Skip to main content

Advertisement

Log in

Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Metal anodes (e.g., lithium, sodium and zinc metal anodes) based on a unique plating/stripping mechanism have been well recognized as the most promising anodes for next-generation high-energy metal batteries owing to their superior theoretical specific capacities and low redox potentials. However, realizing full utilization and the theoretical capacity of metal anodes remains challenging because of their high reactivity, poor reversibility, and nonplanar metal evolution patterns, which lead to irreversible loss of active metals and the electrolyte. To minimize the above issues, excess metal sources and flooded electrolytes are generally used for laboratory-based studies. Despite the superior cycling performance achieved for these cells, the metal-anode-excess design deviates from practical applications due to the low anode utilization, highly inflated coulombic efficiency, and undesirable volumetric capacity. In contrast, anode-free configurations can overcome these drawbacks while reducing fabrication costs and improving cell safety. In this review, the significance of anode-free configurations is elaborated, and different types of anode-free cells are introduced, including reported designs and proposed feasible yet unexplored concepts. The optimization strategies for anode-free lithium, sodium, zinc, and aluminum metal batteries are summarized. Most importantly, the remaining challenges for extending the cycle life of anode-free cells are discussed, and the requirements for anode-free cells to reach practical applications are highlighted. This comprehensive review is expected to draw more attention to anode-free configurations and bring new inspiration to the design of high-energy metal batteries.

Graphic Abstract

Anode-free metal batteries can deliver higher energy densities than traditional anode-excess metal batteries and metal-ion batteries. Yet the cycle life of anode-free cells is limited by the non-planar growth and low coulombic efficiency of the metal anodes. In this review, we not only systematically elaborate the working/failure mechanisms and achieved progress for the reported anode-free Li/Na/Zn/Al battery systems, but also propose a series of conceptually-feasible yet unexplored anode-free systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu, W., Wang, J.L., Ding, F., et al.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k

    Article  CAS  Google Scholar 

  2. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  PubMed  Google Scholar 

  3. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004). https://doi.org/10.1021/cr020731c

    Article  CAS  PubMed  Google Scholar 

  4. Winter, M., Barnett, B., Xu, K.: Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018). https://doi.org/10.1021/acs.chemrev.8b00422

    Article  CAS  PubMed  Google Scholar 

  5. Lin, D.C., Liu, Y.Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  PubMed  Google Scholar 

  6. Zhamu, A., Chen, G.R., Liu, C.G., et al.: Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701–5707 (2012). https://doi.org/10.1039/c2ee02911a

    Article  CAS  Google Scholar 

  7. Guo, Y.P., Li, H.Q., Zhai, T.Y.: Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017). https://doi.org/10.1002/adma.201700007

    Article  CAS  Google Scholar 

  8. Liu, J., Bao, Z.N., Cui, Y., et al.: Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x

    Article  CAS  Google Scholar 

  9. Kim, M.S., Ryu, J.H., et al.: Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018). https://doi.org/10.1038/s41560-018-0237-6

    Article  CAS  Google Scholar 

  10. Louli, A.J., Genovese, M., Weber, R., et al.: Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291–A1299 (2019). https://doi.org/10.1149/2.0091908jes

    Article  CAS  Google Scholar 

  11. Genovese, M., Louli, A.J., Weber, R., et al.: Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. J. Electrochem. Soc. 165, A3321–A3325 (2018). https://doi.org/10.1149/2.0641814jes

    Article  CAS  Google Scholar 

  12. Xiao, J., Li, Q.Y., Bi, Y.J., et al.: Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020). https://doi.org/10.1038/s41560-020-0648-z

    Article  CAS  Google Scholar 

  13. Nanda, S., Gupta, A., Manthiram, A.: A lithium-sulfur cell based on reversible lithium deposition from a Li2S cathode host onto a hostless-anode substrate. Adv. Energy Mater. 8, 1801556 (2018). https://doi.org/10.1002/aenm.201801556

    Article  CAS  Google Scholar 

  14. Brown, Z.L., Jurng, S., Lucht, B.L.: Investigation of the lithium solid electrolyte interphase in vinylene carbonate electrolytes using Cu||LiFePO4 cells. J. Electrochem. Soc. 164, A2186–A2189 (2017). https://doi.org/10.1149/2.0021712jes

    Article  CAS  Google Scholar 

  15. Qian, J.F., Adams, B.D., Zheng, J.M., et al.: Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016). https://doi.org/10.1002/adfm.201602353

    Article  CAS  Google Scholar 

  16. Zhang, S.S., Fan, X.L., Wang, C.S.: A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochim. Acta 258, 1201–1207 (2017). https://doi.org/10.1016/j.electacta.2017.11.175

    Article  CAS  Google Scholar 

  17. Qian, J.F., Henderson, W.A., Xu, W., et al.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 1–9 (2015). https://doi.org/10.1038/ncomms7362

    Article  CAS  Google Scholar 

  18. Pei, A., Zheng, G.Y., Shi, F.F., et al.: Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755

    Article  CAS  PubMed  Google Scholar 

  19. Nanda, S., Gupta, A., Manthiram, A.: Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11, 2000804 (2021). https://doi.org/10.1002/aenm.202000804

    Article  CAS  Google Scholar 

  20. Zou, P.C., Wang, Y., Chiang, S.W., et al.: Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 9, 1–9 (2018). https://doi.org/10.1038/s41467-018-02888-8

    Article  CAS  Google Scholar 

  21. Niu, C.J., Pan, H.L., Xu, W., et al.: Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9

    Article  CAS  PubMed  Google Scholar 

  22. Zou, P.C., Chiang, S.W., Li, J., et al.: Ni@Li2O co-axial nanowire based reticular anode: tuning electric field distribution for homogeneous lithium deposition. Energy Storage Mater. 18, 155–164 (2019). https://doi.org/10.1016/j.ensm.2018.09.020

    Article  Google Scholar 

  23. Li, J., Zou, P.C., Chiang, S.W., et al.: A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Mater. 24, 700–706 (2020). https://doi.org/10.1016/j.ensm.2019.06.019

    Article  Google Scholar 

  24. Chen, H., Pei, A., Lin, D.C., et al.: Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater. 9, 1900858 (2019). https://doi.org/10.1002/aenm.201900858

    Article  CAS  Google Scholar 

  25. Yan, C., Cheng, X.B., Tian, Y., et al.: Lithium metal anodes: Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1870181 (2018). https://doi.org/10.1002/adma.201870181

    Article  Google Scholar 

  26. Lang, J.L., Long, Y.Z., Qu, J.L., et al.: One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater. 16, 85–90 (2019). https://doi.org/10.1016/j.ensm.2018.04.024

    Article  Google Scholar 

  27. Cha, E., Patel, M.D., Park, J., et al.: 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 13, 337–344 (2018). https://doi.org/10.1038/s41565-018-0061-y

    Article  CAS  PubMed  Google Scholar 

  28. Liu, W., Guo, R., Zhan, B.X., et al.: Artificial solid electrolyte interphase layer for lithium metal anode in high-energy lithium secondary pouch cells. ACS Appl. Energy Mater. 1, 1674–1679 (2018). https://doi.org/10.1021/acsaem.8b00132

    Article  CAS  Google Scholar 

  29. Li, N.W., Shi, Y., Yin, Y.X., et al.: A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1422 (2018). https://doi.org/10.1002/anie.201713193

    Article  CAS  Google Scholar 

  30. Jiao, S.H., Ren, X.D., Cao, R.G., et al.: Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8

    Article  CAS  Google Scholar 

  31. Fan, X.L., Chen, L., Borodin, O., et al.: Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2

    Article  CAS  PubMed  Google Scholar 

  32. Dong, T.T., Zhang, J.J., Xu, G.J., et al.: A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203 (2018). https://doi.org/10.1039/c7ee03365f

    Article  CAS  Google Scholar 

  33. Zheng, J.M., Engelhard, M.H., Mei, D.H., et al.: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 1–8 (2017). https://doi.org/10.1038/nenergy.2017.12

    Article  CAS  Google Scholar 

  34. Han, X.G., Gong, Y.H., Fu, K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821

    Article  CAS  PubMed  Google Scholar 

  35. Basile, A., Bhatt, A.I., O’Mullane, A.P.: Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, 11794 (2016). https://doi.org/10.1038/ncomms11794

    Article  CAS  Google Scholar 

  36. Xie, Z.K., Wu, Z.J., An, X.W., et al.: Anode-free rechargeable lithium metal batteries: progress and prospects. Energy Storage Mater. 32, 386–401 (2020). https://doi.org/10.1016/j.ensm.2020.07.004

    Article  Google Scholar 

  37. Tian, Y., An, Y.L., Wei, C.L., et al.: Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 78, 105344 (2020). https://doi.org/10.1016/j.nanoen.2020.105344

    Article  CAS  Google Scholar 

  38. Neudecker, B.J., Dudney, N.J., Bates, J.B.: “lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517 (2000). https://doi.org/10.1149/1.1393226

    Article  CAS  Google Scholar 

  39. Beyene, T.T., Bezabh, H.K., Weret, M.A., et al.: Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries. J. Electrochem. Soc. 166, A1501–A1509 (2019). https://doi.org/10.1149/2.0731908jes

    Article  CAS  Google Scholar 

  40. Hagos, T., Thirumalraj, B., Huang, C.J., et al.: Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries. ACS Appl. Mater. Interfaces 11, 9955–9963 (2019). https://doi.org/10.1021/acsami.8b21052

    Article  CAS  PubMed  Google Scholar 

  41. Kautz, D.J., Tao, L., Mu, L.Q., et al.: Understanding the critical chemistry to inhibit lithium consumption in lean lithium metal composite anodes. J. Mater. Chem. A 6, 16003–16011 (2018). https://doi.org/10.1039/c8ta01715h

    Article  CAS  Google Scholar 

  42. Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997). https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  43. Zhang, W.J.: Structure and performance of LiFePO4 cathode materials: a review. J. Power Sources 196, 2962–2970 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.113

    Article  CAS  Google Scholar 

  44. Seh, Z.W., Sun, Y.M., Zhang, Q.F., et al.: Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Y., Zheng, G.Y., Misra, S., et al.: High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134, 15387–15394 (2012). https://doi.org/10.1021/ja3052206

    Article  CAS  PubMed  Google Scholar 

  46. Tan, G.Q., Xu, R., Xing, Z.Y., et al.: Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2, 1–10 (2017). https://doi.org/10.1038/nenergy.2017.90

    Article  CAS  Google Scholar 

  47. Yang, Y., McDowell, M.T., Jackson, A., et al.: New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010). https://doi.org/10.1021/nl100504q

    Article  CAS  PubMed  Google Scholar 

  48. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191

    Article  CAS  Google Scholar 

  49. Suo, L.M., Zhu, Y.J., Han, F.D., et al.: Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li-S batteries. Nano Energy 13, 467–473 (2015). https://doi.org/10.1016/j.nanoen.2015.02.021

    Article  CAS  Google Scholar 

  50. Lin, Z., Nan, C.Y., Ye, Y.F., et al.: High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Energy 9, 408–416 (2014). https://doi.org/10.1016/j.nanoen.2014.08.003

    Article  CAS  Google Scholar 

  51. Guo, J.C., Yang, Z.C., Yu, Y.C., et al.: Lithium-sulfur battery cathode enabled by lithium–nitrile interaction. J. Am. Chem. Soc. 135, 763–767 (2013). https://doi.org/10.1021/ja309435f

    Article  CAS  PubMed  Google Scholar 

  52. Nan, C.Y., Lin, Z., Liao, H.G., et al.: Durable carbon-coated Li2S core–shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659–4663 (2014). https://doi.org/10.1021/ja412943h

    Article  CAS  PubMed  Google Scholar 

  53. Hwa, Y., Zhao, J., Cairns, E.J.: Lithium sulfide (Li2S)/graphene oxide nanospheres with conformal carbon coating as a high-rate, long-life cathode for Li/S cells. Nano Lett. 15, 3479–3486 (2015). https://doi.org/10.1021/acs.nanolett.5b00820

    Article  CAS  PubMed  Google Scholar 

  54. Wu, F.X., Lee, J.T., Fan, F.F., et al.: A hierarchical particle-shell architecture for long-term cycle stability of Li2S cathodes. Adv. Mater. 27, 5579–5586 (2015). https://doi.org/10.1002/adma.201502289

    Article  CAS  PubMed  Google Scholar 

  55. Xu, R., Zhang, X.F., Yu, C., et al.: Paving the way for using Li2S batteries. Chemsuschem 7, 2457–2460 (2014). https://doi.org/10.1002/cssc.201402177

    Article  CAS  PubMed  Google Scholar 

  56. Meini, S., Elazari, R., Rosenman, A., et al.: The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems. J. Phys. Chem. Lett. 5, 915–918 (2014). https://doi.org/10.1021/jz500222f

    Article  CAS  PubMed  Google Scholar 

  57. Paolella, A., Zhu, W., Marceau, H., et al.: Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery. J. Power Sources 325, 641–645 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.086

    Article  CAS  Google Scholar 

  58. Fu, Y.Z., Su, Y.S., Manthiram, A.: Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew. Chem. Int. Ed. 52, 6930–6935 (2013). https://doi.org/10.1002/anie.201301250

    Article  CAS  Google Scholar 

  59. Zu, C.X., Fu, Y.Z., Manthiram, A.: Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes. J. Mater. Chem. A 1, 10362 (2013). https://doi.org/10.1039/c3ta11958k

    Article  CAS  Google Scholar 

  60. Yao, H.B., Zheng, G.Y., Hsu, P.C., et al.: Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 5, 1–9 (2014). https://doi.org/10.1038/ncomms4943

    Article  CAS  Google Scholar 

  61. Wang, H.T., Zhang, Q.F., Yao, H.B., et al.: High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 14, 7138–7144 (2014). https://doi.org/10.1021/nl503730c

    Article  CAS  PubMed  Google Scholar 

  62. Ogasawara, T., Débart, A., Holzapfel, M., et al.: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006). https://doi.org/10.1021/ja056811q

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, S.S., Foster, D., Read, J.: Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J. Power Sources 195, 1235–1240 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.088

    Article  CAS  Google Scholar 

  64. Lu, J., Li, L., Park, J.B., et al.: Aprotic and aqueous Li-O2 batteries. Chem. Rev. 114, 5611–5640 (2014). https://doi.org/10.1021/cr400573b

    Article  CAS  PubMed  Google Scholar 

  65. Lu, J., Lee, Y.J., Luo, X., et al.: A lithium-oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016). https://doi.org/10.1038/nature16484

    Article  CAS  PubMed  Google Scholar 

  66. Lau, K.C., Curtiss, L.A., Greeley, J.: Density functional investigation of the thermodynamic stability of lithium oxide bulk crystalline structures as a function of oxygen pressure. J. Phys. Chem. C 115, 23625–23633 (2011). https://doi.org/10.1021/jp206796h

    Article  CAS  Google Scholar 

  67. Sangster, J., Pelton, A.D.: The Li-O (lithium-oxygen) system. J. Phase Equilibria 13, 296–299 (1992). https://doi.org/10.1007/BF02667558

    Article  CAS  Google Scholar 

  68. Xu, S.M., Das, S.K., Archer, L.A.: The Li-CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 3, 6656 (2013). https://doi.org/10.1039/c3ra40394g

    Article  CAS  Google Scholar 

  69. Yang, S.X., Qiao, Y., He, P., et al.: A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ. Sci. 10, 972–978 (2017). https://doi.org/10.1039/c6ee03770d

    Article  CAS  Google Scholar 

  70. Zhang, Z., Wang, X.G., Zhang, X., et al.: Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv. Sci. 5, 1700567 (2018). https://doi.org/10.1002/advs.201700567

    Article  CAS  Google Scholar 

  71. Liu, Y.L., Wang, R., Lyu, Y.C., et al.: Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery. Energy Environ. Sci. 7, 677–681 (2014). https://doi.org/10.1039/c3ee43318h

    Article  CAS  Google Scholar 

  72. Garcia-Lastra, J.M., Myrdal, J.S.G., Christensen, R., et al.: DFT+U study of polaronic conduction in Li2O2 and Li2CO3: implications for Li-air batteries. J. Phys. Chem. C 117, 5568–5577 (2013). https://doi.org/10.1021/jp3107809

    Article  CAS  Google Scholar 

  73. Zhang, Z., Zhang, Q., Chen, Y.N., et al.: The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem. Int. Ed. 54, 6550–6553 (2015). https://doi.org/10.1002/anie.201501214

    Article  CAS  Google Scholar 

  74. Liu, B., Sun, Y.L., Liu, L.Y., et al.: Recent advances in understanding Li-CO2 electrochemistry. Energy Environ. Sci. 12, 887–922 (2019). https://doi.org/10.1039/c8ee03417f

    Article  CAS  Google Scholar 

  75. Yan, K., Lu, Z.D., Lee, H.W., et al.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 1–8 (2016). https://doi.org/10.1038/nenergy.2016.10

    Article  CAS  Google Scholar 

  76. Zhang, S.S., Fan, X.L., Wang, C.S.: An in situ enabled lithium metal battery by plating lithium on a copper current collector. Electrochem. Commun. 89, 23–26 (2018). https://doi.org/10.1016/j.elecom.2018.02.011

    Article  CAS  Google Scholar 

  77. Li, S., Jiang, M.W., Xie, Y., et al.: Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018). https://doi.org/10.1002/adma.201706375

    Article  CAS  Google Scholar 

  78. Kang, T., Zhao, J.H., Guo, F., et al.: Dendrite-free lithium anodes enabled by a commonly used copper antirusting agent. ACS Appl. Mater. Interfaces 12, 8168–8175 (2020). https://doi.org/10.1021/acsami.9b19655

    Article  CAS  PubMed  Google Scholar 

  79. Lee, Y.G., Fujiki, S., Jung, C., et al.: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z

    Article  CAS  Google Scholar 

  80. Pande, V., Viswanathan, V.: Computational screening of current collectors for enabling anode-free lithium metal batteries. ACS Energy Lett. 4, 2952–2959 (2019). https://doi.org/10.1021/acsenergylett.9b02306

    Article  CAS  Google Scholar 

  81. Zhang, R., Li, N.W., Cheng, X.B., et al.: Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. (2017). https://doi.org/10.1002/advs.201770011

    Article  Google Scholar 

  82. Jin, S., Jiang, Y., Ji, H.X., et al.: Advanced 3D current collectors for lithium-based batteries. Adv. Mater. 30, 1802014 (2018). https://doi.org/10.1002/adma.201802014

    Article  CAS  Google Scholar 

  83. Zheng, J.X., Kim, M.S., Tu, Z.Y., et al.: Regulating electrodeposition morphology of lithium: Towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020). https://doi.org/10.1039/c9cs00883g

    Article  CAS  PubMed  Google Scholar 

  84. Umh, H.N., Park, J., Yeo, J., et al.: Lithium metal anode on a copper dendritic superstructure. Electrochem. Commun. 99, 27–31 (2019). https://doi.org/10.1016/j.elecom.2018.12.015

    Article  CAS  Google Scholar 

  85. Liu, H.D., Yue, X.J., Xing, X., et al.: A scalable 3D lithium metal anode. Energy Storage Mater. 16, 505–511 (2019). https://doi.org/10.1016/j.ensm.2018.09.021

    Article  Google Scholar 

  86. Xiang, H.F., Shi, P.C., Bhattacharya, P., et al.: Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. J. Power Sources 318, 170–177 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.017

    Article  CAS  Google Scholar 

  87. Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017). https://doi.org/10.1126/science.aam6014

    Article  CAS  PubMed  Google Scholar 

  88. Aurbach, D., Zaban, A., Gofer, Y., et al.: Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76–84 (1995). https://doi.org/10.1016/0378-7753(94)02044-4

    Article  CAS  Google Scholar 

  89. Xu, R., Cheng, X.B., Yan, C., et al.: Artificial interphases for highly stable lithium metal anode. Matter 1, 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016

    Article  Google Scholar 

  90. Wondimkun, Z.T., Beyene, T.T., Weret, M.A., et al.: Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. J. Power Sources 450, 227589 (2020). https://doi.org/10.1016/j.jpowsour.2019.227589

    Article  CAS  Google Scholar 

  91. Tu, Z.Y., Zachman, M.J., Choudhury, S., et al.: Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases. Chem. Mater. 30, 5655–5662 (2018). https://doi.org/10.1021/acs.chemmater.8b01996

    Article  CAS  Google Scholar 

  92. Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005). https://doi.org/10.1149/1.1850854

    Article  CAS  Google Scholar 

  93. Ferrese, A., Newman, J.: Mechanical deformation of a lithium-metal anode due to a very stiff separator. J. Electrochem. Soc. 161, A1350–A1359 (2014). https://doi.org/10.1149/2.0911409jes

    Article  CAS  Google Scholar 

  94. Lee, C., Wei, X., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  95. Assegie, A.A., Chung, C.C., Tsai, M.C., et al.: Multilayer-graphene-stabilized lithium deposition for anode-free lithium-metal batteries. Nanoscale 11, 2710–2720 (2019). https://doi.org/10.1039/c8nr06980h

    Article  CAS  PubMed  Google Scholar 

  96. Assegie, A.A., Cheng, J.H., Kuo, L.M., et al.: Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 10, 6125–6138 (2018). https://doi.org/10.1039/c7nr09058g

    Article  CAS  PubMed  Google Scholar 

  97. Abrha, L.H., Zegeye, T.A., Hagos, T.T., et al.: Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. Electrochim. Acta 325, 134825 (2019). https://doi.org/10.1016/j.electacta.2019.134825

    Article  CAS  Google Scholar 

  98. Ren, X.D., Zou, L.F., Cao, X., et al.: Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006

    Article  CAS  Google Scholar 

  99. Chao, D.L., Zhu, C.R., Yang, P.H., et al.: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 1–8 (2016). https://doi.org/10.1038/ncomms12122

    Article  CAS  Google Scholar 

  100. Koch, V.R., Young, J.H.: 2-methyltetrahydrofuran: lithium hexafluoroarsenate: a superior electrolyte for the secondary lithium electrode. Science 204, 499–501 (1979). https://doi.org/10.1126/science.204.4392.499

    Article  CAS  PubMed  Google Scholar 

  101. Abraham, K.M., Goldman, J.L., Natwig, D.L.: Characterization of ether electrolytes for rechargeable lithium cells. J. Electrochem. Soc. 129, 2404–2409 (1982). https://doi.org/10.1149/1.2123556

    Article  CAS  Google Scholar 

  102. Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  103. Yu, Z.A., Wang, H.S., Kong, X., et al.: Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020). https://doi.org/10.1038/s41560-020-0634-5

    Article  CAS  Google Scholar 

  104. Jote, B.A., Beyene, T.T., Sahalie, N.A., et al.: Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. J. Power Sources 461, 228102 (2020). https://doi.org/10.1016/j.jpowsour.2020.228102

    Article  CAS  Google Scholar 

  105. Hagos, T.T., Su, W.N., Huang, C.J., et al.: Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. J. Power Sources 461, 228053 (2020). https://doi.org/10.1016/j.jpowsour.2020.228053

    Article  CAS  Google Scholar 

  106. Rodriguez, R., Loeffler, K.E., Edison, R.A., et al.: Effect of the electrolyte on the cycling efficiency of lithium-limited cells and their morphology studied through in situ optical imaging. ACS Appl. Energy Mater. 1, 5830–5835 (2018). https://doi.org/10.1021/acsaem.8b01194

    Article  CAS  Google Scholar 

  107. Hagos, T.M., Berhe, G.B., Hagos, T.T., et al.: Dual electrolyte additives of potassium hexafluorophosphate and tris(trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochim. Acta 316, 52–59 (2019). https://doi.org/10.1016/j.electacta.2019.05.061

    Article  CAS  Google Scholar 

  108. Sahalie, N.A., Assegie, A.A., Su, W.N., et al.: Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. J. Power Sources 437, 226912 (2019). https://doi.org/10.1016/j.jpowsour.2019.226912

    Article  CAS  Google Scholar 

  109. Seo, D.M., Borodin, O., Han, S.D., et al.: Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. J. Electrochem. Soc. 159, A1489–A1500 (2012). https://doi.org/10.1149/2.035209jes

    Article  CAS  Google Scholar 

  110. Beyene, T.T., Jote, B.A., Wondimkun, Z.T., et al.: Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries. ACS Appl. Mater. Interfaces 11, 31962–31971 (2019). https://doi.org/10.1021/acsami.9b09551

    Article  CAS  PubMed  Google Scholar 

  111. Nilsson, V., Kotronia, A., Lacey, M., et al.: Highly concentrated LiTFSI-EC electrolytes for lithium metal batteries. ACS Appl. Energy Mater. 3, 200–207 (2020). https://doi.org/10.1021/acsaem.9b01203

    Article  CAS  Google Scholar 

  112. Alvarado, J., Schroeder, M.A., Pollard, T.P., et al.: Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019). https://doi.org/10.1039/c8ee02601g

    Article  CAS  Google Scholar 

  113. Rodriguez, R., Edison, R.A., Stephens, R.M., et al.: Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition. J. Mater. Chem. A 8, 3999–4006 (2020). https://doi.org/10.1039/c9ta10929c

    Article  CAS  Google Scholar 

  114. Weber, R., Genovese, M., Louli, A.J., et al.: Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9

    Article  CAS  Google Scholar 

  115. Louli, A.J., Eldesoky, A., Weber, R., et al.: Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020)

    Article  CAS  Google Scholar 

  116. Genovese, M., Louli, A.J., Weber, R., et al.: Hot formation for improved low temperature cycling of anode-free lithium metal batteries. J. Electrochem. Soc. 166, A3342–A3347 (2019). https://doi.org/10.1149/2.0661914jes

    Article  CAS  Google Scholar 

  117. Kim, S., Jung, C., Kim, H., et al.: The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte. Adv. Energy Mater. 10, 1903993 (2020). https://doi.org/10.1002/aenm.201903993

    Article  CAS  Google Scholar 

  118. Ye, T.T., Li, L.H., Zhang, Y.: Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 30, 2000077 (2020). https://doi.org/10.1002/adfm.202000077

    Article  CAS  Google Scholar 

  119. Chung, S.H., Manthiram, A.: A Li2S-TiS2-electrolyte composite for stable Li2S-based lithium-sulfur batteries. Adv. Energy Mater. 9, 1901397 (2019). https://doi.org/10.1002/aenm.201901397

    Article  CAS  Google Scholar 

  120. Chen, J., Xiang, J.W., Chen, X., et al.: Li2S-based anode-free full batteries with modified Cu current collector. Energy Storage Mater. 30, 179–186 (2020). https://doi.org/10.1016/j.ensm.2020.05.009

    Article  Google Scholar 

  121. Nanda, S., Bhargav, A., Manthiram, A.: Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition. Joule 4, 1121–1135 (2020). https://doi.org/10.1016/j.joule.2020.03.020

    Article  CAS  Google Scholar 

  122. Cohn, A.P., Muralidharan, N., Carter, R., et al.: Anode-free sodium battery through in situ plating of sodium metal. Nano Lett. 17, 1296–1301 (2017). https://doi.org/10.1021/acs.nanolett.6b05174

    Article  CAS  PubMed  Google Scholar 

  123. Mazzali, F., Orzech, M.W., Adomkevicius, A., et al.: Designing a high-power sodium-ion battery by in situ metal plating. ACS Appl. Energy Mater. 2, 344–353 (2019). https://doi.org/10.1021/acsaem.8b01361

    Article  CAS  Google Scholar 

  124. Liu, S., Tang, S., Zhang, X.Y., et al.: Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 17, 5862–5868 (2017). https://doi.org/10.1021/acs.nanolett.7b03185

    Article  CAS  PubMed  Google Scholar 

  125. Rudola, A., Gajjela, S.R., Balaya, P.: High energy density in situ sodium plated battery with current collector foil as anode. Electrochem. Commun. 86, 157–160 (2018). https://doi.org/10.1016/j.elecom.2017.12.013

    Article  CAS  Google Scholar 

  126. Tang, S., Qiu, Z., Wang, X.Y., et al.: A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 48, 101–106 (2018). https://doi.org/10.1016/j.nanoen.2018.03.039

    Article  CAS  Google Scholar 

  127. Cohn, A.P., Metke, T., Donohue, J., et al.: Rethinking sodium-ion anodes as nucleation layers for anode-free batteries. J. Mater. Chem. A 6, 23875–23884 (2018). https://doi.org/10.1039/c8ta05911j

    Article  CAS  Google Scholar 

  128. Lee, M.E., Lee, S., Choi, J., et al.: Anode-free sodium metal batteries based on nanohybrid core-shell templates. Small 15, 1901274 (2019). https://doi.org/10.1002/smll.201901274

    Article  CAS  Google Scholar 

  129. Tanwar, M., Bezabh, H.K., Basu, S., et al.: Investigation of sodium plating and stripping on a bare current collector with different electrolytes and cycling protocols. ACS Appl. Mater. Interfaces 11, 39746–39756 (2019). https://doi.org/10.1021/acsami.9b10097

    Article  CAS  PubMed  Google Scholar 

  130. Zhou, D., Chen, Y., Li, B.H., et al.: A stable quasi-solid-state sodium-sulfur battery. Angew. Chem. Int. Ed. 57, 10168–10172 (2018). https://doi.org/10.1002/anie.201805008

    Article  CAS  Google Scholar 

  131. Wei, S.Y., Xu, S.M., Agrawral, A., et al.: A stable room-temperature sodium-sulfur battery. Nat. Commun. 7, 1–10 (2016). https://doi.org/10.1038/ncomms11722

    Article  CAS  Google Scholar 

  132. Wang, Y.-X., Zhang, B., Lai, W., et al.: Room-temperature sodium–sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017)

    Article  Google Scholar 

  133. Wang, Y.Z., Zhou, D., Palomares, V., et al.: Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ. Sci. 13, 3848–3879 (2020). https://doi.org/10.1039/d0ee02203a

    Article  CAS  Google Scholar 

  134. Syali, M.S., Kumar, D., Mishra, K., et al.: Recent advances in electrolytes for room-temperature sodium-sulfur batteries: a review. Energy Storage Mater. 31, 352–372 (2020). https://doi.org/10.1016/j.ensm.2020.06.023

    Article  Google Scholar 

  135. Xu, X.F., Zhou, D., Qin, X.Y., et al.: A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 1–12 (2018). https://doi.org/10.1038/s41467-018-06443-3

    Article  CAS  Google Scholar 

  136. Parker, J.F., Chervin, C.N., Pala, I.R., et al.: Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991

    Article  CAS  PubMed  Google Scholar 

  137. Blanc, L.E., Kundu, D.P., Nazar, L.F.: Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002

    Article  CAS  Google Scholar 

  138. Zhu, Y.P., Cui, Y., Alshareef, H.N.: An anode-free Zn-MnO2 battery. Nano Lett. 21, 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519

    Article  CAS  PubMed  Google Scholar 

  139. Song, M., Tan, H., Chao, D.L., et al.: Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564

    Article  CAS  Google Scholar 

  140. Zhang, N., Cheng, F.Y., Liu, Y.C., et al.: Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958

    Article  CAS  PubMed  Google Scholar 

  141. Sun, W., Wang, F., Zhang, B., et al.: A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021). https://doi.org/10.1126/science.abb9554

    Article  CAS  PubMed  Google Scholar 

  142. Chao, D.L., Zhou, W.H., Ye, C., et al.: An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828 (2019). https://doi.org/10.1002/anie.201904174

    Article  CAS  Google Scholar 

  143. Wang, F., Borodin, O., Gao, T., et al.: Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z

    Article  CAS  PubMed  Google Scholar 

  144. Zhong, C., Liu, B., Ding, J., et al.: Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 5, 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y

    Article  CAS  Google Scholar 

  145. Zeng, Y.X., Zhang, X.Y., Qin, R.F., et al.: Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675

    Article  CAS  Google Scholar 

  146. Zheng, J.X., Zhao, Q., Tang, T., et al.: Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873

    Article  CAS  PubMed  Google Scholar 

  147. Deng, C.B., Xie, X.S., Han, J.W., et al.: A sieve-functional and uniform-porous Kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30, 2000599 (2020). https://doi.org/10.1002/adfm.202000599

    Article  CAS  Google Scholar 

  148. Zhao, Z.M., Zhao, J.W., Hu, Z.L., et al.: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j

    Article  CAS  Google Scholar 

  149. Tu, J.G., Song, W.L., Lei, H.P., et al.: Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives. Chem. Rev. 121, 4903–4961 (2021). https://doi.org/10.1021/acs.chemrev.0c01257

    Article  CAS  PubMed  Google Scholar 

  150. Zafar, Z.A., Imtiaz, S., Razaq, R., et al.: Cathode materials for rechargeable aluminum batteries: current status and progress. J. Mater. Chem. A 5, 5646–5660 (2017). https://doi.org/10.1039/c7ta00282c

    Article  CAS  Google Scholar 

  151. Zhao, Q., Zheng, J.X., Deng, Y., et al.: Regulating the growth of aluminum electrodeposits: towards anode-free Al batteries. J. Mater. Chem. A 8, 23231–23238 (2020). https://doi.org/10.1039/d0ta08505g

    Article  CAS  Google Scholar 

  152. Albertus, P., Babinec, S., Litzelman, S., et al.: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018). https://doi.org/10.1038/s41560-017-0047-2

    Article  CAS  Google Scholar 

  153. Liu, Y.Y., Xiong, S.Z., Wang, J.L., et al.: Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Mater. 19, 24–30 (2019). https://doi.org/10.1016/j.ensm.2018.10.015

    Article  Google Scholar 

  154. Shin, W.K., Kannan, A.G., Kim, D.W.: Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces 7, 23700–23707 (2015). https://doi.org/10.1021/acsami.5b07730

    Article  CAS  PubMed  Google Scholar 

  155. Ryou, M.H., Lee, D.J., Lee, J.N., et al.: Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645–650 (2012). https://doi.org/10.1002/aenm.201100687

    Article  CAS  Google Scholar 

  156. Liu, W., Mi, Y.Y., Weng, Z., et al.: Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chem. Sci. 8, 4285–4291 (2017). https://doi.org/10.1039/c7sc00668c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jin, R., Fu, L.X., Zhou, H.L., et al.: High Li+ ionic flux separator enhancing cycling stability of lithium metal anode. ACS Sustainable Chem. Eng. 6, 2961–2968 (2018). https://doi.org/10.1021/acssuschemeng.7b02502

    Article  CAS  Google Scholar 

  158. Zhao, C.Z., Chen, P.Y., Zhang, R., et al.: An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4, eaat3446 (2018). https://doi.org/10.1126/sciadv.aat3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, Y.N., Shi, L.Y., Zhou, H.L., et al.: Polyethylene separators modified by ultrathin hybrid films enhancing lithium ion transport performance and Li-metal anode stability. Electrochim. Acta 259, 386–394 (2018). https://doi.org/10.1016/j.electacta.2017.10.120

    Article  CAS  Google Scholar 

  160. Hao, X., Zhu, J., Jiang, X., et al.: Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 16, 2981–2987 (2016)

    Article  CAS  Google Scholar 

  161. Tian, H.Z., Seh, Z.W., Yan, K., et al.: Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv. Energy Mater. 7, 1602528 (2017). https://doi.org/10.1002/aenm.201602528

    Article  CAS  Google Scholar 

  162. Wang, D., Qin, C.C., Li, X.L., et al.: Synchronous healing of Li metal anode via asymmetrical bidirectional current. Science 23, 100781 (2020). https://doi.org/10.1016/j.isci.2019.100781

    Article  CAS  Google Scholar 

  163. Lu, D.P., Shao, Y.Y., Lozano, T., et al.: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015). https://doi.org/10.1002/aenm.201400993

    Article  CAS  Google Scholar 

  164. Yan, K., Wang, J.Y., Zhao, S.Q., et al.: Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 58, 11364–11368 (2019). https://doi.org/10.1002/anie.201905251

    Article  CAS  Google Scholar 

  165. Li, L., Basu, S., Wang, Y.P., et al.: Self-heating-induced healing of lithium dendrites. Science 359, 1513–1516 (2018). https://doi.org/10.1126/science.aap8787

    Article  CAS  PubMed  Google Scholar 

  166. Hundekar, P., Basu, S., Fan, X.L., et al.: In situ healing of dendrites in a potassium metal battery. Proc. Natl. Acad. Sci. USA 117, 5588–5594 (2020). https://doi.org/10.1073/pnas.1915470117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yang, Q., Liang, G.J., Guo, Y., et al.: Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31, 1903778 (2019). https://doi.org/10.1002/adma.201903778

    Article  CAS  Google Scholar 

  168. Yang, H., Fey, E.O., Trimm, B.D., et al.: Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. J. Power Sources 272, 900–908 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.026

    Article  CAS  Google Scholar 

  169. Chen, J., Li, Q., Pollard, T.P., et al.: Electrolyte design for Li metal-free Li batteries. Mater. Today 39, 118–126 (2020)

    Article  Google Scholar 

  170. Wang, X.F., Zhang, M.H., Alvarado, J., et al.: New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017). https://doi.org/10.1021/acs.nanolett.7b03606

    Article  CAS  PubMed  Google Scholar 

  171. Huang, W., Attia, P.M., Wang, H.S., et al.: Evolution of the solid–electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett. 19, 5140–5148 (2019). https://doi.org/10.1021/acs.nanolett.9b01515

    Article  CAS  PubMed  Google Scholar 

  172. Wang, J.Y., Huang, W., Pei, A., et al.: Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4, 664–670 (2019). https://doi.org/10.1038/s41560-019-0413-3

    Article  CAS  Google Scholar 

  173. Fang, C., Li, J., Zhang, M., et al.: Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z

    Article  CAS  PubMed  Google Scholar 

  174. Fang, C.C., Wang, X.F., Meng, Y.S.: Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019). https://doi.org/10.1016/j.trechm.2019.02.015

    Article  CAS  Google Scholar 

  175. Aryanfar, A., Brooks, D.J., Colussi, A.J., et al.: Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 16, 24965–24970 (2014). https://doi.org/10.1039/c4cp03590a

    Article  CAS  PubMed  Google Scholar 

  176. Chen, K.H., Wood, K.N., Kazyak, E., et al.: Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017). https://doi.org/10.1039/c7ta00371d

    Article  CAS  Google Scholar 

  177. Zou, P.C., Chiang, S.W., Zhan, H.C., et al.: A periodic “self-correction” scheme for synchronizing lithium plating/stripping at ultrahigh cycling capacity. Adv. Funct. Mater. 30, 1910532 (2020). https://doi.org/10.1002/adfm.201910532

    Article  CAS  Google Scholar 

  178. Tu, Z.Y., Choudhury, S., Zachman, M.J., et al.: Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat. Energy 3, 310–316 (2018). https://doi.org/10.1038/s41560-018-0096-1

    Article  CAS  Google Scholar 

  179. Sun, F., Zhou, D., He, X., et al.: Morphological reversibility of modified Li-based anodes for next-generation batteries. ACS Energy Lett. 5, 152–161 (2020)

    Article  CAS  Google Scholar 

  180. Harry, K.J., Hallinan, D.T., Parkinson, D.Y., et al.: Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014). https://doi.org/10.1038/nmat3793

    Article  CAS  PubMed  Google Scholar 

  181. Yan, Y.Y., Cheng, C., Zhang, L., et al.: Lithium–sulfur batteries: deciphering the reaction mechanism of lithium–sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv. Energy Mater. 9, 1970062 (2019). https://doi.org/10.1002/aenm.201970062

    Article  Google Scholar 

  182. Wang, J.J., Eng, C., Chen-Wiegart, Y.C.K., et al.: Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography. Nat. Commun. 6, 1–9 (2015). https://doi.org/10.1038/ncomms8496

    Article  CAS  Google Scholar 

  183. Cao, Y.L., Li, M., Lu, J., et al.: Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019). https://doi.org/10.1038/s41565-019-0371-8

    Article  CAS  PubMed  Google Scholar 

  184. Chen, S.R., Niu, C.J., Lee, H., et al.: Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 3, 1094–1105 (2019). https://doi.org/10.1016/j.joule.2019.02.004

    Article  CAS  Google Scholar 

  185. Vitins, G., Raekelboom, E.A., Weller, M.T., et al.: Li2CuO2 as an additive for capacity enhancement of lithium ion cells. J. Power Sources 119, 938–942 (2003). https://doi.org/10.1016/S0378-7753(03)00236-2

    Article  CAS  Google Scholar 

  186. Jeżowski, P., Fic, K., Crosnier, O., et al.: Lithium rhenium(vii) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. J. Mater. Chem. A 4, 12609–12615 (2016). https://doi.org/10.1039/c6ta03810g

    Article  Google Scholar 

  187. Lim, Y.G., Kim, D., Lim, J.M., et al.: Anti-fluorite Li6CoO4 as an alternative lithium source for lithium ion capacitors: an experimental and first principles study. J. Mater. Chem. A 3, 12377–12385 (2015). https://doi.org/10.1039/c5ta00297d

    Article  CAS  Google Scholar 

  188. Park, M.S., Lim, Y.G., Park, J.W., et al.: Li2RuO3 as an additive for high-energy lithium-ion capacitors. J. Phys. Chem. C 117, 11471–11478 (2013). https://doi.org/10.1021/jp4005828

    Article  CAS  Google Scholar 

  189. Park, M.S., Lim, Y.G., Kim, J.H., et al.: A novel lithium-doping approach for an advanced lithium ion capacitor. Adv. Energy Mater. 1, 1002–1006 (2011). https://doi.org/10.1002/aenm.201100270

    Article  CAS  Google Scholar 

  190. Abouimrane, A., Cui, Y.J., Chen, Z.H., et al.: Enabling high energy density Li-ion batteries through Li2O activation. Nano Energy 27, 196–201 (2016). https://doi.org/10.1016/j.nanoen.2016.06.050

    Article  CAS  Google Scholar 

  191. Zhang, S.S.: A cost-effective approach for practically viable Li-ion capacitors by using Li2S as an in situ Li-ion source material. J. Mater. Chem. A 5, 14286–14293 (2017). https://doi.org/10.1039/c7ta03923a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111), the National Nature Science Foundation of China (Project Nos. 52061160482), Shenzhen Geim Graphene Center, Guangdong Province Science and Technology Department (Project No. 2020A0505100014), Shenzhen Government (Project Nos. JSGG20191129110201725, JCYJ20170412171720306 and JSGG20170414143635496) and Tsinghua Shenzhen International Graduate School Overseas Collaboration Project for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peichao Zou or Cheng Yang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Zou, P., Wang, M. et al. Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochem. Energ. Rev. 4, 601–631 (2021). https://doi.org/10.1007/s41918-021-00106-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00106-6

Keywords

Navigation