Skip to main content

Advertisement

Log in

3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Increasing concerns over climate change and energy shortage have driven the development of clean energy devices such as batteries, supercapacitors, fuel cells and solar water splitting in the past decades. And among potential device materials, 3D hierarchical carbon-rich micro-/nanomaterials (3D HCMNs) have come under intense scrutiny because they can prevent the stacking and bundling of low-dimensional building blocks to not only shorten diffusion distances for matter and charge to achieve high-energy-high-power storage but also greatly expose active sites to achieve highly active, durable and efficient catalysis. Based on this, this review will summarize the synthetic strategies and formation mechanisms of 3D HCMNs, including 3D nanocarbons, polymers, COFs/MOFs, templated carbons and derived carbon-based hybrids with a focus on 3D superstructures such as urchins, flowers, hierarchical tubular structures as well as nanoarrays including nanotube, nanofiber and nanosheet arrays. This review will also discuss the application of 3D HCMNs in energy storage and catalysis systems, including batteries, supercapacitors, electrocatalysis and photo(electro)catalysis. Overall, this review will provide a comprehensive overview of the recent progress of 3D HCMNs in terms of preparation strategies, formation mechanisms, structural diversities and electrochemical applications to provide a guideline for the rational design and structure–function exploration of 3D hierarchical nanomaterials from different sources beyond carbon-based species.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Chu, S., Cui, Y., Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834

    Article  CAS  PubMed  Google Scholar 

  2. Pomerantseva, E., Bonaccorso, F., Feng, X., et al.: Energy storage: the future enabled by nanomaterials. Science. (2019). https://doi.org/10.1126/science.aan8285

  3. Yun, Q.B., Lu, Q.P., Zhang, X., et al.: Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Ed. 57, 626–646 (2018). https://doi.org/10.1002/anie.201706426

    Article  CAS  Google Scholar 

  4. Li, Z., Liu, Z., Sun, H.Y., et al.: Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem. Rev. 115, 7046–7117 (2015). https://doi.org/10.1021/acs.chemrev.5b00102

    Article  CAS  PubMed  Google Scholar 

  5. Tang, C., Wang, H.F., Huang, J.Q., et al.: 3D hierarchical porous graphene-based energy materials: synthesis, functionalization, and application in energy storage and conversion. Electrochem. Energy Rev. 2, 332–371 (2019). https://doi.org/10.1007/s41918-019-00033-7

    Article  CAS  Google Scholar 

  6. Li, K., Liang, M.Y., Wang, H., et al.: 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020). https://doi.org/10.1002/adfm.202000842

    Article  CAS  Google Scholar 

  7. Nardecchia, S., Carriazo, D., Ferrer, M.L., et al.: Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42, 794–830 (2013). https://doi.org/10.1039/c2cs35353a

    Article  CAS  PubMed  Google Scholar 

  8. Xu, Y., Zhou, M., Lei, Y.: Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Adv. Energy Mater. 6, 1502514 (2016). https://doi.org/10.1002/aenm.201502514

    Article  CAS  Google Scholar 

  9. Sun, H.T., Zhu, J., Baumann, D., et al.: Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019). https://doi.org/10.1038/s41578-018-0069-9

    Article  Google Scholar 

  10. Cong, L.N., Xie, H.M., Li, J.H.: Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 7, 1601906 (2017). https://doi.org/10.1002/aenm.201601906

    Article  CAS  Google Scholar 

  11. Jorge, A.B., Jervis, R., Periasamy, A.P., et al.: 3D carbon materials for efficient oxygen and hydrogen electrocatalysis. Adv. Energy Mater. 10, 1902494 (2020). https://doi.org/10.1002/aenm.201902494

    Article  CAS  Google Scholar 

  12. Hou, J.G., Wu, Y.Z., Zhang, B., et al.: Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 29, 1808367 (2019). https://doi.org/10.1002/adfm.201808367

    Article  CAS  Google Scholar 

  13. Li, X., Yu, J.G., Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). https://doi.org/10.1039/c5cs00838g

    Article  CAS  PubMed  Google Scholar 

  14. Tang, S.T., Qiu, W.T., Xiao, S., et al.: Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells. Energy Environ. Sci. 13, 660–684 (2020). https://doi.org/10.1039/C9EE02986A

    Article  CAS  Google Scholar 

  15. Hao, Q., Jia, G.H., Wei, W., et al.: Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 13, 18–37 (2020). https://doi.org/10.1007/s12274-019-2589-z

    Article  CAS  Google Scholar 

  16. Lu, F.N., Neal, E.A., Nakanishi, T.: Self-assembled and nonassembled alkylated-fullerene materials. Acc. Chem. Res. 52, 1834–1843 (2019). https://doi.org/10.1021/acs.accounts.9b00217

    Article  CAS  PubMed  Google Scholar 

  17. Das, S., Presselt, M.: Progress and development in structural and optoelectronic tunability of supramolecular nonbonded fullerene assemblies. J. Mater. Chem. C 7, 6194–6216 (2019). https://doi.org/10.1039/c9tc00889f

    Article  CAS  Google Scholar 

  18. Babu, S.S., Möhwald, H., Nakanishi, T.: Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 39, 4021–4035 (2010). https://doi.org/10.1039/c000680g

    Article  CAS  PubMed  Google Scholar 

  19. Nakanishi, T., Ariga, K., Michinobu, T., et al.: Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. Small 3, 2019–2023 (2007). https://doi.org/10.1002/smll.200700647

    Article  CAS  PubMed  Google Scholar 

  20. Nakanishi, T., Michinobu, T., Yoshida, K., et al.: Nanocarbon superhydrophobic surfaces created from fullerene-based hierarchical supramolecular assemblies. Adv. Mater. 20, 443–446 (2008). https://doi.org/10.1002/adma.200701537

    Article  CAS  Google Scholar 

  21. Wang, J.B., Shen, Y.F., Kessel, S., et al.: Self-assembly made durable: water-repellent materials formed by cross-linking fullerene derivatives. Angew. Chem. Int. Ed. 48, 2166–2170 (2009). https://doi.org/10.1002/anie.200900106

    Article  CAS  Google Scholar 

  22. Zhang, X., Li, X.D., Ma, L.X., et al.: Electronic and electrochemical properties as well as flowerlike supramolecular assemblies of fulleropyrrolidines bearing ester substituents with different alkyl chain lengths. RSC Adv. 4, 60342–60348 (2014). https://doi.org/10.1039/C4RA10654G

    Article  CAS  Google Scholar 

  23. Zhang, X., Nakanishi, T., Ogawa, T., et al.: Flowerlike supramolecular architectures assembled from C60 equipped with a pyridine substituent. Chem. Commun. (Camb.) 46, 8752–8754 (2010). https://doi.org/10.1039/c0cc03331f

    Article  CAS  Google Scholar 

  24. Cha, S.I., Miyazawa, K., Kim, J.D.: Vertically well-aligned C60 microtube crystal array prepared using a solution-based, one-step process. Chem. Mater. 20, 1667–1669 (2008). https://doi.org/10.1021/cm702986f

    Article  CAS  Google Scholar 

  25. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  26. Zhang, S.C., Qian, L., Zhao, Q.C., et al.: Carbon nanotube: controlled synthesis determines its future. Sci. China Mater. 63, 16–34 (2020). https://doi.org/10.1007/s40843-019-9581-4

    Article  CAS  Google Scholar 

  27. Rao, R., Pint, C.L., Islam, A.E., et al.: Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 12, 11756–11784 (2018). https://doi.org/10.1021/acsnano.8b06511

    Article  CAS  PubMed  Google Scholar 

  28. Shah, K.A., Tali, B.A.: Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016). https://doi.org/10.1016/j.mssp.2015.08.013

    Article  CAS  Google Scholar 

  29. Hata, K., Futaba, D.N., Mizuno, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004). https://doi.org/10.1126/science.1104962

    Article  CAS  PubMed  Google Scholar 

  30. Cho, W., Schulz, M., Shanov, V.: Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon 72, 264–273 (2014). https://doi.org/10.1016/j.carbon.2014.01.074

    Article  CAS  Google Scholar 

  31. Gong, K.P., Du, F., Xia, Z.H., et al.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  32. Wang, H.Y., Moore, J.J.: Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 50, 1235–1242 (2012). https://doi.org/10.1016/j.carbon.2011.10.041

    Article  CAS  Google Scholar 

  33. Sharma, P., Pavelyev, V., Kumar, S., et al.: Analysis on the synthesis of vertically aligned carbon nanotubes: growth mechanism and techniques. J. Mater. Sci.: Mater. Electron. 31, 4399–4443 (2020). https://doi.org/10.1007/s10854-020-03021-6

  34. Arora, N., Sharma, N.N.: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 50, 135–150 (2014). https://doi.org/10.1016/j.diamond.2014.10.001

    Article  CAS  Google Scholar 

  35. Cai, X.K., Cong, H.T., Liu, C.: Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon 50, 2726–2730 (2012). https://doi.org/10.1016/j.carbon.2012.02.031

    Article  CAS  Google Scholar 

  36. Hou, H., Reneker, D.: Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv. Mater. 16, 69–73 (2004). https://doi.org/10.1002/adma.200306205

    Article  CAS  Google Scholar 

  37. Zeng, Y.X., Zhang, X.Y., Qin, R.F., et al.: Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675

    Article  CAS  Google Scholar 

  38. Xia, B.Y., Yan, Y., Li, N., et al.: A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6

    Article  CAS  Google Scholar 

  39. Meng, J.S., Niu, C.J., Xu, L.H., et al.: General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 139, 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Z.L., Wu, R.B., Liu, Y., et al.: Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30, 1802011 (2018). https://doi.org/10.1002/adma.201802011

    Article  CAS  Google Scholar 

  41. Lee, S.H., Sridhar, V., Jung, J.H., et al.: Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7, 4242–4251 (2013). https://doi.org/10.1021/nn4007253

    Article  CAS  PubMed  Google Scholar 

  42. Adeniran, B., Mokaya, R.: Low temperature synthesized carbon nanotube superstructures with superior CO2and hydrogen storage capacity. J. Mater. Chem. A 3, 5148–5161 (2015). https://doi.org/10.1039/c4ta06539e

    Article  CAS  Google Scholar 

  43. Chen, L.F., Feng, Y., Liang, H.W., et al.: Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv. Energy Mater. 7, 1700826 (2017). https://doi.org/10.1002/aenm.201700826

    Article  CAS  Google Scholar 

  44. Jin, S.L., Deng, H.G., Long, D.H., et al.: Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. J. Power Sources 196, 3887–3893 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.078

    Article  CAS  Google Scholar 

  45. Shi, W.B., Zhou, X.C., Li, J.Y., et al.: High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes. Environ. Sci. Technol. Lett. 5, 692–700 (2018). https://doi.org/10.1021/acs.estlett.8b00397

    Article  CAS  Google Scholar 

  46. Luo, J.Y., Jang, H.D., Sun, T., et al.: Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5, 8943–8949 (2011). https://doi.org/10.1021/nn203115u

    Article  CAS  PubMed  Google Scholar 

  47. Luo, J.Y., Zhao, X., Wu, J.S., et al.: Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012). https://doi.org/10.1021/jz3006892

    Article  CAS  PubMed  Google Scholar 

  48. Chen, C., Xu, Z., Han, Y., et al.: Redissolution of flower-shaped graphene oxide powder with high density. ACS Appl. Mater. Interfaces. 8, 8000–8007 (2016). https://doi.org/10.1021/acsami.6b00126

    Article  CAS  PubMed  Google Scholar 

  49. Park, S.H., Kim, H.K., Yoon, S.B., et al.: Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem. Mater. 27, 457–465 (2015). https://doi.org/10.1021/cm5034244

    Article  CAS  Google Scholar 

  50. Lee, J.Y., Lee, K.H., Kim, Y.J., et al.: Sea-urchin-inspired 3D crumpled graphene balls using simultaneous etching and reduction process for high-density capacitive energy storage. Adv. Funct. Mater. 25, 3606–3614 (2015). https://doi.org/10.1002/adfm.201404507

    Article  CAS  Google Scholar 

  51. Jin, H.L., Bu, Y.F., Li, J., et al.: Strong graphene 3D assemblies with high elastic recovery and hardness. Adv. Mater. 30, 1707424 (2018). https://doi.org/10.1002/adma.201707424

    Article  CAS  Google Scholar 

  52. Chen, J., Bo, Z., Lu, G.: Vertically-Oriented Graphene. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15302-5

  53. Bo, Z., Mao, S., Han, Z.J., et al.: Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44, 2108–2121 (2015). https://doi.org/10.1039/c4cs00352g

    Article  CAS  PubMed  Google Scholar 

  54. Wang, S.G., Wang, J.J., Miraldo, P., et al.: High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Appl. Phys. Lett. 89, 183103 (2006). https://doi.org/10.1063/1.2372708

    Article  CAS  Google Scholar 

  55. Ren, G.F., Pan, X., Bayne, S., et al.: Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 71, 94–101 (2014). https://doi.org/10.1016/j.carbon.2014.01.017

    Article  CAS  Google Scholar 

  56. Bo, Z., Yu, K.H., Lu, G.H., et al.: Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission. Energy Environ. Sci. 4, 2525–2528 (2011). https://doi.org/10.1039/C1EE01140E

    Article  CAS  Google Scholar 

  57. Chang, H.C., Chang, H.Y., Su, W.J., et al.: Preparation and electrochemical characterization of NiO nanostructure-carbon nanowall composites grown on carbon cloth. Appl. Surf. Sci. 258, 8599–8602 (2012). https://doi.org/10.1016/j.apsusc.2012.05.057

    Article  CAS  Google Scholar 

  58. Yu, K.H., Lu, G.H., Bo, Z., et al.: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2, 1556–1562 (2011). https://doi.org/10.1021/jz200641c

    Article  CAS  Google Scholar 

  59. Zhu, M.Y., Wang, J.J., Holloway, B.C., et al.: A mechanism for carbon nanosheet formation. Carbon 45, 2229–2234 (2007). https://doi.org/10.1016/j.carbon.2007.06.017

    Article  CAS  Google Scholar 

  60. Zhao, J., Shaygan, M., Eckert, J., et al.: A growth mechanism for free-standing vertical graphene. Nano Lett. 14, 3064–3071 (2014). https://doi.org/10.1021/nl501039c

    Article  CAS  PubMed  Google Scholar 

  61. Fan, Z.J., Yan, J., Zhi, L.J., et al.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010). https://doi.org/10.1002/adma.201001029

    Article  CAS  PubMed  Google Scholar 

  62. Du, F., Yu, D.S., Dai, L.M., et al.: Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011). https://doi.org/10.1021/cm2021214

    Article  CAS  Google Scholar 

  63. Mao, B.S., Wen, Z.H., Bo, Z., et al.: Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors. ACS Appl. Mater. Interfaces. 6, 9881–9889 (2014). https://doi.org/10.1021/am502604u

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, Y., Li, L., Zhang, C.G., et al.: A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 3, 1225 (2012). https://doi.org/10.1038/ncomms2234

    Article  CAS  PubMed  Google Scholar 

  65. Lee, D.H., Kim, J.E., Han, T.H., et al.: Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 22, 1247–1252 (2010). https://doi.org/10.1002/adma.200903063

    Article  CAS  PubMed  Google Scholar 

  66. Xue, Y., Ding, Y., Niu, J., et al.: Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci Adv 1, 1400198 (2015). https://doi.org/10.1126/sciadv.1400198

    Article  CAS  Google Scholar 

  67. Xue, Y.R., Li, Y.L., Zhang, J., et al.: 2D graphdiyne materials: challenges and opportunities in energy field. Sci. China Chem. 61, 765–786 (2018). https://doi.org/10.1007/s11426-018-9270-y

    Article  CAS  Google Scholar 

  68. Li, G.X., Li, Y.L., Qian, X.M., et al.: Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 115, 2611–2615 (2011). https://doi.org/10.1021/jp107996f

    Article  CAS  Google Scholar 

  69. Qian, X., Ning, Z., Li, Y., et al.: Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 41, 730–733 (2012). https://doi.org/10.1039/c1dt11641j

    Article  CAS  PubMed  Google Scholar 

  70. Gao, X., Zhu, Y., Yi, D., et al.: Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci Adv 4, eaat6378 (2018). https://doi.org/10.1126/sciadv.aat6378

  71. Xue, Y.R., Guo, Y., Yi, Y.P., et al.: Self-catalyzed growth of Cu@graphdiyne core-shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy 30, 858–866 (2016). https://doi.org/10.1016/j.nanoen.2016.09.005

    Article  CAS  Google Scholar 

  72. Wang, S.S., Liu, H.B., Kan, X.N., et al.: Superlyophilicity-facilitated synthesis reaction at the microscale: ordered graphdiyne stripe arrays. Small 13, 1602265 (2017). https://doi.org/10.1002/smll.201602265

    Article  CAS  Google Scholar 

  73. Zhou, J.Y., Gao, X., Liu, R., et al.: Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 137, 7596–7599 (2015). https://doi.org/10.1021/jacs.5b04057

    Article  CAS  PubMed  Google Scholar 

  74. Gao, X., Ren, H.Y., Zhou, J.Y., et al.: Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem. Mater. 29, 5777–5781 (2017). https://doi.org/10.1021/acs.chemmater.7b01838

    Article  CAS  Google Scholar 

  75. Gao, X., Li, J., Du, R., et al.: Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 29, 1605308 (2017). https://doi.org/10.1002/adma.201605308

    Article  CAS  Google Scholar 

  76. Li, J.Q., Xu, J., Xie, Z.Q., et al.: Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application. Adv. Mater. 30, 1800548 (2018). https://doi.org/10.1002/adma.201800548

    Article  CAS  Google Scholar 

  77. Li, J., Gao, X., Liu, B., et al.: Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 138, 3954–3957 (2016). https://doi.org/10.1021/jacs.5b12758

    Article  CAS  PubMed  Google Scholar 

  78. Li, J., Gao, X., Jiang, X., et al.: Graphdiyne: a promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution. ACS Catal. 7, 5209–5213 (2017). https://doi.org/10.1021/acscatal.7b01781

    Article  CAS  Google Scholar 

  79. Si, H.Y., Deng, Q.X., Chen, L.C., et al.: Hierarchical Graphdiyne@NiFe layered double hydroxide heterostructures as a bifunctional electrocatalyst for overall water splitting. J. Alloy. Compd. 794, 261–267 (2019). https://doi.org/10.1016/j.jallcom.2019.04.150

    Article  CAS  Google Scholar 

  80. Berry, G.C., Bockstaller, M.R., Matyjaszewski, K.: Celebrating 100 years of polymer science. Prog. Polym. Sci. 100, 101193 (2020). https://doi.org/10.1016/j.progpolymsci.2019.101193

    Article  CAS  Google Scholar 

  81. Su, Z.B., Zhang, R.M., Yan, X.Y., et al.: The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: a molecular LEGO approach. Prog. Polym. Sci. 103, 101230 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101230

    Article  CAS  Google Scholar 

  82. Wang, K., Wu, H.P., Meng, Y.N., et al.: Conducting polymer nanowire arrays for high performance supercapacitors. Small 10, 14–31 (2014). https://doi.org/10.1002/smll.201301991

    Article  CAS  PubMed  Google Scholar 

  83. Martin, C.R., Parthasarathy, R., Menon, V.: Template synthesis of electronically conductive polymers: preparation of thin films. Electrochim. Acta 39, 1309–1313 (1994). https://doi.org/10.1016/0013-4686(94)E0052-2

    Article  CAS  Google Scholar 

  84. Cao, Y.Y., Mallouk, T.E.: Morphology of template-grown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire arrays. Chem. Mater. 20, 5260–5265 (2008). https://doi.org/10.1021/cm801028a

    Article  CAS  Google Scholar 

  85. Wei, Y., Hu, Q., Cao, Y.H., et al.: Polypyrrole nanotube arrays on carbonized cotton textile for aqueous sodium battery. Org. Electron. 46, 211–217 (2017). https://doi.org/10.1016/j.orgel.2017.04.008

    Article  CAS  Google Scholar 

  86. Pan, L. ., Pu, L., Shi, Y., et al.: Synthesis of polyaniline nanotubes with a reactive template of manganese oxide. Adv. Mater. 19, 461–464 (2007). https://doi.org/10.1002/adma.200602073

  87. Liang, L., Liu, J., Windisch Jr., C.F., et al.: Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. 41, 3665–3668 (2002). https://doi.org/10.1002/1521-3773(20021004)41:193665:aid-anie3665%3e3.0.co;2-b

    Article  CAS  Google Scholar 

  88. Wang, K., Huang, J.Y., Wei, Z.X.: Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114, 8062–8067 (2010). https://doi.org/10.1021/jp9113255

    Article  CAS  Google Scholar 

  89. Li, M., Wei, Z.X., Jiang, L.: Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J. Mater. Chem. 18, 2276–2280 (2008). https://doi.org/10.1039/b800289d

    Article  CAS  Google Scholar 

  90. Huang, J.Y., Wang, K., Wei, Z.X.: Conducting polymernanowire arrays with enhanced electrochemical performance. J. Mater. Chem. 20, 1117–1121 (2010). https://doi.org/10.1039/b919928d

    Article  CAS  Google Scholar 

  91. Wang, Z.J., Jiao, L.S., You, T.Y., et al.: Electrochemical preparation of self-doped poly(o-aminobenzenesulfonic acid-co-aniline) microflowers. Electrochem. Commun. 7, 875–878 (2005). https://doi.org/10.1016/j.elecom.2005.06.004

    Article  CAS  Google Scholar 

  92. Chiou, N.R., Lu, C., Guan, J., et al.: Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2, 354–357 (2007). https://doi.org/10.1038/nnano.2007.147

    Article  CAS  PubMed  Google Scholar 

  93. Wang, Y.G., Li, H.Q., Xia, Y.Y.: Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18, 2619–2623 (2006). https://doi.org/10.1002/adma.200600445

    Article  CAS  Google Scholar 

  94. Xu, J.J., Wang, K., Zu, S.Z., et al.: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4, 5019–5026 (2010). https://doi.org/10.1021/nn1006539

    Article  CAS  PubMed  Google Scholar 

  95. Wang, K., Zhao, P., Zhou, X.M., et al.: Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J. Mater. Chem. 21, 16373–16378 (2011). https://doi.org/10.1039/c1jm13722k

    Article  CAS  Google Scholar 

  96. Wang, K., Zou, W.J., Quan, B.G., et al.: An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 1, 1068–1072 (2011). https://doi.org/10.1002/aenm.201100488

    Article  CAS  Google Scholar 

  97. Zou, W.J., Quan, B.G., Wang, K., et al.: Patterned growth of polyaniline nanowire arrays on a flexible substrate for high-performance gas sensing. Small 7, 3287–3291 (2011). https://doi.org/10.1002/smll.201100889

    Article  CAS  PubMed  Google Scholar 

  98. Wang, K., Wu, H.P., Meng, Y.N., et al.: Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 5, 8384–8389 (2012). https://doi.org/10.1039/c2ee21643d

    Article  CAS  Google Scholar 

  99. Meng, Y.N., Wang, K., Zhang, Y.J., et al.: Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater. 25, 6985–6990 (2013). https://doi.org/10.1002/adma.201303529

    Article  CAS  PubMed  Google Scholar 

  100. Wang, K., Meng, Q., Zhang, Y., et al.: High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 25, 1494–1498 (2013). https://doi.org/10.1002/adma.201204598

    Article  CAS  PubMed  Google Scholar 

  101. Zhou, C.Q., Han, J., Guo, R.: Controllable synthesis of polyaniline multidimensional architectures: from plate-like structures to flower-like superstructures. Macromolecules 41, 6473–6479 (2008). https://doi.org/10.1021/ma800500u

    Article  CAS  Google Scholar 

  102. Yang, X.W., Lin, Z.X., Zheng, J.X., et al.: Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 8, 8650–8657 (2016). https://doi.org/10.1039/c6nr00468g

    Article  CAS  PubMed  Google Scholar 

  103. Liaw, D.J., Wang, K.L., Huang, Y.C., et al.: Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 37, 907–974 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005

    Article  CAS  Google Scholar 

  104. Ding, Y.C., Hou, H.Q., Zhao, Y., et al.: Electrospun polyimide nanofibers and their applications. Prog. Polym. Sci. 61, 67–103 (2016). https://doi.org/10.1016/j.progpolymsci.2016.06.006

    Article  CAS  Google Scholar 

  105. Inagaki, M., Ohta, N., Hishiyama, Y.: Aromatic polyimides as carbon precursors. Carbon 61, 1–21 (2013). https://doi.org/10.1016/j.carbon.2013.05.035

    Article  CAS  Google Scholar 

  106. Lin, J., Peng, Z., Liu, Y., et al.: Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). https://doi.org/10.1038/ncomms6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu, Z.X., Zhuang, X.D., Yang, C.Q., et al.: Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28, 1981–1987 (2016). https://doi.org/10.1002/adma.201505131

    Article  CAS  PubMed  Google Scholar 

  108. Gu, J.N., Du, Z.G., Zhang, C., et al.: Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage. Adv. Energy Mater. 6, 1600917 (2016). https://doi.org/10.1002/aenm.201600917

    Article  CAS  Google Scholar 

  109. Wu, Q., Liu, J.Q., Yuan, C.P., et al.: Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries. Appl. Surf. Sci. 425, 1082–1088 (2017). https://doi.org/10.1016/j.apsusc.2017.07.118

    Article  CAS  Google Scholar 

  110. Chen, C.W., Huang, H., Yu, Y.K., et al.: Template-free synthesis of hierarchical porous carbon with controlled morphology for CO2 efficient capture. Chem. Eng. J. 353, 584–594 (2018). https://doi.org/10.1016/j.cej.2018.07.161

    Article  CAS  Google Scholar 

  111. Zhu, C.X., Yang, B., Zhang, Y.N., et al.: High-level pyrrolic/pyridinic N-doped carbon nanoflakes from π-fused polyimide for anodic lithium storage. ChemistrySelect 2, 9007–9013 (2017). https://doi.org/10.1002/slct.201701552

    Article  CAS  Google Scholar 

  112. Zhao, G.G., Zou, G.Q., Qiu, X.Q., et al.: Rose-like N-doped porous carbon for advanced sodium storage. Electrochim. Acta 240, 24–30 (2017). https://doi.org/10.1016/j.electacta.2017.04.057

    Article  CAS  Google Scholar 

  113. Li, J., Luo, M., Ba, Z.H., et al.: Hierarchical multicarbonyl polyimide architectures as promising anode active materials for high-performance lithium/sodium ion batteries. J. Mater. Chem. A 7, 19112–19119 (2019). https://doi.org/10.1039/C9TA05552E

    Article  CAS  Google Scholar 

  114. Xu, Z.X., Lu, D., Ma, L., et al.: Hierarchically ordered carbon tube-sheet superstructure via template-directed self-assembly of polyimide. Chem. Eng. J. 364, 201–207 (2019). https://doi.org/10.1016/j.cej.2019.01.151

    Article  CAS  Google Scholar 

  115. Li, X.J., Chen, L., Huang, W., et al.: Green synthesis of polyimides and their CNT based nanohybrid shish-kebabs through reaction-induced crystallization of nylon-salt-type monomers in glycerol. Chin. J. Polym. Sci. 32, 1052–1059 (2014). https://doi.org/10.1007/s10118-014-1480-3

    Article  CAS  Google Scholar 

  116. Ahmad, A., Wu, H.P., Guo, Y.F., et al.: A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries. RSC Adv. 6, 33287–33294 (2016). https://doi.org/10.1039/C5RA27471K

    Article  CAS  Google Scholar 

  117. Wang, Y.H., Cui, X.Q., Zhang, Y.Y., et al.: Achieving high aqueous energy storage via hydrogen-generation passivation. Adv. Mater. 28, 7626–7632 (2016). https://doi.org/10.1002/adma.201602583

    Article  CAS  PubMed  Google Scholar 

  118. Huang, G.X., Zhang, Y., Wang, L., et al.: Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon 125, 595–604 (2017). https://doi.org/10.1016/j.carbon.2017.09.103

    Article  CAS  Google Scholar 

  119. Chen, G.F., Cao, X.R., Wu, S.Q., et al.: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017). https://doi.org/10.1021/jacs.7b04393

    Article  CAS  PubMed  Google Scholar 

  120. Chen, L., Chen, Z.H., Li, X., et al.: Dynamic imine chemistry assisted reaction induced hetero-epitaxial crystallization: novel approach towards aromatic polymer/CNT nanohybrid shish-kebabs and related hybrid crystalline structures. Polymer 54, 1739–1745 (2013). https://doi.org/10.1016/j.polymer.2013.01.046

    Article  CAS  Google Scholar 

  121. Wu, H.P., Shevlin, S.A., Meng, Q.H., et al.: Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 26, 3338–3343 (2014). https://doi.org/10.1002/adma.201305452

    Article  CAS  PubMed  Google Scholar 

  122. Wang, Z.P., Ogata, H., Morimoto, S., et al.: Synthesis of carbon nanosheets from Kapton polyimide by microwave plasma treatment. Carbon 72, 421–424 (2014). https://doi.org/10.1016/j.carbon.2014.02.021

    Article  CAS  Google Scholar 

  123. Duy, L.X., Peng, Z.W., Li, Y.L., et al.: Laser-induced graphene fibers. Carbon 126, 472–479 (2018). https://doi.org/10.1016/j.carbon.2017.10.036

    Article  CAS  Google Scholar 

  124. Lee, H., Dellatore, S.M., Miller, W.M., et al.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007). https://doi.org/10.1126/science.1147241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qu, K.G., Wang, Y.H., Vasileff, A., et al.: Polydopamine-inspired nanomaterials for energy conversion and storage. J. Mater. Chem. A 6, 21827–21846 (2018). https://doi.org/10.1039/c8ta05245j

    Article  CAS  Google Scholar 

  126. Ma, F.X., Wu, H.B., Xia, B.Y., et al.: Hierarchical β-Mo2 C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. Engl. 54, 15395–15399 (2015). https://doi.org/10.1002/anie.201508715

    Article  CAS  PubMed  Google Scholar 

  127. Sun, L., Wang, C., Sun, Q., et al.: Self-assembly of hierarchical Ni-Mo-polydopamine microflowers and their conversion to a Ni-Mo2C/C composite for water splitting. Chem. - A Eur. J. 23, 4644–4650 (2017). https://doi.org/10.1002/chem.201605928

    Article  CAS  Google Scholar 

  128. Huang, Y., Gong, Q.F., Song, X.N., et al.: Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 10, 11337–11343 (2016). https://doi.org/10.1021/acsnano.6b06580

    Article  CAS  PubMed  Google Scholar 

  129. Chen, L., Jiang, H., Jiang, H.B., et al.: Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 7, 1602782 (2017). https://doi.org/10.1002/aenm.201602782

    Article  CAS  Google Scholar 

  130. Wang, C.L., Sun, L.S., Zhang, F.F., et al.: Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small 13, 1701246 (2017). https://doi.org/10.1002/smll.201701246

    Article  CAS  Google Scholar 

  131. Sun, L.S., Wang, C.L., Wang, X.X., et al.: Morphology evolution and control of Mo-polydopamine coordination complex from 2D single nanopetal to hierarchical microflowers. Small 14, 1800090 (2018). https://doi.org/10.1002/smll.201800090

    Article  CAS  Google Scholar 

  132. Zhang, J., Zhou, L., Sun, Q.J., et al.: Metal-organic coordination strategy for obtaining metal-decorated Mo-based complexes: multi-dimensional structural evolution and high-rate lithium-ion battery applications. Chem. - A Eur. J. 25, 8813–8819 (2019). https://doi.org/10.1002/chem.201900972

    Article  CAS  Google Scholar 

  133. Jiao, X.J., Liu, X.J., Wang, B.B., et al.: A controllable strategy for the self-assembly of WM nanocrystals/nitrogen-doped porous carbon superstructures (M = O, C, P, S, and Se) for sodium and potassium storage. J. Mater. Chem. A 8, 2047–2065 (2020). https://doi.org/10.1039/c9ta11312f

    Article  CAS  Google Scholar 

  134. Wang, X.C., Maeda, K., Thomas, A., et al.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317

    Article  CAS  PubMed  Google Scholar 

  135. Niu, W.H., Yang, Y.: Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett. 3, 2796–2815 (2018). https://doi.org/10.1021/acsenergylett.8b01594

    Article  CAS  Google Scholar 

  136. Jun, Y.S., Lee, E.Z., Wang, X.C., et al.: From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 23, 3661–3667 (2013). https://doi.org/10.1002/adfm.201203732

    Article  CAS  Google Scholar 

  137. Jun, Y.S., Park, J., Lee, S.U., et al.: Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 11083–11087 (2013). https://doi.org/10.1002/anie.201304034

    Article  CAS  Google Scholar 

  138. Shalom, M., Gimenez, S., Schipper, F., et al.: Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. Angew. Chem. Int. Ed. 53, 3654–3658 (2014). https://doi.org/10.1002/anie.201309415

    Article  CAS  Google Scholar 

  139. Zhang, J.S., Zhang, M.W., Yang, C., et al.: Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014). https://doi.org/10.1002/adma.201400573

    Article  CAS  PubMed  Google Scholar 

  140. Zhu, Y.P., Ren, T.Z., Yuan, Z.Y.: Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces. 7, 16850–16856 (2015). https://doi.org/10.1021/acsami.5b04947

    Article  CAS  PubMed  Google Scholar 

  141. Ma, T.Y., Ran, J.R., Dai, S., et al.: Phosphorus-doped graphitic carbon nitrides grown In Situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew. Chem. Int. Ed. 54, 4646–4650 (2015). https://doi.org/10.1002/anie.201411125

    Article  CAS  Google Scholar 

  142. Bian, S.W., Ma, Z., Song, W.G.: Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J. Phys. Chem. C 113, 8668–8672 (2009). https://doi.org/10.1021/jp810630k

    Article  CAS  Google Scholar 

  143. Yan, Y.Z., Chen, L., Dai, H.J., et al.: Morphosynthesis of nanostructured polyazomethines and carbon through constitutional dynamic chemistry controlled reaction induced crystallization process. Polymer 53, 1611–1616 (2012). https://doi.org/10.1016/j.polymer.2012.02.025

    Article  CAS  Google Scholar 

  144. Qiu, L.B., Jiang, Y., Sun, X.M., et al.: Surface-nanostructured cactus-like carbon microspheres for efficient photovoltaic devices. J. Mater. Chem. A 2, 15132–15138 (2014). https://doi.org/10.1039/c4ta02979h

    Article  CAS  Google Scholar 

  145. Higuchi, R., Tanoue, R., Sakaguchi, K., et al.: Vertically standing nanowalls of pristine poly(azomethine) on a graphite by chemical liquid deposition. Polymer 54, 3452–3457 (2013). https://doi.org/10.1016/j.polymer.2013.04.065

    Article  CAS  Google Scholar 

  146. Chen, S.C., Koshy, D.M., Tsao, Y., et al.: Highly tunable and facile synthesis of uniform carbon flower particles. J. Am. Chem. Soc. 140, 10297–10304 (2018). https://doi.org/10.1021/jacs.8b05825

    Article  CAS  PubMed  Google Scholar 

  147. Liu, Y.J., Liu, N., Yu, L.M., et al.: Design and synthesis of mint leaf-like polyacrylonitrile and carbon nanosheets for flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 362, 600–608 (2019). https://doi.org/10.1016/j.cej.2019.01.058

    Article  CAS  Google Scholar 

  148. Zhang, K., Geissler, A., Chen, X.L., et al.: Polymeric flower-like microparticles from self-assembled cellulose stearoyl esters. ACS Macro Lett. 4, 214–219 (2015). https://doi.org/10.1021/mz500788e

    Article  CAS  Google Scholar 

  149. Wang, Y.G., Tian, J., Deng, X., et al.: Polymeric flaky nanostructures from cellulose stearoyl esters for functional surfaces. Adv. Mater. Interfaces 3, 1600636 (2016). https://doi.org/10.1002/admi.201600636

    Article  CAS  Google Scholar 

  150. Diercks, C.S., Yaghi, O.M.: The atom, the molecule, and the covalent organic framework. Science 355. https://doi.org/10.1126/science.aal1585. (2017). https://doi.org/10.1126/science.aal1585

  151. Gao, X., Dong, Y., Li, S.W., et al.: MOFs and COFs for batteries and supercapacitors. Electrochem. Energy Rev. 3, 81–126 (2020). https://doi.org/10.1007/s41918-019-00055-1

    Article  Google Scholar 

  152. Feng, L., Wang, K.Y., Day, G.S., et al.: The chemistry of multi-component and hierarchical framework compounds. Chem. Soc. Rev. 48, 4823–4853 (2019). https://doi.org/10.1039/c9cs00250b

    Article  CAS  PubMed  Google Scholar 

  153. Kim, S., Park, C., Lee, M., et al.: Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv. Funct. Mater. 27, 1700925 (2017). https://doi.org/10.1002/adfm.201700925

    Article  CAS  Google Scholar 

  154. Sun, J.H., Klechikov, A., Moise, C., et al.: A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage. Angew. Chem. Int. Ed. 57, 1034–1038 (2018). https://doi.org/10.1002/anie.201710502

    Article  CAS  Google Scholar 

  155. Hu, X.H., Jian, J.H., Fang, Z.S., et al.: Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 22, 40–47 (2019). https://doi.org/10.1016/j.ensm.2018.12.021

    Article  Google Scholar 

  156. Wang, S., Zhang, Z.Y., Zhang, H.M., et al.: Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films. Matter 1, 1592–1605 (2019). https://doi.org/10.1016/j.matt.2019.08.019

    Article  Google Scholar 

  157. Wang, S., Yang, Y.H., Liu, P.W., et al.: Core-shell and yolk-shell covalent organic framework nanostructures with size-selective permeability. Cell Rep. Phys. Sci. 1, 100062 (2020). https://doi.org/10.1016/j.xcrp.2020.100062

    Article  Google Scholar 

  158. Zhao, R., Liang, Z.B., Zou, R.Q., et al.: Metal-organic frameworks for batteries. Joule 2, 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019

    Article  CAS  Google Scholar 

  159. Liao, P.Q., Shen, J.Q., Zhang, J.P.: Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 373, 22–48 (2018). https://doi.org/10.1016/j.ccr.2017.09.001

    Article  CAS  Google Scholar 

  160. Feng, L., Wang, K.Y., Powell, J., et al.: Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 1, 801–824 (2019). https://doi.org/10.1016/j.matt.2019.08.022

    Article  Google Scholar 

  161. Carné-Sánchez, A., Imaz, I., Cano-Sarabia, M., et al.: A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013). https://doi.org/10.1038/nchem.1569

    Article  CAS  PubMed  Google Scholar 

  162. Zou, L., Kitta, M., Hong, J., et al.: Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31, e1900440 (2019). https://doi.org/10.1002/adma.201900440

    Article  CAS  PubMed  Google Scholar 

  163. Yang, Y., Mao, K.T., Gao, S.Q., et al.: O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 30, 1801732 (2018). https://doi.org/10.1002/adma.201801732

    Article  CAS  Google Scholar 

  164. Guan, B.Y., Yu, L., (David) Lou, X.W.: A dual-metal–organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 9, 3092–3096 (2016). https://doi.org/10.1039/c6ee02171a

  165. Feng, L., Li, J.L., Day, G.S., et al.: Temperature-controlled evolution of nanoporous MOF crystallites into hierarchically porous superstructures. Chem 5, 1265–1274 (2019). https://doi.org/10.1016/j.chempr.2019.03.003

    Article  CAS  Google Scholar 

  166. Feng, L., Wang, K.Y., Yan, T.H., et al.: Porous crystalline spherulite superstructures. Chem 6, 460–471 (2020). https://doi.org/10.1016/j.chempr.2019.12.001

    Article  CAS  Google Scholar 

  167. Feng, L., Wang, K.Y., Yan, T.H., et al.: Seed-mediated evolution of hierarchical metal-organic framework quaternary superstructures. Chem Sci 11, 1643–1648 (2020). https://doi.org/10.1039/c9sc06064b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, Z.C., Chen, Y.F., He, S., et al.: Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem. Int. Ed. 126, 12725–12729 (2014). https://doi.org/10.1002/ange.201406484

    Article  Google Scholar 

  169. Yang, J., Zheng, C., Xiong, P.X., et al.: Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2, 19005–19010 (2014). https://doi.org/10.1039/c4ta04346d

    Article  CAS  Google Scholar 

  170. Jiao, Y., Pei, J., Chen, D.H., et al.: Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 1094–1102 (2017). https://doi.org/10.1039/c6ta09805c

    Article  CAS  Google Scholar 

  171. Xia, H.C., Zhang, J.N., Yang, Z., et al.: 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano - Micro Lett. 9, 43 (2017). https://doi.org/10.1007/s40820-017-0144-6

    Article  CAS  Google Scholar 

  172. Li, C., Hu, X.S., Lou, X.B., et al.: The organic-moiety-dominated Li + intercalation/deintercalation mechanism of a cobalt-based metal-organic framework. J. Mater. Chem. A 4, 16245–16251 (2016). https://doi.org/10.1039/C6TA06413B

    Article  CAS  Google Scholar 

  173. Yan, Y., Gu, P., Zheng, S.S., et al.: Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4, 19078–19085 (2016). https://doi.org/10.1039/c6ta08331e

    Article  CAS  Google Scholar 

  174. Zhu, Q.L., Xia, W., Akita, T., et al.: Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 28, 6391–6398 (2016). https://doi.org/10.1002/adma.201600979

    Article  CAS  PubMed  Google Scholar 

  175. Zhu, Q.L., Xia, W., Zheng, L.R., et al.: Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2, 504–511 (2017). https://doi.org/10.1021/acsenergylett.6b00686

    Article  CAS  Google Scholar 

  176. Wang, T.S., Kim, H.K., Liu, Y.J., et al.: Bottom-up formation of carbon-based structures with multilevel hierarchy from MOF-guest polyhedra. J. Am. Chem. Soc. 140, 6130–6136 (2018). https://doi.org/10.1021/jacs.8b02411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ma, T.Y., Dai, S., Jaroniec, M., et al.: Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925–13931 (2014). https://doi.org/10.1021/ja5082553

    Article  CAS  PubMed  Google Scholar 

  178. Zhang, C., Xiao, J., Lv, X., et al.: Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 4, 16516–16523 (2016). https://doi.org/10.1039/c6ta06314d

    Article  CAS  Google Scholar 

  179. Lu, X.F., Gu, L.F., Wang, J.W., et al.: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604437 (2017). https://doi.org/10.1002/adma.201604437

    Article  CAS  Google Scholar 

  180. Zhou, D., Ni, J.F., Li, L.: Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy 57, 711–717 (2019). https://doi.org/10.1016/j.nanoen.2019.01.010

    Article  CAS  Google Scholar 

  181. Zhang, G.H., Hou, S.C., Zhang, H., et al.: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 2400–2405 (2015). https://doi.org/10.1002/adma.201405222

    Article  CAS  PubMed  Google Scholar 

  182. Zhou, J., Dou, Y.B., Zhou, A., et al.: MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 7, 1602643 (2017). https://doi.org/10.1002/aenm.201602643

    Article  CAS  Google Scholar 

  183. Fang, G.Z., Zhou, J., Liang, C.W., et al.: MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26, 57–65 (2016). https://doi.org/10.1016/j.nanoen.2016.05.009

    Article  CAS  Google Scholar 

  184. Duan, J., Chen, S., Zhao, C.: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 15341 (2017). https://doi.org/10.1038/ncomms15341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Guan, C., Liu, X.M., Ren, W.N., et al.: Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7, 1602391 (2017). https://doi.org/10.1002/aenm.201602391

    Article  CAS  Google Scholar 

  186. Ji, D.X., Fan, L., Li, L.L., et al.: Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable Zinc-air batteries. Adv. Mater. 31, 1808267 (2019). https://doi.org/10.1002/adma.201808267

    Article  CAS  Google Scholar 

  187. Ji, D.X., Fan, L., Tao, L., et al.: The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem. Int. Ed. 58, 13840–13844 (2019). https://doi.org/10.1002/anie.201908736

    Article  CAS  Google Scholar 

  188. Wang, X., Liao, Z.Q., Fu, Y.B., et al.: Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Energy Storage Mater. 26, 157–164 (2020). https://doi.org/10.1016/j.ensm.2019.12.043

    Article  Google Scholar 

  189. Zhou, T., Shen, J.D., Wang, Z.S., et al.: Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv. Funct. Mater. 30, 1909159 (2020). https://doi.org/10.1002/adfm.201909159

    Article  CAS  Google Scholar 

  190. Falcaro, P., Okada, K., Hara, T., et al.: Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 16, 342–348 (2017). https://doi.org/10.1038/nmat4815

    Article  CAS  PubMed  Google Scholar 

  191. Cai, G.R., Zhang, W., Jiao, L., et al.: Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2, 791–802 (2017). https://doi.org/10.1016/j.chempr.2017.04.016

    Article  CAS  Google Scholar 

  192. Zhao, Y.B., Kornienko, N., Liu, Z., et al.: Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. J. Am. Chem. Soc. 137, 2199–2202 (2015). https://doi.org/10.1021/ja512951e

    Article  CAS  PubMed  Google Scholar 

  193. Li, Z.H., Shao, M.F., Zhou, L., et al.: Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 28, 2337–2344 (2016). https://doi.org/10.1002/adma.201505086

    Article  CAS  PubMed  Google Scholar 

  194. Li, W., Liu, J., Zhao, D.Y.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23

    Article  CAS  Google Scholar 

  195. Wang, Q., Yan, J., Wang, Y.B., et al.: Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67, 119–127 (2014). https://doi.org/10.1016/j.carbon.2013.09.070

    Article  CAS  Google Scholar 

  196. Zhou, L., Huang, T., Yu, A.S.: Three-dimensional flower-shaped activated porous carbon/sulfur composites as cathode materials for lithium–sulfur batteries. ACS Sustainable Chem. Eng. 2, 2442–2447 (2014). https://doi.org/10.1021/sc500459c

    Article  CAS  Google Scholar 

  197. Shao, J.Q., Song, M.Y., Wu, G., et al.: 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in situ coating. Energy Storage Mater. 13, 57–65 (2018). https://doi.org/10.1016/j.ensm.2017.12.023

    Article  Google Scholar 

  198. Guo, D.Y., Chen, X.A., Wei, H.F., et al.: Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium–sulfur batteries. J. Mater. Chem. A 5, 6245–6256 (2017). https://doi.org/10.1039/c7ta00335h

    Article  CAS  Google Scholar 

  199. Ding, F., Yu, Z.S., Chen, X., et al.: High-performance supercapacitors based on reduced graphene oxide -wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions. Electrochim. Acta 306, 549–557 (2019). https://doi.org/10.1016/j.electacta.2019.03.155

    Article  CAS  Google Scholar 

  200. Guo, X.F., Liang, J.Y., Chen, S.L., et al.: Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. J. Mater. Chem. A 2, 16884–16891 (2014)

    Article  Google Scholar 

  201. Liang, J.Y., Wang, C.C., Lu, S.Y.: Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. J. Mater. Chem. A 3, 24453–24462 (2015). https://doi.org/10.1039/c5ta08007j

    Article  CAS  Google Scholar 

  202. Zheng, Z.M., Zhang, X., Pei, F., et al.: Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries. J. Mater. Chem. A 3, 19800–19806 (2015). https://doi.org/10.1039/c5ta05183e

    Article  CAS  Google Scholar 

  203. Zhu, J.X., Sakaushi, K., Clavel, G., et al.: A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 137, 5480–5485 (2015). https://doi.org/10.1021/jacs.5b01072

    Article  CAS  PubMed  Google Scholar 

  204. Xia, X.H., Zhang, Y.Q., Fan, Z.X., et al.: Novel Metal@Carbon spheres core-shell arrays by controlled self-assembly of carbon nanospheres: a stable and flexible supercapacitor electrode. Adv. Energy Mater. 5, 1401709 (2015). https://doi.org/10.1002/aenm.201401709

    Article  CAS  Google Scholar 

  205. Zhang, G.H., Song, Y.A., Zhang, H., et al.: Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv. Funct. Mater. 26, 3012–3020 (2016). https://doi.org/10.1002/adfm.201505226

    Article  CAS  Google Scholar 

  206. Liu, H.J., Wang, X.M., Cui, W.J., et al.: Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J. Mater. Chem. 20, 4223–4230 (2010). https://doi.org/10.1039/b925776d

    Article  CAS  Google Scholar 

  207. Li, M., Lu, J., Chen, Z.W., et al.: 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  208. Issues and challenges facing rechargeable lithium batteries: M Tarascon, J., Armand, M. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  Google Scholar 

  209. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  210. Goriparti, S., Miele, E., De Angelis, F., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103

    Article  CAS  Google Scholar 

  211. Dahn, J.R., Zheng, T., Liu, Y., et al.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995). https://doi.org/10.1126/science.270.5236.590

    Article  CAS  Google Scholar 

  212. Zhao, Y., Wang, L.P., Sougrati, M.T., et al.: A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7, 1601424 (2017). https://doi.org/10.1002/aenm.201601424

    Article  CAS  Google Scholar 

  213. Wang, X.L., Li, G., Seo, M.H., et al.: Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 9551–9558 (2017). https://doi.org/10.1021/acsami.6b12080

    Article  CAS  PubMed  Google Scholar 

  214. Luo, D., Deng, Y.P., Wang, X.L., et al.: Tuning shell numbers of transition metal oxide hollow microspheres toward durable and superior lithium storage. ACS Nano 11, 11521–11530 (2017). https://doi.org/10.1021/acsnano.7b06296

    Article  CAS  PubMed  Google Scholar 

  215. Wang, X.L., Li, G., Seo, M.H., et al.: Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 5, 1501106 (2015). https://doi.org/10.1002/aenm.201501106

    Article  CAS  Google Scholar 

  216. Wang, X.L., Li, G., Hassan, F.M., et al.: Building sponge-like robust architectures of CNT–graphene–Si composites with enhanced rate and cycling performance for lithium-ion batteries. J. Mater. Chem. A 3, 3962–3967 (2015). https://doi.org/10.1039/c4ta06249c

    Article  CAS  Google Scholar 

  217. Feng, K., Ahn, W., Lui, G., et al.: Implementing an in situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. Nano Energy 19, 187–197 (2016). https://doi.org/10.1016/j.nanoen.2015.10.025

    Article  CAS  Google Scholar 

  218. Lui, G., Li, G., Wang, X.L., et al.: Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries. Nano Energy 24, 72–77 (2016). https://doi.org/10.1016/j.nanoen.2016.03.019

    Article  CAS  Google Scholar 

  219. Hassan, F.M., Batmaz, R., Li, J., et al.: Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. Nat. Commun. 6, 8597 (2015). https://doi.org/10.1038/ncomms9597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tjandra, R., Li, G., Wang, X.L., et al.: Flexible high performance lithium ion battery electrode based on a free-standing TiO2 nanocrystals/carbon cloth composite. RSC Adv. 6, 35479–35485 (2016). https://doi.org/10.1039/c6ra03262a

    Article  CAS  Google Scholar 

  221. Hu, C.G., Lv, L., Xue, J.L., et al.: Branched graphene nanocapsules for anode material of lithium-ion batteries. Chem. Mater. 27, 5253–5260 (2015). https://doi.org/10.1021/acs.chemmater.5b01398

    Article  CAS  Google Scholar 

  222. Xiao, X.C., Liu, P., Wang, J.S., et al.: Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem. Commun. 13, 209–212 (2011). https://doi.org/10.1016/j.elecom.2010.12.016

    Article  CAS  Google Scholar 

  223. Xu, Z.M., Lv, X., Li, J., et al.: A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv. 6, 25594–25600 (2016). https://doi.org/10.1039/c6ra01870j

    Article  CAS  Google Scholar 

  224. Wang, K., Wang, N., He, J.J., et al.: Graphdiyne nanowalls as anode for lithium-ion batteries and capacitors exhibit superior cyclic stability. Electrochim. Acta 253, 506–516 (2017). https://doi.org/10.1016/j.electacta.2017.09.101

    Article  CAS  Google Scholar 

  225. Yuan, Y., Chen, Z.W., Yu, H.X., et al.: Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020). https://doi.org/10.1016/j.ensm.2020.07.027

    Article  Google Scholar 

  226. Ma, C.C., Shao, X.H., Cao, D.P.: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem. 22, 8911–8915 (2012). https://doi.org/10.1039/c2jm00166g

    Article  CAS  Google Scholar 

  227. Chen, Z., Du, Y., Zhang, Z., et al.: A facile strategy to prepare (N, Ni, P) tri-doped echinus-like porous carbon spheres as advanced anode for lithium ion batteries. Nanotechnology 30, 495403 (2019). https://doi.org/10.1088/1361-6528/ab3f07

    Article  CAS  PubMed  Google Scholar 

  228. Ashuri, M., He, Q., Shaw, L.L.: Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8, 74–103 (2016). https://doi.org/10.1039/c5nr05116a

    Article  CAS  PubMed  Google Scholar 

  229. Magasinski, A., Dixon, P., Hertzberg, B., et al.: Erratum: high-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010). https://doi.org/10.1038/nmat2749

    Article  CAS  PubMed  Google Scholar 

  230. Jia, H.P., Li, X.L., Song, J.H., et al.: Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 11, 1474 (2020). https://doi.org/10.1038/s41467-020-15217-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang, W., Epur, R., Kumta, P.N.: Vertically aligned silicon/carbon nanotube (VASCNT) arrays: hierarchical anodes for lithium-ion battery. Electrochem. Commun. 13, 429–432 (2011). https://doi.org/10.1016/j.elecom.2011.02.012

    Article  CAS  Google Scholar 

  232. Guo, Y.Y., Zeng, X.Q., Zhang, Y., et al.: Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 17172–17177 (2017). https://doi.org/10.1021/acsami.7b04561

    Article  CAS  PubMed  Google Scholar 

  233. Wang, H., Wu, X., Qi, X.J., et al.: Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 103, 32–37 (2018). https://doi.org/10.1016/j.materresbull.2018.03.018

    Article  CAS  Google Scholar 

  234. Yang, C.L., Jiang, Y., Liu, X.W., et al.: Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries. J. Mater. Chem. A 4, 18711–18716 (2016). https://doi.org/10.1039/c6ta08681k

    Article  CAS  Google Scholar 

  235. Cai, H.Y., Han, K., Jiang, H., et al.: Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries. J. Phys. Chem. Solids 109, 9–17 (2017). https://doi.org/10.1016/j.jpcs.2017.05.009

    Article  CAS  Google Scholar 

  236. Li, N., Song, H.W., Cui, H., et al.: Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy 3, 102–112 (2014). https://doi.org/10.1016/j.nanoen.2013.10.014

    Article  CAS  Google Scholar 

  237. Ren, G.F., Hoque, M.N.F., Liu, J.W., et al.: Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21, 162–171 (2016). https://doi.org/10.1016/j.nanoen.2016.01.010

    Article  CAS  Google Scholar 

  238. Chen, Y.M., Yu, L., Lou, X.W.D.: Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55, 5990–5993 (2016). https://doi.org/10.1002/anie.201600133

    Article  CAS  Google Scholar 

  239. Li, N., Sonsg, H., Cui, H., et al.: SnO2 nanoparticles anchored on vertically aligned graphene with a high rate, high capacity, and long life for lithium storage. Electrochim. Acta 130, 670–678 (2014). https://doi.org/10.1016/j.electacta.2014.03.081

    Article  CAS  Google Scholar 

  240. Hu, L.R., Ren, Y.M., Yang, H.X., et al.: Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl. Mater. Interfaces. 6, 14644–14652 (2014). https://doi.org/10.1021/am503995s

    Article  CAS  PubMed  Google Scholar 

  241. Wang, Y., Chen, B., Seo, D.H., et al.: MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater. 8, e268 (2016). https://doi.org/10.1038/am.2016.44

    Article  CAS  Google Scholar 

  242. Chen, L., Yang, W.J., Wang, J.B., et al.: Hierarchical cobalt-based metal-organic framework for high-performance lithium-ion batteries. Chem. Eur. J. 24, 13362–13367 (2018). https://doi.org/10.1002/chem.201802629

    Article  CAS  PubMed  Google Scholar 

  243. Gan, Q.M., He, H.N., Zhao, K.M., et al.: Morphology-dependent electrochemical performance of Ni-1, 3, 5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries. J. Colloid Interface Sci. 530, 127–136 (2018). https://doi.org/10.1016/j.jcis.2018.06.057

    Article  CAS  PubMed  Google Scholar 

  244. Wu, Z.Z., Xie, J., Xu, Z.J., et al.: Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J. Mater. Chem. A 7, 4259–4290 (2019). https://doi.org/10.1039/c8ta11994e

    Article  CAS  Google Scholar 

  245. Ning, Y.Q., Lou, X.B., Shen, M., et al.: Mesoporous cobalt 2, 5-thiophenedicarboxylic coordination polymer for high performance Na-ion batteries. Mater. Lett. 197, 245–248 (2017). https://doi.org/10.1016/j.matlet.2017.01.126

    Article  CAS  Google Scholar 

  246. Lou, X.B., Hu, X.S., Li, C., et al.: Room-temperature synthesis of a cobalt 2, 3, 5, 6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries. New J. Chem. 41, 1813–1819 (2017). https://doi.org/10.1039/C6NJ03165J

    Article  CAS  Google Scholar 

  247. Liang, Y., Jing, Y., Gheytani, S., et al.: Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/nmat4919

    Article  CAS  PubMed  Google Scholar 

  248. Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  249. Peng, H.L., Yu, Q.C., Wang, S.P., et al.: Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes. Adv. Sci. 6, 1900431 (2019). https://doi.org/10.1002/advs.201900431

    Article  CAS  Google Scholar 

  250. Muench, S., Wild, A., Friebe, C., et al.: Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016). https://doi.org/10.1021/acs.chemrev.6b00070

    Article  CAS  PubMed  Google Scholar 

  251. Lu, Y., Chen, J.: Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020). https://doi.org/10.1038/s41570-020-0160-9

    Article  CAS  Google Scholar 

  252. Häupler, B., Wild, A., Schubert, U.S.: Carbonyls: powerful organic materials for secondary batteries. Adv. Energy Mater. 5, 1402034 (2015). https://doi.org/10.1002/aenm.201402034

    Article  CAS  Google Scholar 

  253. Song, Z.P., Zhan, H., Zhou, Y.H.: Polyimides: promising energy-storage materials. Angew. Chem. 122, 8622–8626 (2010). https://doi.org/10.1002/ange.201002439

    Article  Google Scholar 

  254. Song, Z.P., Xu, T., Gordin, M.L., et al.: Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 12, 2205–2211 (2012). https://doi.org/10.1021/nl2039666

    Article  CAS  PubMed  Google Scholar 

  255. Meng, Y.N., Wu, H.P., Zhang, Y.J., et al.: A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium-ion batteries. J. Mater. Chem. A 2, 10842–10846 (2014). https://doi.org/10.1039/c4ta00364k

    Article  CAS  Google Scholar 

  256. Ba, Z.H., Wang, Z.X., Luo, M., et al.: Benzoquinone-based polyimide derivatives as high-capacity and stable organic cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces. 12, 807–817 (2020). https://doi.org/10.1021/acsami.9b18422

    Article  CAS  PubMed  Google Scholar 

  257. Peng, H.L., Wang, S.P., Kim, M., et al.: Highly reversible electrochemical reaction of insoluble 3D nanoporous polyquinoneimines with stable cycle and rate performance. Energy Storage Mater. 25, 313–323 (2020). https://doi.org/10.1016/j.ensm.2019.10.007

    Article  Google Scholar 

  258. Wang, F., Fan, X.L., Gao, T., et al.: High-voltage aqueous magnesium ion batteries. ACS Central Sci. 3, 1121–1128 (2017). https://doi.org/10.1021/acscentsci.7b00361

    Article  CAS  Google Scholar 

  259. Chen, L., Bao, J.L., Dong, X., et al.: Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2, 1115–1121 (2017). https://doi.org/10.1021/acsenergylett.7b00040

    Article  CAS  Google Scholar 

  260. Zhang, G.F., Xu, Z.X., Liu, P., et al.: A facile in situ polymerization strategy towards polyimide/carbon black composites as high performance lithium ion battery cathodes. Electrochim. Acta 260, 598–605 (2018). https://doi.org/10.1016/j.electacta.2017.12.075

    Article  CAS  Google Scholar 

  261. Wu, D.Q., Zhang, G.F., Lu, D., et al.: Perylene diimide-diamine/carbon black composites as high performance lithium/sodium ion battery cathodes. J. Mater. Chem. A 6, 13613–13618 (2018). https://doi.org/10.1039/C8TA03186J

    Article  CAS  Google Scholar 

  262. Gheytani, S., Liang, Y.L., Wu, F.L., et al.: An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465

    Article  CAS  Google Scholar 

  263. Lu, D., Liu, H.Q., Huang, T., et al.: Magnesium ion based organic secondary batteries. J. Mater. Chem. A 6, 17297–17302 (2018). https://doi.org/10.1039/c8ta05230a

    Article  CAS  Google Scholar 

  264. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al.: Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191

    Article  CAS  Google Scholar 

  265. Ji, X., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460

    Article  CAS  PubMed  Google Scholar 

  266. Zhang, L.L., Wang, Y.J., Niu, Z.Q., et al.: Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 141, 400–416 (2019). https://doi.org/10.1016/j.carbon.2018.09.067

    Article  CAS  Google Scholar 

  267. Li, M., Zhang, Y.N., Wang, X.L., et al.: Gas Pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 26, 8408–8417 (2016). https://doi.org/10.1002/adfm.201603241

    Article  CAS  Google Scholar 

  268. Peng, H.J., Liang, J.Y., Zhu, L., et al.: Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium-sulfur batteries. ACS Nano 8, 11280–11289 (2014). https://doi.org/10.1021/nn503985s

    Article  CAS  PubMed  Google Scholar 

  269. Moreno, N., Caballero, A., Morales, J., et al.: Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode. Mater. Chem. Phys. 180, 82–88 (2016). https://doi.org/10.1016/j.matchemphys.2016.05.044

    Article  CAS  Google Scholar 

  270. Zheng, Z.M., Guo, H.C., Pei, F., et al.: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 26, 8952–8959 (2016). https://doi.org/10.1002/adfm.201601897

    Article  CAS  Google Scholar 

  271. Li, B., Li, S.M., Liu, J.H., et al.: Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries. Nano Lett. 15, 3073–3079 (2015). https://doi.org/10.1021/acs.nanolett.5b00064

    Article  CAS  PubMed  Google Scholar 

  272. Li, G., Wang, X.L., Seo, M.H., et al.: Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nat. Commun. 9, 705 (2018). https://doi.org/10.1038/s41467-018-03116-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Wang, X.L., Li, G., Li, J.D., et al.: Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries. Energy Environ. Sci. 9, 2533–2538 (2016). https://doi.org/10.1039/c6ee00194g

    Article  CAS  Google Scholar 

  274. Zhang, Z., Luo, D., Li, G.R., et al.: Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries. Matter 3, 920–934 (2020). https://doi.org/10.1016/j.matt.2020.06.002

    Article  Google Scholar 

  275. Zhou, J., Liu, X., Zhou, J., et al.: Fully integrated hierarchical double-shelled Co9S8@CNT nanostructures with unprecedented performance for Li-S batteries. Nanoscale Horiz 4, 182–189 (2019). https://doi.org/10.1039/c8nh00289d

    Article  CAS  PubMed  Google Scholar 

  276. Luo, D., Zhang, Z., Li, G.R., et al.: Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5−x nanocluster toward superior Li-S performance. ACS Nano 14, 4849–4860 (2020). https://doi.org/10.1021/acsnano.0c00799

    Article  CAS  PubMed  Google Scholar 

  277. Lin, D.C., Liu, Y.Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  PubMed  Google Scholar 

  278. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  PubMed  Google Scholar 

  279. Liu, S., Wang, A.X., Li, Q.Q., et al.: Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2, 184–193 (2018). https://doi.org/10.1016/j.joule.2017.11.004

    Article  CAS  Google Scholar 

  280. Hu, Z.L., Li, Z.Z., Xia, Z., et al.: PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Mater. 22, 29–39 (2019). https://doi.org/10.1016/j.ensm.2018.12.020

    Article  Google Scholar 

  281. Liu, F.F., Xu, R., Hu, Z.X., et al.: Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small 15, 1803734 (2019). https://doi.org/10.1002/smll.201803734

    Article  CAS  Google Scholar 

  282. An, Y.L., Tian, Y., Li, Y., et al.: Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 400, 125843 (2020). https://doi.org/10.1016/j.cej.2020.125843

    Article  CAS  Google Scholar 

  283. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  284. Zhang, W., Liu, Y., Guo, Z.: Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412

  285. Wang, X.L., Li, G., Hassan, F.M., et al.: Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. Nano Energy 15, 746–754 (2015). https://doi.org/10.1016/j.nanoen.2015.05.038

    Article  CAS  Google Scholar 

  286. Wang, K., Wang, N., He, J.J., et al.: Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors. ACS Appl. Mater. Interfaces. 9, 40604–40613 (2017). https://doi.org/10.1021/acsami.7b11420

    Article  CAS  PubMed  Google Scholar 

  287. Qiu, W.D., Xiao, H.B., Li, Y., et al.: Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 15, 1901285 (2019). https://doi.org/10.1002/smll.201901285

    Article  CAS  Google Scholar 

  288. Huang, H., Xu, R., Feng, Y., et al.: Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32, 1904320 (2020). https://doi.org/10.1002/adma.201904320

    Article  CAS  Google Scholar 

  289. Xiong, P.X., Bai, P.X., Tu, S.B., et al.: Red phosphorus Nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 14, 1802140 (2018). https://doi.org/10.1002/smll.201802140

    Article  CAS  Google Scholar 

  290. Li, G., Luo, D., Wang, X.L., et al.: Enhanced reversible sodium-ion intercalation by synergistic coupling of few-layered MoS2 and S-doped graphene. Adv. Funct. Mater. 27, 1702562 (2017). https://doi.org/10.1002/adfm.201702562

    Article  CAS  Google Scholar 

  291. Wu, X., Chen, Y.L., Xing, Z., et al.: Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9, 1900343 (2019). https://doi.org/10.1002/aenm.201900343

    Article  CAS  Google Scholar 

  292. Zhao, Q.L., Gaddam, R.R., Dongfang, Y., et al.: Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochim. Acta 265, 702–708 (2018). https://doi.org/10.1016/j.electacta.2018.01.208

    Article  CAS  Google Scholar 

  293. Blanc, L.E., Kundu, D.P., Nazar, L.F.: Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002

    Article  CAS  Google Scholar 

  294. Chao, D., Zhou, W., Xie, F., et al.: Roadmap for advanced aqueous batteries: From design of materials to applications. Sci Adv 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098

  295. Fang, G.Z., Zhou, J., Pan, A.Q., et al.: Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426

    Article  CAS  Google Scholar 

  296. Cui, J., Guo, Z.W., Yi, J., et al.: Organic cathode materials for rechargeable zinc batteries: mechanisms, challenges, and perspectives. Chemsuschem 13, 2160–2185 (2020). https://doi.org/10.1002/cssc.201903265

    Article  CAS  PubMed  Google Scholar 

  297. Poizot, P., Gaubicher, J., Renault, S., et al.: Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020). https://doi.org/10.1021/acs.chemrev.9b00482

    Article  CAS  PubMed  Google Scholar 

  298. Shi, H.Y., Ye, Y.J., Liu, K., et al.: A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57, 16359–16363 (2018). https://doi.org/10.1002/anie.201808886

    Article  CAS  Google Scholar 

  299. Shin, J., Lee, J., Park, Y., et al.: Aqueous zinc ion batteries: focus on zinc metal anodes. Chem Sci 11, 2028–2044 (2020). https://doi.org/10.1039/d0sc00022a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Wu, T.H., Zhang, Y., Althouse, Z.D., et al.: Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 6, 100032 (2019). https://doi.org/10.1016/j.mtnano.2019.100032

    Article  Google Scholar 

  301. Simon, P., Gogotsi, Y.: Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z

    Article  CAS  PubMed  Google Scholar 

  302. Jiang, H., Lee, P.S., Li, C.Z.: 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6, 41–53 (2013). https://doi.org/10.1039/C2EE23284G

    Article  CAS  Google Scholar 

  303. Zhang, J.N., Zhang, X.L., Zhou, Y.C., et al.: Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2, 1525–1533 (2014). https://doi.org/10.1021/sc500221s

    Article  CAS  Google Scholar 

  304. Wang, S.P., Han, C.L., Wang, J., et al.: Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chem. Mater. 26, 6872–6877 (2014). https://doi.org/10.1021/cm503669v

    Article  CAS  Google Scholar 

  305. Li, C.X., Li, Z.L., Cheng, Z.H., et al.: Functional carbon nanomesh clusters. Adv. Funct. Mater. 27, 1701514 (2017). https://doi.org/10.1002/adfm.201701514

    Article  CAS  Google Scholar 

  306. Liu, X.F., Mei, P., Lei, S., et al.: Scalable polymerization approach to tailoring morphologies of polyimide-derived N-doped carbons for high-performance supercapacitors. Energy Technol. 8, 1901013 (2020). https://doi.org/10.1002/ente.201901013

    Article  CAS  Google Scholar 

  307. Seo, D.H., Han, Z.J., Kumar, S., et al.: Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 3, 1316–1323 (2013). https://doi.org/10.1002/aenm.201300431

    Article  CAS  Google Scholar 

  308. Bo, Z., Zhu, W.G., Ma, W., et al.: Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater. 25, 5799–5806 (2013). https://doi.org/10.1002/adma.201301794

    Article  CAS  PubMed  Google Scholar 

  309. Miller, J.R., Outlaw, R.A., Holloway, B.C.: Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010). https://doi.org/10.1126/science.1194372

    Article  CAS  Google Scholar 

  310. Bo, Z., Xu, C.X., Yang, H.C., et al.: Hierarchical, vertically-oriented carbon nanowall foam supercapacitor using room temperature ionic liquid mixture for AC line filtering with ultrahigh energy density. ChemElectroChem 6, 2167–2173 (2019). https://doi.org/10.1002/celc.201801825

    Article  CAS  Google Scholar 

  311. Li, W.Y., Azam, S., Dai, G.Z., et al.: Prussian blue based vertical graphene 3D structures for high frequency electrochemical capacitors. Energy Storage Mater. 32, 30–36 (2020). https://doi.org/10.1016/j.ensm.2020.07.016

    Article  Google Scholar 

  312. Ren, G.F., Li, S.Q., Fan, Z.X., et al.: Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes. J. Power Sources 325, 152–160 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.021

    Article  CAS  Google Scholar 

  313. Xiong, G., He, P., Lyu, Z., et al.: Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 9, 790 (2018). https://doi.org/10.1038/s41467-018-03112-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  315. Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38, 2397–2409 (2009). https://doi.org/10.1039/b816681c

    Article  CAS  PubMed  Google Scholar 

  316. Han, Y.Q., Dai, L.M.: Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys. 220, 1800355 (2019). https://doi.org/10.1002/macp.201800355

    Article  CAS  Google Scholar 

  317. Wang, Z.L., Guo, R., Li, G.R., et al.: Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices. J. Mater. Chem. 22, 2401–2404 (2012). https://doi.org/10.1039/C2JM15070K

    Article  CAS  Google Scholar 

  318. Xiong, S.X., Yang, F., Jiang, H., et al.: Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim. Acta 85, 235–242 (2012). https://doi.org/10.1016/j.electacta.2012.08.056

    Article  CAS  Google Scholar 

  319. Malik, R., Zhang, L., McConnell, C., et al.: Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116, 579–590 (2017). https://doi.org/10.1016/j.carbon.2017.02.036

    Article  CAS  Google Scholar 

  320. Liu, J.H., Xu, X.Y., Lu, W.B., et al.: A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure. Electrochim. Acta 283, 366–373 (2018). https://doi.org/10.1016/j.electacta.2018.06.158

    Article  CAS  Google Scholar 

  321. Wang, X.N., Wei, H.L., Liu, X.Z., et al.: Novel three-dimensional polyaniline nanothorns vertically grown on buckypaper as high-performance supercapacitor electrode. Nanotechnology 30, 325401 (2019). https://doi.org/10.1088/1361-6528/ab156d

    Article  CAS  PubMed  Google Scholar 

  322. Xiong, G.P., Meng, C.Z., Reifenberger, R.G., et al.: Graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv. Energy Mater. 4, 1300515 (2014). https://doi.org/10.1002/aenm.201300515

    Article  CAS  Google Scholar 

  323. Qu, Y., Lu, C.B., Su, Y.Z., et al.: Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon 127, 77–84 (2018). https://doi.org/10.1016/j.carbon.2017.10.088

    Article  CAS  Google Scholar 

  324. Wang, Z.L., Guo, R., Ding, L.X., et al.: Controllable template-assisted electrodeposition of single-and multi-walled nanotube arrays for electrochemical energy storage. Sci Rep 3, 1204 (2013). https://doi.org/10.1038/srep01204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Zhang, H., Cao, G.P., Wang, Z.Y., et al.: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664–2668 (2008). https://doi.org/10.1021/nl800925j

    Article  CAS  PubMed  Google Scholar 

  326. Zhang, L., Holt, C.M.B., Luber, E.J., et al.: High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes. J. Phys. Chem. C 115, 24381–24393 (2011). https://doi.org/10.1021/jp205052f

    Article  CAS  Google Scholar 

  327. Zhu, C.R., Yang, P.H., Chao, D.L., et al.: All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27, 4566–4571 (2015). https://doi.org/10.1002/adma.201501838

    Article  CAS  PubMed  Google Scholar 

  328. Xiong, G.P., Hembram, K.P.S.S., Reifenberger, R.G., et al.: MnO2-coated graphitic petals for supercapacitor electrodes. J. Power Sources 227, 254–259 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.040

    Article  CAS  Google Scholar 

  329. Zhang, Y.Z., Cheng, T., Wang, Y., et al.: A simple approach to boost capacitance: flexible supercapacitors based on manganese Oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016). https://doi.org/10.1002/adma.201600319

    Article  CAS  PubMed  Google Scholar 

  330. Huang, J., Peng, Z.Y., Xiao, Y.B., et al.: Hierarchical nanosheets/walls structured carbon-coated porous vanadium nitride anodes enable wide-voltage-window aqueous asymmetric supercapacitors with high energy density. Adv. Sci. 6, 1900550 (2019). https://doi.org/10.1002/advs.201900550

    Article  CAS  Google Scholar 

  331. Wang, H.W., Zhu, C.R., Chao, D.L., et al.: Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 1702093 (2017). https://doi.org/10.1002/adma.201702093

    Article  CAS  Google Scholar 

  332. Han, X.Q., Han, P.X., Yao, J.H., et al.: Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors. Electrochim. Acta 196, 603–610 (2016). https://doi.org/10.1016/j.electacta.2016.02.185

    Article  CAS  Google Scholar 

  333. Jiang, J.M., Nie, P., Ding, B., et al.: Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. J. Mater. Chem. A 5, 23283–23291 (2017). https://doi.org/10.1039/C7TA05972H

    Article  CAS  Google Scholar 

  334. Jiang, J.M., Zhang, Y.D., An, Y.F., et al.: Engineering ultrathin MoS2 nanosheets anchored on N-doped carbon microspheres with pseudocapacitive properties for high-performance lithium-ion capacitors. Small Methods 3, 1900081 (2019). https://doi.org/10.1002/smtd.201900081

    Article  CAS  Google Scholar 

  335. Zhang, Y.D., Nie, P., Xu, C.Y., et al.: High energy aqueous sodium-ion capacitor enabled by polyimide electrode and high-concentrated electrolyte. Electrochim. Acta 268, 512–519 (2018). https://doi.org/10.1016/j.electacta.2018.02.125

    Article  CAS  Google Scholar 

  336. Zhao, Q.L., Dongfang, Y., Whittaker, A.K., et al.: A hybrid sodium-ion capacitor with polyimide as anode and polyimide-derived carbon as cathode. J. Power Sources 396, 12–18 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.010

    Article  CAS  Google Scholar 

  337. Zhao, Q.L., Dongfang, Y., Zhang, C., et al.: Tailored polyimide-graphene nanocomposite as negative electrode and reduced graphene oxide as positive electrode for flexible hybrid sodium-ion capacitors. ACS Appl. Mater. Interfaces. 10, 43730–43739 (2018). https://doi.org/10.1021/acsami.8b17171

    Article  CAS  PubMed  Google Scholar 

  338. Liu, M.Q., Chang, L.M., Wang, J., et al.: Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. J. Power Sources 469, 228415 (2020). https://doi.org/10.1016/j.jpowsour.2020.228415

    Article  CAS  Google Scholar 

  339. Xu, D.M., Chao, D.L., Wang, H.W., et al.: Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018). https://doi.org/10.1002/aenm.201702769

    Article  CAS  Google Scholar 

  340. Beidaghi, M., Gogotsi, Y.: Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014). https://doi.org/10.1039/C3EE43526A

    Article  CAS  Google Scholar 

  341. Zhang, P., Wang, F., Yu, M., et al.: Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47, 7426–7451 (2018). https://doi.org/10.1039/c8cs00561c

    Article  CAS  PubMed  Google Scholar 

  342. Wang, X.F., Jiang, K., Shen, G.Z.: Flexible fiber energy storage and integrated devices: recent progress and perspectives. Mater. Today 18, 265–272 (2015). https://doi.org/10.1016/j.mattod.2015.01.002

    Article  CAS  Google Scholar 

  343. Xiong, G.P., He, P.G., Huang, B.Y., et al.: Graphene nanopetal wire supercapacitors with high energy density and thermal durability. Nano Energy 38, 127–136 (2017). https://doi.org/10.1016/j.nanoen.2017.05.050

    Article  CAS  Google Scholar 

  344. He, Y.H., Tan, Q., Lu, L.L., et al.: Metal-nitrogen-carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2, 231–251 (2019). https://doi.org/10.1007/s41918-019-00031-9

    Article  CAS  Google Scholar 

  345. Li, Y.H., Li, Q.Y., Wang, H.Q., et al.: Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2, 518–538 (2019). https://doi.org/10.1007/s41918-019-00052-4

    Article  CAS  Google Scholar 

  346. Paul, R., Dai, Q.B., Hu, C.G., et al.: Ten years of carbon-based metal-free electrocatalysts. Carbon Energy 1, 19–31 (2019). https://doi.org/10.1002/cey2.5

    Article  Google Scholar 

  347. Guo, Q.H., Zhao, D., Liu, S.W., et al.: Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochim. Acta 138, 318–324 (2014). https://doi.org/10.1016/j.electacta.2014.06.120

    Article  CAS  Google Scholar 

  348. She, X., Yang, D., Jing, D., et al.: Nitrogen-doped one-dimensional (1D) macroporous carbonaceous nanotube arrays and their application in electrocatalytic oxygen reduction reactions. Nanoscale 6, 11057–11061 (2014). https://doi.org/10.1039/c4nr03340j

    Article  CAS  PubMed  Google Scholar 

  349. Yu, D.S., Xue, Y.H., Dai, L.M.: Vertically aligned carbon nanotube arrays Co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012). https://doi.org/10.1021/jz3011833

    Article  CAS  PubMed  Google Scholar 

  350. Zhu, J.L., Jiang, S.P., Wang, R.H., et al.: One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2, 15448–15453 (2014). https://doi.org/10.1039/c4ta02427c

    Article  CAS  Google Scholar 

  351. Li, H.B., Kang, W.J., Wang, L., et al.: Synthesis of three-dimensional flowerlike nitrogen-doped carbons by a copyrolysis route and the effect of nitrogen species on the electrocatalytic activity in oxygen reduction reaction. Carbon 54, 249–257 (2013). https://doi.org/10.1016/j.carbon.2012.11.036

    Article  CAS  Google Scholar 

  352. Guo, D., Wei, H., Chen, X., et al.: 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries. J. Mater. Chem. A 5, 18193–18206 (2017). https://doi.org/10.1039/C7TA04728B

    Article  CAS  Google Scholar 

  353. Zhang, S.H., Xia, W., Yang, Q., et al.: Core-shell motif construction: highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 396, 125154 (2020). https://doi.org/10.1016/j.cej.2020.125154

    Article  CAS  Google Scholar 

  354. Chen, L., Xu, Z.X., Han, W.J., et al.: Bimetallic CoNi alloy nanoparticles embedded in pomegranate-like nitrogen-doped carbon spheres for electrocatalytic oxygen reduction and evolution. ACS Appl. Nano Mater. 3, 1354–1362 (2020). https://doi.org/10.1021/acsanm.9b02201

    Article  CAS  Google Scholar 

  355. Li, G., Wang, X.L., Fu, J., et al.: Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries. Angew. Chem. Int. Ed. 55, 4977–4982 (2016). https://doi.org/10.1002/anie.201600750

    Article  CAS  Google Scholar 

  356. Wang, X.Q., Li, Z.J., Qu, Y.T., et al.: Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5, 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002

    Article  CAS  Google Scholar 

  357. Wang, Y.J., Fang, B.Z., Zhang, D., et al.: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries. Electrochem. Energy Rev. 1, 1–34 (2018). https://doi.org/10.1007/s41918-018-0002-3

    Article  CAS  Google Scholar 

  358. Seo, M.H., Park, M.G., Lee, D.U., et al.: Bifunctionally active and durable hierarchically porous transition metal-based hybrid electrocatalyst for rechargeable metal-air batteries. Appl. Catal. B: Environ. 239, 677–687 (2018). https://doi.org/10.1016/j.apcatb.2018.06.006

    Article  CAS  Google Scholar 

  359. Liu, G.H., Li, J.D., Fu, J., et al.: An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 31, 1806761 (2019). https://doi.org/10.1002/adma.201806761

    Article  CAS  Google Scholar 

  360. Hou, C.C., Zou, L.L., Xu, Q.: A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 31, 1904689 (2019). https://doi.org/10.1002/adma.201904689

    Article  CAS  Google Scholar 

  361. Zhou, J., Dou, Y.B., Zhou, A., et al.: Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 3, 1655–1661 (2018). https://doi.org/10.1021/acsenergylett.8b00809

    Article  CAS  Google Scholar 

  362. Yang, Y., Zhang, H.L., Lin, Z.H., et al.: A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6, 2429–2434 (2013). https://doi.org/10.1039/c3ee41485j

    Article  CAS  Google Scholar 

  363. Jia, J., Seitz, L.C., Benck, J.D., et al.: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Nat. Commun. 7, 13237 (2016). https://doi.org/10.1038/ncomms13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Li, G., Wang, X.L., Seo, M.H., et al.: Design of ultralong single-crystal nanowire-based bifunctional electrodes for efficient oxygen and hydrogen evolution in a mild alkaline electrolyte. J. Mater. Chem. A 5, 10895–10901 (2017). https://doi.org/10.1039/c7ta02745a

    Article  CAS  Google Scholar 

  365. Sun, H.M., Yan, Z.H., Liu, F.M., et al.: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32, 1806326 (2020). https://doi.org/10.1002/adma.201806326

    Article  CAS  Google Scholar 

  366. Lu, J.J., Yin, S.B., Shen, P.K.: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2019). https://doi.org/10.1007/s41918-018-0025-9

    Article  CAS  Google Scholar 

  367. Zhuang, Z.C., Huang, J.Z., Li, Y., et al.: The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based catalysts and recent advances. ChemElectroChem 6, 3570–3589 (2019). https://doi.org/10.1002/celc.201900143

    Article  CAS  Google Scholar 

  368. Smith, A.J., Chang, Y.H., Raidongia, K., et al.: Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production. Adv. Energy Mater. 4, 1400398 (2014). https://doi.org/10.1002/aenm.201400398

    Article  CAS  Google Scholar 

  369. Xu, Z.X., Zhang, G.F., Lu, C.B., et al.: Molybdenum carbide nanoparticle decorated hierarchical tubular carbon superstructures with vertical nanosheet arrays for efficient hydrogen evolution. J. Mater. Chem. A 6, 18833–18838 (2018). https://doi.org/10.1039/C8TA06278A

    Article  CAS  Google Scholar 

  370. Fan, X.J., Zhou, H.Q., Guo, X.: WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 9, 5125–5134 (2015). https://doi.org/10.1021/acsnano.5b00425

    Article  CAS  PubMed  Google Scholar 

  371. Fan, X.J., Peng, Z.W., Ye, R.Q., et al.: M3C (M: fe, co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9, 7407–7418 (2015). https://doi.org/10.1021/acsnano.5b02420

    Article  CAS  PubMed  Google Scholar 

  372. Yan, H.J., Xie, Y., Wu, A.P., et al.: Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 31, 1901174 (2019). https://doi.org/10.1002/adma.201901174

    Article  CAS  Google Scholar 

  373. Manjunatha, R., Karajić, A., Liu, M.M., et al.: A review of composite/hybrid electrocatalysts and photocatalysts for nitrogen reduction reactions: advanced materials, mechanisms, challenges and perspectives. Electrochem. Energy Rev. 3, 506–540 (2020). https://doi.org/10.1007/s41918-020-00069-0

    Article  CAS  Google Scholar 

  374. Guo, C.X., Ran, J.R., Vasileff, A., et al.: Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/C7EE02220D

    Article  CAS  Google Scholar 

  375. Lin, Y.X., Zhang, S.N., Xue, Z.H., et al.: Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat. Commun. 10, 4380 (2019). https://doi.org/10.1038/s41467-019-12312-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Hisatomi, T., Kubota, J., Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014). https://doi.org/10.1039/c3cs60378d

    Article  CAS  PubMed  Google Scholar 

  377. Moon, J., Sim, U., Kim, D.J., et al.: Hierarchical carbon-silicon nanowire heterostructures for the hydrogen evolution reaction. Nanoscale 10, 13936–13941 (2018). https://doi.org/10.1039/c8nr02262c

    Article  CAS  PubMed  Google Scholar 

  378. Carraro, F., Calvillo, L., Cattelan, M., et al.: Fast one-pot synthesis of MoS2/crumpled graphene p-n nanonjunctions for enhanced photoelectrochemical hydrogen production. ACS Appl. Mater. Interfaces. 7, 25685–25692 (2015). https://doi.org/10.1021/acsami.5b06668

    Article  CAS  PubMed  Google Scholar 

  379. Han, Y.Y., Lu, X.L., Tang, S.F., et al.: Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride. Adv. Energy Mater. 8, 1702992 (2018). https://doi.org/10.1002/aenm.201702992

    Article  CAS  Google Scholar 

  380. Gao, H.H., Cao, R.Y., Zhang, S.W., et al.: Three-dimensional hierarchical g-C3N4 architectures assembled by ultrathin self-doped nanosheets: extremely facile hexamethylenetetramine activation and superior photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces. 11, 2050–2059 (2019). https://doi.org/10.1021/acsami.8b17757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grant Program (RGPIN-2018-06725) and the Discovery Accelerator Supplement Grant Program (RGPAS-2018-522651) as well as the New Frontiers in Research Fund-Exploration Program (NFRFE-2019-00488). Prof. Xiaolei Wang also acknowledges the support from the University of Alberta and Future Energy Systems (FES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Deng, W. & Wang, X. 3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis. Electrochem. Energ. Rev. 4, 269–335 (2021). https://doi.org/10.1007/s41918-021-00094-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00094-7

Keywords

Navigation