Skip to main content

Advertisement

Log in

Photochemical Systems for Solar-to-Fuel Production

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The photochemical system, which utilizes only solar energy and H2O/CO2 to produce hydrogen/carbon-based fuels, is considered a promising approach to reduce CO2 emissions and achieve the goal of carbon neutrality. To date, numerous photochemical systems have been developed to obtain a viable solar-to-fuel production system with sufficient energy efficiency. However, more effort is still needed to meet the requirements of industrial implementation. In this review, we systematically discuss a typical photochemical system for solar-to-fuel production, from classical theories and fundamental mechanisms to raw material selection, reaction condition optimization, and unit device/system advancement, from the viewpoint of ordered energy conversion. State-of-the-art photochemical systems, including photocatalytic, photovoltaic-electrochemical, photoelectrochemical, solar thermochemical, and other emerging systems, are summarized. We highlight the existing bottlenecks and discuss the developing trend of this technology. Finally, optimization strategies and new opportunities are proposed to enhance photochemical systems with higher energy efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [73]. Copyright © 2011 American Association for the Advancement of Science. b Production of hydrogen and oxygen from CoO nanoparticles. The inset: the photograph of the photocatalyst. Reproduced with permission from Ref. [74]. Copyright © 2013 Springer Nature. c The migration of free charges and photocatalytic H2 production from an aqueous solution over nanotwin Cd0.5Zn0.5S-PH crystals. Reproduced by permission from Ref. [9]. Copyright © 2011 The Royal Society of Chemistry. d An energy diagram depicting the photosynthetic CO2R coupled with water oxidation on a CotpyP-loaded La,Rh:SrTiO3 |Au|RuO2-Mo:BiVO4 photocatalyst sheet. Reproduced with permission from Ref. [81]. Copyright © 2020 Springer Nature

Fig. 5

Reproduced with permission from Ref. [113]. Copyright © 2017 Elsevier. b Diagrammatic sketch of CPC with a round absorber. The arrangement and overview of the whole CPC-based system for photocatalytic hydrogen generation. Reproduced from Ref. [114]. Copyright © 2017 Elsevier

Fig. 6

Reproduced with permission from Ref. [160]. Copyright © 2017 American Association for the Advancement of Science. b HER volcano plot of metals. Reproduced with permission from Ref. [161]. Copyright © 2017 Springer Nature

Fig. 7

Reproduced with permission from Ref. [15]. Copyright © 2016 Springer Nature. c Schematic diagram of the four-terminal GaInP/GaInAs/Ge triple-junction solar cells with CuO/SnO2 as the cathode and anode for CO2R. d The stability of the GaInP/GaInAs/Ge triple-junction solar cell-based PV–EC system to CO. Reproduced with permission from Ref. [163]. Copyright © 2017 Springer Nature. e Schematic diagram of CO2R on the Au25-immobilized GDE (Au25/GDE) in a flow cell. Au25 clusters were directly anchored on the microporous layer (MPL) of a GDE. Reproduced with permission from Ref. [10]. Copyright © 2020 American Chemical Society. f STF of a nanomultilayer porous Ag electrode combined with GaInP/GaInAs/Ge, Si, and perovskite solar cells. Reproduced with permission from Ref.[165]. Copyright © 2020 The Royal Society of Chemistry

Fig. 8

Reproduced with permission from Ref.[167]. Copyright © 2017 The Royal Society of Chemistry

Fig. 9
Fig. 10

Reproduced with permission from Ref. [190]. Copyright 2017 © Springer Nature. c Schematic setup for a Mode T PEC system that consists of a backside-illuminated BiVO4 photoanode and a frontside-illuminated c-Si photocathode. Reproduced with permission from Ref. [191]. Copyright 2018 © Springer Nature. d Structure of the GaInP/GaInAs tandem photocathode for PEC water splitting. Reproduced with permission from Ref. [193]. Copyright © 2017 Springer Nature. e J–V curve of the Rh/TiO2/oxide/AlInP-GaInP/GaInAs/GaAs photocathode in acidic (pH 0) and neutral (pH 7) electrolytes and in a neutral electrolyte. Reproduced with permission from Ref. [21]. Copyright © 2018 American Chemical Society. f A PEC device integrated a water electrolyzer and a solar cell monolithically to promote cost-efficient solar hydrogen production. Reproduced with permission from Ref. [197]. Copyright © 2021 Elsevier. g Scheme of the tandem perovskite-BiVO4 PEC cell device for unassisted syngas production. Reproduced with permission from Ref. [203]. Copyright © 2020 Springer Nature. h A beam-splitter PEC system integrated with a Co-Pi/BiVO4/WO3 photoanode and the GaAs/InGaAsP PV cell. Reproduced with permission from Ref. [200]. Copyright © 2016 American Association for the Advancement of Science

Fig. 11

Reproduced from Ref. [204] with permission. Copyright © 2020 Elsevier. b J–V curves of the scaled-up WO3 photoanodes with and without Ag grids on FTO substrates. Reproduced with permission from Ref. [201]. Copyright © 2011 Elsevier. c Optical image of the 1.6 m2 BiVO4-based PEC device from the EU Project Artiphyction

Fig. 12

Reproduced with permission from Ref. [27]. Copyright © 2020 Elsevier. b Scheme of the solar reactor configuration. The solar reactor comprises a cavity receiver containing a capped tubular membrane made of CeO2 enclosed by a coaxial alumina tube. Reproduced with permission from Ref. [54]. Copyright © 2017 Elsevier. Partial molar enthalpy c and entropy d as a function of the nonstoichiometry for various investigated materials. Reproduced with permission from Ref. [26]. Copyright © 2017 The Royal Society of Chemistry. e Hydrogen production evolution in the water-decomposition step during consecutive thermochemical cycles with F-CSZ. Reproduced with permission from Ref. [231]. Copyright © 2017 Elsevier. f nCO by PSM perovskites from cycle 2 to cycle 10. Reproduced with permission from Ref. [232]. Copyright © 2019 Elsevier

Fig. 13

Reproduced with permission from Ref. [237]. Copyright © 2021 Elsevier. c A solar-driven thermal-electric device coupled tandem PEC cell for water splitting. Reproduced with permission from Ref.[238]. Copyright © 2020 Elsevier. d Pyroelectric electrochemical water splitting. Reproduced with permission from Ref. [247]. Copyright © 2019 Elsevier. e Configuration and mechanism of the pyro-photoelectric PEC system for water splitting and f current density versus applied voltage (I–V) curves under different conditions. Reproduced with permission from Ref. [248]. Copyright © 2021 Elsevier. g Schematic of the architecture with the photo-Dember effect and h the photo-Dember effect on metals. Reproduced with permission from Ref. [249]. Copyright © 2016 American Chemical Society. i The configuration of the CM/TiO2−x/CP electrode-electrolyzer system with a photothermal effect. Reproduced with permission from Ref. [250]. Copyright © 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 14

Similar content being viewed by others

References

  1. Tuller, H.L.: Solar to fuels conversion technologies: a perspective. Mater. Renew. Sustain. Energy 6, 1–16 (2017). https://doi.org/10.1007/s40243-017-0088-2

    Article  Google Scholar 

  2. Chen, X., Shen, S., Guo, L., et al.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010). https://doi.org/10.1021/cr1001645

    Article  CAS  PubMed  Google Scholar 

  3. Habisreutinger, S.N., Schmidt-Mende, L., Stolarczyk, J.K.: Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Edit. 52, 7372–7408 (2013). https://doi.org/10.1002/anie.201207199

    Article  CAS  Google Scholar 

  4. Hisatomi, T., Kubota, J., Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014). https://doi.org/10.1039/c3cs60378d

    Article  CAS  PubMed  Google Scholar 

  5. Kho, E.T., Tan, T.H., Lovell, E., et al.: A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2, 204–217 (2017). https://doi.org/10.1016/j.gee.2017.06.003

    Article  Google Scholar 

  6. Chiu, Y.H., Lai, T.H., Kuo, M.Y., et al.: Photoelectrochemical cells for solar hydrogen production: challenges and opportunities. APL Mater. 7, 080901 (2019). https://doi.org/10.1063/1.5109785

    Article  CAS  Google Scholar 

  7. Shaner, M.R., Atwater, H.A., Lewis, N.S., et al.: A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016). https://doi.org/10.1039/c5ee02573g

    Article  CAS  Google Scholar 

  8. Liu, Y., Guo, L.J.: On factors limiting the performance of photoelectrochemical CO2 reduction. J. Chem. Phys. 152, 100901 (2020). https://doi.org/10.1063/1.5141390

    Article  CAS  PubMed  Google Scholar 

  9. Liu, M.C., Wang, L.Z., (Max) Lu, G., et al.: Twins in Cd1–xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 4, 1372 (2011). https://doi.org/10.1039/c0ee00604a

  10. Kim, B., Seong, H., Song, J.T., et al.: Over a 15.9% solar-to-CO conversion from dilute CO2 streams catalyzed by gold nanoclusters exhibiting a high CO2 binding affinity. ACS Energy Lett. 5, 749–757 (2020). https://doi.org/10.1021/acsenergylett.9b02511

    Article  CAS  Google Scholar 

  11. Luo, J., Im, J.H., Mayer, M.T., et al.: Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345, 1593–1596 (2014). https://doi.org/10.1126/science.1258307

    Article  CAS  PubMed  Google Scholar 

  12. Peharz, G., Dimroth, F., Wittstadt, U.: Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int. J. Hydrog. Energy 32, 3248–3252 (2007). https://doi.org/10.1016/j.ijhydene.2007.04.036

    Article  CAS  Google Scholar 

  13. Bullock, J., Srankó, D.F., Towle, C.M., et al.: Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy Environ. Sci. 10, 2222–2230 (2017). https://doi.org/10.1039/C7EE01764B

    Article  Google Scholar 

  14. Cheng, W.H., Richter, M.H., Sullivan, I., et al.: CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination. ACS Energy Lett. 5, 470–476 (2020). https://doi.org/10.1021/acsenergylett.9b02576

    Article  CAS  Google Scholar 

  15. Jia, J., Seitz, L.C., Benck, J.D., et al.: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016). https://doi.org/10.1038/ncomms13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacobsson, T.J., Fjällström, V., Sahlberg, M., et al.: A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6, 3676–3683 (2013). https://doi.org/10.1039/C3EE42519C

    Article  CAS  Google Scholar 

  17. Leung, J.J., Warnan, J., Ly, K.H., et al.: Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2, 354–365 (2019). https://doi.org/10.1038/s41929-019-0254-2

    Article  CAS  Google Scholar 

  18. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  19. Halmann, M.: Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275, 115–116 (1978). https://doi.org/10.1038/275115a0

    Article  CAS  Google Scholar 

  20. Karuturi, S.K., Shen, H.P., Sharma, A., et al.: Over 17% efficiency stand-alone solar water splitting enabled by perovskite-silicon tandem absorbers. Adv. Energy Mater. 10, 2000772 (2020). https://doi.org/10.1002/aenm.202000772

    Article  CAS  Google Scholar 

  21. Cheng, W.H., Richter, M.H., May, M.M., et al.: Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018). https://doi.org/10.1021/acsenergylett.8b00920

    Article  CAS  Google Scholar 

  22. Zhou, X.H., Liu, R., Sun, K., et al.: Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III–V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett. 1, 764–770 (2016). https://doi.org/10.1021/acsenergylett.6b00317

    Article  CAS  Google Scholar 

  23. Chen, Y.B., Liu, Y., Wang, F., et al.: Toward practical photoelectrochemical water splitting and CO2 reduction using earth-abundant materials. J. Energy Chem. 61, 469–488 (2021). https://doi.org/10.1016/j.jechem.2021.02.003

    Article  Google Scholar 

  24. Liu, X.X., Ye, L.Q., Ma, Z.Y., et al.: Photothermal effect of infrared light to enhance solar catalytic hydrogen generation. Catal. Commun. 102, 13–16 (2017). https://doi.org/10.1016/j.catcom.2017.08.014

    Article  CAS  Google Scholar 

  25. Licht, S.: Solar water splitting to generate hydrogen fuel: a photothermal electrochemical analysis. Int. J. Hydrog. Energy 30, 459–470 (2005). https://doi.org/10.1016/j.ijhydene.2004.04.015

    Article  CAS  Google Scholar 

  26. Hoes, M., Muhich, C.L., Jacot, R., et al.: Thermodynamics of paired charge-compensating doped ceria with superior redox performance for solar thermochemical splitting of H2O and CO2. J. Mater. Chem. A 5, 19476–19484 (2017). https://doi.org/10.1039/C7TA05824A

    Article  CAS  Google Scholar 

  27. Haeussler, A., Abanades, S., Julbe, A., et al.: Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor. Energy 201, 117649 (2020). https://doi.org/10.1016/j.energy.2020.117649

    Article  CAS  Google Scholar 

  28. Cai, S.C., Zhang, M., Li, J.J., et al.: Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of photothermocatalytic CO2 reduction to solar fuels. Sol. RRL 5, 2000313 (2021). https://doi.org/10.1002/solr.202000313

    Article  CAS  Google Scholar 

  29. Shen, S.H., Chen, J., Wang, M., et al.: Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 98, 299–385 (2018). https://doi.org/10.1016/j.pmatsci.2018.07.006

    Article  CAS  Google Scholar 

  30. Chen, Y.B., Feng, X.Y., Liu, Y., et al.: Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett. 5, 844–866 (2020). https://doi.org/10.1021/acsenergylett.9b02620

    Article  CAS  Google Scholar 

  31. Wang, Q., Domen, K.: Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020). https://doi.org/10.1021/acs.chemrev.9b00201

    Article  CAS  PubMed  Google Scholar 

  32. Ghoussoub, M., Xia, M.K., Duchesne, P.N., et al.: Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 12, 1122–1142 (2019). https://doi.org/10.1039/C8EE02790K

    Article  CAS  Google Scholar 

  33. Miller, J.E., McDaniel, A.H., Allendorf, M.D.: Considerations in the design of materials for solar-driven fuel production using metal-oxide thermochemical cycles. Adv. Energy Mater. 4, 1300469 (2014). https://doi.org/10.1002/aenm.201300469

    Article  CAS  Google Scholar 

  34. Romero, M., Steinfeld, A.: Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5, 9234–9245 (2012). https://doi.org/10.1039/C2EE21275G

  35. Nazeeruddin, M.K.: In retrospect: twenty-five years of low-cost solar cells. Nature 538, 463–464 (2016). https://doi.org/10.1038/538463a

    Article  PubMed  Google Scholar 

  36. Graetzel, M., Janssen, R.A., Mitzi, D.B., et al.: Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012). https://doi.org/10.1038/nature11476

    Article  CAS  PubMed  Google Scholar 

  37. Wang, C.Y., Tian, N., Ma, T.Y., et al.: Pyroelectric catalysis. Nano Energy 78, 105371 (2020). https://doi.org/10.1016/j.nanoen.2020.105371

    Article  CAS  Google Scholar 

  38. Lenert, A., Bierman, D.M., Nam, Y., et al.: A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014). https://doi.org/10.1038/nnano.2013.286

    Article  CAS  PubMed  Google Scholar 

  39. Chandra, S., Pandey, R.K.: Semiconductor photoelectrochemical solar cells. Phys. Status Solidi A 72, 415–454 (1982). https://doi.org/10.1002/pssa.2210720202

    Article  CAS  Google Scholar 

  40. Ma, R., Sun, J., Li, D.H., et al.: Review of synergistic photo-thermo-catalysis: mechanisms, materials and applications. Int. J. Hydrog. Energy 45, 30288–30324 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.127

    Article  CAS  Google Scholar 

  41. Smestad, G.P., Steinfeld, A.: Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind. Eng. Chem. Res. 51, 11828–11840 (2012). https://doi.org/10.1021/ie3007962

    Article  CAS  Google Scholar 

  42. Peterson, A.A., Abild-Pedersen, F., Studt, F., et al.: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010). https://doi.org/10.1039/C0EE00071J

    Article  CAS  Google Scholar 

  43. Liu, G., Wang, L.Z., Yang, H.G., et al.: Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831–843 (2010). https://doi.org/10.1039/b909930a

    Article  CAS  Google Scholar 

  44. Wang, Y.B., Hong, J.D., Zhang, W., et al.: Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization. Catal. Sci. Technol. 3, 1703–1711 (2013). https://doi.org/10.1039/c3cy20836b

    Article  CAS  Google Scholar 

  45. Zhang, X., Chen, Y.L., Liu, R.S., et al.: Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013). https://doi.org/10.1088/0034-4885/76/4/046401

    Article  CAS  PubMed  Google Scholar 

  46. Fan, W., Zhang, Q., Wang, Y.: Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys 15, 2632–2649 (2013). https://doi.org/10.1039/c2cp43524a

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, L., Swearer, D.F., Zhang, C., et al.: Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018). https://doi.org/10.1126/science.aat6967

    Article  CAS  PubMed  Google Scholar 

  48. Wagner, A., Sahm, C.D., Reisner, E.: Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020). https://doi.org/10.1038/s41929-020-00512-x

    Article  CAS  Google Scholar 

  49. Choi, C., Kwon, S., Cheng, T., et al.: Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020). https://doi.org/10.1038/s41929-020-00504-x

    Article  CAS  Google Scholar 

  50. Shoji, S., Peng, X.B., Yamaguchi, A., et al.: Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 3, 148–153 (2020). https://doi.org/10.1038/s41929-019-0419-z

    Article  CAS  Google Scholar 

  51. Röhr, J.A., Lipton, J., Kong, J., et al.: Efficiency limits of underwater solar cells. Joule 4, 840–849 (2020). https://doi.org/10.1016/j.joule.2020.02.005

    Article  CAS  Google Scholar 

  52. Jiang, M.P., Huang, K.K., Liu, J.H., et al.: Magnetic-field-regulated TiO2 100 facets: a strategy for C–C coupling in CO2 photocatalytic conversion. Chem 6, 2335–2346 (2020). https://doi.org/10.1016/j.chempr.2020.06.033

    Article  CAS  Google Scholar 

  53. Yu, F., Wang, C., Li, Y., et al.: Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv. Sci. 7, 2000204 (2020). https://doi.org/10.1002/advs.202000204

    Article  CAS  Google Scholar 

  54. Tou, M., Michalsky, R., Steinfeld, A.: Solar-driven thermochemical splitting of CO2 and in situ separation of CO and O2 across a ceria redox membrane reactor. Joule 1, 146–154 (2017). https://doi.org/10.1016/j.joule.2017.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xie, S., Zhang, Q., Liu, G., et al.: Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 52, 35–59 (2016). https://doi.org/10.1039/c5cc07613g

    Article  CAS  Google Scholar 

  56. Zhang, J.N., Hu, W.P., Cao, S., et al.: Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 13, 2313–2322 (2020). https://doi.org/10.1007/s12274-020-2880-z

    Article  CAS  Google Scholar 

  57. Guan, X.J., Chowdhury, F.A., Pant, N., et al.: Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C 122, 13797–13802 (2018). https://doi.org/10.1021/acs.jpcc.8b00875

    Article  CAS  Google Scholar 

  58. Li, M., Li, Y.X., Peng, S.Q., et al.: Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2. Front. Chem. China 4, 32–38 (2009). https://doi.org/10.1007/s11458-009-0019-6

    Article  Google Scholar 

  59. Wu, X., Li, Y., Zhang, G., et al.: Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. J. Am. Chem. Soc. 141, 5267–5274 (2019). https://doi.org/10.1021/jacs.8b12928

    Article  CAS  PubMed  Google Scholar 

  60. Han, B., Ou, X.W., Deng, Z.Q., et al.: Nickel metal-organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity. Angew. Chem. Int. Edit. 57, 16811–16815 (2018). https://doi.org/10.1002/anie.201811545

    Article  CAS  Google Scholar 

  61. Wang, Y., Shang, X.T., Shen, J.N., et al.: Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 11, 3043 (2020). https://doi.org/10.1038/s41467-020-16742-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jaeger, C.D., Bard, A.J.: Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J. Phys. Chem. 83, 3146–3152 (1979). https://doi.org/10.1021/j100487a017

    Article  CAS  Google Scholar 

  63. Kaneco, S., Shimizu, Y., Ohta, K., et al.: Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J. Photochem. Photobiol. A 115, 223–226 (1998). https://doi.org/10.1016/S1010-6030(98)00274-3

    Article  CAS  Google Scholar 

  64. Wang, W.N., An, W.J., Ramalingam, B., et al.: Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 134, 11276–11281 (2012). https://doi.org/10.1021/ja304075b

    Article  CAS  PubMed  Google Scholar 

  65. Wang, X.X., Liu, M.C., Zhou, Z.H., et al.: Toward facet engineering of CdS nanocrystals and their shape-dependent photocatalytic activities. J. Phys. Chem. C 119, 20555–20560 (2015). https://doi.org/10.1021/acs.jpcc.5b07370

    Article  CAS  Google Scholar 

  66. Huang, C., Chen, C., Zhang, M., et al.: Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015). https://doi.org/10.1038/ncomms8698

    Article  PubMed  Google Scholar 

  67. Kibria, M.G., Chowdhury, F.A., Zhao, S., et al.: Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015). https://doi.org/10.1038/ncomms7797

    Article  CAS  PubMed  Google Scholar 

  68. Guan, X.J., Chowdhury, F.A., Wang, Y.J., et al.: Making of an industry-friendly artificial photosynthesis device. ACS Energy Lett. 3, 2230–2231 (2018). https://doi.org/10.1021/acsenergylett.8b01377

    Article  CAS  Google Scholar 

  69. Wang, X., Maeda, K., Thomas, A., et al.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317

    Article  CAS  PubMed  Google Scholar 

  70. Zhao, D.M., Dong, C.L., Wang, B., et al.: Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 31, 1903545 (2019). https://doi.org/10.1002/adma.201903545

    Article  CAS  Google Scholar 

  71. Maeda, K., Teramura, K., Lu, D., et al.: Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006). https://doi.org/10.1038/440295a

    Article  CAS  PubMed  Google Scholar 

  72. Jo, W.J., Kang, H.J., Kong, K.J., et al.: Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light. Proc. Natl. Acad. Sci. USA 112, 13774–13778 (2015). https://doi.org/10.1073/pnas.1509674112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, X., Liu, L., Yu, P.Y., et al.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448

    Article  CAS  PubMed  Google Scholar 

  74. Liao, L., Zhang, Q., Su, Z., et al.: Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69–73 (2014). https://doi.org/10.1038/nnano.2013.272

    Article  CAS  PubMed  Google Scholar 

  75. Isarapakdeetham, S., Kim-Lohsoontorn, P., Wongsakulphasatch, S., et al.: Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3. Int. J. Hydrog. Energy 45, 1477–1491 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.077

    Article  CAS  Google Scholar 

  76. Yan, H.J., Yang, J.H., Ma, G.J., et al.: Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 266, 165–168 (2009). https://doi.org/10.1016/j.jcat.2009.06.024

    Article  CAS  Google Scholar 

  77. Wang, Y., Zhang, Z., Zhang, L., et al.: Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J. Am. Chem. Soc. 140, 14595–14598 (2018). https://doi.org/10.1021/jacs.8b09344

    Article  CAS  PubMed  Google Scholar 

  78. Wang, Q., Hisatomi, T., Jia, Q., et al.: Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. Nat. Mater. 15, 611–615 (2016). https://doi.org/10.1038/nmat4589

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Q., Hisatomi, T., Suzuki, Y., et al.: Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 139, 1675–1683 (2017). https://doi.org/10.1021/jacs.6b12164

    Article  CAS  PubMed  Google Scholar 

  80. Wang, Q., Hisatomi, T., Ma, S.S.K., et al.: Core/shell structured La- and Rh-codoped SrTiO3 as a hydrogen evolution photocatalyst in Z-scheme overall water splitting under visible light irradiation. Chem. Mater. 26, 4144–4150 (2014). https://doi.org/10.1021/cm5011983

    Article  CAS  Google Scholar 

  81. Wang, Q., Warnan, J., Rodríguez-Jiménez, S., et al.: Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 5, 703–710 (2020). https://doi.org/10.1038/s41560-020-0678-6

    Article  CAS  Google Scholar 

  82. Xiao, M., Zhang, L., Luo, B., et al.: Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem. Int. Edit. 59, 7230–7234 (2020). https://doi.org/10.1002/anie.202001148

    Article  CAS  Google Scholar 

  83. Qu, X.L., He, Y.C., Qu, M.H., et al.: Identification of embedded nanotwins at c-Si/a-Si: H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat. Energy. 6, 194–202 (2021). https://doi.org/10.1038/s41560-020-00768-4

    Article  CAS  Google Scholar 

  84. Hao, M.M., Bai, Y., Zeiske, S., et al.: Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020). https://doi.org/10.1038/s41560-019-0535-7

    Article  CAS  Google Scholar 

  85. Simonov, A., De Baerdemaeker, T., Boström, H.L.B., et al.: Hidden diversity of vacancy networks in Prussian blue analogues. Nature 578, 256–260 (2020). https://doi.org/10.1038/s41586-020-1980-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Monny, S.A., Wang, Z., Lin, T., et al.: Designing efficient Bi2Fe4O9 photoanodes via bulk and surface defect engineering. Chem. Commun. 56, 9376–9379 (2020). https://doi.org/10.1039/d0cc04455e

    Article  CAS  Google Scholar 

  87. Ma, H.F., Li, X.Y., Fan, S.Y., et al.: In situ formation of interfacial defects between Co-based spinel/carbon nitride hybrids for efficient CO2 photoreduction. ACS Appl. Energy Mater. 3, 5083–5094 (2020). https://doi.org/10.1021/acsaem.0c00881

    Article  CAS  Google Scholar 

  88. Zhao, S.L., Lu, X.Y., Wang, L.Z., et al.: Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 31, 1805367 (2019). https://doi.org/10.1002/adma.201805367

    Article  CAS  Google Scholar 

  89. Zhang, N., Long, R., Gao, C., et al.: Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci. China Mater. 61, 771–805 (2018). https://doi.org/10.1007/s40843-017-9151-y

    Article  CAS  Google Scholar 

  90. Zhang, W., He, H.L., Li, H.Z., et al.: Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 11, 2003303 (2021). https://doi.org/10.1002/aenm.202003303

    Article  CAS  Google Scholar 

  91. Das, S., Pérez-Ramírez, J., Gong, J., et al.: Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 49, 2937–3004 (2020). https://doi.org/10.1039/c9cs00713j

    Article  CAS  PubMed  Google Scholar 

  92. Fu, W.L., Guan, X.J., Si, Y.T., et al.: Phosphatized GaZnInON nanocrystals with core-shell structures for efficient and stable pure water splitting via four-electron photocatalysis. Chem. Eng. J. 410, 128391 (2021). https://doi.org/10.1016/j.cej.2020.128391

    Article  CAS  Google Scholar 

  93. Takata, T., Pan, C.S., Nakabayashi, M., et al.: Fabrication of a core-shell-type photocatalyst via photodeposition of group IV and V transition metal oxyhydroxides: an effective surface modification method for overall water splitting. J. Am. Chem. Soc. 137, 9627–9634 (2015). https://doi.org/10.1021/jacs.5b04107

    Article  CAS  PubMed  Google Scholar 

  94. Jiao, X., Li, X., Jin, X., et al.: Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 139, 18044–18051 (2017). https://doi.org/10.1021/jacs.7b10287

    Article  CAS  PubMed  Google Scholar 

  95. Wang, L., Liu, G.P., Wang, B., et al.: Oxygen vacancies engineering-mediated BiOBr atomic layers for boosting visible light-driven photocatalytic CO2 reduction. Sol. RRL 5, 2000480 (2021). https://doi.org/10.1002/solr.202000480

    Article  CAS  Google Scholar 

  96. Li, X.D., Sun, Y.F., Xu, J.Q., et al.: Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1

    Article  CAS  Google Scholar 

  97. Rechberger, F., Niederberger, M.: Translucent nanoparticle-based aerogel monoliths as 3-dimensional photocatalysts for the selective photoreduction of CO2 to methanol in a continuous flow reactor. Mater. Horiz. 4, 1115–1121 (2017). https://doi.org/10.1039/C7MH00423K

    Article  CAS  Google Scholar 

  98. Han, Q., Wang, B., Zhao, Y., et al.: A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew. Chem. Int. Edit. 54, 11433–11437 (2015). https://doi.org/10.1002/anie.201504985

    Article  CAS  Google Scholar 

  99. Puskelova, J., Baia, L., Vulpoi, A., et al.: Photocatalytic hydrogen production using TiO2-Pt aerogels. Chem. Eng. J. 242, 96–101 (2014). https://doi.org/10.1016/j.cej.2013.12.018

    Article  CAS  Google Scholar 

  100. Jiang, Z.Y., Zhang, X.H., Yang, G.H., et al.: Hydrogel as a miniature hydrogen production reactor to enhance photocatalytic hydrogen evolution activities of CdS and ZnS quantum dots derived from modified gel crystal growth method. Chem. Eng. J. 373, 814–820 (2019). https://doi.org/10.1016/j.cej.2019.05.112

    Article  CAS  Google Scholar 

  101. Tang, H.B., Chen, C.J., Huang, Z.L., et al.: Plasmonic hot electrons for sensing, photodetection, and solar energy applications: a perspective. J. Chem. Phys. 152, 220901 (2020). https://doi.org/10.1063/5.0005334

    Article  CAS  PubMed  Google Scholar 

  102. Song, H., Meng, X., Dao, T.D., et al.: Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles. ACS Appl. Mater. Interfaces 10, 408–416 (2018). https://doi.org/10.1021/acsami.7b13043

    Article  CAS  PubMed  Google Scholar 

  103. Wang, Z.J., Song, H., Pang, H., et al.: Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl. Catal. B-Environ. 250, 10–16 (2019). https://doi.org/10.1016/j.apcatb.2019.03.003

    Article  CAS  Google Scholar 

  104. Gao, M.M., Connor, P.K.N., Ho, G.W.: Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 9, 3151–3160 (2016). https://doi.org/10.1039/c6ee00971a

    Article  CAS  Google Scholar 

  105. Cushing, S.K., Li, J., Meng, F., et al.: Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012). https://doi.org/10.1021/ja305603t

    Article  CAS  PubMed  Google Scholar 

  106. Cortés, E.: Activating plasmonic chemistry. Science 362, 28–29 (2018). https://doi.org/10.1126/science.aav1133

    Article  PubMed  Google Scholar 

  107. Christopher, P., Xin, H., Linic, S.: Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011). https://doi.org/10.1038/nchem.1032

    Article  CAS  PubMed  Google Scholar 

  108. Collado, L., Reynal, A., Fresno, F., et al.: Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat. Commun. 9, 4986 (2018). https://doi.org/10.1038/s41467-018-07397-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Choi, K.M., Kim, D., Rungtaweevoranit, B., et al.: Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017). https://doi.org/10.1021/jacs.6b11027

    Article  CAS  PubMed  Google Scholar 

  110. Kong, T.T., Low, J., Xiong, Y.J.: Catalyst: how material chemistry enables solar-driven CO2 conversion. Chem 6, 1035–1038 (2020). https://doi.org/10.1016/j.chempr.2020.02.014

    Article  CAS  Google Scholar 

  111. Mateo, D., Cerrillo, J.L., Durini, S., et al.: Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 50, 2173–2210 (2021). https://doi.org/10.1039/D0CS00357C

    Article  CAS  PubMed  Google Scholar 

  112. Xu, C.Y., Huang, W.H., Li, Z., et al.: Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2. ACS Catal. 8, 6582–6593 (2018). https://doi.org/10.1021/acscatal.8b00272

    Article  CAS  Google Scholar 

  113. Goto, Y., Hisatomi, T., Wang, Q., et al.: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018). https://doi.org/10.1016/j.joule.2017.12.009

    Article  CAS  Google Scholar 

  114. Wei, Q.Y., Yang, Y., Hou, J.Y., et al.: Direct solar photocatalytic hydrogen generation with CPC photoreactors: system development. Sol. Energy 153, 215–223 (2017). https://doi.org/10.1016/j.solener.2017.05.064

    Article  CAS  Google Scholar 

  115. Kudo, A., Kato, H.: Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains. Chem. Lett. 26, 867–868 (1997). https://doi.org/10.1246/cl.1997.867

    Article  Google Scholar 

  116. Kudo, A., Kato, H., Nakagawa, S.: Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J. Phys. Chem. B 104, 571–575 (2000). https://doi.org/10.1021/jp9919056

    Article  CAS  Google Scholar 

  117. Yoshino, M., Kakihana, M., Cho, W.S., et al.: Polymerizable complex synthesis of pure Sr2NbxTa2−xO7 solid solutions with high photocatalytic activities for water decomposition into H2 and O2. Chem. Mater. 14, 3369–3376 (2002). https://doi.org/10.1021/cm0109037

    Article  CAS  Google Scholar 

  118. Kato, H., Asakura, K., Kudo, A.: Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003). https://doi.org/10.1021/ja027751g

    Article  CAS  PubMed  Google Scholar 

  119. Miseki, Y., Kato, H., Kudo, A.: Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ. Sci. 2, 306 (2009). https://doi.org/10.1039/b818922f

    Article  CAS  Google Scholar 

  120. Chowdhury, F.A., Trudeau, M.L., Guo, H., et al.: A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nat. Commun. 9, 1707 (2018). https://doi.org/10.1038/s41467-018-04067-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ma, G.J., Yan, H.J., Shi, J.Y., et al.: Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. J. Catal. 260, 134–140 (2008). https://doi.org/10.1016/j.jcat.2008.09.017

    Article  CAS  Google Scholar 

  122. Liu, M.C., Chen, Y.B., Su, J.Z., et al.: Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 1, 16151 (2016). https://doi.org/10.1038/nenergy.2016.151

    Article  CAS  Google Scholar 

  123. Tseng, I.H., Chang, W.C., Wu, J.C.S.: Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl. Catal. B-Environ. 37, 37–48 (2002). https://doi.org/10.1016/S0926-3373(01)00322-8

    Article  CAS  Google Scholar 

  124. Wu, Y.A., McNulty, I., Liu, C., et al.: Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019). https://doi.org/10.1038/s41560-019-0490-3

    Article  CAS  Google Scholar 

  125. Park, H.A., Choi, J.H., Choi, K.M., et al.: Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 22, 5304 (2012). https://doi.org/10.1039/c2jm30337j

    Article  CAS  Google Scholar 

  126. Shown, I., Samireddi, S., Chang, Y.C., et al.: Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 9, 169 (2018). https://doi.org/10.1038/s41467-017-02547-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, Y., Liu, X., Han, X., et al.: Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat. Commun. 11, 2531 (2020). https://doi.org/10.1038/s41467-020-16227-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Takeda, H., Koike, K., Inoue, H., et al.: Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J. Am. Chem. Soc. 130, 2023–2031 (2008). https://doi.org/10.1021/ja077752e

    Article  CAS  PubMed  Google Scholar 

  129. Meng, X.G., Yu, Q., Liu, G.G., et al.: Efficient photocatalytic CO2 reduction in all-inorganic aqueous environment: cooperation between reaction medium and Cd(II) modified colloidal ZnS. Nano Energy 34, 524–532 (2017). https://doi.org/10.1016/j.nanoen.2017.03.021

    Article  CAS  Google Scholar 

  130. Meng, X.G., Zuo, G.F., Zong, P.X., et al.: A rapidly room-temperature-synthesized Cd/ZnS: Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO2 reduction. Appl. Catal. B-Environ. 237, 68–73 (2018). https://doi.org/10.1016/j.apcatb.2018.05.066

    Article  CAS  Google Scholar 

  131. Jin, Z.L., Zhang, X.J., Lu, G.X., et al.: Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2: investigation of different noble metal loading. J. Mol. Catal. A-Chem. 259, 275–280 (2006). https://doi.org/10.1016/j.molcata.2006.06.035

    Article  CAS  Google Scholar 

  132. Qin, Z.X., Xue, F., Chen, Y.B., et al.: Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production. Appl. Catal. B-Environ 217, 551–559 (2017). https://doi.org/10.1016/j.apcatb.2017.06.018

    Article  CAS  Google Scholar 

  133. Chapin, D.M., Fuller, C.S., Pearson, G.L.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954). https://doi.org/10.1063/1.1721711

    Article  CAS  Google Scholar 

  134. Futako, W., Takeoka, S., Fortmann, C.M., et al.: Fabrication of narrow-band-gap hydrogenated amorphous silicon by chemical annealing. J. Appl. Phys. 84, 1333–1339 (1998). https://doi.org/10.1063/1.368202

    Article  CAS  Google Scholar 

  135. Zhao, J.H., Wang, A.H., Green, M.A., et al.: 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998). https://doi.org/10.1063/1.122345

    Article  CAS  Google Scholar 

  136. Staebler, D.L., Crandall, R.S., Williams, R.: Stability of n-i-p amorphous silicon solar cells. Appl. Phys. Lett. 39, 733–735 (1981). https://doi.org/10.1063/1.92865

    Article  CAS  Google Scholar 

  137. Geisz, J.F., France, R.M., Schulte, K.L., et al.: Six-junction III–V solar cells with 471% conversion efficiency under 14.3 Suns concentration. Nat. Energy 5, 326–335 (2020). https://doi.org/10.1038/s41560-020-0598-5

    Article  CAS  Google Scholar 

  138. Yun, S., Vlachopoulos, N., Qurashi, A., et al.: Dye sensitized photoelectrolysis cells. Chem. Soc. Rev. 48, 3705–3722 (2019). https://doi.org/10.1039/c8cs00987b

    Article  CAS  PubMed  Google Scholar 

  139. Kojima, A., Teshima, K., Shirai, Y., et al.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  140. Jeong, M., Choi, I.W., Go, E.M., et al.: Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020). https://doi.org/10.1126/science.abb7167

    Article  CAS  PubMed  Google Scholar 

  141. Myllynen, A., Sadi, T., Oksanen, J.: Interdigitated back-contact double-heterojunction GaInP/GaAs solar cells. Prog. Photovoltaics 29, 47–53 (2021). https://doi.org/10.1002/pip.3339

    Article  CAS  Google Scholar 

  142. Hossain, M.I., Saleque, A.M., Ahmed, S., et al.: Perovskite/perovskite planar tandem solar cells: a comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy 79, 105400 (2021). https://doi.org/10.1016/j.nanoen.2020.105400

    Article  CAS  Google Scholar 

  143. Geisz, J.F., Steiner, M.A., García, I., et al.: Generalized optoelectronic model of series-connected multijunction solar cells. IEEE J. Photovolt. 5, 1827–1839 (2015). https://doi.org/10.1109/JPHOTOV.2015.2478072

    Article  Google Scholar 

  144. Kibria, M.G., Edwards, J.P., Gabardo, C.M., et al.: Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 1807166 (2019). https://doi.org/10.1002/adma.201807166

    Article  CAS  Google Scholar 

  145. Fu, G.T., Yan, X.X., Chen, Y.F., et al.: Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 30, 1704609 (2018). https://doi.org/10.1002/adma.201704609

    Article  CAS  Google Scholar 

  146. Wang, J., Li, K., Zhong, H.X., et al.: Synergistic effect between metal-nitrogen-carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew. Chem. 127, 10676–10680 (2015). https://doi.org/10.1002/ange.201504358

    Article  Google Scholar 

  147. Wang, Z.C., Xu, W.J., Chen, X.K., et al.: Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 29, 1902875 (2019). https://doi.org/10.1002/adfm.201902875

    Article  CAS  Google Scholar 

  148. Jiang, K., Siahrostami, S., Akey, A.J., et al.: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem. 3, 950–960 (2017). https://doi.org/10.1016/j.chempr.2017.09.014

    Article  CAS  Google Scholar 

  149. Liu, Y.K., Jiang, S., Li, S.J., et al.: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B-Environ. 247, 107–114 (2019). https://doi.org/10.1016/j.apcatb.2019.01.094

    Article  CAS  Google Scholar 

  150. Zhang, L.Y., Zheng, Y.J., Wang, J.C., et al.: Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction. Small 17, 2006730 (2021). https://doi.org/10.1002/smll.202006730

    Article  CAS  Google Scholar 

  151. Eftekhari, A.: Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrog. Energy 42, 11053–11077 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.125

    Article  CAS  Google Scholar 

  152. Liu, M., Pang, Y.J., Zhang, B., et al.: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). https://doi.org/10.1038/nature19060

    Article  CAS  PubMed  Google Scholar 

  153. Kuhl, K.P., Hatsukade, T., Cave, E.R., et al.: Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014). https://doi.org/10.1021/ja505791r

    Article  CAS  PubMed  Google Scholar 

  154. Qiao, J., Liu, Y., Hong, F., et al.: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014). https://doi.org/10.1039/c3cs60323g

    Article  CAS  PubMed  Google Scholar 

  155. Mandal, L., Yang, K.R., Motapothula, M.R., et al.: Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl. Mater. Interfaces 10, 8574–8584 (2018). https://doi.org/10.1021/acsami.7b15418

    Article  CAS  PubMed  Google Scholar 

  156. Handoko, A.D., Chan, K.W., Yeo, B.S.: –CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials. ACS Energy Lett. 2, 2103–2109 (2017). https://doi.org/10.1021/acsenergylett.7b00514

    Article  CAS  Google Scholar 

  157. Hoang, T.T.H., Verma, S., Ma, S., et al.: Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868

    Article  CAS  PubMed  Google Scholar 

  158. Li, F.L., Shao, Q., Huang, X.Q., et al.: Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem. 57, 1888–1892 (2018). https://doi.org/10.1002/anie.201711376

    Article  CAS  Google Scholar 

  159. Zhao, X., Pachfule, P., Li, S., et al.: Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141, 6623–6630 (2019). https://doi.org/10.1021/jacs.9b01226

    Article  CAS  PubMed  Google Scholar 

  160. Seh, Z.W., Kibsgaard, J., Dickens, C.F., et al.: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998

    Article  PubMed  Google Scholar 

  161. Roger, I., Shipman, M.A., Symes, M.D.: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003

    Article  CAS  Google Scholar 

  162. Chen, Y.K., Xiang, C.X., Hu, S., et al.: Modeling the performance of an integrated photoelectrolysis system with 10 × solar concentrators. J. Electrochem. Soc. 161, F1101–F1110 (2014). https://doi.org/10.1149/2.0751410jes

    Article  CAS  Google Scholar 

  163. Schreier, M., Héroguel, F., Steier, L., et al.: Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2, 17087 (2017). https://doi.org/10.1038/nenergy.2017.87

    Article  CAS  Google Scholar 

  164. Burdyny, T., Smith, W.A.: CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019). https://doi.org/10.1039/c8ee03134g

    Article  CAS  Google Scholar 

  165. Xiao, Y.J., Qian, Y., Chen, A.Q., et al.: An artificial photosynthetic system with CO2-reducing solar-to-fuel efficiency exceeding 20%. J. Mater. Chem. A 8, 18310–18317 (2020). https://doi.org/10.1039/D0TA06714H

    Article  CAS  Google Scholar 

  166. Turan, B., Becker, J.P., Urbain, F., et al.: Upscaling of integrated photoelectrochemical water-splitting devices to large areas. Nat. Commun. 7, 12681 (2016). https://doi.org/10.1038/ncomms12681

    Article  PubMed  PubMed Central  Google Scholar 

  167. Becker, J.P., Turan, B., Smirnov, V., et al.: A modular device for large area integrated photoelectrochemical water-splitting as a versatile tool to evaluate photoabsorbers and catalysts. J. Mater. Chem. A 5, 4818–4826 (2017). https://doi.org/10.1039/C6TA10688A

    Article  CAS  Google Scholar 

  168. Bonke, S.A., Wiechen, M., MacFarlane, D.R., et al.: Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ. Sci. 8, 2791–2796 (2015). https://doi.org/10.1039/c5ee02214b

    Article  CAS  Google Scholar 

  169. Chang, W.J., Lee, K.H., Ha, H., et al.: Design principle and loss engineering for photovoltaic-electrolysis cell system. ACS Omega 2, 1009–1018 (2017). https://doi.org/10.1021/acsomega.7b00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hsu, S.H., Miao, J.W., Zhang, L.P., et al.: An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 30, 1707261 (2018). https://doi.org/10.1002/adma.201707261

    Article  CAS  Google Scholar 

  171. Rau, S., Vierrath, S., Ohlmann, J., et al.: Highly efficient solar hydrogen generation—an integrated concept joining III–V solar cells with PEM electrolysis cells. Energy Technol. 2, 43–53 (2014). https://doi.org/10.1002/ente.201300116

    Article  CAS  Google Scholar 

  172. Shi, Y.Y., Hsieh, T.Y., Hoque, M.A., et al.: High solar-to-hydrogen conversion efficiency at pH 7 based on a PV–EC cell with an oligomeric molecular anode. ACS Appl. Mater. Interfaces 12, 55856–55864 (2020). https://doi.org/10.1021/acsami.0c16235

    Article  CAS  PubMed  Google Scholar 

  173. Wang, Y., Liu, J., Wang, Y., et al.: Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system. Nat. Commun. 9, 5003 (2018). https://doi.org/10.1038/s41467-018-07380-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhou, L.Q., Ling, C., Zhou, H., et al.: A high-performance oxygen evolution catalyst in neutral-pH for sunlight-driven CO2 reduction. Nat. Commun. 10, 4081 (2019). https://doi.org/10.1038/s41467-019-12009-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tay, Y.F., Kaneko, H., Chiam, S.Y., et al.: Solution-processed Cd-substituted CZTS photocathode for efficient solar hydrogen evolution from neutral water. Joule 2, 537–548 (2018). https://doi.org/10.1016/j.joule.2018.01.012

    Article  CAS  Google Scholar 

  176. Ben-Naim, M., Britto, R.J., Aldridge, C.W., et al.: Addressing the stability gap in photoelectrochemistry: molybdenum disulfide protective catalysts for tandem III–V unassisted solar water splitting. ACS Energy Lett. 5, 2631–2640 (2020). https://doi.org/10.1021/acsenergylett.0c01132

    Article  CAS  Google Scholar 

  177. Voiry, D., Shin, H.S., Loh, K.P., et al.: Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2, 0105 (2018). https://doi.org/10.1038/s41570-017-0105

    Article  CAS  Google Scholar 

  178. Hou, J.G., Cao, S.Y., Sun, Y.Q., et al.: Atomically thin mesoporous In2O3−x/In2S3 lateral heterostructures enabling robust broadband-light photo-electrochemical water splitting. Adv. Energy Mater. 8, 1701114 (2018). https://doi.org/10.1002/aenm.201701114

    Article  CAS  Google Scholar 

  179. Wang, H.P., Sun, K., Noh, S.Y., et al.: High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano Lett. 15, 2817–2824 (2015). https://doi.org/10.1021/nl5041463

    Article  CAS  PubMed  Google Scholar 

  180. Kempler, P.A., Gonzalez, M.A., Papadantonakis, K.M., et al.: Hydrogen evolution with minimal parasitic light absorption by dense Co-P catalyst films on structured p-Si photocathodes. ACS Energy Lett. 3, 612–617 (2018). https://doi.org/10.1021/acsenergylett.8b00034

    Article  CAS  Google Scholar 

  181. Sagara, N., Kamimura, S., Tsubota, T., et al.: Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl. Catal. B: Environ. 192, 193–198 (2016). https://doi.org/10.1016/j.apcatb.2016.03.055

    Article  CAS  Google Scholar 

  182. Sim, U., Yang, T.Y., Moon, J., et al.: N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ. Sci. 6, 3658 (2013). https://doi.org/10.1039/c3ee42106f

    Article  CAS  Google Scholar 

  183. Pan, L., Liu, Y., Yao, L., et al.: Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat. Commun. 11, 318 (2020). https://doi.org/10.1038/s41467-019-13987-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, Z.L., Zhang, L., Schülli, T.U., et al.: Identifying copper vacancies and their role in the CuO based photocathode for water splitting. Angew. Chem. 58, 17604–17609 (2019). https://doi.org/10.1002/anie.201909182

    Article  CAS  Google Scholar 

  185. Zhao, J., Minegishi, T., Zhang, L., et al.: Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. Angew. Chem.—Int. Ed. 53, 11808–11812 (2014). https://doi.org/10.1002/anie.201406483

    Article  CAS  Google Scholar 

  186. Kang, U., Choi, S.K., Ham, D.J., et al.: Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ. Sci. 8, 2638–2643 (2015). https://doi.org/10.1039/c5ee01410g

    Article  CAS  Google Scholar 

  187. Kang, U., Park, H.: A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month. J. Mater. Chem. A 5, 2123–2131 (2017). https://doi.org/10.1039/c6ta09378g

    Article  CAS  Google Scholar 

  188. Yuan, J.L., Yang, L., Hao, C.J.: Communication—lithium-doped CuFeO2 thin film electrodes for photoelectrochemical reduction of carbon dioxide to methanol. J. Electrochem. Soc. 166, H718–H720 (2019). https://doi.org/10.1149/2.0921914jes

    Article  CAS  Google Scholar 

  189. Kim, J.H., Hansora, D., Sharma, P., et al.: Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chem Soc Rev 48, 1908–1971 (2019). https://doi.org/10.1039/c8cs00699g

    Article  CAS  PubMed  Google Scholar 

  190. Kang, D., Young, J.L., Lim, H., et al.: Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2, 17043 (2017). https://doi.org/10.1038/nenergy.2017.43

    Article  CAS  Google Scholar 

  191. Vijselaar, W., Westerik, P., Veerbeek, J., et al.: Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes. Nat. Energy 3, 185–192 (2018). https://doi.org/10.1038/s41560-017-0068-x

    Article  CAS  Google Scholar 

  192. Verlage, E., Hu, S., Liu, R., et al.: A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015). https://doi.org/10.1039/C5EE01786F

    Article  CAS  Google Scholar 

  193. Young, J.L., Steiner, M.A., Döscher, H., et al.: Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 2, 17028 (2017). https://doi.org/10.1038/nenergy.2017.28

    Article  CAS  Google Scholar 

  194. Luo, J.S., Li, Z., Nishiwaki, S., et al.: Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1–x Se2 Photocathodes. Adv. Energy Mater. 5, 1501520 (2015). https://doi.org/10.1002/aenm.201501520

    Article  CAS  Google Scholar 

  195. Xiao, S., Hu, C., Lin, H., et al.: Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. J. Mater. Chem. A 5, 19091–19097 (2017). https://doi.org/10.1039/C7TA06309A

    Article  CAS  Google Scholar 

  196. Varadhan, P., Fu, H.C., Kao, Y.C., et al.: An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat. Commun. 10, 5282 (2019). https://doi.org/10.1038/s41467-019-12977-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Moon, C., Seger, B., Vesborg, P.C.K., et al.: Wireless photoelectrochemical water splitting using triple-junction solar cell protected by TiO2. Cell Rep. Phys. Sci. 1, 100261 (2020). https://doi.org/10.1016/j.xcrp.2020.100261

    Article  CAS  Google Scholar 

  198. Tang, S.T., Qiu, W.T., Xiao, S., et al.: Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells. Energy Environ. Sci. 13, 660–684 (2020). https://doi.org/10.1039/C9EE02986A

    Article  CAS  Google Scholar 

  199. Dias, P., Schreier, M., Tilley, S.D., et al.: Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting. Adv. Energy Mater. 5, 1501537 (2015). https://doi.org/10.1002/aenm.201501537

    Article  CAS  Google Scholar 

  200. Qiu, Y., Liu, W., Chen, W., et al.: Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci Adv 2, e1501764 (2016). https://doi.org/10.1126/sciadv.1501764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lee, W.J., Shinde, P.S., Go, G.H., et al.: Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. Int. J. Hydrog. Energy 36, 5262–5270 (2011). https://doi.org/10.1016/j.ijhydene.2011.02.013

    Article  CAS  Google Scholar 

  202. Tolod, K., Hernández, S., Russo, N.: Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges. Catalysts 7, 13 (2017). https://doi.org/10.3390/catal7010013

    Article  CAS  Google Scholar 

  203. Andrei, V., Reuillard, B., Reisner, E.: Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems. Nat. Mater. 19, 189–194 (2020). https://doi.org/10.1038/s41563-019-0501-6

    Article  CAS  PubMed  Google Scholar 

  204. Vilanova, A., Dias, P., Azevedo, J., et al.: Solar water splitting under natural concentrated sunlight using a 200 cm2 photoelectrochemical-photovoltaic device. J. Power Sources. 454, 227890 (2020). https://doi.org/10.1016/j.jpowsour.2020.227890

    Article  CAS  Google Scholar 

  205. Romero, M., Steinfeld, A.: Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5, 9234–9245 (2012). https://doi.org/10.1039/C2EE21275G

    Article  CAS  Google Scholar 

  206. Lu, Y.J., Zhu, L.Y., Agrafiotis, C., et al.: Solar fuels production: two-step thermochemical cycles with cerium-based oxides. Prog. Energy Combust. Sci. 75, 100785 (2019). https://doi.org/10.1016/j.pecs.2019.100785

    Article  Google Scholar 

  207. Abanades, S., Flamant, G.: Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol. Energy 80, 1611–1623 (2006). https://doi.org/10.1016/j.solener.2005.12.005

    Article  CAS  Google Scholar 

  208. Wang, Y.J., Liu, Q.B., Sun, J., et al.: A new solar receiver/reactor structure for hydrogen production. Energy Convers. Manag. 133, 118–126 (2017). https://doi.org/10.1016/j.enconman.2016.11.058

    Article  Google Scholar 

  209. Kainthla, R.C., Zelenay, B., Bockris, J.O.: Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J. Electrochem. Soc. 134, 841–845 (1987). https://doi.org/10.1149/1.2100583

    Article  CAS  Google Scholar 

  210. Huang, D.W., Wang, K., Li, L.T., et al.: 3.17% efficient Cu2ZnSnS4–BiVO4 integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. 14, 1480–1489 (2021). https://doi.org/10.1039/d0ee03892j

    Article  CAS  Google Scholar 

  211. May, M.M., Lewerenz, H.J., Lackner, D., et al.: Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015). https://doi.org/10.1038/ncomms9286

    Article  CAS  PubMed  Google Scholar 

  212. Reece, S.Y., Hamel, J.A., Sung, K., et al.: Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011). https://doi.org/10.1126/science.1209816

    Article  CAS  PubMed  Google Scholar 

  213. Fan, R.L., Cheng, S.B., Huang, G.P., et al.: Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni-Mo/Ni. J. Mater. Chem. A 7, 2200–2209 (2019). https://doi.org/10.1039/C8TA10165E

    Article  CAS  Google Scholar 

  214. Pihosh, Y., Turkevych, I., Mawatari, K., et al.: Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015). https://doi.org/10.1038/srep11141

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kim, J.H., Jang, J.W., Jo, Y.H., et al.: Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat. Commun. 7, 13380 (2016). https://doi.org/10.1038/ncomms13380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kim, M., Lee, B., Ju, H., et al.: Oxygen-vacancy-introduced BaSnO3δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 31, 1903316 (2019). https://doi.org/10.1002/adma.201903316

    Article  CAS  Google Scholar 

  217. Zhang, H.F., Chen, Y., Wang, H., et al.: Carbon encapsulation of organic-inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction. Adv. Energy Mater. 10, 2002105 (2020). https://doi.org/10.1002/aenm.202002105

    Article  CAS  Google Scholar 

  218. Beeman, J.W., Bullock, J., Wang, H., et al.: Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. Energy Environ. Sci. 12, 1068–1077 (2019). https://doi.org/10.1039/C8EE03547D

    Article  Google Scholar 

  219. Hao, Y., Jin, J., Jin, H.G.: Thermodynamic analysis of isothermal CO2 splitting and CO2–H2O co-splitting for solar fuel production. Appl. Therm. Eng. 166, 113600 (2020). https://doi.org/10.1016/j.applthermaleng.2019.04.010

    Article  CAS  Google Scholar 

  220. Brendelberger, S., Rosenstiel, A., Lopez-Roman, A., et al.: Performance analysis of operational strategies for monolithic receiver-reactor arrays in solar thermochemical hydrogen production plants. Int. J. Hydrog. Energy 45, 26104–26116 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.191

    Article  CAS  Google Scholar 

  221. Hathaway, B.J., Bala Chandran, R., Gladen, A.C., et al.: Demonstration of a solar reactor for carbon dioxide splitting via the isothermal ceria redox cycle and practical implications. Energy Fuels 30, 6654–6661 (2016). https://doi.org/10.1021/acs.energyfuels.6b01265

    Article  CAS  Google Scholar 

  222. Bhosale, R.R., Takalkar, G., Sutar, P., et al.: A decade of ceria based solar thermochemical H2O/CO2 splitting cycle. Int. J. Hydrog. Energy 44, 34–60 (2019). https://doi.org/10.1016/j.ijhydene.2018.04.080

    Article  CAS  Google Scholar 

  223. Ozin, G.A.: Throwing new light on the reduction of CO2. Adv. Mater. 27, 1957–1963 (2015). https://doi.org/10.1002/adma.201500116

    Article  CAS  PubMed  Google Scholar 

  224. Vieten, J., Bulfin, B., Huck, P., et al.: Materials design of perovskite solid solutions for thermochemical applications. Energy Environ. Sci. 12, 1369–1384 (2019). https://doi.org/10.1039/C9EE00085B

    Article  CAS  Google Scholar 

  225. Marxer, D., Furler, P., Takacs, M., et al.: Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ. Sci. 10, 1142–1149 (2017). https://doi.org/10.1039/c6ee03776c

    Article  CAS  Google Scholar 

  226. Furler, P., Scheffe, J., Gorbar, M., et al.: Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels 26, 7051–7059 (2012). https://doi.org/10.1021/ef3013757

    Article  CAS  Google Scholar 

  227. Zhang, D.K., Lv, K., Li, C.R., et al.: All-earth-abundant photothermal silicon platform for CO2 catalysis with nearly 100% sunlight harvesting ability. Sol. RRL 5, 2000387 (2021). https://doi.org/10.1002/solr.202000387

    Article  CAS  Google Scholar 

  228. Jiang, Q.Q., Gao, Y.F., Haribal, V.P., et al.: Mixed conductive composites for ‘Low-Temperature’ thermo-chemical CO2 splitting and syngas generation. J. Mater. Chem. A 8, 13173–13182 (2020). https://doi.org/10.1039/d0ta03232h

    Article  CAS  Google Scholar 

  229. Bhosale, R.R.: Application of chromium oxide-based redox reactions for hydrogen production via solar thermochemical splitting of water. Fuel 277, 118160 (2020). https://doi.org/10.1016/j.fuel.2020.118160

    Article  CAS  Google Scholar 

  230. Hong, H., Zhang, H., Han, T., et al.: Experimental analyses on feasibility of chemical-looping CoO/CoAl2O4 with additive for solar thermal fuel production. Energy Technol. 5, 1536–1545 (2017). https://doi.org/10.1002/ente.201600775

    Article  CAS  Google Scholar 

  231. Reñones, P., Alvarez-Galvan, M.C., Ruiz-Matas, L., et al.: Nickel ferrite supported on calcium-stabilized zirconia for solar hydrogen production by two-step thermochemical water splitting. Mater. Today Energy 6, 248–254 (2017). https://doi.org/10.1016/j.mtener.2017.10.007

    Article  Google Scholar 

  232. Takalkar, G., Bhosale, R.R.: Solar thermocatalytic conversion of CO2 using PrxSr(1–x)MnO3−δ perovskites. Fuel 254, 115624 (2019). https://doi.org/10.1016/j.fuel.2019.115624

    Article  CAS  Google Scholar 

  233. Furler, P., Scheffe, J., Marxer, D., et al.: Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities. Phys. Chem. Chem. Phys. 16, 10503–10511 (2014). https://doi.org/10.1039/C4CP01172D

    Article  CAS  PubMed  Google Scholar 

  234. Chueh, W.C., Falter, C., Abbott, M., et al.: High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330, 1797–1801 (2010). https://doi.org/10.1126/science.1197834

    Article  PubMed  Google Scholar 

  235. Li, X., Zhao, L.L., Yu, J.Y., et al.: Water splitting: from electrode to green energy system. Nano-Micro Lett. 12, 1–29 (2020). https://doi.org/10.1007/s40820-020-00469-3

    Article  CAS  Google Scholar 

  236. Creissen, C.E., Fontecave, M.: Solar-driven electrochemical CO2 reduction with heterogeneous catalysts. Adv. Energy Mater. 11(43), 2002652 (2020). https://doi.org/10.1002/aenm.202002652

    Article  CAS  Google Scholar 

  237. Yuan, H.F., Liu, F., Xue, G.B., et al.: Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device. Appl. Catal. B-Environ. 283, 119647 (2021). https://doi.org/10.1016/j.apcatb.2020.119647

    Article  CAS  Google Scholar 

  238. Kang, Y.Y., Chen, R.Z., Zhen, C., et al.: An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 65, 1163–1169 (2020). https://doi.org/10.1016/j.scib.2020.03.041

    Article  CAS  Google Scholar 

  239. Bowen, C.R., Taylor, J., LeBoulbar, E., et al.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014). https://doi.org/10.1039/c4ee01759e

    Article  Google Scholar 

  240. Belitz, R., Meisner, P., Coeler, M., et al.: Waste heat energy harvesting by use of BaTiO3 for pyroelectric hydrogen generation. Energy Harvest. Syst. 4, 107–113 (2017). https://doi.org/10.1515/ehs-2016-0009

    Article  Google Scholar 

  241. Zhang, S.C., Chen, D., Liu, Z.F., et al.: Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy. Appl. Catal. B-Environ. 284, 119686 (2021). https://doi.org/10.1016/j.apcatb.2020.119686

    Article  CAS  Google Scholar 

  242. Xu, X.L., Xiao, L.B., Jia, Y.M., et al.: Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold-hot alternation energy near room-temperature. Energy Environ. Sci. 11, 2198–2207 (2018). https://doi.org/10.1039/C8EE01016A

    Article  CAS  Google Scholar 

  243. You, H., Jia, Y., Wu, Z., et al.: Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nat. Commun. 9, 2889 (2018). https://doi.org/10.1038/s41467-018-05343-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhang, M.Y., Hu, Q.Y., Ma, K.W., et al.: Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 73, 104810 (2020). https://doi.org/10.1016/j.nanoen.2020.104810

    Article  CAS  Google Scholar 

  245. Kakekhani, A., Ismail-Beigi, S.: Ferroelectric oxide surface chemistry: water splitting via pyroelectricity. J. Mater. Chem. A 4, 5235–5246 (2016). https://doi.org/10.1039/c6ta00513f

    Article  CAS  Google Scholar 

  246. Xie, M.Y., Dunn, S., Boulbar, E.L., et al.: Pyroelectric energy harvesting for water splitting. Int. J. Hydrog. Energy 42, 23437–23445 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.086

    Article  CAS  Google Scholar 

  247. Zhang, Y., Kumar, S., Marken, F., et al.: Pyro-electrolytic water splitting for hydrogen generation. Nano Energy 58, 183–191 (2019). https://doi.org/10.1016/j.nanoen.2019.01.030

    Article  CAS  Google Scholar 

  248. Zhang, S.C., Zhang, B., Chen, D., et al.: Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system. Nano Energy 79, 105485 (2021). https://doi.org/10.1016/j.nanoen.2020.105485

    Article  CAS  Google Scholar 

  249. Chen, M., Gu, J.J., Sun, C., et al.: Light-driven overall water splitting enabled by a photo-dember effect realized on 3D plasmonic structures. ACS Nano 10, 6693–6701 (2016). https://doi.org/10.1021/acsnano.6b01999

    Article  CAS  PubMed  Google Scholar 

  250. Meng, F.L., Yilmaz, G., Ding, T.P., et al.: A hybrid solar absorber-electrocatalytic N-doped carbon/alloy/semiconductor electrode for localized photothermic electrocatalysis. Adv. Mater. 31, 1903605 (2019). https://doi.org/10.1002/adma.201903605

    Article  CAS  Google Scholar 

  251. Fang, J., Wu, H.D., Liu, T.X., et al.: Thermodynamic evaluation of a concentrated photochemical-photovoltaic-thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization. Appl. Energy 279, 115778 (2020). https://doi.org/10.1016/j.apenergy.2020.115778

    Article  CAS  Google Scholar 

  252. Liu, T.X., Liu, Q.B., Lei, J., et al.: Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation. Appl. Energy 225, 380–391 (2018). https://doi.org/10.1016/j.apenergy.2018.04.133

    Article  CAS  Google Scholar 

  253. Qu, W.J., Hong, H., Jin, H.G.: A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel. Appl. Energy 248, 162–173 (2019). https://doi.org/10.1016/j.apenergy.2019.04.115

    Article  CAS  Google Scholar 

  254. Zhang, H., Hong, H., Jiang, Q.Q., et al.: Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4. Appl. Energy 211, 259–268 (2018). https://doi.org/10.1016/j.apenergy.2017.11.053

    Article  CAS  Google Scholar 

  255. Zhu, L.L., Gao, M.M., Peh, C.K.N., et al.: Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5, 323–343 (2018). https://doi.org/10.1039/C7MH01064H

    Article  CAS  Google Scholar 

  256. Rodriguez, C.A., Modestino, M.A., Psaltis, D., et al.: Design and cost considerations for practical solar-hydrogen generators. Energy Environ. Sci. 7, 3828–3835 (2014). https://doi.org/10.1039/c4ee01453g

    Article  CAS  Google Scholar 

  257. Pinaud, B.A., Benck, J.D., Seitz, L.C., et al.: Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013). https://doi.org/10.1039/C3EE40831K

    Article  CAS  Google Scholar 

  258. Pérez-Fortes, M., Schöneberger, J.C., Boulamanti, A., et al.: Formic acid synthesis using CO2 as raw material: techno-economic and environmental evaluation and market potential. Int. J. Hydrog. Energy 41, 16444–16462 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.199

    Article  CAS  Google Scholar 

  259. Zhang, C.D., Gao, R.X., Jun, K.W., et al.: Direct conversion of carbon dioxide to liquid fuels and synthetic natural gas using renewable power power: Techno-economic analysis. J. CO2 Util. 34, 293–302 (2019). https://doi.org/10.1016/j.jcou.2019.07.005

    Article  CAS  Google Scholar 

  260. Jouny, M., Luc, W., Jiao, F.: General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018). https://doi.org/10.1021/acs.iecr.7b03514

    Article  CAS  Google Scholar 

  261. Pawar, A.U., Kim, C.W., Nguyen-Le, M.T., et al.: General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis. ACS Sustain. Chem. Eng. 7, 7431–7455 (2019). https://doi.org/10.1021/acssuschemeng.8b06303

    Article  CAS  Google Scholar 

  262. Tang, S.L., Xing, X.L., Yu, W., et al.: Synergizing photo-thermal H2 and photovoltaics into a concentrated sunlight use. iScience 23, 101012 (2020). https://doi.org/10.1016/j.isci.2020.101012

  263. De Luna, P., Hahn, C., Higgins, D., et al.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, 6438 (2019). https://doi.org/10.1126/science.aav3506

    Article  CAS  Google Scholar 

  264. Wang, Z.J., Song, H., Liu, H., et al.: Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. Int. Ed. 59, 8016–8035 (2020). https://doi.org/10.1002/anie.201907443

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (No. 51888103). We thank Yuting Yin, Mengmeng Song, Wenhao Jing, Chen Liao, Xue Ding, Hongwei Zhou, Guiwei He, Dan Lei, and Youhong Guo for helpful discussions about this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liejin Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Y. Liu, F. Wang, and Z. Jiao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, F., Jiao, Z. et al. Photochemical Systems for Solar-to-Fuel Production. Electrochem. Energy Rev. 5, 5 (2022). https://doi.org/10.1007/s41918-022-00132-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00132-y

Keywords

Navigation