Skip to main content

Advertisement

Log in

Electrolyzer and Catalysts Design from Carbon Dioxide to Carbon Monoxide Electrochemical Reduction

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Electrochemical CO2 reduction reaction (CO2RR) has attracted considerable attention in the recent decade for its critical role in the storage of renewable energy and fulfilling of the carbon cycle, and catalysts with varying morphology and modification strategies have been studied to improve the CO2RR activity and selectivity. However, most of the achievements are focused on preliminary reduction products such as CO and HCOOH. Development and research on electrochemical CO reduction reaction (CORR) are considered to be more promising to achieve multicarbon products and a better platform to understand the mechanism of C–C formation. In this review, we introduce the current achievements of CO2RR and emphasize the potential of CORR. We provide a summary of how electrolysis environment, electrode substrates, and cell design affect the performance of CORR catalysts in order to offer a guideline of standard operating conditions for CORR research. The composition–structure–activity relationships for CORR catalysts studied in H-cells and gas-phase flow cells are separately analyzed to give a comprehensive understanding of the development of catalyst design. Finally, the reaction mechanism, latest progress, major challenges and potential opportunities of CORR are also analyzed to provide a critical overview for further performance improvement of CORR.

Graphical abstract

This work reviews the recent progress and potential of carbon monoxide reduction (CORR) research. A comprehensive summary of how electrolysis environment, electrode substrate, and cell design affect the performance of CORR catalysts is performed and the composition-structure- activity relationships for CORR catalysts are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright © 2016, Springer Nature. a Scanning electron microscopy (SEM) image. b TEM image and c electric field distribution of Au needles. d Scanning electron microscopy (SEM) image. e TEM image and f electric field distribution of Au rods. The sharp tip of electrodes would result in a high concentration of K+ near the electrode and thus result in high CO2RR activity. gi AuCu alloy particles with ordered arrangement of two elements. Adapted with permission from Ref. [76]. Copyright © 2017, American Chemical Society. g Aberration-corrected HAADF-STEM image of AuCu nanoparticles. h Magnified STEM image of the center of the particle. Atoms in orange and blue colors represent gold and copper, respectively. i Intensity profile across the particle measured from the yellow box shown in g. Arrows indicate alternating high and low intensities, which represent gold and copper atoms, respectively. jl Tandem design of AuCu bimetallic electrodes. Adapted with permission from Ref. [77]. Copyright © 2018, Royal Society of Chemistry. j Schematic of the interdigitated AuCu device. Externally connected on/off switches linked to a potentiostat can control the power supply on Au and Cu lines, separately. X% in table refers to the ratio of the geometric area of the Cu lines to the total metal area. k SEM and l EDX images of the 11% AuCu device with Si in blue, Au in green and Cu in red. mr Typical metal–nonmetal compounds (MxNy) of Cu2S for CO2RR. Adapted with permission from Ref. [47]. Copyright © 2018, Springer Nature. m TEM and n EDS mapping of vacancy-rich Cu2S nanoparticles. o EDS mapping, p high-resolution TEM, q EDS line scans and r the ratio of Cu/S concentration of vacancy-rich Cu2S nanoparticles after electrochemical reduction, showing that S is removed from the nanoparticle surface

Fig. 3

Copyright © 2018, Science Publishing Group

Fig. 4
Fig. 5
Fig. 6

Copyright © 2020, Wiley–VCH

Fig. 7
Fig. 8

Copyright © 2019, Elsevier

Fig. 9

Copyright © 2016, American Chemical Society

Fig. 10

Copyright © 2019, Springer Nature

Fig. 11

Copyright © 2018, Springer Nature

Fig. 12

Copyright © 2018, Springer Nature

Fig. 13

Copyright © 2019, Springer Nature

Fig. 14

Copyright © 2017, American Chemical Society

Fig. 15

Copyright © 2019, Springer Nature

Fig. 16

Copyright © 2019 American Chemical Society

Similar content being viewed by others

References

  1. Lewis, N.S., Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walter, M.G., Warren, E.L., McKone, J.R., et al.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326

    Article  CAS  PubMed  Google Scholar 

  3. Blankenship, R.E., Tiede, D.M., Barber, J., et al.: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011)

    Article  CAS  Google Scholar 

  4. Chu, S., Cui, Y., Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834

    Article  CAS  PubMed  Google Scholar 

  5. Davis, S.J., Lewis, N.S., Shaner, M., et al.: Net-zero emissions energy systems. Science 360, 1419–1428 (2018)

    Article  CAS  Google Scholar 

  6. Feng, C., Faheem, M.B., Fu, J., et al.: Fe-based electrocatalysts for oxygen evolution reaction: progress and perspectives. ACS Catal. 10, 4019–4047 (2020). https://doi.org/10.1021/acscatal.9b05445

    Article  CAS  Google Scholar 

  7. Li, C.W., Ciston, J., Kanan, M.W.: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249

    Article  CAS  PubMed  Google Scholar 

  8. Yang, J., Ma, W.P., Chen, D., et al.: Fischer–Tropsch synthesis: a review of the effect of CO conversion on methane selectivity. Appl. Catal. A: Gen. 470, 250–260 (2014). https://doi.org/10.1016/j.apcata.2013.10.061

    Article  CAS  Google Scholar 

  9. Li, C.W., Kanan, M.W.: CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). https://doi.org/10.1021/ja3010978

    Article  CAS  PubMed  Google Scholar 

  10. Liu, M., Pang, Y.J., Zhang, B., et al.: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). https://doi.org/10.1038/nature19060

    Article  CAS  PubMed  Google Scholar 

  11. He, J.F., Dettelbach, K.E., Salvatore, D.A., et al.: High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew. Chem.-Int. Edit. 56, 6068–6072 (2017). https://doi.org/10.1002/anie.201612038

    Article  CAS  Google Scholar 

  12. He, J., Johnson, N.J.J., Huang, A., et al.: Electrocatalytic alloys for CO2 reduction. Chemsuschem 11, 48–57 (2018). https://doi.org/10.1002/cssc.201701825

    Article  CAS  PubMed  Google Scholar 

  13. Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., et al.: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y

    Article  CAS  Google Scholar 

  14. Kuhl, K.P., Cave, E.R., Abram, D.N., et al.: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012). https://doi.org/10.1039/c2ee21234j

    Article  CAS  Google Scholar 

  15. Schreier, M., Yoon, Y., Jackson, M.N., et al.: Competition between H and CO for active sites governs copper-mediated electrosynthesis of hydrocarbon fuels. Angew. Chem.-Int. Edit. 57, 10221–10225 (2018). https://doi.org/10.1002/anie.201806051

    Article  CAS  Google Scholar 

  16. De Luna, P., Quintero-Bermudez, R., Dinh, C.T., et al.: Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9

    Article  CAS  Google Scholar 

  17. Xie, M.S., Xia, B.Y., Li, Y.W., et al.: Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9, 1687–1695 (2016). https://doi.org/10.1039/C5EE03694A

    Article  CAS  Google Scholar 

  18. Lum, Y., Ager, J.W.: Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18 O labeling. Angew. Chem.-Int. Edit. 57, 551–554 (2018). https://doi.org/10.1002/anie.201710590

    Article  CAS  Google Scholar 

  19. De Luna, P., Hahn, C., Higgins, D., et al.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, 1 (2019). https://doi.org/10.1126/science.aav3506

    Article  CAS  Google Scholar 

  20. Spurgeon, J.M., Kumar, B.: A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018). https://doi.org/10.1039/c8ee00097b

    Article  CAS  Google Scholar 

  21. Jouny, M., Hutchings, G.S., Jiao, F.: Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019). https://doi.org/10.1038/s41929-019-0388-2

    Article  CAS  Google Scholar 

  22. Hori, Y.: Electrochemical CO2 Reduction on Metal Electrodes: Modern Aspects of Electrochemistry (pp 89–189). Springer, New York. (1959). https://doi.org/10.1007/978-0-387-49489-0_3

    Article  Google Scholar 

  23. Schouten, K.J.P., Qin, Z.S., Pérez Gallent, E., et al.: Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012). https://doi.org/10.1021/ja302668n

    Article  CAS  PubMed  Google Scholar 

  24. Schouten, K.J.P., Pérez Gallent, E., Koper, M.T.M.: Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 3, 1292–1295 (2013). https://doi.org/10.1021/cs4002404

    Article  CAS  Google Scholar 

  25. Zhang, H.C., Li, J., Cheng, M.J., et al.: CO electroreduction: Current development and understanding of Cu-based catalysts. ACS Catal. 9, 49–65 (2019). https://doi.org/10.1021/acscatal.8b03780

    Article  CAS  Google Scholar 

  26. Bertheussen, E., Hogg, T.V., Abghoui, Y., et al.: Electroreduction of CO on polycrystalline copper at low overpotentials. ACS Energy Lett. 3, 634–640 (2018). https://doi.org/10.1021/acsenergylett.8b00092

    Article  CAS  Google Scholar 

  27. Jouny, M., Luc, W., Jiao, F.: High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018). https://doi.org/10.1038/s41929-018-0133-2

    Article  CAS  Google Scholar 

  28. Pinsent, B.R.W., Pearson, L., Roughton, F.J.W.: The kinetics of combination of carbon dioxide with hydroxide ions. Trans. Faraday Soc. 52, 1512 (1956). https://doi.org/10.1039/tf9565201512

    Article  CAS  Google Scholar 

  29. Lum, Y., Ager, J.W.: Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019). https://doi.org/10.1038/s41929-018-0201-7

    Article  CAS  Google Scholar 

  30. Hori, Y., Murata, A., Takahashi, R., et al.: Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 109, 5022–5023 (1987). https://doi.org/10.1021/ja00250a044

    Article  CAS  Google Scholar 

  31. Li, J., Chang, K., Zhang, H.C., et al.: Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts. ACS Catal. 9, 4709–4718 (2019). https://doi.org/10.1021/acscatal.9b00099

    Article  CAS  Google Scholar 

  32. Malkani, A.S., Li, J., Anibal, J., et al.: Impact of forced convection on spectroscopic observations of the electrochemical CO reduction reaction. ACS Catal. 10, 941–946 (2020). https://doi.org/10.1021/acscatal.9b03581

    Article  CAS  Google Scholar 

  33. Weekes, D.M., Salvatore, D.A., Reyes, A., et al.: Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018). https://doi.org/10.1021/acs.accounts.8b00010

    Article  CAS  PubMed  Google Scholar 

  34. Speck, F.D., Dettelbach, K.E., Sherbo, R.S., et al.: On the electrolytic stability of iron-nickel oxides. Chem 2, 590–597 (2017). https://doi.org/10.1016/j.chempr.2017.03.006

    Article  CAS  Google Scholar 

  35. Xu, D.Y., Stevens, M.B., Cosby, M.R., et al.: Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: effects of catalyst conductivity and comparison with performance in three-electrode cells. ACS Catal. 9, 7–15 (2019)

    Article  CAS  Google Scholar 

  36. Li, J., Wang, Z.Y., McCallum, C., et al.: Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019). https://doi.org/10.1038/s41929-019-0380-x

    Article  CAS  Google Scholar 

  37. Hori, Y., Wakebe, H., Tsukamoto, T., et al.: Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7

    Article  CAS  Google Scholar 

  38. Chen, Y.H., Li, C.W., Kanan, M.W.: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012). https://doi.org/10.1021/ja309317u

    Article  CAS  PubMed  Google Scholar 

  39. Ma, M., Trześniewski, B.J., Xie, J., et al.: Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem.-Int. Edit. 55, 9748–9752 (2016)

    Article  CAS  Google Scholar 

  40. Kim, D., Resasco, J., Yu, Y., et al.: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5, 1–8 (2014). https://doi.org/10.1038/ncomms5948

    Article  CAS  Google Scholar 

  41. Rasul, S., Anjum, D.H., Jedidi, A., et al.: A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2to CO. Angew. Chem.-Int. Edit. 54, 2146–2150 (2015). https://doi.org/10.1002/anie.201410233

    Article  CAS  Google Scholar 

  42. Sarfraz, S., Garcia-Esparza, A.T., Jedidi, A., et al.: Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 6, 2842–2851 (2016). https://doi.org/10.1021/acscatal.6b00269

    Article  CAS  Google Scholar 

  43. Luc, W., Collins, C., Wang, S.W., et al.: Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 139, 1885–1893 (2017). https://doi.org/10.1021/jacs.6b10435

    Article  CAS  PubMed  Google Scholar 

  44. Bai, X.F., Chen, W., Zhao, C.C., et al.: Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew. Chem.-Int. Edit. 56, 12219–12223 (2017). https://doi.org/10.1002/anie.201707098

    Article  CAS  Google Scholar 

  45. Ma, W.C., Xie, S.J., Liu, T.T., et al.: Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0

    Article  CAS  Google Scholar 

  46. He, S., Ni, F., Ji, Y., et al.: The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem. Int. Ed. Engl. 57, 16114–16119 (2018). https://doi.org/10.1002/anie.201810538

    Article  CAS  PubMed  Google Scholar 

  47. Zhuang, T.T., Liang, Z.Q., Seifitokaldani, A., et al.: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7

    Article  CAS  Google Scholar 

  48. Zhang, A., He, R., Li, H.P., et al.: Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem.-Int. Edit. 57, 10954–10958 (2018). https://doi.org/10.1002/anie.201806043

    Article  CAS  Google Scholar 

  49. Liang, Z.Q., Zhuang, T.T., Seifitokaldani, A., et al.: Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 9, 1–8 (2018). https://doi.org/10.1038/s41467-018-06311-0

    Article  CAS  Google Scholar 

  50. Yin, Z.Y., Yu, C., Zhao, Z.L., et al.: Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 19, 8658–8663 (2019). https://doi.org/10.1021/acs.nanolett.9b03324

    Article  CAS  PubMed  Google Scholar 

  51. Asadi, M., Kim, K., Liu, C., et al.: Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016). https://doi.org/10.1126/science.aaf4767

    Article  CAS  PubMed  Google Scholar 

  52. Verdaguer-Casadevall, A., Li, C.W., Johansson, T.P., et al.: Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015). https://doi.org/10.1021/jacs.5b06227

    Article  CAS  PubMed  Google Scholar 

  53. Feng, X.F., Jiang, K.L., Fan, S.S., et al.: Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015). https://doi.org/10.1021/ja5130513

    Article  CAS  PubMed  Google Scholar 

  54. Mariano, R.G., McKelvey, K., White, H.S., et al.: Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017). https://doi.org/10.1126/science.aao3691

    Article  CAS  PubMed  Google Scholar 

  55. Dinh, C.T., Burdyny, T., Kibria, M.G., et al.: CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). https://doi.org/10.1126/science.aas9100

    Article  CAS  PubMed  Google Scholar 

  56. Yang, H.Z., Kaczur, J.J., Sajjad, S.D., et al.: Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes. J. CO2 Util. 20, 208–217 (2017). https://doi.org/10.1016/j.jcou.2017.04.011

    Article  CAS  Google Scholar 

  57. Dinh, C.T., García de Arquer, F.P., Sinton, D., et al.: High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018). https://doi.org/10.1021/acsenergylett.8b01734

    Article  CAS  Google Scholar 

  58. Zhong, M., Tran, K., Min, Y., et al.: Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8

    Article  CAS  PubMed  Google Scholar 

  59. Hori, Y., Takahashi, I., Koga, O., et al.: Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002). https://doi.org/10.1021/jp013478d

    Article  CAS  Google Scholar 

  60. Cao, L., Raciti, D., Li, C.Y., et al.: Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires. ACS Catal. 7, 8578–8587 (2017). https://doi.org/10.1021/acscatal.7b03107

    Article  CAS  Google Scholar 

  61. Paik, W., Andersen, T.N., Eyring, H.: Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode. Electrochim. Acta 14, 1217–1232 (1969). https://doi.org/10.1016/0013-4686(69)87019-2

    Article  CAS  Google Scholar 

  62. Baruch, M.F., Pander, J.E., White, J.L., et al.: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148–3156 (2015). https://doi.org/10.1021/acscatal.5b00402

    Article  CAS  Google Scholar 

  63. Feaster, J.T., Shi, C., Cave, E.R., et al.: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687

    Article  CAS  Google Scholar 

  64. Armstrong, F.A., Hirst, J.: Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl. Acad. Sci. U. S. A. 108, 14049–14054 (2011). https://doi.org/10.1073/pnas.1103697108

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shen, J., Kolb, M.J., Göttle, A.J., et al.: DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J. Phys. Chem. C 120, 15714–15721 (2016). https://doi.org/10.1021/acs.jpcc.5b10763

    Article  CAS  Google Scholar 

  66. Calle-Vallejo, F., Koper, M.T.: Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem.-Int. Edit. 52, 7282–7285 (2013). https://doi.org/10.1002/anie.201301470

    Article  CAS  Google Scholar 

  67. Montoya, J.H., Shi, C., Chan, K.R., et al.: Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722

    Article  CAS  PubMed  Google Scholar 

  68. Birdja, Y.Y., Koper, M.T.M.: The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 139, 2030–2034 (2017). https://doi.org/10.1021/jacs.6b12008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Geng, Z.G., Kong, X.D., Chen, W.W., et al.: Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem.-Int. Edit. 130, 6162–6167 (2018). https://doi.org/10.1002/ange.201711255

    Article  Google Scholar 

  70. Chen, Y.H., Kanan, M.W.: Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012). https://doi.org/10.1021/ja2108799

    Article  CAS  PubMed  Google Scholar 

  71. Gong, Q.F., Ding, P., Xu, M.Q., et al.: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-10819-4

    Article  CAS  Google Scholar 

  72. Eilert, A., Cavalca, F., Roberts, F.S., et al.: Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017). https://doi.org/10.1021/acs.jpclett.6b02273

    Article  CAS  PubMed  Google Scholar 

  73. Firet, N.J., Blommaert, M.A., Burdyny, T., et al.: Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction. J. Mater. Chem. A 7, 2597–2607 (2019). https://doi.org/10.1039/c8ta10412c

    Article  CAS  Google Scholar 

  74. Mistry, H., Varela, A.S., Bonifacio, C.S., et al.: Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 1–9 (2016). https://doi.org/10.1038/ncomms12123

    Article  CAS  Google Scholar 

  75. Wang, H., Matios, E., Wang, C.L., et al.: Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide. Nano Lett. 19, 3925–3932 (2019). https://doi.org/10.1021/acs.nanolett.9b01197

    Article  CAS  PubMed  Google Scholar 

  76. Kim, D., Xie, C.L., Becknell, N., et al.: Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017). https://doi.org/10.1021/jacs.7b03516

    Article  CAS  PubMed  Google Scholar 

  77. Lum, Y., Ager, J.W.: Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018). https://doi.org/10.1039/C8EE01501E

    Article  CAS  Google Scholar 

  78. Kuhl, K.P., Hatsukade, T., Cave, E.R., et al.: Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014). https://doi.org/10.1021/ja505791r

    Article  CAS  PubMed  Google Scholar 

  79. Sun, K., Cheng, T., Wu, L.N., et al.: Ultrahigh mass activity for carbon dioxide reduction enabled by gold–iron core–shell nanoparticles. J. Am. Chem. Soc. 139, 15608–15611 (2017). https://doi.org/10.1021/jacs.7b09251

    Article  CAS  PubMed  Google Scholar 

  80. Choi, S.Y., Jeong, S.K., Kim, H.J., et al.: Electrochemical reduction of carbon dioxide to formate on tin–lead alloys. ACS Sustain. Chem. Eng. 4, 1311–1318 (2016). https://doi.org/10.1021/acssuschemeng.5b01336

    Article  CAS  Google Scholar 

  81. Ren, D., Ang, B.S.H., Yeo, B.S.: Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016). https://doi.org/10.1021/acscatal.6b02162

    Article  CAS  Google Scholar 

  82. Clark, E.L., Hahn, C., Jaramillo, T.F., et al.: Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017). https://doi.org/10.1021/jacs.7b08607

    Article  CAS  PubMed  Google Scholar 

  83. Torelli, D.A., Francis, S.A., Crompton, J.C., et al.: Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016). https://doi.org/10.1021/acscatal.5b02888

    Article  CAS  Google Scholar 

  84. Wang, Y., Wang, D.G., Dares, C.J., et al.: CO2 reduction to acetate in mixtures of ultrasmall (Cu)n, (Ag)m bimetallic nanoparticles. Proc. Natl. Acad. Sci. USA. 115, 278–283 (2018). https://doi.org/10.1073/pnas.1713962115

    Article  CAS  PubMed  Google Scholar 

  85. Nam, D.H., Bushuyev, O.S., Li, J., et al.: Metal–organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140, 11378–11386 (2018). https://doi.org/10.1021/jacs.8b06407

    Article  CAS  PubMed  Google Scholar 

  86. Yoon, Y., Hall, A.S., Surendranath, Y.: Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem.-Int. Edit. 55, 15282–15286 (2016). https://doi.org/10.1002/anie.201607942

    Article  CAS  Google Scholar 

  87. Hall, A.S., Yoon, Y., Wuttig, A., et al.: Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015). https://doi.org/10.1021/jacs.5b08259

    Article  CAS  PubMed  Google Scholar 

  88. Roberts, F.S., Kuhl, K.P., Nilsson, A.: High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem.-Int. Edit. 54, 5179–5182 (2015). https://doi.org/10.1002/anie.201412214

    Article  CAS  Google Scholar 

  89. Li, Y.F., Cui, F., Ross, M.B., et al.: Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 17, 1312–1317 (2017). https://doi.org/10.1021/acs.nanolett.6b05287

    Article  CAS  PubMed  Google Scholar 

  90. García de Arquer, F.P., Bushuyev, O.S., de Luna, P., et al.: 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30, 1802858 (2018). https://doi.org/10.1002/adma.201802858

    Article  CAS  Google Scholar 

  91. Boutin, E., Merakeb, L., Ma, B., et al.: Molecular catalysis of CO2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 49, 5772–5809 (2020). https://doi.org/10.1039/d0cs00218f

    Article  CAS  Google Scholar 

  92. Wasylenko, D.J., Palmer, R.D., Schott, E., et al.: Interrogation of electrocatalytic water oxidation mediated by a cobalt complex. Chem. Commun. 48, 2107 (2012). https://doi.org/10.1039/c2cc16674g

    Article  CAS  Google Scholar 

  93. Ren, S.X., Joulié, D., Salvatore, D., et al.: Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019). https://doi.org/10.1126/science.aax4608

    Article  CAS  PubMed  Google Scholar 

  94. Hori, Y., Konishi, H., Futamura, T., et al.: “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochimi. Acta 50, 5354–5369 (2005). https://doi.org/10.1016/j.electacta.2005.03.015

    Article  CAS  Google Scholar 

  95. Wuttig, A., Surendranath, Y.: Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5, 4479–4484 (2015). https://doi.org/10.1021/acscatal.5b00808

    Article  CAS  Google Scholar 

  96. He, J.F., Huang, A.X., Johnson, N.J.J., et al.: Stabilizing copper for CO2 reduction in low-grade electrolyte. Inorg. Chem. 57, 14624–14631 (2018). https://doi.org/10.1021/acs.inorgchem.8b02311

    Article  CAS  PubMed  Google Scholar 

  97. Hori, Y., Murata, A., Takahashi, R.: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 85, 2309 (1989). https://doi.org/10.1039/f19898502309

    Article  CAS  Google Scholar 

  98. Zhu, S.Q., Jiang, B., Cai, W.B., et al.: Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017)

    Article  CAS  Google Scholar 

  99. Dunwell, M., Lu, Q., Heyes, J.M., et al.: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017). https://doi.org/10.1021/jacs.6b13287

    Article  CAS  PubMed  Google Scholar 

  100. Resasco, J., Chen, L.D., Clark, E., et al.: Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017). https://doi.org/10.1021/jacs.7b06765

    Article  CAS  PubMed  Google Scholar 

  101. Singh, M.R., Kwon, Y., Lum, Y., et al.: Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016). https://doi.org/10.1021/jacs.6b07612

    Article  CAS  PubMed  Google Scholar 

  102. Ahn, S.T., Abu-Baker, I., Palmore, G.T.R.: Electroreduction of CO2 on polycrystalline copper: Effect of temperature on product selectivity. Catal. Today 288, 24–29 (2017). https://doi.org/10.1016/j.cattod.2016.09.028

    Article  CAS  Google Scholar 

  103. Kaneco, S., Hiei, N.H., Xing, Y., et al.: Electrochemical conversion of carbon dioxide to methane in aqueous NaHCO3 solution at less than 273 K. Electrochim. Acta 48, 51–55 (2002). https://doi.org/10.1016/s0013-4686(02)00550-9

    Article  CAS  Google Scholar 

  104. Azuma, M., Hashimoto, K., Hiramoto, M., et al.: Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J. Electrochem. Soc. 137, 1772–1778 (1990). https://doi.org/10.1149/1.2086796

    Article  CAS  Google Scholar 

  105. Kaneco, S., Iiba, K., Katsumata, H., et al.: Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol. J. Solid State Electrochem. 11, 490–495 (2007). https://doi.org/10.1007/s10008-006-0185-0

    Article  CAS  Google Scholar 

  106. Murugananthan, M., Kumaravel, M., Katsumata, H., et al.: Electrochemical reduction of CO2 using Cu electrode in methanol/LiClO4 electrolyte. Int. J. Hydrog. Energy 40, 6740–6744 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.006

    Article  CAS  Google Scholar 

  107. Fan, L., Xia, C., Yang, F.Q., et al.: Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6, 3111 (2020). https://doi.org/10.1126/sciadv.aay3111

    Article  CAS  Google Scholar 

  108. Hoang, T.T.H., Ma, S.C., Gold, J.I., et al.: Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017). https://doi.org/10.1021/acscatal.6b03613

    Article  CAS  Google Scholar 

  109. Li, Y.C., Zhou, D.K., Yan, Z.F., et al.: Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett. 1, 1149–1153 (2016). https://doi.org/10.1021/acsenergylett.6b00475

    Article  CAS  Google Scholar 

  110. Salvatore, D., Berlinguette, C.P.: Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 215–220 (2020). https://doi.org/10.1021/acsenergylett.9b02356

    Article  CAS  Google Scholar 

  111. Raciti, D., Mao, M., Wang, C.: Mass transport modelling for the electroreduction of CO2 on Cu nanowires. Nanotechnology 29, 044001 (2018). https://doi.org/10.1088/1361-6528/aa9bd7

    Article  CAS  PubMed  Google Scholar 

  112. Weng, L.C., Bell, A.T., Weber, A.Z.: Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019). https://doi.org/10.1039/C9EE00909D

    Article  CAS  Google Scholar 

  113. Weng, L.C., Bell, A.T., Weber, A.Z.: Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018). https://doi.org/10.1039/c8cp01319e

    Article  CAS  PubMed  Google Scholar 

  114. Wang, X., Wang, Z.Y., García de Arquer, F.P., et al.: Efficient electrically powered CO2–to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8

    Article  CAS  Google Scholar 

  115. Staffell, I., Scamman, D., Velazquez Abad, A., et al.: The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019). https://doi.org/10.1039/c8ee01157e

    Article  CAS  Google Scholar 

  116. Dry, M.E.: The Fischer–tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002). https://doi.org/10.1016/s0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  117. Wang, X.L., Araújo, J.F., Ju, W., et al.: Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019). https://doi.org/10.1038/s41565-019-0551-6

    Article  CAS  PubMed  Google Scholar 

  118. Clark, E.L., Resasco, J., Landers, A., et al.: Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018). https://doi.org/10.1021/acscatal.8b01340

    Article  CAS  Google Scholar 

  119. Pander, J.E., III., Ren, D., Yeo, B.S.: Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO2 reduction reaction. Catal. Sci. Technol. 7, 5820–5832 (2017). https://doi.org/10.1039/C7CY01785E

    Article  CAS  Google Scholar 

  120. Hori, Y., Takahashi, R., Yoshinami, Y., et al.: Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997). https://doi.org/10.1021/jp970284i

    Article  CAS  Google Scholar 

  121. Schouten, K.J.P., Pérez Gallent, E., Koper, M.T.M.: The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 716, 53–57 (2014). https://doi.org/10.1016/j.jelechem.2013.08.033

    Article  CAS  Google Scholar 

  122. Wang, L., Nitopi, S.A., Bertheussen, E., et al.: Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018). https://doi.org/10.1021/acscatal.8b01200

    Article  CAS  Google Scholar 

  123. Murata, A., Hori, Y.: Product selectivity affected by cationic species in electrochemical reduction of CO2and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 64, 123–127 (1991). https://doi.org/10.1246/bcsj.64.123

    Article  CAS  Google Scholar 

  124. Pérez-Gallent, E., Marcandalli, G., Figueiredo, M.C., et al.: Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017). https://doi.org/10.1021/jacs.7b10142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, J., Wu, D.H., Malkani, A.S., et al.: Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper. Angew. Chem. 132, 4494–4499 (2020). https://doi.org/10.1002/ange.201912412

    Article  Google Scholar 

  126. Li, J.Y., Li, X., Gunathunge, C.M., et al.: Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl. Acad. Sci. U. S. A. 116, 9220–9229 (2019). https://doi.org/10.1073/pnas.1900761116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, Y.X., Raciti, D., Wang, C.: High-flux CO reduction enabled by three-dimensional nanostructured copper electrodes. ACS Catal. 8, 5657–5663 (2018). https://doi.org/10.1021/acscatal.8b00902

    Article  CAS  Google Scholar 

  128. Han, L.H., Zhou, W., Xiang, C.X.: High-rate electrochemical reduction of carbon monoxide to ethylene using Cu-nanoparticle-based gas diffusion electrodes. ACS Energy Lett. 3, 855–860 (2018). https://doi.org/10.1021/acsenergylett.8b00164

    Article  CAS  Google Scholar 

  129. Chen, R.X., Su, H.Y., Liu, D.Y., et al.: Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew. Chem.-Int. Edit. 59, 154–160 (2020). https://doi.org/10.1002/anie.201910662

    Article  CAS  Google Scholar 

  130. King, L.A., Hubert, M.A., Capuano, C., et al.: A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 14, 1071–1074 (2019). https://doi.org/10.1038/s41565-019-0550-7

    Article  CAS  PubMed  Google Scholar 

  131. Xiang, C.X., Papadantonakis, K.M., Lewis, N.S.: Principles and implementations of electrolysis systems for water splitting. Mater. Horiz. 3, 169–173 (2016). https://doi.org/10.1039/C6MH00016A

    Article  CAS  Google Scholar 

  132. Ramaswamy, N., Mukerjee, S.: Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer. Chem. Rev. 119, 11945–11979 (2019). https://doi.org/10.1021/acs.chemrev.9b00157

    Article  CAS  PubMed  Google Scholar 

  133. Kraytsberg, A., Ein-Eli, Y.: Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303–7330 (2014). https://doi.org/10.1021/ef501977k

    Article  CAS  Google Scholar 

  134. Yin, Z.L., Peng, H.Q., Wei, X., et al.: An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2462 (2019). https://doi.org/10.1039/c9ee01204d

    Article  CAS  Google Scholar 

  135. Salvatore, D.A., Weekes, D.M., He, J.F., et al.: Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018). https://doi.org/10.1021/acsenergylett.7b01017

    Article  CAS  Google Scholar 

  136. Vermaas, D.A., Wiegman, S., Nagaki, T., et al.: Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting. Sustain. Energy Fuels 2, 2006–2015 (2018). https://doi.org/10.1039/c8se00118a

    Article  CAS  Google Scholar 

  137. Larrazábal, G.O., Strøm-Hansen, P., Heli, J.P., et al.: Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019). https://doi.org/10.1021/acsami.9b13081

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, J., Luo, W., Züttel, A.: Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J. Catal. 385, 140–145 (2020). https://doi.org/10.1016/j.jcat.2020.03.013

    Article  CAS  Google Scholar 

  139. Li, Y.C., Yan, Z.F., Hitt, J., et al.: Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018). https://doi.org/10.1002/adsu.201700187

    Article  CAS  Google Scholar 

  140. Wheeler, D.G., Mowbray, B.A.W., Reyes, A., et al.: Quantification of water transport in a CO2 electrolyzer. Energy Environ. Sci. 13, 5126–5134 (2020). https://doi.org/10.1039/d0ee02219e

    Article  CAS  Google Scholar 

  141. Sullivan, I., Han, L.H., Lee, S.H., et al.: A hybrid catalyst-bonded membrane device for electrochemical carbon monoxide reduction at different relative humidities. ACS Sustain. Chem. Eng. 7, 16964–16970 (2019). https://doi.org/10.1021/acssuschemeng.9b04959

    Article  CAS  Google Scholar 

  142. Ripatti, D.S., Veltman, T.R., Kanan, M.W.: Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 2581 (2019). https://doi.org/10.1016/j.joule.2018.10.007

    Article  CAS  Google Scholar 

  143. Romero Cuellar, N.S., Wiesner-Fleischer, K., Fleischer, M., et al.: Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities. Electrochim. Acta 307, 164–175 (2019). https://doi.org/10.1016/j.electacta.2019.03.142

    Article  CAS  Google Scholar 

  144. Ou, L.H., Chen, J.X.: Theoretical insights into the effect of the overpotential on CO electroreduction mechanisms on Cu(111): Regulation and application of electrode potentials from a CO coverage-dependent electrochemical model. Phys. Chem. Chem. Phys. 22, 62–73 (2020). https://doi.org/10.1039/C9CP05043D

    Article  CAS  Google Scholar 

  145. Cheng, T., Xiao, H., Goddard, W.A., III.: Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. USA 114, 1795–1800 (2017). https://doi.org/10.1073/pnas.1612106114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bagger, A., Arnarson, L., Hansen, M.H., et al.: Electrochemical CO reduction: A property of the electrochemical interface. J. Am. Chem. Soc. 141, 1506–1514 (2019). https://doi.org/10.1021/jacs.8b08839

    Article  CAS  PubMed  Google Scholar 

  147. Feng, X.F., Jiang, K.L., Fan, S.S., et al.: A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Central Sci. 2, 169–174 (2016). https://doi.org/10.1021/acscentsci.6b00022

    Article  CAS  Google Scholar 

  148. Malkani, A., Dunwell, M., Xu, B.J.: Operando spectroscopic investigations of copper and oxide-derived copper catalysts for electrochemical CO reduction. ACS Catal. 9, 474–478 (2019). https://doi.org/10.1021/acscatal.8b04269

    Article  CAS  Google Scholar 

  149. Cheng, T., Xiao, H., Goddard, W.A.: Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017). https://doi.org/10.1021/jacs.7b03300

    Article  CAS  PubMed  Google Scholar 

  150. Raciti, D., Cao, L., Livi, K.J.T., et al.: Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 7, 4467–4472 (2017). https://doi.org/10.1021/acscatal.7b01124

    Article  CAS  Google Scholar 

  151. Zhang, H.Y., Zhang, Y.J., Li, Y.Y., et al.: Cu nanowire-catalyzed electrochemical reduction of CO or CO2. Nanoscale 11, 12075–12079 (2019). https://doi.org/10.1039/C9NR03170G

    Article  CAS  PubMed  Google Scholar 

  152. Wang, L., Nitopi, S., Wong, A.B., et al.: Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2, 702–708 (2019). https://doi.org/10.1038/s41929-019-0301-z

    Article  CAS  Google Scholar 

  153. Luc, W., Fu, X.B., Shi, J.J., et al.: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019). https://doi.org/10.1038/s41929-019-0269-8

    Article  CAS  Google Scholar 

  154. Clark, E.L., Wong, J., Garza, A.J., et al.: Explaining the incorporation of oxygen derived from solvent water into the oxygenated products of CO reduction over Cu. J. Am. Chem. Soc. 141, 4191–4193 (2019). https://doi.org/10.1021/jacs.8b13201

    Article  CAS  PubMed  Google Scholar 

  155. Li, J., Che, F.L., Pang, Y.J., et al.: Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 1–9 (2018). https://doi.org/10.1038/s41467-018-07032-0

    Article  CAS  Google Scholar 

  156. Zhuang, T.T., Pang, Y.J., Liang, Z.Q., et al.: Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018). https://doi.org/10.1038/s41929-018-0168-4

    Article  CAS  Google Scholar 

  157. Pang, Y.J., Li, J., Wang, Z.Y., et al.: Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019). https://doi.org/10.1038/s41929-019-0225-7

    Article  CAS  Google Scholar 

  158. Costentin, C., Drouet, S., Robert, M., et al.: A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012). https://doi.org/10.1126/science.1224581

    Article  CAS  PubMed  Google Scholar 

  159. Karunadasa, H.I., Montalvo, E., Sun, Y., et al.: A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012). https://doi.org/10.1126/science.1215868

    Article  CAS  PubMed  Google Scholar 

  160. Yin, Q., Tan, J.M., Besson, C., et al.: A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010). https://doi.org/10.1126/science.1185372

    Article  CAS  PubMed  Google Scholar 

  161. Torbensen, K., Joulié, D., Ren, S.X., et al.: Molecular catalysts boost the rate of electrolytic CO2 reduction. ACS Energy Lett. 5, 1512–1518 (2020). https://doi.org/10.1021/acsenergylett.0c00536

    Article  CAS  Google Scholar 

  162. Boutin, E., Wang, M., Lin, J.C., et al.: Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem.-Int. Edit. 58, 16172–16176 (2019). https://doi.org/10.1002/anie.201909257

    Article  CAS  Google Scholar 

  163. Gong, M., Cao, Z., Liu, W., et al.: Supramolecular porphyrin cages assembled at molecular–materials interfaces for electrocatalytic CO reduction. ACS Central Sci. 3, 1032–1040 (2017). https://doi.org/10.1021/acscentsci.7b00316

    Article  CAS  Google Scholar 

  164. He, T.W., Kour, G., Mao, X., et al.: Cuδ+ active sites stabilization through Mott-Schottky effect for promoting highly efficient conversion of carbon monoxide into n-propanol. J. Catal. 382, 49–56 (2020). https://doi.org/10.1016/j.jcat.2019.12.015

    Article  CAS  Google Scholar 

  165. Li, Y.F., Qian, Y.M., Ji, Y.J., et al.: Improving selectivity of CO reduction via reducing the coordination of critical intermediates. J. Mater. Chem. A 7, 24000–24004 (2019). https://doi.org/10.1039/c9ta06529f

    Article  CAS  Google Scholar 

  166. Ma, T., Fan, Q., Li, X., et al.: Graphene-based materials for electrochemical CO2 reduction. J. CO2 Util. 30, 168–182 (2019). https://doi.org/10.1016/j.jcou.2019.02.001

    Article  CAS  Google Scholar 

  167. Cui, H.J., Guo, Y.B., Guo, L.M., et al.: Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J. Mater. Chem. A 6, 18782–18793 (2018). https://doi.org/10.1039/c8ta07430e

    Article  CAS  Google Scholar 

  168. Huang, J., Mensi, M., Oveisi, E., et al.: Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019)

    Article  CAS  Google Scholar 

  169. Wang, L., Higgins, D.C., Ji, Y.F., et al.: Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proc. Natl. Acad. Sci. U. S. A. 117, 12572–12575 (2020). https://doi.org/10.1073/pnas.1821683117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, X., Wang, Z.Y., Zhuang, T.T., et al.: Efficient upgrading of CO to C3 fuel using asymmetric C–C coupling active sites. Nat. Commun. 10, 1–7 (2019). https://doi.org/10.1038/s41467-019-13190-6

    Article  CAS  Google Scholar 

  171. Martić, N., Reller, C., MacAuley, C., et al.: Ag2Cu2O3—catalyst template material for selective electroreduction of CO to C2+ products. Energy Environ. Sci. 13, 2993–3006 (2020). https://doi.org/10.1039/D0EE01100B

    Article  Google Scholar 

  172. Pedersen, J.K., Batchelor, T.A.A., Bagger, A., et al.: High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 10, 2169–2176 (2020). https://doi.org/10.1021/acscatal.9b04343

    Article  CAS  Google Scholar 

  173. Nellaiappan, S., Katiyar, N.K., Kumar, R., et al.: High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 10, 3658–3663 (2020). https://doi.org/10.1021/acscatal.9b04302

    Article  CAS  Google Scholar 

  174. Li, Y.L., Cheng, W.R., Su, H., et al.: Operando infrared spectroscopic insights into the dynamic evolution of liquid-solid (photo)electrochemical interfaces. Nano Energy 77, 105121 (2020). https://doi.org/10.1016/j.nanoen.2020.105121

    Article  CAS  Google Scholar 

  175. Gattrell, M., Gupta, N., Co, A.: A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006). https://doi.org/10.1016/j.jelechem.2006.05.013

    Article  CAS  Google Scholar 

  176. Schouten, K.J.P., Kwon, Y., van der Ham, C.J.M., et al.: A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902 (2011). https://doi.org/10.1039/c1sc00277e

    Article  CAS  Google Scholar 

  177. Pérez-Gallent, E., Figueiredo, M.C., Calle-Vallejo, F., et al.: Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem.-Int. Edit. 56, 3621–3624 (2017). https://doi.org/10.1002/anie.201700580

    Article  CAS  Google Scholar 

  178. Scott, S.B., Hogg, T.V., Landers, A.T., et al.: Absence of oxidized phases in Cu under CO reduction conditions. ACS Energy Lett. 4, 803–804 (2019). https://doi.org/10.1021/acsenergylett.9b00172

    Article  CAS  Google Scholar 

  179. Itaya, K.: In situ scanning tunneling microscopy in electrolyte solutions. Prog. Surf. Sci. 58, 121–247 (1998). https://doi.org/10.1016/s0079-6816(98)00022-7

    Article  CAS  Google Scholar 

  180. Kim, Y.G., Baricuatro, J.H., Javier, A., et al.: The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: A study by operando EC-STM. Langmuir 30, 15053–15056 (2014). https://doi.org/10.1021/la504445g

    Article  CAS  PubMed  Google Scholar 

  181. Kim, Y.G., Javier, A., Baricuatro, J.H., et al.: Regulating the product distribution of CO reduction by the atomic-level structural modification of the Cu electrode surface. Electrocatalysis 7, 391–399 (2016). https://doi.org/10.1007/s12678-016-0314-1

    Article  CAS  Google Scholar 

  182. Tsang, C.F., Javier, A.C., Kim, Y.G., et al.: Potential-dependent adsorption of CO and its low-overpotential reduction to CH3CH2OH on Cu(511) surface reconstructed from Cu(pc): Operando studies by seriatim STM-EQCN-DEMS. J. Electrochem. Soc. 165, J3350–J3354 (2018). https://doi.org/10.1149/2.0451815jes

    Article  CAS  Google Scholar 

  183. Baricuatro, J.H., Kim, Y.G., Korzeniewski, C.L., et al.: Tracking the prelude of the electroreduction of carbon monoxide via its interaction with Cu(100): Studies by operando scanning tunneling microscopy and infrared spectroscopy. Catal. Today 358, 210–214 (2020). https://doi.org/10.1016/j.cattod.2020.01.028

    Article  CAS  Google Scholar 

  184. Wang, Y.X., Shen, H., Livi, K.J.T., et al.: Copper nanocubes for CO2 reduction in gas diffusion electrodes. Nano Lett. 19, 8461–8468 (2019). https://doi.org/10.1021/acs.nanolett.9b02748

    Article  CAS  PubMed  Google Scholar 

  185. Wang, Z.N., Yang, G., Zhang, Z.R., et al.: Selectivity on etching: Creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano 10, 4559–4564 (2016). https://doi.org/10.1021/acsnano.6b00602

    Article  CAS  PubMed  Google Scholar 

  186. Loupe, N., Doan, J., Smotkin, E.S.: Twenty years of operando IR, X-ray absorption, and Raman spectroscopy: direct methanol and hydrogen fuel cells. Catal. Today 283, 11–26 (2017). https://doi.org/10.1016/j.cattod.2016.06.012

    Article  CAS  Google Scholar 

  187. Lewis, E.A., Kendrick, I., Jia, Q.Y., et al.: Operando X-ray absorption and infrared fuel cell spectroscopy. Electrochim. Acta 56, 8827–8832 (2011). https://doi.org/10.1016/j.electacta.2011.07.091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Changli Li acknowledges financial funding from National Natural Science Foundation of China (No. 22002191). Qinghua Liu acknowledges funding from the National Natural Science Foundation of China (U1932212 and 11875257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingfu He or Changli Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Li, Y., Huang, A. et al. Electrolyzer and Catalysts Design from Carbon Dioxide to Carbon Monoxide Electrochemical Reduction. Electrochem. Energy Rev. 4, 680–717 (2021). https://doi.org/10.1007/s41918-021-00100-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00100-y

Keywords

Navigation