenergylett.7b01130

    Article  CAS  Google Scholar 

  108. Song, F.Z., Li, W., Yang, J.Q., et al.: Interfacial sites between cobalt nitride and cobalt act as bifunctional catalysts for hydrogen electrochemistry. ACS Energy Lett. 4, 1594–1601 (2019). https://doi.org/10.1021/acsenergylett.9b00738

    Article  CAS  Google Scholar 

  109. Wang, J., Xu, F., Jin, H.Y., et al.: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017). https://doi.org/10.1002/adma.201605838

    Article  CAS  Google Scholar 

  110. Zou, X.X., Zhang, Y.: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e

    Article  CAS  Google Scholar 

  111. Song, F., Bai, L.C., Moysiadou, A., et al.: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546

    Article  CAS  Google Scholar 

  112. Xia, C., Jiang, Q., Zhao, C., et al.: Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28, 77–85 (2016). https://doi.org/10.1002/adma.201503906

    Article  CAS  Google Scholar 

  113. Ren, B.W., Li, D.Q., Jin, Q.Y., et al.: Novel porous tungsten carbide hybrid nanowires on carbon cloth for high-performance hydrogen evolution. J. Mater. Chem. A 5, 13196–13203 (2017). https://doi.org/10.1039/c7ta03364h

    Article  CAS  Google Scholar 

  114. Li, D.Q., Liao, Q.Y., Ren, B.W., et al.: A 3D-composite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction. J. Mater. Chem. A 5, 11301–11308 (2017). https://doi.org/10.1039/c7ta02149f

    Article  CAS  Google Scholar 

  115. Deng, S.J., Zhong, Y., Zeng, Y.X., et al.: Directional construction of vertical nitrogen-doped 1T–2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater. 29, 1700748 (2017). https://doi.org/10.1002/adma.201700748

    Article  CAS  Google Scholar 

  116. Zhang, Z.Y., Li, W.Y., Yuen, M.F., et al.: Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy 18, 196–204 (2015). https://doi.org/10.1016/j.nanoen.2015.10.014

    Article  CAS  Google Scholar 

  117. Sun, H.M., Yan, Z.H., Liu, F.M., et al.: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32, 1806326 (2020). https://doi.org/10.1002/adma.201806326

    Article  CAS  Google Scholar 

  118. Cui, L.Z., Huan, Y.H., Shan, J.J., et al.: Highly conductive nitrogen-doped vertically oriented graphene toward versatile electrode-related applications. ACS Nano 14, 15327–15335 (2020). https://doi.org/10.1021/acsnano.0c05662

    Article  CAS  Google Scholar 

  119. Lazar, P., Zbořil, R., Pumera, M., et al.: Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Phys. Chem. Chem. Phys. 16, 14231–14235 (2014). https://doi.org/10.1039/c4cp01638f

    Article  CAS  Google Scholar 

  120. Lee, W.J., Lim, J., Kim, S.O.: Nitrogen dopants in carbon nanomaterials: defects or a new opportunity? Small Methods 1, 1600014 (2017). https://doi.org/10.1002/smtd.201600014

    Article  CAS  Google Scholar 

  121. Li, Y.H., Ai, C.Z., Deng, S.J., et al.: Nitrogen doped vertical graphene as metal-free electrocatalyst for hydrogen evolution reaction. Mater. Res. Bull. 134, 111094 (2021). https://doi.org/10.1016/j.materresbull.2020.111094

    Article  CAS  Google Scholar 

  122. Jiao, Y., Zheng, Y., Davey, K., et al.: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 1–9 (2016). https://doi.org/10.1038/nenergy.2016.130

    Article  CAS  Google Scholar 

  123. Wang, H.P., Li, X.B., Gao, L., et al.: Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 192–197 (2018). https://doi.org/10.1002/anie.201709901

    Article  CAS  Google Scholar 

  124. Liu, Z.J., Zhao, Z.H., Wang, Y.Y., et al.: In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 29, 1606207 (2017). https://doi.org/10.1002/adma.201606207

    Article  CAS  Google Scholar 

  125. Tsounis, C., Lu, X.Y., Bedford, N.M., et al.: Valence alignment of mixed Ni-Fe hydroxide electrocatalysts through preferential templating on graphene edges for enhanced oxygen evolution. ACS Nano 14, 11327–11340 (2020). https://doi.org/10.1021/acsnano.0c03380

    Article  CAS  Google Scholar 

  126. Li, D.Q., Ren, B.W., Jin, Q.Y., et al.: Nitrogen-doped, oxygen-functionalized, edge- and defect-rich vertically aligned graphene for highly enhanced oxygen evolution reaction. J. Mater. Chem. A 6, 2176–2183 (2018). https://doi.org/10.1039/c7ta07896j

    Article  CAS  Google Scholar 

  127. Lee, J.S., Tai Kim, S., Cao, R.G., et al.: Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011). https://doi.org/10.1002/aenm.201000010

    Article  CAS  Google Scholar 

  128. Fu, J., Cano, Z.P., Park, M.G., et al.: Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017). https://doi.org/10.1002/adma.201604685

    Article  CAS  Google Scholar 

  129. Wang, F., Borodin, O., Gao, T., et al.: Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z

    Article  CAS  Google Scholar 

  130. Meng, F.L., Chang, Z.W., Xu, J.J., et al.: Photoinduced decoration of NiO nanosheets/Ni foam with Pd nanoparticles towards a carbon-free and self-standing cathode for a lithium-oxygen battery with a low overpotential and long cycle life. Mater. Horiz. 5, 298–302 (2018). https://doi.org/10.1039/c7mh01014a

    Article  CAS  Google Scholar 

  131. Su, D.W., Han Seo, D., Ju, Y.H., et al.: Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries. NPG Asia Mater. 8, e286 (2016). https://doi.org/10.1038/am.2016.91

    Article  CAS  Google Scholar 

  132. Feng, Y.J., Alonso-Vante, N.: Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys. Status Solidi B 245, 1792–1806 (2008). https://doi.org/10.1002/pssb.200879537

    Article  CAS  Google Scholar 

  133. Zhang, M.D., Dai, Q.B., Zheng, H.G., et al.: Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv. Mater. 30, 1705431 (2018). https://doi.org/10.1002/adma.201705431

    Article  CAS  Google Scholar 

  134. Wu, Z.H., Zhang, Y.S., Li, L., et al.: Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries. J. Mater. Chem. A 8, 23248–23256 (2020). https://doi.org/10.1039/d0ta07633c

    Article  CAS  Google Scholar 

  135. Zhang, B.X., Zhang, E.H., Wang, S.Y., et al.: Bifunctional oxygen electrocatalyst derived from photochlorinated graphene for rechargeable solid-state Zn–air battery. J. Colloid Interface Sci. 543, 84–95 (2019). https://doi.org/10.1016/j.jcis.2019.02.044

    Article  CAS  Google Scholar 

  136. Zhang, Y.Y., Sun, H.H., Qiu, Y.F., et al.: Multiwall carbon nanotube encapsulated Co grown on vertically oriented graphene modified carbon cloth as bifunctional electrocatalysts for solid-state Zn–air battery. Carbon 144, 370–381 (2019). https://doi.org/10.1016/j.carbon.2018.12.055

    Article  CAS  Google Scholar 

  137. Ma, T.Y., Dai, S., Qiao, S.Z.: Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 19, 265–273 (2016). https://doi.org/10.1016/j.mattod.2015.10.012

    Article  CAS  Google Scholar 

  138. Chen, Z.P., Ren, W.C., Gao, L.B., et al.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011). https://doi.org/10.1038/nmat3001

    Article  CAS  Google Scholar 

  139. Huang, X.D., Qian, K., Yang, J., et al.: Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 24, 4419–4423 (2012). https://doi.org/10.1002/adma.201201680

    Article  CAS  Google Scholar 

  140. Yang, L., Li, X.Y., Zhang, G.Z., et al.: Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat. Commun. 8, 16049 (2017). https://doi.org/10.1038/ncomms16049

    Article  CAS  Google Scholar 

  141. Zhang, P.P., Li, J., Lv, L.X., et al.: Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017). https://doi.org/10.1021/acsnano.7b01965

    Article  CAS  Google Scholar 

  142. Feng, S.R., Yao, T.Y., Lu, Y.H., et al.: Quasi-industrially produced large-area microscale graphene flakes assembled film with extremely high thermoelectric power factor. Nano Energy 58, 63–68 (2019). https://doi.org/10.1016/j.nanoen.2019.01.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 51772338, 51972349, 51972350, U1801255 and 91963210). Natural Science Foundation of Guangdong Province (No. 2018A030313881).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Cui or Chengxin Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, B., Cui, H. & Wang, C. Self-Supported Graphene Nanosheet-Based Composites as Binder-Free Electrodes for Advanced Electrochemical Energy Conversion and Storage. Electrochem. Energy Rev. 5 (Suppl 2), 32 (2022). https://doi.org/10.1007/s41918-022-00138-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00138-6

Keywords

Navigation