Skip to main content

Advertisement

Log in

Effects of Crystallinity and Defects of Layered Carbon Materials on Potassium Storage: A Review and Prediction

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Layered carbon materials (LCMs) are composed of basic carbon layer units, such as graphite, soft carbon, hard carbon, and graphene. While they have been widely applied in the anode of potassium-ion batteries, the potassium storage mechanisms and performances of various LCMs are isolated and difficult to relate to each other. More importantly, there is a lack of a systematic understanding of the correlation between the basic microstructural unit (crystallinity and defects) and the potassium storage behavior. In this review, we explored the key structural factors affecting the potassium storage in LCMs, namely, the crystallinity and defects of carbon layers, and the key parameters (La, Lc, d002, ID/IG) that characterize the crystallinity and defects of different carbon materials were extracted from various databases and literature sources. A structure–property database of LCMs was thus built, and the effects of these key structural parameters on the potassium storage properties, including the capacity, the rate and the working voltage plateau, were systematically analyzed. Based on the structure–property database analysis and the guidance of thermodynamics and kinetics, a relationship between various LCMs and potassium storage properties was established. Finally, with the help of machine learning, the key structural parameters of layered carbon anodes were used for the first time to predict the potassium storage performance so that the large amount of research data in the database could more effectively guide the scientific research and engineering application of LCMs in the future.

Graphic Abstract

A research review on layered carbon materials for potassium ion batteries is presented. The key structure factors, i.e. crystallinity and defects, have an essential effect on potassium storage properties. The key structure parameters that characterize the crystallinity and defects of different carbon materials were discussed. Furthermore, the structure–property database was established and applied. This work made a very kind attempt for future exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2015, American Chemical Society; with permission from Ref. [38]. Copyright 2015, Elsevier B. V.; with permission from Ref. [40]. Copyright 2019, WILEY–VCH; with permission from Ref. [41]. Copyright 2015, American Chemical Society; and with permission from Ref. [44]. Copyright 2019, WILEY–VCH

Fig. 4

Copyright 2017, Royal Society of Chemistry; with permission from Ref. [55]. Copyright 2019, American Chemical Society; and with permission from Ref. [14]. Copyright 2019, WILEY–VCH

Fig. 5
Fig. 6
Fig. 7
Fig. 8

Copyright 2017, Royal Society of Chemistry; with permission from Ref. [78]. Copyright 2017, WILEY–VCH; with permission from Ref. [79]. Copyright 2018, Royal Society of Chemistry; with permission from Ref. [80]. Copyright 2019, Elsevier B.V.; with permission from Ref. [81]. Copyright 2018, Elsevier Ltd.; and with permission from Ref. [82]. Copyright 2019, WILEY–VCH

Fig. 9
Fig. 10
Fig. 11
Fig. 12

Reproduced with permission from Ref. [112], Copyright 2016, Royal Society of Chemistry. c, d Charge–discharge curve and the ex situ XRD test of expanded graphite. Reproduced with permission from Ref. [113], Copyright 2017, Elsevier B.V. e, f Charge–discharge curves of rGO and average maximum capacity of adsorbed ions at the defective graphene anode for different types of topological defects. Reproduced with permission from Ref. [114], Copyright 2020, WILEY–VCH

Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xue, L.G., Li, Y.T., Gao, H.C., et al.: Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 139, 2164–2167 (2017). https://doi.org/10.1021/jacs.6b12598

    Article  CAS  PubMed  Google Scholar 

  2. Xie, Y.H., Chen, Y., Liu, L., et al.: Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29, 1702268 (2017). https://doi.org/10.1002/adma.201702268

    Article  CAS  Google Scholar 

  3. Xu, Y., Zhang, C., Zhou, M., et al.: Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pramudita, J.C., Sehrawat, D., Goonetilleke, D., et al.: An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911 (2017). https://doi.org/10.1002/aenm.201602911

    Article  CAS  Google Scholar 

  5. Wu, X., Chen, Y.L., Xing, Z., et al.: Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9, 1900343 (2019). https://doi.org/10.1002/aenm.201900343

    Article  CAS  Google Scholar 

  6. Rajagopalan, R., Tang, Y.G., Ji, X.B., et al.: Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30, 1909486 (2020). https://doi.org/10.1002/adfm.201909486

    Article  CAS  Google Scholar 

  7. Zhang, J.D., Liu, T.T., Cheng, X., et al.: Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 60, 340–361 (2019). https://doi.org/10.1016/j.nanoen.2019.03.078

    Article  CAS  Google Scholar 

  8. Liu, L., Chen, Y., Xie, Y.H., et al.: Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28, 1801989 (2018). https://doi.org/10.1002/adfm.201801989

    Article  CAS  Google Scholar 

  9. Liu, J.H., Xu, Z.Q., Wu, M.Q., et al.: Capacity contribution induced by pseudo-capacitance adsorption mechanism of anode carbonaceous materials applied in potassium-ion battery. Front. Chem. 7, 640 (2019). https://doi.org/10.3389/fchem.2019.00640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, W.C., Liu, Y.J., Guo, Z.P.: Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, S.H., Kuang, Q., Fan, H.J.: Dual-carbon batteries: materials and mechanism. Small 16, 2002803 (2020). https://doi.org/10.1002/smll.202002803

    Article  CAS  Google Scholar 

  12. Zhang, L.P., Wang, W., Lu, S.F., et al.: Carbon anode materials: a detailed comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 11, 2003640 (2021). https://doi.org/10.1002/aenm.202003640

    Article  CAS  Google Scholar 

  13. Jian, Z.L., Luo, W., Ji, X.L.: Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Y., Lu, Y.X., Xu, Y.S., et al.: Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 32, 2000505 (2020). https://doi.org/10.1002/adma.202000505

    Article  CAS  Google Scholar 

  15. Jian, Z.L., Xing, Z.Y., Bommier, C., et al.: Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6, 1501874 (2016). https://doi.org/10.1002/aenm.201501874

    Article  CAS  Google Scholar 

  16. Cao, B., Zhang, Q., Liu, H., et al.: Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8, 1801149 (2018). https://doi.org/10.1002/aenm.201801149

    Article  CAS  Google Scholar 

  17. Throckmorton, J., Palmese, G.: Direct preparation of few layer graphene epoxy nanocomposites from untreated flake graphite. ACS Appl. Mater. Interfaces 7, 14870–14877 (2015). https://doi.org/10.1021/acsami.5b03465

    Article  CAS  PubMed  Google Scholar 

  18. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233

    Article  CAS  PubMed  Google Scholar 

  19. Singh, V., Joung, D., Zhai, L., et al.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  20. Dou, X.W., Hasa, I., Saurel, D., et al.: Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019). https://doi.org/10.1016/j.mattod.2018.12.040

    Article  CAS  Google Scholar 

  21. Wen, Y., He, K., Zhu, Y., et al.: Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014). https://doi.org/10.1038/ncomms5033

    Article  CAS  PubMed  Google Scholar 

  22. Dreyer, D.R., Park, S., Bielawski, C.W., et al.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). https://doi.org/10.1039/b917103g

    Article  CAS  PubMed  Google Scholar 

  23. Saurel, D., Orayech, B., Xiao, B.W., et al.: From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8, 1703268 (2018). https://doi.org/10.1002/aenm.201703268

    Article  CAS  Google Scholar 

  24. Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015). https://doi.org/10.1038/nmat4170

    Article  CAS  PubMed  Google Scholar 

  25. Kercher, A.K., Nagle, D.C.: Microstructural evolution during charcoal carbonization by X-ray diffraction analysis. Carbon 41, 15–27 (2003). https://doi.org/10.1016/S0008-6223(02)00261-0

    Article  CAS  Google Scholar 

  26. Fujimoto, H.: Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon 41, 1585–1592 (2003). https://doi.org/10.1016/S0008-6223(03)00116-7

    Article  CAS  Google Scholar 

  27. Tai, F.C., Wei, C., Chang, S.H., et al.: Raman and X-ray diffraction analysis on unburned carbon powder refined from fly ash. J. Raman Spectrosc. 41, 933–937 (2010). https://doi.org/10.1002/jrs.2532

    Article  CAS  Google Scholar 

  28. Dopita, M., Rudolph, M., Salomon, A., et al.: Simulations of X-ray scattering on two-dimensional, graphitic and turbostratic carbon structures. Adv. Eng. Mater. 15, 1280–1291 (2013). https://doi.org/10.1002/adem.201300157

    Article  CAS  Google Scholar 

  29. Kubota, K., Shimadzu, S., Yabuuchi, N., et al.: Structural analysis of sucrose-derived hard Carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 32, 2961–2977 (2020). https://doi.org/10.1021/acs.chemmater.9b05235

    Article  CAS  Google Scholar 

  30. Jin, J., Yu, B.J., Shi, Z.Q., et al.: Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J. Power Sources 272, 800–807 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.119

    Article  CAS  Google Scholar 

  31. Wu, J.B., Lin, M.L., Cong, X., et al.: Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018). https://doi.org/10.1039/c6cs00915h

    Article  CAS  PubMed  Google Scholar 

  32. Ferrari, A.C., Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46

    Article  CAS  PubMed  Google Scholar 

  33. Wang, X., Huang, S.C., Hu, S., et al.: Fundamental understanding and applications of plasmon-enhanced raman spectroscopy. Nat. Rev. Phys. 2, 253–271 (2020). https://doi.org/10.1038/s42254-020-0171-y

    Article  Google Scholar 

  34. Badenhorst, H.: Microstructure of natural graphite flakes revealed by oxidation: limitations of XRD and raman techniques for crystallinity estimates. Carbon 66, 674–690 (2014). https://doi.org/10.1016/j.carbon.2013.09.065

    Article  CAS  Google Scholar 

  35. Kim, D.W., Kil, H.S., Kim, J., et al.: Highly graphitized carbon from non-graphitizable raw material and its formation mechanism based on domain theory. Carbon 121, 301–308 (2017). https://doi.org/10.1016/j.carbon.2017.05.086

    Article  CAS  Google Scholar 

  36. Xing, T., Li, L.H., Hou, L.T., et al.: Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon 57, 515–519 (2013). https://doi.org/10.1016/j.carbon.2013.02.029

    Article  CAS  Google Scholar 

  37. Jara, A.D., Kim, J.Y.: Chemical purification processes of the natural crystalline flake graphite for Li-ion Battery anodes. Mater. Today Commun. 25, 101437 (2020). https://doi.org/10.1016/j.mtcomm.2020.101437

    Article  CAS  Google Scholar 

  38. Komaba, S., Hasegawa, T., Dahbi, M., et al.: Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002

    Article  CAS  Google Scholar 

  39. Zhao, J., Zou, X.X., Zhu, Y.J., et al.: Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26, 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248

    Article  CAS  Google Scholar 

  40. Fan, L., Ma, R.F., Zhang, Q.F., et al.: Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem.-Int. Edit. 131, 10610–10615 (2019). https://doi.org/10.1002/ange.201904258

    Article  Google Scholar 

  41. Luo, W., Wan, J.Y., Ozdemir, B., et al.: Potassium ion batteries with graphitic materials. Nano Lett. 15, 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667

    Article  CAS  PubMed  Google Scholar 

  42. Xu, Z.M., Lv, X., Chen, J.G., et al.: Dispersion-corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials. Carbon 107, 885–894 (2016). https://doi.org/10.1016/j.carbon.2016.06.101

    Article  CAS  Google Scholar 

  43. Pramudita, J.C., Peterson, V.K., Kimpton, J.A., et al.: Potassium-ion intercalation in graphite within a potassium-ion battery examined using in situ X-ray diffraction. Powder Diffr. 32, S43–S48 (2017). https://doi.org/10.1017/S0885715617000902

  44. Liu, J., Yin, T., Tian, B., et al.: Unraveling the potassium storage mechanism in graphite foam. Adv. Energy Mater. 9, 1900579 (2019). https://doi.org/10.1002/aenm.201900579

  45. Lian, R.Q., Feng, J.R., Wang, D.S., et al.: Nucleation and conversion transformations of the transition metal polysulfide VS4 in lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 22307–22313 (2019). https://doi.org/10.1021/acsami.9b03975

    Article  CAS  PubMed  Google Scholar 

  46. Lian, R.Q., Wang, D.S., Yang, Q.F., et al.: Potassium ion storage properties of alpha-graphdiyne investigated by first-principles calculations. Electrochim. Acta 326, 134955 (2019). https://doi.org/10.1016/j.electacta.2019.134955

    Article  CAS  Google Scholar 

  47. Dion, M., Rydberg, H., Schröder, E., et al.: Erratum: van der waals density functional for general geometries Phys. Rev. Lett. 95, 109902 (2005)

    Article  Google Scholar 

  48. Meng, Y.S., Arroyo-de Dompablo, M.E.: First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589 (2009). https://doi.org/10.1039/b901825e

    Article  CAS  Google Scholar 

  49. Li, D.P., Zhu, M., Chen, L.N., et al.: Sandwich-like FeCl3@C as high-performance anode materials for potassium-ion batteries. Adv. Mater. Interfaces 5, 1800606 (2018). https://doi.org/10.1002/admi.201800606

    Article  CAS  Google Scholar 

  50. Tai, Z.X., Zhang, Q., Liu, Y.J., et al.: Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123, 54–61 (2017). https://doi.org/10.1016/j.carbon.2017.07.041

    Article  CAS  Google Scholar 

  51. Lei, Y., Han, D., Dong, J.H., et al.: Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries. Energy Storage Mater. 24, 319–328 (2020). https://doi.org/10.1016/j.ensm.2019.07.043

    Article  Google Scholar 

  52. Cohn, A.P., Muralidharan, N., Carter, R., et al.: Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. J. Mater. Chem. A 4, 14954–14959 (2016). https://doi.org/10.1039/c6ta06797b

    Article  CAS  Google Scholar 

  53. Li, L., Liu, L.J., Hu, Z., et al.: Understanding high-rate K+-solvent Co-intercalation in natural graphite for potassium-ion batteries. Angew. Chem.-Int. Edit. 59, 12917–12924 (2020). https://doi.org/10.1002/anie.202001966

    Article  CAS  Google Scholar 

  54. Wang, X.P., Han, K., Qin, D.D., et al.: Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale 9, 18216–18222 (2017). https://doi.org/10.1039/c7nr06645g

    Article  CAS  PubMed  Google Scholar 

  55. Li, Z.F., Shin, W., Chen, Y.C., et al.: Low temperature pyrolyzed soft carbon as high capacity K-ion anode. ACS Appl. Energy Mater. 2, 4053–4058 (2019). https://doi.org/10.1021/acsaem.9b00125

    Article  CAS  Google Scholar 

  56. Sun, Q., Li, D.P., Cheng, J., et al.: Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon 155, 601–610 (2019). https://doi.org/10.1016/j.carbon.2019.08.059

    Article  CAS  Google Scholar 

  57. Xiao, N., Zhang, X.Y., Liu, C., et al.: Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 147, 574–581 (2019). https://doi.org/10.1016/j.carbon.2019.03.020

    Article  CAS  Google Scholar 

  58. Liu, C., Xiao, N., Li, H.J., et al.: Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem. Eng. J. 382, 121759 (2020). https://doi.org/10.1016/j.cej.2019.05.120

    Article  CAS  Google Scholar 

  59. Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014). https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  60. Augustyn, V., Come, J., Lowe, M.A., et al.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601

    Article  CAS  PubMed  Google Scholar 

  61. Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  CAS  PubMed  Google Scholar 

  62. Wang, J., Polleux, J., Lim, J., et al.: Pseudocapacitive contributions to electrochemical energy storage in TiO2(anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  63. Fleischmann, S., Mitchell, J.B., Wang, R.C., et al.: Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170

    Article  CAS  PubMed  Google Scholar 

  64. Li, J.L., Zhuang, N., Xie, J.P., et al.: Carboxymethyl cellulose binder greatly stabilizes porous hollow carbon submicrospheres in capacitive K-ion storage. ACS Appl. Mater. Interfaces 11, 15581–15590 (2019). https://doi.org/10.1021/acsami.9b02060

    Article  CAS  PubMed  Google Scholar 

  65. Cui, R.C., Xu, B., Dong, H.J., et al.: N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv. Sci. 7, 1902547 (2020). https://doi.org/10.1002/advs.201902547

    Article  CAS  Google Scholar 

  66. Gauthier, T.D.: Detecting trends using Spearman’s rank correlation coefficient. Environ. Forensics 2, 359–362 (2001). https://doi.org/10.1006/enfo.2001.0061

    Article  CAS  Google Scholar 

  67. Zar, J.H.: Significance testing of the spearman rank correlation coefficient. J. Am. Stat. Assoc. 67, 578–580 (1972). https://doi.org/10.1080/01621459.1972.10481251

    Article  Google Scholar 

  68. Liu, Q., Li, C., Wanga, V., et al.: Covariate-adjusted Spearman’s rank correlation with probability-scale residuals. Biometrics 74, 595–605 (2018). https://doi.org/10.1111/biom.12812

    Article  PubMed  Google Scholar 

  69. Sangavi, S., Santhanamoorthi, N., Vijayakumar, S.: Density functional theory study on the adsorption of alkali metal ions with pristine and defected graphene sheet. Mol. Phys. 117, 462–473 (2019). https://doi.org/10.1080/00268976.2018.1523480

    Article  CAS  Google Scholar 

  70. Murugesan, V., Hu, J.: Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. ECS Trans. 53, 23–32 (2013). https://doi.org/10.1149/05310.0023ecst

    Article  CAS  Google Scholar 

  71. Zhang, Y.Q., Tao, L., Xie, C., et al.: Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923

    Article  CAS  Google Scholar 

  72. Balogun, M.S., Yang, H., Luo, Y., et al.: Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core–double-shell electrodes. Energy Environ. Sci. 11, 1859–1869 (2018). https://doi.org/10.1039/c8ee00522b

    Article  CAS  Google Scholar 

  73. Sun, N., Guan, Z., Liu, Y.W., et al.: Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9, 1901351 (2019). https://doi.org/10.1002/aenm.201901351

    Article  CAS  Google Scholar 

  74. Sun, J., Lee, H.W., Pasta, M., et al.: A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194

    Article  CAS  PubMed  Google Scholar 

  75. Sun, J., Zheng, G.Y., Lee, H.W., et al.: Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014). https://doi.org/10.1021/nl501617j

    Article  CAS  PubMed  Google Scholar 

  76. Wang, A.P., Kadam, S., Li, H., et al.: Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput. Mater. 4, 15 (2018). https://doi.org/10.1038/s41524-018-0064-0

    Article  CAS  Google Scholar 

  77. Zhao, X.X., Xiong, P.X., Meng, J.F., et al.: High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J. Mater. Chem. A 5, 19237–19244 (2017). https://doi.org/10.1039/c7ta04264g

    Article  CAS  Google Scholar 

  78. Wang, W., Zhou, J.H., Wang, Z.P., et al.: Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8, 1701648 (2018). https://doi.org/10.1002/aenm.201701648

    Article  CAS  Google Scholar 

  79. Wang, G., Xiong, X.H., Xie, D., et al.: Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J. Mater. Chem. A 6, 24317–24323 (2018). https://doi.org/10.1039/c8ta09751h

    Article  CAS  Google Scholar 

  80. Chen, C., Wu, M.Q., Wang, Y.S., et al.: Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J. Power Sources 444, 227310 (2019). https://doi.org/10.1016/j.jpowsour.2019.227310

    Article  CAS  Google Scholar 

  81. Lin, X.Y., Huang, J.Q., Zhang, B.: Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon 143, 138–146 (2019). https://doi.org/10.1016/j.carbon.2018.11.001

    Article  CAS  Google Scholar 

  82. Qian, Y., Jiang, S., Li, Y., et al.: Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem.-Int. Edit. 58, 18108–18115 (2019). https://doi.org/10.1002/anie.201912287

    Article  CAS  Google Scholar 

  83. Alvin, S., Cahyadi, H.S., Hwang, J., et al.: Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10, 2000283 (2020). https://doi.org/10.1002/aenm.202000283

    Article  CAS  Google Scholar 

  84. Tao, L., Liu, L., Chang, R.F., et al.: Structural and interface design of hierarchical porous carbon derived from soybeans as anode materials for potassium-ion batteries. J. Power Sources 463, 228172 (2020). https://doi.org/10.1016/j.jpowsour.2020.228172

    Article  CAS  Google Scholar 

  85. Yang, M.M., Dai, J.Y., He, M.Y., et al.: Biomass-derived carbon from Ganoderma lucidum spore as a promising anode material for rapid potassium-ion storage. J. Colloid Interface Sci. 567, 256–263 (2020). https://doi.org/10.1016/j.jcis.2020.02.023

    Article  CAS  PubMed  Google Scholar 

  86. Wang, L.F., Li, S.J., Li, J.L., et al.: Nitrogen/sulphur co-doped porous carbon derived from wasted wet wipes as promising anode material for high performance capacitive potassium-ion storage. Mater. Today Energy 13, 195–204 (2019). https://doi.org/10.1016/j.mtener.2019.05.010

    Article  Google Scholar 

  87. Ma, H.L., Qi, X.J., Peng, D.Q., et al.: Novel fabrication of N/S co-doped hierarchically porous carbon for potassium-ion batteries. ChemistrySelect 4, 11488–11495 (2019). https://doi.org/10.1002/slct.201903244

    Article  CAS  Google Scholar 

  88. Sun, N., Zhu, Q.Z., Anasori, B., et al.: MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 29, 1906282 (2019). https://doi.org/10.1002/adfm.201906282

    Article  CAS  Google Scholar 

  89. Wang, Q., Gao, C.L., Zhang, W.X., et al.: Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. Electrochim. Acta 324, 134902 (2019). https://doi.org/10.1016/j.electacta.2019.134902

    Article  CAS  Google Scholar 

  90. Zhang, W.C., Yan, Y.J., Xie, Z.H., et al.: Engineering of nanonetwork-structured carbon to enable high-performance potassium-ion storage. J. Colloid Interface Sci. 561, 195–202 (2020). https://doi.org/10.1016/j.jcis.2019.11.042

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, Y., Yang, L., Tian, Y., et al.: Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 229, 303–309 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.021

    Article  CAS  Google Scholar 

  92. Gao, C.L., Wang, Q., Luo, S.H., et al.: High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sources 415, 165–171 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.073

    Article  CAS  Google Scholar 

  93. Guo, R.T., Liu, X., Wen, B., et al.: Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficiency. Nano - Micro Lett. 12, 1–12 (2020). https://doi.org/10.1007/s40820-020-00481-7

    Article  CAS  Google Scholar 

  94. Wang, B., Yuan, F., Wang, W.A., et al.: A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage. J. Mater. Chem. A 7, 25845–25852 (2019). https://doi.org/10.1039/c9ta09598e

    Article  CAS  Google Scholar 

  95. Cao, W., Zhang, E.J., Wang, J., et al.: Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim. Acta 293, 364–370 (2019). https://doi.org/10.1016/j.electacta.2018.10.036

    Article  CAS  Google Scholar 

  96. Wu, X., Lam, C.W.K., Wu, N.Q., et al.: Multiple templates fabrication of hierarchical porous carbon for enhanced rate capability in potassium-ion batteries. Mater. Today Energy 11, 182–191 (2019). https://doi.org/10.1016/j.mtener.2018.11.009

    Article  CAS  Google Scholar 

  97. Li, H., Cheng, Z., Zhang, Q., et al.: Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 18, 7407–7413 (2018). https://doi.org/10.1021/acs.nanolett.8b03845

    Article  CAS  PubMed  Google Scholar 

  98. Wu, Z.R., Wang, L.P., Huang, J., et al.: Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim. Acta 306, 446–453 (2019). https://doi.org/10.1016/j.electacta.2019.03.165

    Article  CAS  Google Scholar 

  99. He, X.D., Liao, J.Y., Tang, Z.F., et al.: Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries. J. Power Sources 396, 533–541 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.073

    Article  CAS  Google Scholar 

  100. Tao, X.S., Sun, Y.G., Liu, Y., et al.: Facile synthesis of hollow carbon nanospheres and their potential as stable anode materials in potassium-ion batteries. ACS Appl. Mater. Interfaces 12, 13182–13188 (2020). https://doi.org/10.1021/acsami.9b22736

    Article  CAS  PubMed  Google Scholar 

  101. Alvin, S., Chandra, C., Kim, J.: Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries. Chem. Eng. J. 391, 123576 (2020). https://doi.org/10.1016/j.cej.2019.123576

    Article  CAS  Google Scholar 

  102. Bin, D.S., Lin, X.J., Sun, Y.G., et al.: Engineering hollow carbon architecture for high-performance K-ion battery anode. J. Am. Chem. Soc. 140, 7127–7134 (2018). https://doi.org/10.1021/jacs.8b02178

    Article  CAS  PubMed  Google Scholar 

  103. Liu, Z.M., Wang, J., Jia, X.X., et al.: Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries. ACS Nano 13, 10631–10642 (2019). https://doi.org/10.1021/acsnano.9b04893

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, W.L., Ming, J., Zhao, W.L., et al.: Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29, 1903641 (2019). https://doi.org/10.1002/adfm.201903641

    Article  CAS  Google Scholar 

  105. Huang, H.J., Xu, R., Feng, Y.Z., et al.: Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32, 1904320 (2020). https://doi.org/10.1002/adma.201904320

    Article  CAS  Google Scholar 

  106. Mahmood, A., Li, S., Ali, Z., et al.: Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 31, 1805430 (2019). https://doi.org/10.1002/adma.201805430

    Article  CAS  Google Scholar 

  107. Olsson, E., Chai, G.L., Dove, M., et al.: Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. Nanoscale 11, 5274–5284 (2019). https://doi.org/10.1039/c8nr10383f

    Article  CAS  PubMed  Google Scholar 

  108. Gao, Y., Zhang, J., Li, N., et al.: Design principles of pseudocapacitive carbon anode materials for ultrafast sodium and potassium-ion batteries. J. Mater. Chem. A 8, 7756–7764 (2020). https://doi.org/10.1039/d0ta01821j

    Article  CAS  Google Scholar 

  109. Fan, L., Chen, S.H., Ma, R.F., et al.: Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 14, 1801806 (2018). https://doi.org/10.1002/smll.201801806

    Article  CAS  Google Scholar 

  110. An, S.J., Li, J.L., Daniel, C., et al.: The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008

    Article  CAS  Google Scholar 

  111. Verma, P., Maire, P., Novák, P.: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010). https://doi.org/10.1016/j.electacta.2010.05.072

    Article  CAS  Google Scholar 

  112. Share, K., Cohn, A.P., Carter, R.E., et al.: Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Nanoscale 8, 16435–16439 (2016). https://doi.org/10.1039/c6nr04084e

    Article  CAS  PubMed  Google Scholar 

  113. An, Y.L., Fei, H.F., Zeng, G.F., et al.: Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sources 378, 66–72 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.033

    Article  CAS  Google Scholar 

  114. Lee, B., Kim, M., Kim, S., et al.: High capacity adsorption-dominated potassium and sodium ion storage in activated crumpled graphene. Adv. Energy Mater. 10, 1903280 (2020). https://doi.org/10.1002/aenm.201903280

    Article  CAS  Google Scholar 

  115. Liu, L.Y., Lin, Z.F., Chane-Ching, J.Y., et al.: 3D rGO aerogel with superior electrochemical performance for K-ion battery. Energy Storage Mater. 19, 306–313 (2019). https://doi.org/10.1016/j.ensm.2019.03.013

    Article  Google Scholar 

  116. Zhang, Q.F., Cheng, X.L., Wang, C.X., et al.: Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries. Energy Environ. Sci. 14, 965–974 (2021). https://doi.org/10.1039/d0ee03203d

    Article  CAS  Google Scholar 

  117. Jian, Z.L., Hwang, S., Li, Z.F., et al.: Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 27, 1700324 (2017). https://doi.org/10.1002/adfm.201700324

    Article  CAS  Google Scholar 

  118. Li, J.L., Qin, W., Xie, J.P., et al.: Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075

    Article  CAS  Google Scholar 

  119. Liang, K.L., Li, M.F., Hao, Y.K., et al.: Reduced graphene oxide with 3D interconnected hollow channel architecture as high-performance anode for Li/Na/K-ion storage. Chem. Eng. J. 394, 124956 (2020). https://doi.org/10.1016/j.cej.2020.124956

    Article  CAS  Google Scholar 

  120. Sang, Z.Y., Su, D., Wang, J.S., et al.: Bi-continuous nanoporous carbon sphere derived from SiOC as high-performance anodes for PIBs. Chem. Eng. J. 381, 122677 (2020). https://doi.org/10.1016/j.cej.2019.122677

    Article  CAS  Google Scholar 

  121. Ma, S., Liu, Z.P.: Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future. ACS Catal. 10, 13213–13226 (2020). https://doi.org/10.1021/acscatal.0c03472

    Article  CAS  Google Scholar 

  122. Xu, R.Z., Zou, X.L., Liu, B.L., et al.: Computational design and property predictions for two-dimensional nanostructures. Mater. Today 21, 391–418 (2018). https://doi.org/10.1016/j.mattod.2018.03.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxu Liu, Hai Guo or Zexiang Shen.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Supplementary file2 (DOCX 315 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ji, T., Guo, H. et al. Effects of Crystallinity and Defects of Layered Carbon Materials on Potassium Storage: A Review and Prediction. Electrochem. Energy Rev. 5, 401–433 (2022). https://doi.org/10.1007/s41918-021-00114-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00114-6

Keywords

Navigation