Skip to main content

Advertisement

Log in

Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) are an emerging technology regarded as a promising alternative to lithium-ion batteries (LIBs), particularly for stationary energy storage. However, due to complications associated with the large size of the Na+ charge carrier, the cycling stability and rate performance of SIBs are generally inadequate for commercial applications. Due to their similar chemistry and operating mechanism to LIBs, many improvement strategies derived from extensive LIB research are directly translatable to SIBs. In addition to doping and tailoring of the particle morphology, applying coatings is a promising approach to improve the performance of existing electrode materials. Coatings can mitigate side reactions at the electrode–electrolyte interface, restrict active material dissolution, provide reinforcement against particle degradation, and/or enhance electrode kinetics. This review provides a comprehensive overview and comparison of coatings applied to SIB intercalation cathodes and anodes. Coatings are categorized based on their mechanism of action and deposition method. Key classes of SIB electrode materials are introduced, and promising coating strategies to improve the performance of each material are then discussed. These insights can help guide rational design of high-performance SIB electrodes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2017, Wiley

Fig. 4

Copyright 2020, Wiley. D P2-Na2/3Ni1/3Mn2/3O2 particle with intragranular cracks after 100 cycles (0.05 C, 2.0–4.5 V vs. Na/Na+). Reprinted with permission from Ref. [70]. Copyright 2017, American Chemical Society. E Schematic of intragranular crack formation induced by P2-O2 phase separation. Cracking is depicted as initiating at the surface and extending into the bulk

Fig. 5

Copyright 2014, American Chemical Society

Fig. 6

Copyright 2019, Elsevier. E Comparison of the cycling performance (2–4.5 V vs. Na/Na+) between pristine and 5 wt% AlPO4-coated P2-Na0.7Mn2.05. F Mn 2p XPS spectra showing increased valency of Mn due to doping from the AlPO4 coating. Reprinted with permission from Ref. [108]. Copyright 2020, Elsevier. G Cycling (2.0–4.5 V vs. Na/Na+, 1 C) and rate performance comparison of Al2O3-coated (Al-NMM) and alucone-coated (Alu-NMM) P2-Na2/3Mn0.9Mg0.1O2. Reprinted with permission from Ref. [109]. Copyright 2020, Wiley

Fig. 7

Copyright 2016, Elsevier

Fig. 8

Copyright 2015, Nature Publishing Group. G Scanning TEM cross-sectional (left) and SEM (right) images of RAHC O3-NaNi0.65Mn0.27Co0.08O2. Red arrows indicate interparticle cracks. H Comparative images of AlF3-coated RAHC O3-NaNi0.65Mn0.27Co0.08O2. Red arrows indicate the AlF3 coating. Reprinted with permission from Ref. [22]. Copyright 2018, American Chemical Society

Fig. 9
Fig. 10

Copyright 2014, Royal Society of Chemistry. C Rate performance comparison of N-doped carbon-coated Na3V2(PO4)3. D Cycling performance comparison at 20 C. Reprinted with permission from Ref. [180]. Copyright 2017, Elsevier

Fig. 11
Fig. 12

Copyright 2014, American Chemical Society. C Synthesis schematic and D SEM image of carbon-coated particles coupled with CNFs. Reprinted with permission from Ref. [207]. Copyright 2015, Wiley. E Synthesis schematic and F SEM image of a porous composite composed of nanoparticles embedded on rGO sheets. Reprinted with permission from Ref. [189]. Copyright 2015, Wiley. G SEM image of CNFs assembled by electrospinning. H TEM image depicting Na3V2(PO4)3 nanoparticles assembled as carbon-encapsulated nanofibers. Reprinted with permission from Ref. [208]. Copyright 2014, Wiley. I SEM image of hollow microspheres assembled via ultrasonic spray pyrolysis. Reprinted with permission from Ref. [194]. Copyright 2017, Elsevier

Fig. 13

Copyright 2018, Wiley. D Lattice structure and orientation, E TEM image, and F high-resolution TEM (HR-TEM) image of Na3V2O2(PO4)2F nanocuboid particles. Reprinted with permission from Ref. [219]. Copyright 2016, Elsevier

Fig. 14

Copyright 2019, Wiley. B Synthesis schematic and C rate performance of PEDOT-coated Na2FePO4F nanoparticles. D Rate performance comparison with pristine Na2FePO4F. Reprinted with permission from Ref. [255]. Copyright 2019, Elsevier

Fig. 15

Copyright 2016, Wiley. B Size tuning of TiO2 nanospheroids synthesized by a solvothermal method based on the amount of PVA added. Reprinted with permission from Ref. [332]. Copyright 2016, Wiley. C Schematic depicting the growth of TiO2 nanoparticles on the surface of CNTs. Reprinted with permission from Ref. [325]. Copyright 2020, Wiley

Similar content being viewed by others

References

  1. Gruber, P.W., Medina, P.A., Keoleian, G.A., et al.: Global lithium availability. J. Ind. Ecol. 15, 760–775 (2011). https://doi.org/10.1111/j.1530-9290.2011.00359.x

    Article  Google Scholar 

  2. Speirs, J., Contestabile, M., Houari, Y., et al.: The future of lithium availability for electric vehicle batteries. Renew. Sustain. Energy Rev. 35, 183–193 (2014). https://doi.org/10.1016/j.rser.2014.04.018

    Article  Google Scholar 

  3. Vikström, H., Davidsson, S., Höök, M.: Lithium availability and future production outlooks. Appl. Energy 110, 252–266 (2013). https://doi.org/10.1016/j.apenergy.2013.04.005

    Article  CAS  Google Scholar 

  4. Or, T., Gourley, S.W.D., Kaliyappan, K., et al.: Recycling of mixed cathode lithium-ion batteries for electric vehicles: current status and future outlook. Carbon Energy 2, 6–43 (2020). https://doi.org/10.1002/cey2.29

    Article  CAS  Google Scholar 

  5. Abraham, K.M.: Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics 7, 199–212 (1982). https://doi.org/10.1016/0167-2738(82)90051-0

    Article  CAS  Google Scholar 

  6. Wu, X.Y., Leonard, D.P., Ji, X.L.: Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29, 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764

    Article  CAS  Google Scholar 

  7. Ponrouch, A., Bitenc, J., Dominko, R., et al.: Multivalent rechargeable batteries. Energy Storage Mater. 20, 253–262 (2019). https://doi.org/10.1016/j.ensm.2019.04.012

    Article  Google Scholar 

  8. Zhang, M.W., Liang, R.L., Or, T., et al.: Recent progress on high-performance cathode materials for zinc-ion batteries. Small Struct. 2, 2000064 (2021). https://doi.org/10.1002/sstr.202000064

    Article  CAS  Google Scholar 

  9. Nayak, P.K., Yang, L.T., Brehm, W., et al.: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chemie Int. Ed. 57, 102–120 (2018). https://doi.org/10.1002/anie.201703772

    Article  CAS  Google Scholar 

  10. Xiang, X.D., Zhang, K., Chen, J.: Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27, 5343–5364 (2015). https://doi.org/10.1002/adma.201501527

    Article  CAS  Google Scholar 

  11. Chayambuka, K., Mulder, G., Danilov, D.L., et al.: Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8, 1800079 (2018). https://doi.org/10.1002/aenm.201800079

    Article  CAS  Google Scholar 

  12. Delmas, C.: Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8, 1703137 (2018). https://doi.org/10.1002/aenm.201703137

    Article  CAS  Google Scholar 

  13. Clément, R.J., Billaud, J., Robert Armstrong, A., et al.: Structurally stable Mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ. Sci. 9, 3240–3251 (2016). https://doi.org/10.1039/C6EE01750A

    Article  CAS  Google Scholar 

  14. Singh, G., Tapia-Ruiz, N., Lopez del Amo, J.M., et al.: High voltage Mg-doped Na0.67Ni0.3−xMgxMn0.7O2 (x = 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem. Mater. 28, 5087–5094 (2016). https://doi.org/10.1021/acs.chemmater.6b01935

  15. Wang, P.F., You, Y., Yin, Y.X., et al.: Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew. Chem. Int. Ed. 55, 7445–7449 (2016). https://doi.org/10.1002/anie.201602202

  16. Pang, W.L., Zhang, X.H., Guo, J.Z., et al.: P2-type Na2/3Mn1−xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J. Power Sources 356, 80–88 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.076

    Article  CAS  Google Scholar 

  17. Ramasamy, H.V., Kaliyappan, K., Thangavel, R., et al.: Efficient method of designing stable layered cathode material for sodium ion batteries using aluminum doping. J. Phys. Chem. Lett. 8, 5021–5030 (2017). https://doi.org/10.1021/acs.jpclett.7b02012

    Article  CAS  Google Scholar 

  18. Chen, W.M., Wan, M., Liu, Q., et al.: Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3, 1800323 (2019). https://doi.org/10.1002/smtd.201800323

    Article  CAS  Google Scholar 

  19. Wu, H., Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004

    Article  CAS  Google Scholar 

  20. Yu, T.Y., Hwang, J.Y., Aurbach, D., et al.: Microsphere Na0.65 [Ni0.17Co0.11Mn0.72]O2 cathode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 44534–44541 (2017). https://doi.org/10.1021/acsami.7b15267

  21. Yu, T.Y., Ryu, H.H., Han, G., et al.: Understanding the capacity fading mechanisms of O3-type Na[Ni0.5Mn0.5]O2 cathode for sodium-ion batteries. Adv. Energy Mater. 10, 2001609 (2020). https://doi.org/10.1002/aenm.202001609

  22. Sun, H.H., Hwang, J.Y., Yoon, C.S., et al.: Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na0.65[Ni0.17Co0.11Mn0.72]O2 cathode for sodium-ion batteries. ACS Nano 12, 12912–12922 (2018). https://doi.org/10.1021/acsnano.8b08266

  23. Bucher, N., Hartung, S., Franklin, J.B., et al.: P2-NaxCoyMn1−yO2 (y = 0, 0.1) as cathode materials in sodium-ion batteries: effects of doping and morphology to enhance cycling stability. Chem. Mater. 28, 2041–2051 (2016). https://doi.org/10.1021/acs.chemmater.5b04557

  24. Bucher, N., Hartung, S., Nagasubramanian, A., et al.: Layered NaxMnO2+z in sodium ion batteries-influence of morphology on cycle performance. ACS Appl. Mater. Interfaces 6, 8059–8065 (2014). https://doi.org/10.1021/am406009t

    Article  CAS  Google Scholar 

  25. Kaliyappan, K., Li, G.R., Yang, L., et al.: An ion conductive polyimide encapsulation: new insight and significant performance enhancement of sodium based P2 layered cathodes. Energy Storage Mater. 22, 168–178 (2019). https://doi.org/10.1016/j.ensm.2019.07.010

    Article  Google Scholar 

  26. Li, H.Q., Zhou, H.S.: Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem. Commun. 48, 1201–1217 (2012). https://doi.org/10.1039/C1CC14764A

    Article  CAS  Google Scholar 

  27. Dominko, R., Gaberšček, M., Drofenik, J., et al.: Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim. Acta 48, 3709–3716 (2003). https://doi.org/10.1016/S0013-4686(03)00522-X

    Article  CAS  Google Scholar 

  28. Chen, Z.H., Qin, Y., Amine, K., et al.: Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 20, 7606–7612 (2010). https://doi.org/10.1039/C0JM00154F

    Article  CAS  Google Scholar 

  29. Delmas, C., Fouassier, C., Hagenmuller, P.: Structural classification and properties of the layered oxides. Phys. B+C 99, 81–85 (1980). https://doi.org/10.1016/0378-4363(80)90214-4

    Article  CAS  Google Scholar 

  30. Wang, Y., Xiao, R., Hu, Y.S., et al.: P2-Na0.6 [Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 6, 6954 (2015). https://doi.org/10.1038/ncomms7954

  31. You, Y., Manthiram, A.: Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 8, 1701785 (2018). https://doi.org/10.1002/aenm.201701785

    Article  CAS  Google Scholar 

  32. Lu, Z.H., Dahn, J.R.: In situ X-ray diffraction study of P2-Na2/3 [Ni1/3Mn2/3]O2. J. Electrochem. Soc. 148, A1225–A1229 (2001). https://doi.org/10.1149/1.1407247

    Article  CAS  Google Scholar 

  33. Billaud, J., Singh, G., Armstrong, A.R., et al.: Na0.67Mn1–xMgxO2 (\(0 \leqslant x \leqslant 0.2 \)): a high capacity cathode for sodium-ion batteries. Energy Environ. Sci. 7, 1387–1391 (2014). https://doi.org/10.1039/c4ee00465e

  34. Yabuuchi, N., Kajiyama, M., Iwatate, J., et al.: P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012). https://doi.org/10.1038/nmat3309

  35. Tapia-Ruiz, N., Dose, W.M., Sharma, N., et al.: High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3–xMgxMn2/3O2 (\(0 \leqslant x \leqslant 0.2 \)) cathodes from diffraction, electrochemical and ab initio studies. Energy Environ. Sci. 11, 1470–1479 (2018). https://doi.org/10.1039/c7ee02995k

  36. Saadoune, I., Maazaz, A., Ménétrier, M., et al.: On the NaxNi0.6Co0.4O2 system: physical and electrochemical studies. J. Solid State Chem. 122, 111–117 (1996). https://doi.org/10.1006/jssc.1996.0090

  37. Mortemard de Boisse, B., Carlier, D., Guignard, M., et al.: P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: structural changes induced by the electrochemical (de)intercalation process. Inorg. Chem. 53, 11197–11205 (2014). https://doi.org/10.1021/ic5017802

  38. Talaie, E., Duffort, V., Smith, H.L., et al.: Structure of the high voltage phase of layered P2-Na2/3–z [Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 8, 2512–2523 (2015). https://doi.org/10.1039/c5ee01365h

  39. Talaie, E., Kim, S.Y., Chen, N., et al.: Structural evolution and redox processes involved in the electrochemical cycling of P2-Na0.67 [Mn0.66Fe0.20Cu0.14]O2. Chem. Mater. 29, 6684–6697 (2017). https://doi.org/10.1021/acs.chemmater.7b01146

  40. Somerville, J.W., Sobkowiak, A., Tapia-Ruiz, N., et al.: Nature of the “Z”-phase in layered Na-ion battery cathodes. Energy Environ. Sci. 12, 2223–2232 (2019). https://doi.org/10.1039/c8ee02991a

    Article  CAS  Google Scholar 

  41. Liu, L., Li, X., Bo, S.H., et al.: High-performance P2-type Na2/3(Mn1/2Fe1/4Co1/4)O2 cathode material with superior rate capability for Na-ion batteries. Adv. Energy Mater. 5, 1500944 (2015). https://doi.org/10.1002/aenm.201500944

    Article  CAS  Google Scholar 

  42. Wang, P.F., Yao, H.R., Liu, X.Y., et al.: Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3−P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 29, 1700210 (2017). https://doi.org/10.1002/adma.201700210

  43. Komaba, S., Yabuuchi, N., Nakayama, T., et al.: Study on the reversible electrode reaction of Na1–xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 51, 6211–6220 (2012). https://doi.org/10.1021/ic300357d

  44. Wang, Q., Mariyappan, S., Vergnet, J., et al.: Reaching the energy density limit of layered O3-NaNi0.5Mn0.5O2 electrodes via dual Cu and Ti substitution. Adv. Energy Mater. 9, 1901785 (2019). https://doi.org/10.1002/aenm.201901785

  45. Yabuuchi, N., Hara, R., Kubota, K., et al.: A new electrode material for rechargeable sodium batteries: P2-type Na2/3 [Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2, 16851–16855 (2014). https://doi.org/10.1039/c4ta04351k

  46. Xu, H., Guo, S.H., Zhou, H.S.: Review on anionic redox in sodium-ion batteries. J. Mater. Chem. A 7, 23662–23678 (2019). https://doi.org/10.1039/c9ta06389g

    Article  CAS  Google Scholar 

  47. Wang, P.F., You, Y., Yin, Y.X., et al.: Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8, 1701912 (2018). https://doi.org/10.1002/aenm.201701912

    Article  CAS  Google Scholar 

  48. Cho, J., Kim, Y.J., Park, B.: Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 12, 3788–3791 (2000). https://doi.org/10.1021/cm000511k

    Article  CAS  Google Scholar 

  49. Cho, J., Kim, Y.J., Kim, T.J., et al.: Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem. Int. Ed. 113, 3471–3473 (2001)

    Article  Google Scholar 

  50. Chen, Z.H., Dahn, J.R.: Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 49, 1079–1090 (2004). https://doi.org/10.1016/j.electacta.2003.10.019

  51. Chen, Z.H., Dahn, J.R.: Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem. Solid-State Lett. 5, A213-A216 (2002). https://doi.org/10.1149/1.1503202

  52. Zhan, C., Wu, T.P., Lu, J., et al.: Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes: a critical review. Energy Environ. Sci. 11, 243–257 (2018). https://doi.org/10.1039/c7ee03122j

    Article  CAS  Google Scholar 

  53. Gilbert, J.A., Shkrob, I.A., Abraham, D.P.: Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J. Electrochem. Soc. 164, A389–A399 (2017). https://doi.org/10.1149/2.1111702jes

    Article  CAS  Google Scholar 

  54. Li, W.D., Liu, X.M., Celio, H., et al.: Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability. Adv. Energy Mater. 8, 1703154 (2018). https://doi.org/10.1002/aenm.201703154

    Article  CAS  Google Scholar 

  55. Freunberger, S.A., Chen, Y., Peng, Z., et al.: Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133, 8040–8047 (2011). https://doi.org/10.1021/ja2021747

    Article  CAS  Google Scholar 

  56. Kim, Y.: Encapsulation of LiNi0.5Co0.2Mn0.3O2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries. Phys. Chem. Chem. Phys. 15, 6400–6405 (2013). https://doi.org/10.1039/c3cp50567g

  57. Wise, A.M., Ban, C.M., Weker, J.N., et al.: Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chem. Mater. 27, 6146–6154 (2015). https://doi.org/10.1021/acs.chemmater.5b02952

  58. Mohanty, D., Dahlberg, K., King, D.M., et al.: Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: Preventing surface phase transitions for high-voltage lithium-ion batteries. Sci. Rep. 6, 1–16 (2016). https://doi.org/10.1038/srep26532

    Article  CAS  Google Scholar 

  59. David, L., Dahlberg, K., Mohanty, D., et al.: Unveiling the role of Al2O3 in preventing surface reconstruction during high-voltage cycling of lithium-ion batteries. ACS Appl. Energy Mater. 2, 1308–1313 (2019). https://doi.org/10.1021/acsaem.8b01877

    Article  CAS  Google Scholar 

  60. Kim, H., Kim, M.G., Jeong, H.Y., et al.: A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett 15, 2111–2119 (2015). https://doi.org/10.1021/acs.nanolett.5b00045

  61. Strehle, B., Kleiner, K., Jung, R., Chesneau, F., Mendez, M., Gasteiger, H.A., Piana, M.: The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 164, A400–A406 (2017). https://doi.org/10.1149/2.1001702jes

    Article  CAS  Google Scholar 

  62. Jung, R., Metzger, M., Maglia, F., et al.: Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361–A1377 (2017). https://doi.org/10.1149/2.0021707jes

    Article  CAS  Google Scholar 

  63. Lee, M.J., Noh, M., Park, M.H., et al.: The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures. J. Mater. Chem. A 3, 13453–13460 (2015). https://doi.org/10.1039/c5ta01571e

  64. Myung, S.T., Izumi, K., Komaba, S., et al.: Role of alumina coating on Li–Ni–Co–Mn–O particles as positive electrode material for lithium-ion batteries. Chem. Mater. 17, 3695–3704 (2005). https://doi.org/10.1021/cm050566s

    Article  CAS  Google Scholar 

  65. Woo, S.U., Yoon, C.S., Amine, K., et al.: Significant improvement of electrochemical performance of AlF3-coated Li [Ni0.8Co0.1Mn0.1]O2 cathode materials. J. Electrochem. Soc. 154, A1005-A1009 (2007). https://doi.org/10.1149/1.2776160

  66. Zheng, J.M., Gu, M., Xiao, J., et al.: Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater. 26, 6320–6327 (2014). https://doi.org/10.1021/cm502071h

    Article  CAS  Google Scholar 

  67. Lu, Y.C., Mansour, A.N., Yabuuchi, N., et al.: Probing the origin of enhanced stability of “AlPO4” nanoparticle coated LiCoO2 during cycling to high voltages: combined XRD and XPS studies. Chem. Mater. 21, 4408–4424 (2009). https://doi.org/10.1021/cm900862v

    Article  CAS  Google Scholar 

  68. Hwang, J.Y., Myung, S.T., Choi, J.U., et al.: Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. J. Mater. Chem. A 5, 23671–23680 (2017). https://doi.org/10.1039/c7ta08443a

    Article  CAS  Google Scholar 

  69. Kim, J.W., Kim, D.H., Oh, D.Y., et al.: Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J. Power Sources 274, 1254–1262 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.207

  70. Alvarado, J., Ma, C.Z., Wang, S., et al.: Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl. Mater. Interfaces 9, 26518–26530 (2017). https://doi.org/10.1021/acsami.7b05326

    Article  CAS  Google Scholar 

  71. Aurbach, D., Gamolsky, K., Markovsky, B., et al.: The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn). J. Electrochem. Soc. 147, 1322–1331 (2000). https://doi.org/10.1149/1.1393357

    Article  CAS  Google Scholar 

  72. Okuno, Y., Ushirogata, K., Sodeyama, K., et al.: Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study. Phys. Chem. Chem. Phys. 18, 8643–8653 (2016). https://doi.org/10.1039/c5cp07583a

    Article  CAS  Google Scholar 

  73. Jo, C.H., Jo, J.H., Yashiro, H., et al.: Bioinspired surface layer for the cathode material of high-energy-density sodium-ion batteries. Adv. Energy Mater. 8, 1702942 (2018). https://doi.org/10.1002/aenm.201702942

    Article  CAS  Google Scholar 

  74. Jo, J.H., Choi, J.U., Konarov, A., et al.: Sodium-ion batteries: building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate. Adv. Funct. Mater. 28, 1705968 (2018). https://doi.org/10.1002/adfm.201705968

    Article  CAS  Google Scholar 

  75. Baggetto, L., Dudney, N.J., Veith, G.M.: Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS. Electrochim. Acta 90, 135–147 (2013). https://doi.org/10.1016/j.electacta.2012.11.120

    Article  CAS  Google Scholar 

  76. Markevich, E., Salitra, G., Fridman, K., et al.: Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. Langmuir 30, 7414–7424 (2014). https://doi.org/10.1021/la501368y

    Article  CAS  Google Scholar 

  77. Takenaka, N., Sakai, H., Suzuki, Y., et al.: A computational chemical insight into microscopic additive effect on solid electrolyte interphase film formation in sodium-ion batteries: suppression of unstable film growth by intact fluoroethylene carbonate. J. Phys. Chem. C 119, 18046–18055 (2015). https://doi.org/10.1021/acs.jpcc.5b04206

    Article  CAS  Google Scholar 

  78. Hall, D.S., Gauthier, R., Eldesoky, A., et al.: New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells. ACS Appl. Mater. Interfaces 11, 14095–14100 (2019). https://doi.org/10.1021/acsami.8b22743

    Article  CAS  Google Scholar 

  79. Ma, L., Ellis, L., Glazier, S.L., et al.: Combinations of LiPO2F2and other electrolyte additives in Li[Ni0.5Mn0.3Co0.2]O2/graphite pouch cells. J. Electrochem. Soc. 165, A1718–A1724 (2018). https://doi.org/10.1149/2.0661809jes

  80. Ma, L., Ellis, L., Glazier, S.L., et al.: LiPO2F2as an electrolyte additive in Li[Ni0.5Mn0.3Co0.2]O2/graphite pouch cells. J. Electrochem. Soc. 165, A891–A899 (2018). https://doi.org/10.1149/2.0381805jes

  81. Kubota, K., Komaba, S.: Review: practical issues and future perspective for Na-ion batteries. J. Electrochem. Soc. 162, A2538–A2550 (2015). https://doi.org/10.1149/2.0151514jes

    Article  CAS  Google Scholar 

  82. Bhide, A., Hofmann, J., Dürr, A.K., et al.: Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2. Phys. Chem. Chem. Phys. 16, 1987–1998 (2014). https://doi.org/10.1039/c3cp53077a

  83. Dahbi, M., Nakano, T., Yabuuchi, N., et al.: Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries. ChemElectroChem 3, 1856–1867 (2016). https://doi.org/10.1002/celc.201600365

    Article  CAS  Google Scholar 

  84. Ma, L.A., Naylor, A.J., Nyholm, L., et al.: Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries. Angew. Chem. Int. Ed. 60, 4855–4863 (2021). https://doi.org/10.1002/anie.202013803

    Article  CAS  Google Scholar 

  85. Gourley, S.W.D., Or, T., Chen, Z.W.: Breaking free from cobalt reliance in lithium-ion batteries. iScience 23, 101505 (2020). https://doi.org/10.1016/j.isci.2020.101505

    Article  CAS  Google Scholar 

  86. Myung, S.T., Maglia, F., Park, K.J., et al.: Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196–223 (2017). https://doi.org/10.1021/acsenergylett.6b00594

    Article  CAS  Google Scholar 

  87. Wang, X.X., Ding, Y.L., Deng, Y.P., et al.: Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges. Adv. Energy Mater. 10, 1903864 (2020). https://doi.org/10.1002/aenm.201903864

    Article  CAS  Google Scholar 

  88. Wang, K., Yan, P.F., Sui, M.L.: Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy 54, 148–155 (2018). https://doi.org/10.1016/j.nanoen.2018.09.073

    Article  CAS  Google Scholar 

  89. Yan, P., Zheng, J., Gu, M., et al.: Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017). https://doi.org/10.1038/ncomms14101

    Article  CAS  Google Scholar 

  90. Han, X., Liu, Y., Jia, Z., et al.: Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett. 14, 139–147 (2014). https://doi.org/10.1021/nl4035626

    Article  CAS  Google Scholar 

  91. Liu, Y.H., Fang, X., Ge, M.Y., et al.: SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy 16, 399–407 (2015). https://doi.org/10.1016/j.nanoen.2015.07.010

    Article  CAS  Google Scholar 

  92. Deng, X.C., Chen, H., Wu, X.J., et al.: Surface modification of Fe7S8/C anode via ultrathin amorphous TiO2 layer for enhanced sodium storage performance. Small 16, 2000745 (2020). https://doi.org/10.1002/smll.202000745

    Article  CAS  Google Scholar 

  93. Xu, Y., Zhou, M., Wang, X., et al.: Enhancement of sodium ion battery performance enabled by oxygen vacancies. Angew. Chem. Int. Ed. 54, 8768–8771 (2015). https://doi.org/10.1002/anie.201503477

    Article  CAS  Google Scholar 

  94. Wang, X.Y., Fan, L., Gong, D.C., et al.: Core–shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 26, 1104–1111 (2016). https://doi.org/10.1002/adfm.201504589

    Article  CAS  Google Scholar 

  95. Huang, Y.Y., Chen, J.T., Ni, J.F., et al.: A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J. Power Sources 188, 538–545 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.037

    Article  CAS  Google Scholar 

  96. Cha, H., Kim, J., Lee, H., et al.: Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials. Adv. Mater. 32, 2003040 (2020). https://doi.org/10.1002/adma.202003040

    Article  CAS  Google Scholar 

  97. Qing, R.P., Shi, J.L., Xiao, D.D., et al.: Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv. Energy Mater. 6, 1501914 (2016). https://doi.org/10.1002/aenm.201501914

    Article  CAS  Google Scholar 

  98. Yao, H.R., Wang, P.F., Wang, Y., et al.: Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions. Adv. Energy Mater. 7, 1700189 (2017). https://doi.org/10.1002/aenm.201700189

    Article  CAS  Google Scholar 

  99. Buchholz, D., Vaalma, C., Chagas, L.G., et al.: Mg-doping for improved long-term cyclability of layered Na-ion cathode materials: the example of P2-type NaxMg0.11Mn0.89O2. J. Power Sources 282, 581–585 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.069

  100. Sharma, N., Tapia-Ruiz, N., Singh, G., et al.: Rate dependent performance related to crystal structure evolution of Na0.67Mn0.8Mg0.2O2 in a sodium-ion battery. Chem. Mater. 27, 6976–6986 (2015). https://doi.org/10.1021/acs.chemmater.5b02142

  101. Or, T., Kaliyappan, K., Bai, Z.Y., et al.: High voltage stability and characterization of P2-Na0.66Mn1−yMgyO2 cathode for sodium-ion batteries. ChemElectroChem 7, 3284–3290 (2020). https://doi.org/10.1002/celc.202000414

  102. Zhang, C., Gao, R., Zheng, L.R., et al.: New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 10819–10827 (2018). https://doi.org/10.1021/acsami.7b18226

  103. Clément, R.J., Billaud, J., Armstrong, R., et al.: Structurally stable Mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ. Sci. 9, 3240–3251 (2016). https://doi.org/10.1039/c6ee01750a

    Article  Google Scholar 

  104. Caballero, A., Hernán, L., Morales, J., et al.: Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 12, 1142–1147 (2002). https://doi.org/10.1039/b108830k

  105. Su, D.W., Wang, C.Y., Ahn, H.J., et al.: Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem. -A Eur. J. 19, 10884–10889 (2013). https://doi.org/10.1002/chem.201301563

  106. Li, X.F., Xu, Y.L., Wang, C.L.: Suppression of Jahn–Teller distortion of spinel LiMn2O4 cathode. J. Alloy. Compd. 479, 310–313 (2009). https://doi.org/10.1016/j.jallcom.2008.12.081

    Article  CAS  Google Scholar 

  107. Zhang, Y., Liu, L., Jamil, S., et al.: Al2O3 coated Na0.44MnO2 as high-voltage cathode for sodium ion batteries. Appl. Surf. Sci. 494, 1156–1165 (2019). https://doi.org/10.1016/j.apsusc.2019.07.247

  108. Zhang, Y., Pei, Y., Liu, W., et al.: AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chem. Eng. J. 382, 122697 (2020). https://doi.org/10.1016/j.cej.2019.122697

  109. Kaliyappan, K., Or, T., Deng, Y.P., et al.: Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone. Adv. Funct. Mater. 30, 1910251 (2020). https://doi.org/10.1002/adfm.201910251

    Article  CAS  Google Scholar 

  110. Zhang, J.L., Wang, W.H., Wang, W., et al.: Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl. Mater. Interfaces 11, 22051–22066 (2019). https://doi.org/10.1021/acsami.9b03937

    Article  CAS  Google Scholar 

  111. Wang, L., Sun, Y.G., Hu, L.L., et al.: Copper-substituted Na0.67Ni0.3–xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition. J. Mater. Chem. A 5, 8752–8761 (2017). https://doi.org/10.1039/c7ta00880e

  112. Yang, Q., Wang, P.F., Guo, J.Z., et al.: Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2-O2 phase transition toward high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 10, 34272–34282 (2018). https://doi.org/10.1021/acsami.8b12204

    Article  CAS  Google Scholar 

  113. Liu, Q.N., Hu, Z., Chen, M.Z., et al.: P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J. Mater. Chem. A 7, 9215–9221 (2019). https://doi.org/10.1039/c8ta11927a

    Article  CAS  Google Scholar 

  114. Liu, Y.H., Fang, X., Zhang, A.Y., et al.: Layered P2-Na2/3 [Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27, 27–34 (2016). https://doi.org/10.1016/j.nanoen.2016.06.026

  115. Hwang, J.Y., Yu, T.Y., Sun, Y.K.: Simultaneous MgO coating and Mg doping of Na[Ni0.5Mn0.5]O2 cathode: facile and customizable approach to high-voltage sodium-ion batteries. J. Mater. Chem. A. 6, 16854–16862 (2018). https://doi.org/10.1039/C8TA06551A

  116. Cushing, B.L., Goodenough, J.B.: Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode. Solid State Sci. 4, 1487–1493 (2002). https://doi.org/10.1016/S1293-2558(02)00044-4

  117. Wang, Y.G., Wang, Y.R., Hosono, E., et al.: The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 120, 7571–7575 (2008). https://doi.org/10.1002/ange.200802539

    Article  Google Scholar 

  118. Ding, J.J., Zhou, Y.N., Sun, Q., et al.: Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem. Commun. 22, 85–88 (2012). https://doi.org/10.1016/j.elecom.2012.06.001

    Article  CAS  Google Scholar 

  119. Kim, H.S., Kim, K., Moon, S.I., et al.: A study on carbon-coated LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J. Solid State Electrochem. 12, 867–872 (2008). https://doi.org/10.1007/s10008-008-0552-0

    Article  CAS  Google Scholar 

  120. Lin, B., Wen, Z.Y., Wang, X.Y., et al.: Preparation and characterization of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries. J. Solid State Electrochem. 14, 1807–1811 (2010). https://doi.org/10.1007/s10008-010-1115-8

  121. Kim, H.S., Kong, M.Z., Kim, K., et al.: Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J. Power Sources 171, 917–921 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.028

    Article  CAS  Google Scholar 

  122. Hsieh, C.T., Mo, C.Y., Chen, Y.F., et al.: Chemical-wet synthesis and electrochemistry of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. Electrochim. Acta 106, 525–533 (2013). https://doi.org/10.1016/j.electacta.2013.05.105

    Article  CAS  Google Scholar 

  123. Dang, R.B., Chen, M.M., Lee, Y., et al.: Lithium ion conductor and electronic conductor Co-coating modified layered cathode material LiNi1/3Mn1/3Co1/3O2. Electrochim. Acta 247, 443–450 (2017). https://doi.org/10.1016/j.electacta.2017.07.041

    Article  CAS  Google Scholar 

  124. Chen, X., Ma, F., Li, Y.Y., et al.: Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-ion batteries. Electrochim. Acta 284, 526–533 (2018). https://doi.org/10.1016/j.electacta.2018.07.183

  125. Chu, S.Y., Zhong, Y.J., Liao, K.M., et al.: Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Curr. Opin. Green Sustain. Chem. 17, 29–34 (2019). https://doi.org/10.1016/j.cogsc.2019.01.006

    Article  Google Scholar 

  126. Yu, C.Y., Park, J.S., Jung, H.G., et al.: NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8, 2019–2026 (2015). https://doi.org/10.1039/c5ee00695c

    Article  CAS  Google Scholar 

  127. Xia, J.Y., Wu, W.W., Fang, K.X., et al.: Enhancing the interfacial stability of P2-type cathodes by polydopamine-derived carbon coating for achieving performance improvement. Carbon 157, 693–702 (2020). https://doi.org/10.1016/j.carbon.2019.11.011

    Article  CAS  Google Scholar 

  128. Sun, Y.K., Myung, S.T., Park, B.C., et al.: Synthesis of spherical nano- to microscale core–shell particles Li[(Ni0.8Co0.1Mn0.1)1−x(Ni0.5Mn0.5)x]O2 and their applications to lithium batteries. Chem. Mater. 18, 5159–5163 (2006). https://doi.org/10.1021/cm061746k

  129. Sun, Y.K., Chen, Z., Noh, H.J., et al.: Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11, 942–947 (2012). https://doi.org/10.1038/nmat3435

    Article  CAS  Google Scholar 

  130. Sun, Y.K., Kim, D.H., Yoon, C.S., et al.: A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries. Adv. Funct. Mater. 20, 485–491 (2010). https://doi.org/10.1002/adfm.200901730

    Article  CAS  Google Scholar 

  131. Sun, Y.K., Myung, S.T., Kim, M.H., et al.: Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core–shell structure as the positive electrode material for lithium batteries. J. Am. Chem. Soc. 127, 13411–13418 (2005). https://doi.org/10.1021/ja053675g

  132. Sun, Y.K., Myung, S.T., Park, B.C., et al.: High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009). https://doi.org/10.1038/nmat2418

    Article  CAS  Google Scholar 

  133. Hwang, J.Y., Yoon, C.S., Belharouak, I., et al.: A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries. J. Mater. Chem. A 4, 17952–17959 (2016). https://doi.org/10.1039/c6ta07392a

  134. Delmas, C., Saadoune, I.: Electrochemical and physical properties of the LixNi1−yCoyO2 phases. Solid State Ionics 53–56, 370–375 (1992). https://doi.org/10.1016/0167-2738(92)90402-B

    Article  Google Scholar 

  135. Hwang, J.Y., Oh, S.M., Myung, S.T., et al.: Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 6865 (2015). https://doi.org/10.1038/ncomms7865

    Article  CAS  Google Scholar 

  136. Chen, C., Han, Z., Chen, S., et al.: Core–shell layered oxide cathode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 7144–7152 (2020). https://doi.org/10.1021/acsami.9b19260

    Article  CAS  Google Scholar 

  137. Wang, Y.Z., Tang, J.T.: CeO2-modified P2–Na–Co–Mn–O cathode with enhanced sodium storage characteristics. RSC Adv. 8, 24143–24153 (2018). https://doi.org/10.1039/c8ra04210a

    Article  CAS  Google Scholar 

  138. Choi, J.U., Jo, J.H., Jo, C.H., et al.: Impact of Na2MoO4 nanolayers autogenously formed on tunnel-type Na0.44MnO2. J. Mater. Chem. A 7, 13522–13530 (2019). https://doi.org/10.1039/c9ta03844b

  139. Luo, C., Langrock, A., Fan, X.L., et al.: P2-type transition metal oxides for high performance Na-ion battery cathodes. J. Mater. Chem. A 5, 18214–18220 (2017). https://doi.org/10.1039/c7ta04515h

    Article  CAS  Google Scholar 

  140. Ramasamy, H.V., N Didwal, P., Sinha, S., et al.: Atomic layer deposition of Al2O3 on P2-Na0.5Mn0.5Co0.5O2 as interfacial layer for high power sodium-ion batteries. J. Colloid Interface Sci. 564, 467–477 (2020). https://doi.org/10.1016/j.jcis.2019.12.132

  141. Wang, L.J., Wang, Y.Z., Yang, X.H., et al.: Enhanced sodium storage characteristics of P2-Na2/3Mn3/4Co1/4O2 cathode co-modified by La2O3 and TiO2 oxide. Mater. Chem. Phys. 238, 121933 (2019). https://doi.org/10.1016/j.matchemphys.2019.121933

    Article  CAS  Google Scholar 

  142. Kong, W.J., Wang, H.B., Sun, L.M., et al.: Understanding the synergic roles of MgO coating on the cycling and rate performance of Na0.67Mn0.5Fe0.5O2 cathode. Appl. Surf. Sci. 497, 143814 (2019). https://doi.org/10.1016/j.apsusc.2019.143814

  143. Chu, S.Y., Jia, X.J., Wang, J., et al.: Reduced air sensitivity and improved electrochemical stability of P2-Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. Compos. Part B: Eng. 173, 106913 (2019). https://doi.org/10.1016/j.compositesb.2019.106913

    Article  CAS  Google Scholar 

  144. Kong, W., Wang, H., Zhai, Y., et al.: Enhancing the rate capability and cycling stability of Na0.67Mn0.7Fe0.2Co0.1O2 through a synergy of Zr4+ doping and ZrO2 coating. J. Phys. Chem. C 122, 25909–25916 (2018). https://doi.org/10.1021/acs.jpcc.8b08742

  145. Bao, S., Luo, S.H., Lu, J.L.: Preparation and optimization of ZrO2 modified P2-type Na2/3Ni1/6Co1/6Mn2/3O2 with enhanced electrochemical performance as cathode for sodium ion batteries. Ceram. Int. 46, 16080–16087 (2020). https://doi.org/10.1016/j.ceramint.2020.03.160

    Article  CAS  Google Scholar 

  146. Kaliyappan, K., Liu, J., Lushington, A., et al.: Highly stable Na2/3(Mn0.54Ni0.13Co0.13)O2 cathode modified by atomic layer deposition for sodium-ion batteries. ChemSusChem 8, 2537–2543 (2015). https://doi.org/10.1002/cssc.201500155

  147. Dang, R., Chen, M., Li, Q., Wu, K., Lee, Y.L., Hu, Z., Xiao, X.: Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: suppressing Na+ /vacancy ordering and P2-O2 phase transition. ACS Appl. Mater. Interfaces. 11, 856–864 (2019). https://doi.org/10.1021/acsami.8b17976

    Article  CAS  Google Scholar 

  148. Dang, R., Li, Q., Chen, M., Hu, Z., Xiao, X.: CuO-Coated and Cu2+-doped Co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries. Phys. Chem. Chem. Phys. 21, 314–321 (2019). https://doi.org/10.1039/C8CP06248J

  149. Yang, Y.Q., Dang, R.B., Wu, K., et al.: Semiconductor material ZnO-coated P2-type Na2/3Ni1/3Mn2/3O2 cathode materials for sodium-ion batteries with superior electrochemical performance. J. Phys. Chem. C 124, 1780–1787 (2020). https://doi.org/10.1021/acs.jpcc.9b08220

    Article  CAS  Google Scholar 

  150. Hou, P., Li, F., Wang, Y., Yin, J., Xu, X.: Mitigating the P2-O2 phase transition of high-voltage P2-Na2/3 [Ni1/3Mn2/3]O2 cathodes by cobalt gradient substitution for high-rate sodium-ion batteries. J. Mater. Chem. A 7, 4705–4713 (2019). https://doi.org/10.1039/C8TA10980J

  151. Kim, H., Park, J.H., Kim, S.C., et al.: Multiple effects of Mg1−xNixO coating on P2-type Na0.67Ni0.33Mn0.67O2 to generate highly stable cathodes for sodium-ion batteries. J. Alloy. Compd. 856, 157294 (2021). https://doi.org/10.1016/j.jallcom.2020.157294

  152. Liu, Y., Yang, J., Guo, B., et al.: Enhanced electrochemical performance of Na0.5Ni0.25Mn0.75O2 micro-sheets at 3.8 V for Na-ion batteries with nanosized-thin AlF3 coating. Nanoscale 10, 12625–12630 (2018). https://doi.org/10.1039/c8nr02604a

  153. Wang, Y., Tang, K., Li, X.L., et al.: Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chem. Eng. J. 372, 1066–1076 (2019). https://doi.org/10.1016/j.cej.2019.05.010

  154. Ramasamy, H.V., Kaliyappan, K., Thangavel, R., et al.: Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. J. Mater. Chem. A 5, 8408–8415 (2017). https://doi.org/10.1039/c6ta10334k

  155. Zhang, Q., Gu, Q.F., Li, Y., et al.: Surface stabilization of O3-type layered oxide cathode to protect the anode of sodium ion batteries for superior lifespan. iScience 19, 244–254 (2019). https://doi.org/10.1016/j.isci.2019.07.029

  156. Yu, Y., Kong, W.J., Li, Q.Y., et al.: Understanding the multiple effects of TiO2 coating on NaMn0.33Fe0.33Ni0.33O2 cathode material for Na-ion batteries. ACS Appl. Energy Mater. 3, 933–942 (2020). https://doi.org/10.1021/acsaem.9b02021

  157. Li, N., Ren, J., Dang, R.B., et al.: Suppressing phase transition and improving electrochemical performances of O3-NaNi1/3Mn1/3Fe1/3O2 through ionic conductive Na2SiO3 coating. J. Power Sources 429, 38–45 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.052

    Article  CAS  Google Scholar 

  158. Mishra, R., Singh, S.K., Gupta, H., et al.: Surface modification of nano Na [Ni0.60Mn0.35Co0.05]O2 cathode material by dextran functionalized RGO via hydrothermal treatment for high performance sodium batteries. Appl. Surf. Sci. 535, 147695 (2021). https://doi.org/10.1016/j.apsusc.2020.147695

  159. Zhang, J.L., Yu, D.Y.W.: Stabilizing Na0.7MnO2 cathode for Na-ion battery via a single-step surface coating and doping process. J. Power Sources 391, 106–112 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.077

  160. Wang, Y.G., Li, H.Q., He, P., et al.: Nano active materials for lithium-ion batteries. Nanoscale 2, 1294–1305 (2010). https://doi.org/10.1039/c0nr00068j

    Article  CAS  Google Scholar 

  161. Duan, W.C., Hu, Z., Zhang, K., et al.: Li3V2(PO4)3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale 5, 6485–6490 (2013). https://doi.org/10.1039/c3nr01617j

    Article  CAS  Google Scholar 

  162. Brezesinski, T., Wang, J., Tolbert, S.H., et al.: Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010). https://doi.org/10.1038/nmat2612

    Article  CAS  Google Scholar 

  163. Li, L., Zheng, Y., Zhang, S.L., et al.: Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018). https://doi.org/10.1039/c8ee01023d

    Article  CAS  Google Scholar 

  164. Song, W., Ji, X., Wu, Z., et al.: First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J. Mater. Chem. A 2, 5358–5362 (2014). https://doi.org/10.1039/c4ta00230j

    Article  CAS  Google Scholar 

  165. Lv, Z., Ling, M.X., Yue, M., et al.: Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: toward high-energy and high-power applications. J. Energy Chem. 55, 361–390 (2021). https://doi.org/10.1016/j.jechem.2020.07.008

    Article  CAS  Google Scholar 

  166. Jian, Z.L., Han, W.Z., Lu, X., et al.: Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013). https://doi.org/10.1002/aenm.201200558

    Article  CAS  Google Scholar 

  167. Kang, J., Baek, S., Mathew, V., et al.: High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. J. Mater. Chem. 22, 20857–20860 (2012). https://doi.org/10.1039/c2jm34451c

    Article  CAS  Google Scholar 

  168. Duan, W.C., Zhu, Z.Q., Li, H., et al.: Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2, 8668–8675 (2014). https://doi.org/10.1039/c4ta00106k

    Article  CAS  Google Scholar 

  169. Li, S., Dong, Y.F., Xu, L., et al.: Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014). https://doi.org/10.1002/adma.201305522

    Article  CAS  Google Scholar 

  170. Jian, Z.L., Zhao, L., Pan, H.L., et al.: Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012). https://doi.org/10.1016/j.elecom.2011.11.009

    Article  CAS  Google Scholar 

  171. Yuan, Y., Chen, Z.W., Yu, H.X., et al.: Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020). https://doi.org/10.1016/j.ensm.2020.07.027

    Article  Google Scholar 

  172. Pan, Z.Y., Ren, J., Guan, G.Z., et al.: Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries. Adv. Energy Mater. 6, 1600271 (2016). https://doi.org/10.1002/aenm.201600271

    Article  CAS  Google Scholar 

  173. Li, X.F., Lian, K.Y., Liu, L., et al.: Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Sci. Rep. 6, 23495 (2016). https://doi.org/10.1038/srep23495

    Article  CAS  Google Scholar 

  174. Wu, J., Pan, Z., Zhang, Y., et al.: The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. J. Mater. Chem. A 6, 12932–12944 (2018). https://doi.org/10.1039/C8TA03968B

    Article  CAS  Google Scholar 

  175. Xu, B., Dongfang, Z., Jia, M.Q., et al.: Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim. Acta 98, 176–182 (2013). https://doi.org/10.1016/j.electacta.2013.03.053

    Article  CAS  Google Scholar 

  176. Yao, Y., Jiang, Y., Yang, H., et al.: Na3V2(PO4)3 coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries. Nanoscale 9, 10880–10885 (2017). https://doi.org/10.1039/c7nr03342g

    Article  CAS  Google Scholar 

  177. Liang, X.H., Ou, X., Zheng, F.H., et al.: Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl. Mater. Interfaces 9, 13151–13162 (2017). https://doi.org/10.1021/acsami.7b00818

    Article  CAS  Google Scholar 

  178. Yang, J.Q., Zhou, X.L., Wu, D.H., et al.: S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29, 1604108 (2017). https://doi.org/10.1002/adma.201604108

    Article  CAS  Google Scholar 

  179. Shen, W., Li, H., Wang, C., et al.: Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries. J. Mater. Chem. A 3, 15190–15201 (2015). https://doi.org/10.1039/c5ta03519h

    Article  CAS  Google Scholar 

  180. Zhang, H., Hasa, I., Buchholz, D., et al.: Effects of nitrogen doping on the structure and performance of carbon coated Na3V2(PO4)3 cathodes for sodium-ion batteries. Carbon 124, 334–341 (2017). https://doi.org/10.1016/j.carbon.2017.08.063

    Article  CAS  Google Scholar 

  181. Zhu, C.B., Song, K.P., van Aken, P.A., et al.: Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14, 2175–2180 (2014). https://doi.org/10.1021/nl500548a

    Article  CAS  Google Scholar 

  182. Li, S.J., Ge, P., Zhang, C.Y., et al.: The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J. Power Sources 366, 249–258 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.032

    Article  CAS  Google Scholar 

  183. Chen, L., Zhao, Y.M., Liu, S.H., et al.: Hard carbon wrapped Na3V2(PO4)3@C porous composite extending cycling lifespan for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 44485–44493 (2017). https://doi.org/10.1021/acsami.7b14006

    Article  CAS  Google Scholar 

  184. Oh, J.A.S., He, H., Sun, J., et al.: Dual-nitrogen-doped carbon decorated on Na3V2(PO4)3 to stabilize the intercalation of three sodium ions. ACS Appl. Energy Mater. 3, 6870–6879 (2020). https://doi.org/10.1021/acsaem.0c00973

    Article  CAS  Google Scholar 

  185. Guo, J.Z., Wu, X.L., Wan, F., et al.: A superior Na3V2(PO4)3-based nanocomposite enhanced by both N-doped coating carbon and graphene as the cathode for sodium-ion batteries. Chem. -A Eur. J. 21, 17371–17378 (2015). https://doi.org/10.1002/chem.201502583

    Article  CAS  Google Scholar 

  186. Hu, J.T., Zhang, J.L., Li, H.X., et al.: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J. Power Sources 351, 192–199 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.093

    Article  CAS  Google Scholar 

  187. Fang, J.Q., Wang, S.Q., Li, Z.T., et al.: Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries. J. Mater. Chem. A 4, 1180–1185 (2016). https://doi.org/10.1039/c5ta08869k

    Article  CAS  Google Scholar 

  188. Xu, Y.N., Wei, Q.L., Xu, C., et al.: Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6, 1600389 (2016). https://doi.org/10.1002/aenm.201600389

    Article  CAS  Google Scholar 

  189. Rui, X.H., Sun, W.P., Wu, C., et al.: An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27, 6670–6676 (2015). https://doi.org/10.1002/adma.201502864

    Article  CAS  Google Scholar 

  190. Li, F., Zhu, Y.E., Sheng, J., et al.: GO-induced preparation of flake-shaped Na3V2(PO4)3@rGO as high-rate and long-life cathodes for sodium-ion batteries. J. Mater. Chem. A 5, 25276–25281 (2017). https://doi.org/10.1039/c7ta07943e

    Article  CAS  Google Scholar 

  191. Jung, Y.H., Lim, C.H., Kim, D.K.: Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J. Mater. Chem. A 1, 11350–11354 (2013). https://doi.org/10.1039/c3ta12116j

    Article  CAS  Google Scholar 

  192. Jiang, Y., Yang, Z.Z., Li, W.H., et al.: Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 5, 1402104 (2015). https://doi.org/10.1002/aenm.201402104

    Article  CAS  Google Scholar 

  193. Liu, Q., Wang, D.X., Yang, X., et al.: Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J. Mater. Chem. A 3, 21478–21485 (2015). https://doi.org/10.1039/c5ta05939a

    Article  CAS  Google Scholar 

  194. Wei, T.Y., Yang, G.Z., Wang, C.X.: Bottom-up assembly of strongly-coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and -stable Na-ion storage. Nano Energy 39, 363–370 (2017). https://doi.org/10.1016/j.nanoen.2017.07.019

    Article  CAS  Google Scholar 

  195. Zhu, Q., Chang, X., Sun, N., et al.: Confined growth of nano-Na3V2(PO4)3 in porous carbon framework for high-rate Na-ion storage. ACS Appl. Mater. Interfaces 11, 3107–3115 (2019). https://doi.org/10.1021/acsami.8b19614

    Article  CAS  Google Scholar 

  196. Li, W.H., Li, M.S., Adair, K.R., et al.: Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 5, 13882–13906 (2017). https://doi.org/10.1039/c7ta02153d

    Article  CAS  Google Scholar 

  197. Yang, J., Han, D.W., Jo, M.R., et al.: Na3V2(PO4)3 particles partly embedded in carbon nanofibers with superb kinetics for ultra-high power sodium ion batteries. J. Mater. Chem. A 3, 1005–1009 (2015). https://doi.org/10.1039/c4ta06001f

    Article  CAS  Google Scholar 

  198. Klee, R., Aragón, M.J., Lavela, P., et al.: Na3V2(PO4)3/C nanorods with improved electrode-electrolyte interface as cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 23151–23159 (2016). https://doi.org/10.1021/acsami.6b07950

    Article  CAS  Google Scholar 

  199. Jiang, Y., Yao, Y., Shi, J.N., et al.: One-dimensional Na3V2(PO4)3/C nanowires as cathode materials for long-life and high rate Na-ion batteries. ChemNanoMat 2, 726–731 (2016). https://doi.org/10.1002/cnma.201600111

    Article  CAS  Google Scholar 

  200. Kretschmer, K., Sun, B., Zhang, J.Q., et al.: 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium-ion batteries. Small 13, 1603318 (2017). https://doi.org/10.1002/smll.201603318

    Article  CAS  Google Scholar 

  201. Shen, W., Li, H., Guo, Z.Y., et al.: Double-nanocarbon synergistically modified Na3V2(PO4)3: an advanced cathode for high-rate and long-life sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 15341–15351 (2016). https://doi.org/10.1021/acsami.6b03410

    Article  CAS  Google Scholar 

  202. Zhang, H., Hasa, I., Qin, B.S., et al.: Excellent cycling stability and superior rate capability of Na3V2(PO4)3 cathodes enabled by nitrogen-doped carbon interpenetration for sodium-ion batteries. ChemElectroChem 4, 1256–1263 (2017). https://doi.org/10.1002/celc.201700053

    Article  CAS  Google Scholar 

  203. Mao, J., Luo, C., Gao, T., et al.: Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries. J. Mater. Chem. A 3, 10378–10385 (2015). https://doi.org/10.1039/c5ta01007a

    Article  CAS  Google Scholar 

  204. Si, L.L., Yuan, Z.Q., Hu, L., et al.: Uniform and continuous carbon coated sodium vanadium phosphate cathode materials for sodium-ion battery. J. Power Sources 272, 880–885 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.046

    Article  CAS  Google Scholar 

  205. Hung, T.F., Cheng, W.J., Chang, W.S., et al.: Ascorbic acid-assisted synthesis of mesoporous sodium vanadium phosphate nanoparticles with highly sp2-coordinated carbon coatings as efficient cathode materials for rechargeable sodium-ion batteries. Chem. -A Eur. J. 22, 10620–10626 (2016). https://doi.org/10.1002/chem.201602066

    Article  CAS  Google Scholar 

  206. Guo, D.L., Qin, J.W., Yin, Z.G., et al.: Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45, 136–147 (2018). https://doi.org/10.1016/j.nanoen.2017.12.038

    Article  CAS  Google Scholar 

  207. Fang, Y.J., Xiao, L.F., Ai, X.P., et al.: Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27, 5895–5900 (2015). https://doi.org/10.1002/adma.201502018

    Article  CAS  Google Scholar 

  208. Kajiyama, S., Kikkawa, J., Hoshino, J., et al.: Assembly of Na3V2(PO4)3 nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties. Chem. -A Eur. J. 20, 12636–12640 (2014). https://doi.org/10.1002/chem.201403126

    Article  CAS  Google Scholar 

  209. Liu, J., Tang, K., Song, K.P., et al.: Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6, 5081–5086 (2014). https://doi.org/10.1039/c3nr05329f

    Article  CAS  Google Scholar 

  210. Li, H., Bai, Y., Wu, F., et al.: Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries. Solid State Ionics 278, 281–286 (2015). https://doi.org/10.1016/j.ssi.2015.06.026

    Article  CAS  Google Scholar 

  211. Xu, J.Y., Gu, E.L., Zhang, Z.Z., et al.: Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance. J. Colloid Interface Sci. 567, 84–91 (2020). https://doi.org/10.1016/j.jcis.2020.01.121

    Article  CAS  Google Scholar 

  212. Leng, J., Wang, Z.X., Wang, J.X., et al.: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48, 3015–3072 (2019). https://doi.org/10.1039/c8cs00904j

    Article  CAS  Google Scholar 

  213. Shakoor, R.A., Seo, D.H., Kim, H., et al.: A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 22, 20535–20541 (2012). https://doi.org/10.1039/c2jm33862a

    Article  CAS  Google Scholar 

  214. Song, W., Cao, X., Wu, Z., et al.: Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation. Langmuir 30, 12438–12446 (2014). https://doi.org/10.1021/la5025444

    Article  CAS  Google Scholar 

  215. Yang, Z., Li, G.L., Sun, J.Y., et al.: High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries. Energy Storage Mater. 25, 724–730 (2020). https://doi.org/10.1016/j.ensm.2019.09.014

    Article  Google Scholar 

  216. Liu, Q., Meng, X., Wei, Z.X., et al.: Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 31709–31715 (2016). https://doi.org/10.1021/acsami.6b11372

    Article  CAS  Google Scholar 

  217. Shen, C., Long, H., Wang, G.C., et al.: Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. J. Mater. Chem. A 6, 6007–6014 (2018). https://doi.org/10.1039/c8ta00990b

    Article  CAS  Google Scholar 

  218. Zhao, J., Gao, Y., Liu, Q., et al.: High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by in situ coating of carbon nanofibers for sodium-ion battery applications. Chem. -A Eur. J. 24, 2913–2919 (2018). https://doi.org/10.1002/chem.201704131

    Article  CAS  Google Scholar 

  219. Deng, G., Chao, D.L., Guo, Y.W., et al.: Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery. Energy Storage Mater. 5, 198–204 (2016). https://doi.org/10.1016/j.ensm.2016.07.007

    Article  Google Scholar 

  220. Serras, P., Palomares, V., Goñi, A., et al.: High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x. J. Mater. Chem. 22, 22301–22308 (2012). https://doi.org/10.1039/C2JM35293A

    Article  CAS  Google Scholar 

  221. Park, Y.U., Seo, D.H., Kim, H., et al.: A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2 F1+2x (\(0 \leqslant x \leqslant 1 \)): combined first-principles and experimental study. Adv. Funct. Mater. 24, 4603–4614 (2014). https://doi.org/10.1002/adfm.201400561

    Article  CAS  Google Scholar 

  222. Qi, Y.R., Mu, L.Q., Zhao, J.M., et al.: Superior Na-storage performance of low-temperature-synthesized Na3(VO1−xPO4)2F1+2x (\(0 \leqslant x \leqslant 1 \)) nanoparticles for Na-ion batteries. Angewandte Chemie Int. Ed. 54, 9911–9916 (2015). https://doi.org/10.1002/anie.201503188

    Article  CAS  Google Scholar 

  223. Zhou, W.D., Xue, L.G., Lü, X., et al.: NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 16, 7836–7841 (2016). https://doi.org/10.1021/acs.nanolett.6b04044

    Article  CAS  Google Scholar 

  224. Nisar, U., Shakoor, R.A., Essehli, R., et al.: Sodium intercalation/de-intercalation mechanism in Na4MnV(PO4)3 cathode materials. Electrochim. Acta 292, 98–106 (2018). https://doi.org/10.1016/j.electacta.2018.09.111

    Article  CAS  Google Scholar 

  225. Ramesh Kumar, P., Kheireddine, A., Nisar, U., et al.: Na4MnV(PO4)3-rGO as advanced cathode for aqueous and non-aqueous sodium ion batteries. J. Power Sources 429, 149–155 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.080

    Article  CAS  Google Scholar 

  226. Zakharkin, M.V., Drozhzhin, O.A., Tereshchenko, I.V., et al.: Enhancing Na+ extraction limit through high voltage activation of the NASICON-type Na4MnV(PO4)3 cathode. ACS Appl. Energy Mater. 1, 5842–5846 (2018). https://doi.org/10.1021/acsaem.8b01269

    Article  CAS  Google Scholar 

  227. Chen, F., Kovrugin, V.M., David, R., et al.: A NASICON-type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3. Small Methods 3, 1800218 (2019). https://doi.org/10.1002/smtd.201800218

    Article  CAS  Google Scholar 

  228. Li, H.X., Jin, T., Chen, X.B., et al.: Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode. Adv. Energy Mater. 8, 1801418 (2018). https://doi.org/10.1002/aenm.201801418

    Article  CAS  Google Scholar 

  229. Zhang, W., Zhang, Z.A., Li, H.X., et al.: Engineering 3D well-interconnected Na4MnV(PO4)3 facilitates ultrafast and ultrastable sodium storage. ACS Appl. Mater. Interfaces 11, 35746–35754 (2019). https://doi.org/10.1021/acsami.9b12214

    Article  CAS  Google Scholar 

  230. Klee, R., Aragón, M.J., Alcántara, R., et al.: High-performance Na3V2(PO4)3/C cathode for sodium-ion batteries prepared by a ball-milling-assisted method. Eur. J. Inorg. Chem. 2016, 3212–3218 (2016). https://doi.org/10.1002/ejic.201600241

    Article  CAS  Google Scholar 

  231. Xiao, H., Huang, X.B., Ren, Y.R., et al.: Enhanced sodium ion storage performance of Na3V2(PO4)3 with N-doped carbon by folic acid as carbon-nitrogen source. J. Alloy. Compd. 732, 454–459 (2018). https://doi.org/10.1016/j.jallcom.2017.10.195

    Article  CAS  Google Scholar 

  232. Didwal, P.N., Verma, R., Min, C.W., et al.: Synthesis of 3-dimensional interconnected porous Na3V2(PO4)3@C composite as a high-performance dual electrode for Na-ion batteries. J. Power Sources 413, 1–10 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.018

    Article  CAS  Google Scholar 

  233. Liang, L.W., Li, X.Y., Zhao, F., et al.: Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv. Energy Mater. 11, 2100287 (2021). https://doi.org/10.1002/aenm.202100287

    Article  CAS  Google Scholar 

  234. Guo, B., Diao, W., Yuan, T.T., et al.: Enhanced electrochemical performance of Na3V2(PO4)2F3 for Na-ion batteries with nanostructure and carbon coating. J. Mater. Sci. Mater. Electron. 29, 16325–16329 (2018). https://doi.org/10.1007/s10854-018-9722-8

  235. Zhu, C.B., Wu, C., Chen, C.C., et al.: A high power-high energy Na3V2(PO4)2F3 sodium cathode: investigation of transport parameters, rational design and realization. Chem. Mater. 29, 5207–5215 (2017). https://doi.org/10.1021/acs.chemmater.7b00927

    Article  CAS  Google Scholar 

  236. Yao, Y., Zhang, L., Gao, Y., Chen, G., Wang, C., Du, F.: Assembly of Na3V2(PO4)2F3@C nanoparticles in reduced graphene oxide enabling superior Na+ storage for symmetric sodium batteries. RSC Adv. 8, 2958–2962 (2018). https://doi.org/10.1039/c7ra13441j

    Article  CAS  Google Scholar 

  237. Cai, Y.S., Cao, X.X., Luo, Z.G., et al.: Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling. Adv. Sci. 5, 1800680 (2018). https://doi.org/10.1002/advs.201800680

    Article  CAS  Google Scholar 

  238. Wang, T.S., Zhang, W., Li, H.X., et al.: N-doped carbon nanotubes decorated Na3V2(PO4)2F3 as a durable ultrahigh-rate cathode for sodium ion batteries. ACS Appl. Energy Mater. 3, 3845–3853 (2020). https://doi.org/10.1021/acsaem.0c00283

    Article  CAS  Google Scholar 

  239. Liu, S., Wang, L.B., Liu, J., et al.: Na3V2(PO4)2F3–SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries. J. Mater. Chem. A 7, 248–256 (2019). https://doi.org/10.1039/c8ta09194c

    Article  CAS  Google Scholar 

  240. Liu, S.Y., Cao, X.X., Zhang, Y.P., et al.: Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries. J. Mater. Chem. A 8, 18872–18879 (2020). https://doi.org/10.1039/d0ta04307a

    Article  CAS  Google Scholar 

  241. Jin, H.Y., Dong, J., Uchaker, E., et al.: Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries. J. Mater. Chem. A 3, 17563–17568 (2015). https://doi.org/10.1039/c5ta03164h

    Article  CAS  Google Scholar 

  242. Xu, M., Wang, L., Zhao, X., et al.: Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium-ion battery. Phys. Chem. Chem. Phys. 15, 13032–13037 (2013). https://doi.org/10.1039/c3cp52408f

    Article  CAS  Google Scholar 

  243. Bi, L.N., Miao, Z., Li, X.Y., et al.: Improving electrochemical performance of Na3(VPO4)2O2F cathode materials for sodium ion batteries by constructing conductive scaffold. Electrochim. Acta 337, 135816 (2020). https://doi.org/10.1016/j.electacta.2020.135816

    Article  CAS  Google Scholar 

  244. Jin, H.Y., Liu, M., Uchaker, E., et al.: Nanoporous carbon leading to the high performance of a Na3V2O2(PO4)2F@carbon/graphene cathode in a sodium ion battery. CrystEngComm 19, 4287–4293 (2017). https://doi.org/10.1039/c7ce00726d

    Article  CAS  Google Scholar 

  245. Zhang, L.L., Liu, J., Wei, C., et al.: N/P-dual-doped carbon-coated Na3V2(PO4)2O2F microspheres as a high-performance cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 3670–3680 (2020). https://doi.org/10.1021/acsami.9b20490

    Article  CAS  Google Scholar 

  246. Cheng, S.Q., Li, W.N., Xiao, S.H., et al.: Effects of calcination temperature on electrochemical properties of cathode material Na4MnV(PO4)3/C synthesized by sol–gel method for sodium-ion batteries. J. Alloy. Compd. 850, 156707 (2021). https://doi.org/10.1016/j.jallcom.2020.156707

    Article  CAS  Google Scholar 

  247. Cai, C., Hu, P., Zhu, T., et al.: Encapsulation of Na4MnV(PO4)3 in robust dual-carbon framework rendering high-energy, durable sodium storage. J. Phys. Energy. 2, 025003 (2020). https://doi.org/10.1088/2515-7655/ab71ed

    Article  CAS  Google Scholar 

  248. Ellis, B.L., Makahnouk, W.R.M., Makimura, Y., et al.: A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6, 749–753 (2007). https://doi.org/10.1038/nmat2007

  249. Ellis, B.L., Makahnouk, W.R.M., Rowan-Weetaluktuk, W.N., et al.: Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem. Mater. 22, 1059–1070 (2010). https://doi.org/10.1021/cm902023h

    Article  CAS  Google Scholar 

  250. Tereshchenko, I.V., Aksyonov, D.A., Drozhzhin, O.A., et al.: The role of semilabile oxygen atoms for intercalation chemistry of the metal-ion battery polyanion cathodes. J. Am. Chem. Soc. 140, 3994–4003 (2018). https://doi.org/10.1021/jacs.7b12644

    Article  CAS  Google Scholar 

  251. Li, Q., Liu, Z., Zheng, F., et al.: Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode. Angew. Chem. Int. Ed. 57, 11918–11923 (2018). https://doi.org/10.1002/anie.201805555

    Article  CAS  Google Scholar 

  252. Kawabe, Y., Yabuuchi, N., Kajiyama, M., et al.: Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem. Commun. 13, 1225–1228 (2011). https://doi.org/10.1016/j.elecom.2011.08.038

    Article  CAS  Google Scholar 

  253. Wang, F.F., Zhang, N., Zhao, X.D., et al.: Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics. Adv. Sci. 6, 1900649 (2019). https://doi.org/10.1002/advs.201900649

    Article  CAS  Google Scholar 

  254. Ko, J.S., Doan-Nguyen, V.V.T., Kim, H.S., et al.: High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J. Mater. Chem. A 5, 18707–18715 (2017). https://doi.org/10.1039/c7ta05680j

    Article  CAS  Google Scholar 

  255. Ko, W., Yoo, J.K., Park, H., et al.: Development of Na2FePO4F/conducting-polymer composite as an exceptionally high performance cathode material for Na-ion batteries. J. Power Sources 432, 1–7 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.066

    Article  CAS  Google Scholar 

  256. Lepage, D., Michot, C., Liang, G.X., et al.: A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angew. Chem. Int. Ed. 50, 6884–6887 (2011). https://doi.org/10.1002/anie.201101661

    Article  CAS  Google Scholar 

  257. Zou, H., Li, S., Wu, X., McDonald, M.J., Yang, Y.: Spray-drying synthesis of pure Na2CoPO4F as cathode material for sodium ion batteries. ECS Electrochem. Lett. 4, A53–A55 (2015). https://doi.org/10.1149/2.0061506eel

    Article  CAS  Google Scholar 

  258. Kubota, K., Yokoh, K., Yabuuchi, N., et al.: Na2CoPO4F as a high-voltage electrode material for Na-ion batteries. Electrochemistry 82, 909–911 (2014). https://doi.org/10.5796/electrochemistry.82.909

    Article  CAS  Google Scholar 

  259. Or, T., Kaliyappan, K., Li, G.R., et al.: Na2CoPO4F as a pseudocapacitive anode for high-performance and ultrastable hybrid sodium-ion capacitors. Electrochim. Acta 342, 136024 (2020). https://doi.org/10.1016/j.electacta.2020.136024

    Article  CAS  Google Scholar 

  260. Kim, S.W., Seo, D.H., Kim, H., et al.: A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes. Phys. Chem. Chem. Phys. 14, 3299–3303 (2012). https://doi.org/10.1039/c2cp40082k

    Article  CAS  Google Scholar 

  261. Zheng, Y., Zhang, P., Wu, S.Q., Wen, Y.H., Zhu, Z.Z., Yang, Y.: First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries. J. Electrochem. Soc. 160, A927–A932 (2013). https://doi.org/10.1149/2.127306jes

    Article  CAS  Google Scholar 

  262. Wu, X., Zheng, J., Gong, Z., et al.: Sol–gel synthesis and electrochemical properties of fluorophosphates Na2Fe1−xMnxPO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery. J. Mater. Chem. 21, 18630–18637 (2011). https://doi.org/10.1039/c1jm13578c

  263. Lin, X.C., Hou, X., Wu, X.B., et al.: Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries. RSC Adv. 4, 40985–40993 (2014). https://doi.org/10.1039/c4ra05336b

    Article  CAS  Google Scholar 

  264. Wu, L., Hu, Y., Zhang, X.P., et al.: Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J. Power Sources 374, 40–47 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.029

    Article  CAS  Google Scholar 

  265. Hu, Y., Wu, L., Liao, G.X., et al.: Electrospinning synthesis of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries. Ceram. Int. 44, 17577–17584 (2018). https://doi.org/10.1016/j.ceramint.2018.06.236

    Article  CAS  Google Scholar 

  266. Recham, N., Chotard, J.N., Dupont, L., et al.: Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc. 156, A993–A999 (2009). https://doi.org/10.1149/1.3236480

    Article  CAS  Google Scholar 

  267. Barker, J., Saidi, M.Y., Swoyer, J.L.: A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochem. Solid-State Lett. 6, A1–A4 (2003). https://doi.org/10.1149/1.1523691

    Article  CAS  Google Scholar 

  268. Lu, Y., Zhang, S., Li, Y., et al.: Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J. Power Sources 247, 770–777 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.018

    Article  CAS  Google Scholar 

  269. Zhuo, H.T., Wang, X.Y., Tang, A.P., et al.: The preparation of NaV1−xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 160, 698–703 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.079

    Article  CAS  Google Scholar 

  270. Law, M., Balaya, P.: NaVPO4F with high cycling stability as a promising cathode for sodium-ion battery. Energy Storage Mater. 10, 102–113 (2018). https://doi.org/10.1016/j.ensm.2017.08.007

    Article  Google Scholar 

  271. Ruan, Y.L., Wang, K., Song, S.D., et al.: Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries. Electrochim. Acta 160, 330–336 (2015). https://doi.org/10.1016/j.electacta.2015.01.186

    Article  CAS  Google Scholar 

  272. Zhao, J.Q., He, J.P., Ding, X.C., et al.: A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 195, 6854–6859 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.003

    Article  CAS  Google Scholar 

  273. Ling, M., Lv, Z., Li, F., et al.: Revisiting of tetragonal NaVPO4F: a high energy density cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 30510–30519 (2020). https://doi.org/10.1021/acsami.0c08846

    Article  CAS  Google Scholar 

  274. Xu, M., Cheng, C.J., Sun, Q.Q., et al.: A 3D porous interconnected NaVPO4F/C network: preparation and performance for Na-ion batteries. RSC Adv. 5, 40065–40069 (2015). https://doi.org/10.1039/c5ra05161d

    Article  CAS  Google Scholar 

  275. Li, L., Xu, Y.L., Sun, X.F., et al.: Fluorophosphates from solid-state synthesis and electrochemical ion exchange: NaVPO4F or Na3V2(PO4)2F3? Adv. Energy Mater. 8, 1801064 (2018). https://doi.org/10.1002/aenm.201801064

    Article  CAS  Google Scholar 

  276. Jin, T., Liu, Y.C., Li, Y., et al.: Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv. Energy Mater. 7, 1700087 (2017). https://doi.org/10.1002/aenm.201700087

    Article  CAS  Google Scholar 

  277. Ha, K.H., Woo, S.H., Mok, D., et al.: Na4−αM2+α/2(P2O7)2 (2/3 \(\leqslant \) α \(\leqslant \) 7/8, M = Fe, Fe0.5Mn0.5, Mn): a promising sodium ion cathode for Na-ion batteries. Adv. Energy Mater. 3, 770–776 (2013). https://doi.org/10.1002/aenm.201200825

  278. Chen, M.Z., Chen, L.N., Hu, Z., et al.: Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries. Adv. Mater. 29, 1605535 (2017). https://doi.org/10.1002/adma.201605535

  279. Zhao, A., Fang, Y.J., Ai, X.P., et al.: Mixed polyanion cathode materials: toward stable and high-energy sodium-ion batteries. J. Energy Chem. 60, 635–648 (2021). https://doi.org/10.1016/j.jechem.2021.01.014

    Article  CAS  Google Scholar 

  280. Barpanda, P., Ye, T., Avdeev, M., et al.: A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries. J. Mater. Chem. A 1, 4194–4197 (2013). https://doi.org/10.1039/c3ta10210f

  281. Park, C.S., Kim, H., Shakoor, R.A., et al.: Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. J. Am. Chem. Soc. 135, 2787–2792 (2013). https://doi.org/10.1021/ja312044k

    Article  CAS  Google Scholar 

  282. Li, H.X., Chen, X.B., Jin, T., et al.: Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater. 16, 383–390 (2019). https://doi.org/10.1016/j.ensm.2018.06.013

    Article  Google Scholar 

  283. Kim, H., Park, I., Seo, D.H., et al.: New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J. Am. Chem. Soc. 134, 10369–10372 (2012). https://doi.org/10.1021/ja3038646

    Article  CAS  Google Scholar 

  284. Sanz, F., Parada, C., Rojo, J.M., et al.: Synthesis, structural characterization, magnetic properties, and ionic conductivity of Na4MII3(PO4)2(P2O7) (MII: Mn Co, Ni). Chem. Mater. 13, 1334–1340 (2001). https://doi.org/10.1021/cm001210d

    Article  CAS  Google Scholar 

  285. Wood, S.M., Eames, C., Kendrick, E., et al.: Sodium ion diffusion and voltage trends in phosphates Na4M3(PO4)2P2O7 (M = Fe, Mn Co, Ni) for possible high-rate cathodes. J. Phys. Chem. C 119, 15935–15941 (2015). https://doi.org/10.1021/acs.jpcc.5b04648

    Article  CAS  Google Scholar 

  286. Kim, H., Park, I., Lee, S., et al.: Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 25, 3614–3622 (2013). https://doi.org/10.1021/cm4013816

    Article  CAS  Google Scholar 

  287. Wu, X.H., Zhong, G.M., Yang, Y.: Sol–gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction. J. Power Sources 327, 666–674 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.061

    Article  CAS  Google Scholar 

  288. Chen, M., Hua, W., Xiao, J., et al.: NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 10, 1480 (2019). https://doi.org/10.1038/s41467-019-09170-5

    Article  CAS  Google Scholar 

  289. Nose, M., Nakayama, H., Nobuhara, K., et al.: Na4Co3(PO4)2P2O7: a novel storage material for sodium-ion batteries. J. Power Sources 234, 175–179 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.162

    Article  CAS  Google Scholar 

  290. Zarrabeitia, M., Jáuregui, M., Sharma, N., et al.: Na4Co3(PO4)2P2O7 through correlative operando X-ray diffraction and electrochemical impedance spectroscopy. Chem. Mater. 31, 5152–5159 (2019). https://doi.org/10.1021/acs.chemmater.9b01054

    Article  CAS  Google Scholar 

  291. Kim, H., Yoon, G., Park, I., et al.: Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy Environ. Sci. 8, 3325–3335 (2015). https://doi.org/10.1039/c5ee01876e

    Article  CAS  Google Scholar 

  292. Tang, L.B., Liu, X.H., Li, Z., et al.: CNT-decorated Na4Mn2Co(PO4)2P2O7 microspheres as a novel high-voltage cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 27813–27822 (2019). https://doi.org/10.1021/acsami.9b07595

    Article  CAS  Google Scholar 

  293. Barpanda, P., Oyama, G., Nishimura, S., et al.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014). https://doi.org/10.1038/ncomms5358

  294. Chung, S.C., Ming, J., Lander, L., et al.: Rhombohedral NASICON-type NaxFe2(SO4)3 for sodium ion batteries: comparison with phosphate and alluaudite phases. J. Mater. Chem. A 6, 3919–3925 (2018). https://doi.org/10.1039/C7TA08606G

    Article  CAS  Google Scholar 

  295. Oyama, G., Nishimura, S.I., Suzuki, Y., et al.: Off-stoichiometry in alluaudite-type sodium iron sulfate Na2+2xFe2−x(SO4)3 as an advanced sodium battery cathode material. ChemElectroChem 2, 1019–1023 (2015). https://doi.org/10.1002/celc.201500036

    Article  CAS  Google Scholar 

  296. Jungers, T., Mahmoud, A., Malherbe, C., et al.: Sodium iron sulfate alluaudite solid solution for Na-ion batteries: moving towards stoichiometric Na2Fe2(SO4)3. J. Mater. Chem. A 7, 8226–8233 (2019). https://doi.org/10.1039/c9ta00116f

    Article  CAS  Google Scholar 

  297. Chen, M.Z., Cortie, D., Hu, Z., et al.: A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries. Adv. Energy Mater. 8, 1800944 (2018). https://doi.org/10.1002/aenm.201800944

    Article  CAS  Google Scholar 

  298. Li, S.D., Guo, J.H., Ye, Z., et al.: Zero-strain Na2FeSiO4 as novel cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 17233–17238 (2016). https://doi.org/10.1021/acsami.6b03969

    Article  CAS  Google Scholar 

  299. Guan, W., Pan, B., Zhou, P., et al.: A high capacity, good safety and low cost Na2FeSiO4-based cathode for rechargeable sodium-ion battery. ACS Appl. Mater. Interfaces 9, 22369–22377 (2017). https://doi.org/10.1021/acsami.7b02385

    Article  CAS  Google Scholar 

  300. Ali, B., Ur-Rehman, A., Ghafoor, F., et al.: Interconnected mesoporous Na2FeSiO4 nanospheres supported on carbon nanotubes as a highly stable and efficient cathode material for sodium-ion battery. J. Power Sources 396, 467–475 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.049

    Article  CAS  Google Scholar 

  301. Bai, Y., Zhang, X., Shu, H., et al.: Superior Na-storage properties of nickel-substituted Na2FeSiO4@C microspheres encapsulated with the in situ-synthesized alveolation-like carbon matrix. ACS Appl. Mater. Interfaces 12, 34858–34872 (2020). https://doi.org/10.1021/acsami.0c07894

    Article  CAS  Google Scholar 

  302. Langrock, A., Xu, Y.H., Liu, Y.H., et al.: Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J. Power Sources 223, 62–67 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.059

    Article  CAS  Google Scholar 

  303. Deng, X., Shi, W.X., Sunarso, J., et al.: A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life. ACS Appl. Mater. Interfaces 9, 16280–16287 (2017). https://doi.org/10.1021/acsami.7b03933

    Article  CAS  Google Scholar 

  304. Zhang, J.X., Zhou, X., Wang, Y.X., et al.: Highly electrochemically-reversible mesoporous Na2FePO4F/C as cathode material for high-performance sodium-ion batteries. Small 15, 1903723 (2019). https://doi.org/10.1002/smll.201903723

    Article  CAS  Google Scholar 

  305. Xun, J.H., Zhang, Y., Zhang, B., et al.: Facile synthesis of high electrochemical performance Na2FePO4F@CNT&GN cathode material as sodium ion batteries. ACS Appl. Energy Mater. 3, 6232–6239 (2020). https://doi.org/10.1021/acsaem.0c00323

    Article  CAS  Google Scholar 

  306. Feng, P.Y., Wang, W., Hou, J., et al.: A 3D coral-like structured NaVPO4F/C constructed by a novel synthesis route as high-performance cathode material for sodium-ion battery. Chem. Eng. J. 353, 25–33 (2018). https://doi.org/10.1016/j.cej.2018.07.114

    Article  CAS  Google Scholar 

  307. Ge, X.C., Li, X.H., Wang, Z.X., et al.: Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chem. Eng. J. 357, 458–462 (2019). https://doi.org/10.1016/j.cej.2018.09.099

    Article  CAS  Google Scholar 

  308. Liu, Y.M., Wang, E.H., Rajagopalan, R., et al.: Rational design and synthesis of advanced Na3.32Fe2.34(P2O7)2 cathode with multiple-dimensional N-doped carbon matrix. J. Power Sources 412, 350–358 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.038

  309. Yuan, T.C., Wang, Y.X., Zhang, J.X., et al.: 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy 56, 160–168 (2019). https://doi.org/10.1016/j.nanoen.2018.11.011

    Article  CAS  Google Scholar 

  310. Pu, X.J., Wang, H.M., Yuan, T.C., et al.: Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Storage Mater. 22, 330–336 (2019). https://doi.org/10.1016/j.ensm.2019.02.017

    Article  Google Scholar 

  311. Cao, Y.J., Xia, X.P., Liu, Y., et al.: Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries. J. Power Sources 461, 228130 (2020). https://doi.org/10.1016/j.jpowsour.2020.228130

    Article  CAS  Google Scholar 

  312. Feng, Z.Q., Tang, M.Q., Yan, Z.W.: 3D conductive CNTs anchored with Na2FeSiO4 nanocrystals as a novel cathode material for electrochemical sodium storage. Ceram. Int. 44, 22019–22022 (2018). https://doi.org/10.1016/j.ceramint.2018.08.186

    Article  CAS  Google Scholar 

  313. Stevens, D.A., Dahn, J.R.: The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148, A803–A811 (2001). https://doi.org/10.1149/1.1379565

    Article  CAS  Google Scholar 

  314. Xiao, B.W., Rojo, T., Li, X.L.: Hard carbon as sodium-ion battery anodes: progress and challenges. ChemSusChem 12, 133–144 (2019). https://doi.org/10.1002/cssc.201801879

    Article  CAS  Google Scholar 

  315. Cao, Y., Xiao, L., Sushko, M.L., et al.: Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012). https://doi.org/10.1021/nl3016957

    Article  CAS  Google Scholar 

  316. Li, Y.Q., Lu, Y.X., Meng, Q.S., et al.: Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9, 1902852 (2019). https://doi.org/10.1002/aenm.201902852

    Article  CAS  Google Scholar 

  317. Xu, Y., Lotfabad, E.M., Wang, H.L., et al.: Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem. Commun. 49, 8973–8975 (2013). https://doi.org/10.1039/c3cc45254a

    Article  CAS  Google Scholar 

  318. Wang, W., Liu, Y., Wu, X., et al.: Advances of TiO2 as negative electrode materials for sodium-ion batteries. 3, 1800004 (2018). http://doi.wiley.com/https://doi.org/10.1002/admt.201800004,

  319. Su, D.W., Dou, S.X., Wang, G.X.: Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 27, 6022–6029 (2015). https://doi.org/10.1021/acs.chemmater.5b02348

    Article  CAS  Google Scholar 

  320. Wu, L.M., Buchholz, D., Bresser, D., et al.: Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sources 251, 379–385 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.083

    Article  CAS  Google Scholar 

  321. Jung, H.G., Oh, S.W., Ce, J., et al.: Mesoporous TiO2 nano networks: anode for high power lithium battery applications. Electrochem. Commun. 11, 756–759 (2009). https://doi.org/10.1016/j.elecom.2009.01.030

    Article  CAS  Google Scholar 

  322. Yang, X.M., Wang, C., Yang, Y.C., et al.: Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes. J. Mater. Chem. A 3, 8800–8807 (2015). https://doi.org/10.1039/c5ta00614g

    Article  CAS  Google Scholar 

  323. Hong, Z., Zhou, K., Huang, Z., et al.: Iso-oriented anatase TiO2 mesocages as a high performance anode material for sodium-ion storage. Sci. Rep. 5, 11960 (2015). https://doi.org/10.1038/srep11960

    Article  Google Scholar 

  324. Zhu, Y.E., Yang, L.P., Sheng, J., et al.: Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7, 1701222 (2017). https://doi.org/10.1002/aenm.201701222

    Article  CAS  Google Scholar 

  325. Luo, S.N., Yuan, T., Soule, L.K., et al.: Enhanced ionic/electronic transport in nano-TiO2/sheared CNT composite electrode for Na+ insertion-based hybrid ion-capacitors. Adv. Funct. Mater. 30, 1908309 (2020). https://doi.org/10.1002/adfm.201908309

    Article  CAS  Google Scholar 

  326. Wu, L.M., Bresser, D., Buchholz, D., et al.: Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 5, 1401142 (2015). https://doi.org/10.1002/aenm.201401142

    Article  CAS  Google Scholar 

  327. Oh, S.M., Hwang, J.Y., Yoon, C.S., et al.: High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 6, 11295–11301 (2014). https://doi.org/10.1021/am501772a

    Article  CAS  Google Scholar 

  328. Kim, K.T., Ali, G., Chung, K.Y., et al.: Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 14, 416–422 (2014). https://doi.org/10.1021/nl402747x

    Article  CAS  Google Scholar 

  329. Myung, S.T., Takahashi, N., Komaba, S., et al.: Nanostructured TiO2 and its application in lithium-ion storage. Adv. Funct. Mater. 21, 3231–3241 (2011). https://doi.org/10.1002/adfm.201002724

    Article  CAS  Google Scholar 

  330. Zorn, M., Meuer, S., Tahir, M.N., et al.: Liquid crystalline phases from polymer functionalised semiconducting nanorods. J. Mater. Chem. 18, 3050–3058 (2008). https://doi.org/10.1039/B802666A

    Article  CAS  Google Scholar 

  331. Tahir, M.N., Oschmann, B., Buchholz, D., et al.: Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv. Energy Mater. 6, 1501489 (2016). https://doi.org/10.1002/aenm.201501489

    Article  CAS  Google Scholar 

  332. Chen, J., Zhang, Y., Zou, G.Q., et al.: Size-tunable olive-like anatase TiO2 coated with carbon as superior anode for sodium-ion batteries. Small 12, 5554–5563 (2016). https://doi.org/10.1002/smll.201601938

    Article  CAS  Google Scholar 

  333. Hwang, J.Y., Myung, S.T., Lee, J.H., et al.: Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 16, 218–226 (2015). https://doi.org/10.1016/j.nanoen.2015.06.017

    Article  CAS  Google Scholar 

  334. Chen, J., Ding, Z.Y., Wang, C., et al.: Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces 8, 9142–9151 (2016). https://doi.org/10.1021/acsami.6b01183

    Article  CAS  Google Scholar 

  335. Ma, Y., Ding, B., Ji, G., et al.: Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7, 10870–10878 (2013). https://doi.org/10.1021/nn404311x

    Article  CAS  Google Scholar 

  336. Senguttuvan, P., Rousse, G., Seznec, V., et al.: Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011). https://doi.org/10.1021/cm202076g

    Article  CAS  Google Scholar 

  337. Yan, Z.C., Liu, L., Shu, H.B., et al.: A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources 274, 8–14 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.045

    Article  CAS  Google Scholar 

  338. Xie, F.X., Zhang, L., Su, D.W., et al.: Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Adv. Mater. 29, 1700989 (2017). https://doi.org/10.1002/adma.201700989

    Article  CAS  Google Scholar 

  339. Pan, H.L., Lu, X., Yu, X.Q., et al.: Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 1186–1194 (2013). https://doi.org/10.1002/aenm.201300139

    Article  CAS  Google Scholar 

  340. Zhang, Y., Guo, L., Yang, S.: Three-dimensional spider-web architecture assembled from Na2Ti3O7 nanotubes as a high performance anode for a sodium-ion battery. Chem. Commun. 50, 14029–14032 (2014). https://doi.org/10.1039/C4CC06451H

    Article  CAS  Google Scholar 

  341. Wang, X.F., Li, Y.J., Gao, Y.R., et al.: Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries. Nano Energy 13, 687–692 (2015). https://doi.org/10.1016/j.nanoen.2015.03.029

    Article  CAS  Google Scholar 

  342. Ni, J.F., Fu, S.D., Wu, C., et al.: Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 6, 1502568 (2016). https://doi.org/10.1002/aenm.201502568

    Article  CAS  Google Scholar 

  343. Fu, S.D., Ni, J.F., Xu, Y., et al.: Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 16, 4544–4551 (2016). https://doi.org/10.1021/acs.nanolett.6b01805

    Article  CAS  Google Scholar 

  344. Liu, J.L., Wang, Z.Y., Lu, Z.G., et al.: Efficient surface modulation of single-crystalline Na2Ti3O7 nanotube arrays with Ti3+ self-doping toward superior sodium storage. ACS Mater. Lett. 1, 389–398 (2019). https://doi.org/10.1021/acsmaterialslett.9b00213

    Article  CAS  Google Scholar 

  345. Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411

    Article  CAS  Google Scholar 

  346. Zhao, L., Pan, H.L., Hu, Y.S., et al.: Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chinese Phys. B 21, 028201 (2012). https://doi.org/10.1088/1674-1056/21/2/028201

    Article  CAS  Google Scholar 

  347. Sun, Y., Zhao, L., Pan, H., et al.: Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013). https://doi.org/10.1038/ncomms2878

    Article  CAS  Google Scholar 

  348. Yu, X., Pan, H., Wan, W., et al.: A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. Nano Lett. 13, 4721–4727 (2013). https://doi.org/10.1021/nl402263g

    Article  CAS  Google Scholar 

  349. Hasegawa, G., Kanamori, K., Kiyomura, T., et al.: Hierarchically porous Li4Ti5O12 anode materials for Li- and Na-ion batteries: effects of nanoarchitectural design and temperature dependence of the rate capability. Adv. Energy Mater. 5, 1400730 (2015). https://doi.org/10.1002/aenm.201400730

    Article  CAS  Google Scholar 

  350. Liu, Y., Liu, J.Y., Hou, M.Y., et al.: Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. J. Mater. Chem. A 5, 10902–10908 (2017). https://doi.org/10.1039/c7ta03173d

    Article  CAS  Google Scholar 

  351. Zhao, F., Xue, P., Ge, H., et al.: Na-doped Li4Ti5O12 as an anode material for sodium-ion battery with superior rate and cycling performance. J. Electrochem. Soc. 163, A690–A695 (2016). https://doi.org/10.1149/2.0781605jes

    Article  CAS  Google Scholar 

  352. Kim, K.T., Yu, C.Y., Yoon, C.S., et al.: Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy 12, 725–734 (2015). https://doi.org/10.1016/j.nanoen.2015.01.034

    Article  CAS  Google Scholar 

  353. Chen, C.J., Xu, H.H., Zhou, T.F., et al.: Integrated intercalation-based and interfacial sodium storage in graphene-wrapped porous Li4Ti5O12 nanofibers composite aerogel. Adv. Energy Mater. 6, 1600322 (2016). https://doi.org/10.1002/aenm.201600322

    Article  CAS  Google Scholar 

  354. Li, Z., Young, D., Xiang, K., et al.: Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2013). https://doi.org/10.1002/aenm.201200598

  355. Hou, Z.G., Li, X.N., Liang, J.W., et al.: An aqueous rechargeable sodium ion battery based on a NaMnO2–NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3, 1400–1404 (2015). https://doi.org/10.1039/c4ta06018k

    Article  CAS  Google Scholar 

  356. Wu, C., Kopold, P., Ding, Y.L., et al.: Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9, 6610–6618 (2015). https://doi.org/10.1021/acsnano.5b02787

    Article  CAS  Google Scholar 

  357. Xiao, L.F., Lu, H.Y., Fang, Y.J., et al.: Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8, 1703238 (2018). https://doi.org/10.1002/aenm.201703238

    Article  CAS  Google Scholar 

  358. Ponrouch, A., Palacín, M.R.: On the high and low temperature performances of Na-ion battery materials: hard carbon as a case study. Electrochem. Commun. 54, 51–54 (2015). https://doi.org/10.1016/j.elecom.2015.03.002

    Article  CAS  Google Scholar 

  359. Li, Y., Xu, S., Wu, X., et al.: Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A. 3, 71–77 (2015). https://doi.org/10.1039/C4TA05451B

    Article  CAS  Google Scholar 

  360. Li, Q., Zhu, Y.Y., Zhao, P.Y., et al.: Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon 129, 85–94 (2018). https://doi.org/10.1016/j.carbon.2017.12.008

    Article  CAS  Google Scholar 

  361. Lu, H.Y., Chen, X.Y., Jia, Y.L., et al.: Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy 64, 103903 (2019). https://doi.org/10.1016/j.nanoen.2019.103903

    Article  CAS  Google Scholar 

  362. Li, T., Gulzar, U., Bai, X., et al.: Surface and interface engineering of anatase TiO2 anode for sodium-ion batteries through Al2O3 surface modification and wise electrolyte selection. J. Power Sources 384, 18–26 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.052

    Article  CAS  Google Scholar 

  363. Devina, W., Nam, D., Hwang, J., et al.: Carbon-coated, hierarchically mesoporous TiO2 microparticles as an anode material for lithium and sodium ion batteries. Electrochim. Acta 321, 134639 (2019). https://doi.org/10.1016/j.electacta.2019.134639

    Article  CAS  Google Scholar 

  364. Ge, Y.Q., Jiang, H., Zhu, J.D., et al.: High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. Electrochim. Acta 157, 142–148 (2015). https://doi.org/10.1016/j.electacta.2015.01.086

    Article  CAS  Google Scholar 

  365. Zhang, Y., Wang, C.W., Hou, H.S., et al.: Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7, 1600173 (2017). https://doi.org/10.1002/aenm.201600173

    Article  CAS  Google Scholar 

  366. Zhang, Y., Yang, Y.C., Hou, H.S., et al.: Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres. J. Mater. Chem. A 3, 18944–18952 (2015). https://doi.org/10.1039/c5ta04009d

    Article  CAS  Google Scholar 

  367. Nie, S., Liu, L., Liu, J.F., et al.: Nitrogen-doped TiO2-C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10, 1–13 (2018). https://doi.org/10.1007/s40820-018-0225-1

    Article  CAS  Google Scholar 

  368. Zhang, Y., Foster, C.W., Banks, C.E., et al.: Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv Mater 28, 9391–9399 (2016). https://doi.org/10.1002/adma.201601621

    Article  CAS  Google Scholar 

  369. Zhou, Z.M., Xiao, H.M., Zhang, F., et al.: Solvothermal synthesis of Na2Ti3O7 nanowires embedded in 3D graphene networks as an anode for high-performance sodium-ion batteries. Electrochim. Acta 211, 430–436 (2016). https://doi.org/10.1016/j.electacta.2016.06.036

    Article  CAS  Google Scholar 

  370. Li, Z.H., Huang, Y.X., Jiang, Y., et al.: Dense sandwich-like Na2Ti3O7@rGO composite with superior performance for sodium storage. ChemElectroChem 7, 2258–2264 (2020). https://doi.org/10.1002/celc.202000427

    Article  CAS  Google Scholar 

  371. Nie, S., Liu, L., Li, M., et al.: Na2Ti3O7/C nanofibers for high-rate and ultralong-life anodes in sodium-ion batteries. ChemElectroChem 5, 3498–3505 (2018). https://doi.org/10.1002/celc.201800941

    Article  CAS  Google Scholar 

  372. Kong, D.Z., Wang, Y., Huang, S.Z., et al.: Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. J. Mater. Chem. A 7, 12751–12762 (2019). https://doi.org/10.1039/c9ta01641d

    Article  CAS  Google Scholar 

  373. Bi, R., Zeng, C., Ma, T.Y., et al.: Encapsulated hollow Na2Ti3O7 spheres in reduced graphene oxide films for flexible sodium-ion batteries. Electrochim. Acta 284, 287–293 (2018). https://doi.org/10.1016/j.electacta.2018.07.169

    Article  CAS  Google Scholar 

  374. Wang, S.H., Zhu, Y.Y., Jiang, M., et al.: Interconnected Na2Ti3O7 nanotube/g-C3N4/graphene network as high performance anode materials for sodium storage. Int. J. Hydrog. Energy 45, 19611–19619 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.133

    Article  CAS  Google Scholar 

  375. Xu, G.B., Tian, Y., Wei, X.L., et al.: Free-standing electrodes composed of carbon-coated Li4Ti5O12 nanosheets and reduced graphene oxide for advanced sodium ion batteries. J. Power Sources 337, 180–188 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.088

    Article  CAS  Google Scholar 

  376. Yun, B.N., Du, H.L., Hwang, J.Y., et al.: Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries. J. Mater. Chem. A 5, 2802–2810 (2017). https://doi.org/10.1039/c6ta10494k

    Article  CAS  Google Scholar 

  377. Yang, J., Wang, H., Hu, P., et al.: A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2. Small 11, 3744–3749 (2015). https://doi.org/10.1002/smll.201500144

    Article  CAS  Google Scholar 

  378. Yan, H.Y., Fu, Y.Q., Wu, X.M., et al.: Core–shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storage. Solid State Ionics 336, 95–101 (2019). https://doi.org/10.1016/j.ssi.2019.03.024

    Article  CAS  Google Scholar 

  379. Xu, C., Xu, Y.N., Tang, C.J., et al.: Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28, 224–231 (2016). https://doi.org/10.1016/j.nanoen.2016.08.026

    Article  CAS  Google Scholar 

  380. Fang, Y.J., Xiao, L.F., Qian, J.F., et al.: 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 6, 1502197 (2016). https://doi.org/10.1002/aenm.201502197

    Article  CAS  Google Scholar 

  381. Song, J.J., Park, S., Gim, J., et al.: High rate performance of a NaTi2(PO4)3/rGO composite electrode via pyro synthesis for sodium ion batteries. J. Mater. Chem. A 4, 7815–7822 (2016). https://doi.org/10.1039/c6ta02720b

    Article  CAS  Google Scholar 

  382. Roh, H.K., Kim, H.K., Kim, M.S., et al.: In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 9, 1844–1855 (2016). https://doi.org/10.1007/s12274-016-1077-y

    Article  CAS  Google Scholar 

  383. Jiang, Y., Shi, J., Wang, M., et al.: Highly reversible and ultrafast sodium storage in NaTi2(PO4)3 nanoparticles embedded in nanocarbon networks. ACS Appl. Mater. Interfaces 8, 689–695 (2016). https://doi.org/10.1021/acsami.5b09811

    Article  CAS  Google Scholar 

  384. Li, M., Liu, L., Wang, P.Q., et al.: Highly reversible sodium-ion storage in NaTi2(PO4)3/C composite nanofibers. Electrochim. Acta 252, 523–531 (2017). https://doi.org/10.1016/j.electacta.2017.09.020

    Article  CAS  Google Scholar 

  385. Wei, P., Liu, Y.X., Wang, Z.H., et al.: Porous NaTi2(PO4)3/C hierarchical nanofibers for ultrafast electrochemical energy storage. ACS Appl. Mater. Interfaces 10, 27039–27046 (2018). https://doi.org/10.1021/acsami.8b08415

    Article  CAS  Google Scholar 

  386. Chen, Z., Dahn, J.R.: Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 149, A1184–A1189 (2002). https://doi.org/10.1149/1.1498255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Waterloo. Tyler Or was supported through NSERC Alexander Graham Bell Canada Graduate Scholarships—Doctoral Program and the Waterloo Institute for Nanotechnology (WIN) Nanofellowships.

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC) University of Waterloo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Or, T., Gourley, S.W.D., Kaliyappan, K. et al. Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials. Electrochem. Energy Rev. 5 (Suppl 1), 20 (2022). https://doi.org/10.1007/s41918-022-00137-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00137-7

Keywords

Navigation