Skip to main content

Advertisement

Log in

1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Metallic (1T) phases of transition metal dichalcogenides (TMDs) are promising alternatives for Pt as efficient and practically applicable hydrogen evolution reaction (HER) catalysts. Group 6 1T TMDs are the most widely studied due to their impressively higher HER activity than that of their 2H counterparts. However, the mediocre electrochemical and thermal stability of these TMDs has limited their widespread application. Over the last decade, while immense attempts have been made to enhance the stability of group 6 1T TMDs, 1T TMDs based on other transition metals have gained increasing attention. To address the great potential of the 1T TMD family for industry-scale HER and inspire future breakthroughs in realizing their scalable utilization, a critical overview of 1T TMDs for application in HER is presented in this work. With an emphasis on the recent progress, the main contents include the elucidation of the “structure–performance” relationship in 1T TMD-based HER, the approaches for the synthesis and morphology control of 1T TMDs, and the types of 1T TMD-based materials that have been explored for efficient and long-term water splitting. Before the main discussions, the reaction mechanism of HER and the evaluation indexes for HER catalysts are introduced. Moreover, future perspectives on overcoming the primary challenges that hinder the practical application of 1T TMDs for HER are provided.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [48]. Copyright 2017, Elsevier

Fig. 2

Reproduced with permission from Ref. [62]. Copyright 2014, The Royal Society of Chemistry

Fig. 3

Reproduced with permission from Ref. [101]. Copyright 2016, The Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [117]. Copyright 2020, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [122]. Copyright 2019, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [132]. Copyright 2020, John Wiley and Sons

Fig. 7

Reproduced with permission from Ref. [142]. Copyright 2018, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [146]. Copyright 2018, John Wiley and Sons

Fig. 9

Reproduced with permission from Ref. [157]. Copyright 2017, The Royal Society of Chemistry

Fig. 10

Reproduced with permission from Ref. [168]. Copyright 2019, American Chemical Society

Fig. 11

Reproduced with permission from Ref. [177]. Copyright 2018, The Royal Society of Chemistry

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. JO’M, B.: The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int. J. Hydrogen Energy 27, 731–740 (2002)

    Article  Google Scholar 

  2. Popczun, E.J., McKone, J.R., Read, C.G., et al.: Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. Wang, X., Xu, C., Jaroniec, M., et al.: Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 4876 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hu, Y.H., Ruckenstein, E.: Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv. Catal. 48, 297–345 (2004)

    CAS  Google Scholar 

  5. Hu, Y.H.: Solid-solution catalysts for CO2 reforming of methane. Catal. Today 148, 206–211 (2009)

    Article  CAS  Google Scholar 

  6. Han, B., Wei, W., Chang, L., et al.: Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal. 6, 494–497 (2016)

    Article  CAS  Google Scholar 

  7. Palo, D.R., Dagle, R.A., Holladay, J.D.: Methanol steam reforming for hydrogen production. Chem. Rev. 107, 3992–4021 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Sun, Z., Fang, S., Lin, Y., et al.: Photo-assisted methanol steam reforming on solid solution of Cu-Zn-Ti oxide. Chem. Eng. J. 375, 121909 (2019)

    Article  CAS  Google Scholar 

  9. Li, Y., Li, H., Li, Y., et al.: Fe-B alloy coupled with Fe clusters as an efficient cocatalyst for photocatalytic hydrogen evolution. Chem. Eng. J. 344, 506–513 (2018)

    Article  CAS  Google Scholar 

  10. Fang, S., Hu, Y.H.: Recent progress in photocatalysts for overall water splitting. Int. J. Energy Res. 43, 1082–1098 (2019)

    Article  Google Scholar 

  11. Chen, W., Liu, M., Li, X., et al.: Synthesis of 3D mesoporous g-C3N4 for efficient overall water splitting under a Z-scheme photocatalytic system. Appl. Surf. Sci. 512, 145782 (2020)

    Article  CAS  Google Scholar 

  12. You, B., Sun, Y.J.: Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. Anantharaj, S., Ede, S.R., Karthick, K., et al.: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11, 744–771 (2018)

    Article  CAS  Google Scholar 

  14. Han, B., Hu, Y.H.: Highly efficient temperature-induced visible light photocatalytic hydrogen production from water. J. Phys. Chem. C 119, 18927–18934 (2015)

    Article  CAS  Google Scholar 

  15. Fang, S., Sun, Z., Hu, Y.H.: Insights into the thermo-photo catalytic production of hydrogen from water on a low-cost NiOx-loaded TiO2 catalyst. ACS Catal. 9, 5047–5056 (2019)

    Article  CAS  Google Scholar 

  16. Fang, S., Liu, Y., Sun, Z., et al.: Photocatalytic hydrogen production over Rh-loaded TiO2: what is the origin of hydrogen and how to achieve hydrogen production from water? Appl. Catal. B 278, 119316 (2020)

    Article  CAS  Google Scholar 

  17. Zhu, J., Hu, L., Zhao, P., et al.: Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918 (2019)

    Article  PubMed  Google Scholar 

  18. Zou, X.X., Zhang, Y.: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Tributsch, H., Bennett, J.: Electrochemistry and photochemistry of MoS2 layer crystals. I. J. Electroanal. Chem. Interfacial Electrochem. 81, 97–111 (1977)

    Article  CAS  Google Scholar 

  20. Han, B., Hu, Y.H.: MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 4, 285–304 (2016)

    Article  CAS  Google Scholar 

  21. Lin, L., Lei, W., Zhang, S., et al.: Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 19, 408–423 (2019)

    Article  Google Scholar 

  22. Wei, W., Sun, K., Hu, Y.H.: An efficient counter electrode material for dye-sensitized solar cells—flower-structured 1T metallic phase MoS2. J. Mater. Chem. A 4, 12398–12401 (2016)

    Article  CAS  Google Scholar 

  23. Cheng, P., Sun, K., Hu, Y.H.: Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, P., Sun, K., Hu, Y.H.: Mechanically-induced reverse phase transformation of MoS2 from stable 2H to metastable 1T and its memristive behavior. RSC Adv. 6, 65691–65697 (2016)

    Article  CAS  Google Scholar 

  25. Li, Y., Duerloo, K.A.N., Wauson, K., et al.: Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10761 (2016)

    PubMed  PubMed Central  Google Scholar 

  26. Lin, Y.C., Yeh, C.H., Lin, H.C., et al.: Stable 1T tungsten disulfide monolayer and its junctions: growth and atomic structures. ACS Nano 12, 12080–12088 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. Voiry, D., Goswami, A., Kappera, R., et al.: Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, F., Zhang, H., Krylyuk, S., et al.: Electric-field induced structural transition in vertical MoTe2-and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. Prabhu, P., Jose, V., Lee, J.M.: Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter 2, 526–553 (2020)

    Article  Google Scholar 

  30. Lazar, P., Otyepka, M.: Role of the edge properties in the hydrogen evolution reaction on MoS2. Chem. Eur. J. 23, 4863–4869 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X., Gu, Y., Tao, G., et al.: Origin of hydrogen evolution activity on MS2 (M = Mo or Nb) monolayers. J. Mater. Chem. A 3, 18898–18905 (2015)

    Article  CAS  Google Scholar 

  32. Li, Y., Wang, H., Xie, L., et al.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Kibsgaard, J., Chen, Z., Reinecke, B.N., et al.: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. Kosmala, T., Coy Diaz, H., Komsa, H.P., et al.: Metallic twin boundaries boost the hydrogen evolution reaction on the basal plane of molybdenum selenotellurides. Adv. Energy Mater. 8, 1800031 (2018)

    Article  Google Scholar 

  35. Masih Das, P., Thiruraman, J.P., Chou, Y.C., et al.: Centimeter-scale nanoporous 2D membranes and Ion transport: porous MoS2 monolayers in a few-layer matrix. Nano Lett. 19, 392–399 (2018)

    Article  PubMed  Google Scholar 

  36. Wang, X., Zhang, Y., Si, H., et al.: Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142, 4298–4308 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. Xie, J., Xie, Y.: Structural engineering of electrocatalysts for the hydrogen evolution reaction: order or disorder? ChemCatChem 7, 2568–2580 (2015)

    Article  CAS  Google Scholar 

  38. Shi, S., Sun, Z., Hu, Y.H.: Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 6, 23932–23977 (2018)

    Article  CAS  Google Scholar 

  39. Sokolikova, M.S., Mattevi, C.: Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 49, 3952–3980 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. Liu, K.H., Zhong, H.X., Li, S.J., et al.: Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Prog. Mater. Sci. 92, 64–111 (2018)

    Article  CAS  Google Scholar 

  41. Hu, C., Zhang, L., Gong, J.: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 12, 2620–2645 (2019)

    Article  CAS  Google Scholar 

  42. Tong, W., Forster, M., Dionigi, F., et al.: Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020)

    Article  CAS  Google Scholar 

  43. Yu, P., Wang, F., Shifa, T.A., et al.: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 58, 244–276 (2019)

    Article  CAS  Google Scholar 

  44. Mahmood, N., Yao, Y.D., Zhang, J.W., et al.: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5, 1700464 (2018)

    Article  Google Scholar 

  45. Liu, E., Li, J., Jiao, L., et al.: Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts. J. Am. Chem. Soc. 141, 3232–3239 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. Durst, J., Siebel, A., Simon, C., et al.: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014)

    Article  CAS  Google Scholar 

  47. Nørskov, J.K., Bligaard, T., Logadottir, A., et al.: Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005)

    Article  Google Scholar 

  48. Eftekhari, A.: Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 42, 11053–11077 (2017)

    Article  CAS  Google Scholar 

  49. Wang, J., Xu, F., Jin, H., et al.: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017)

    Article  Google Scholar 

  50. Jiao, Y., Zheng, Y., Jaroniec, M., et al.: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. Eliaz, N., Gileadi, E.: Physical Electrochemistry: Fundamentals, Techniques, and Applications. Wiley, Hoboken (2019)

    Google Scholar 

  52. Finn, S.T., Macdonald, J.E.: Contact and support considerations in the hydrogen evolution reaction activity of petaled MoS2 electrodes. ACS Appl. Mater. Interfaces 8, 25185–25192 (2016)

    Article  CAS  PubMed  Google Scholar 

  53. Yan, Y., Xia, B., Xu, Z., et al.: Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 4, 1693–1705 (2014)

    Article  CAS  Google Scholar 

  54. Watzele, S., Fichtner, J., Garlyyev, B., et al.: On the dominating mechanism of the hydrogen evolution reaction at polycrystalline Pt electrodes in acidic media. ACS Catal. 8, 9456–9462 (2018)

    Article  CAS  Google Scholar 

  55. Jiang, K., Liu, B., Luo, M., et al.: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10, 1743 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tsai, C., Chan, K., Nørskov, J.K., et al.: Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015)

    Article  CAS  Google Scholar 

  57. Lukowski, M.A., Daniel, A.S., Meng, F., et al.: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. Voiry, D., Yamaguchi, H., Li, J., et al.: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. Guardia, L., Paredes, J.I., Munuera, J.M., et al.: Chemically exfoliated MoS2 nanosheets as an efficient catalyst for reduction reactions in the aqueous phase. ACS Appl. Mater. Interfaces. 6, 21702–21710 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., et al.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013)

    Article  Google Scholar 

  61. Chou, S.S., Sai, N., Lu, P., et al.: Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 6, 8311 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. Fan, X.L., Yang, Y., Xiao, P., et al.: Site-specific catalytic activity in exfoliated MoS2 single-layer polytypes for hydrogen evolution: basal plane and edges. J. Mater. Chem. A 2, 20545–20551 (2014)

    Article  CAS  Google Scholar 

  63. Voiry, D., Salehi, M., Silva, R., et al.: Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. Lukowski, M.A., Daniel, A.S., English, C.R., et al.: Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014)

    Article  CAS  Google Scholar 

  65. Tang, Q., Jiang, D.E.: Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 6, 4953–4961 (2016)

    Article  CAS  Google Scholar 

  66. Ambrosi, A., Sofer, Z., Pumera, M.: 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 51, 8450–8453 (2015)

    Article  CAS  Google Scholar 

  67. Yin, Y., Han, J., Zhang, Y., et al.: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 7965–7972 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, Y.X., Jia, L.P., Feng, Q.L., et al.: MoTe2 nanodendrites based on Mo doped reduced graphene oxide/polyimide composite film for electrocatalytic hydrogen evolution in neutral solution. Electrochim. Acta 229, 121–128 (2017)

    Article  CAS  Google Scholar 

  69. McGlynn, J.C., Cascallana-Matias, I., Fraser, J.P., et al.: Molybdenum ditelluride rendered into an efficient and stable electrocatalyst for the hydrogen evolution reaction by polymorphic control. Energy Technol-Ger 6, 345–350 (2018)

    Article  CAS  Google Scholar 

  70. Bhat, K.S., Nagaraja, H.S.: Performance evaluation of molybdenum dichalcogenide (MoX2; X = S, Se, Te) nanostructures for hydrogen evolution reaction. Int. J. Hydrogen Energy 44, 17878–17886 (2019)

    Article  CAS  Google Scholar 

  71. Zhuang, P.Y., Sun, Y.Y., Dong, P., et al.: Revisiting the role of active sites for hydrogen evolution reaction through precise defect adjusting. Adv. Funct. Mater. 29, 1901290 (2019)

    Article  Google Scholar 

  72. Eshete, Y.A., Ling, N., Kim, S., et al.: Vertical heterophase for electrical, electrochemical, and mechanical manipulations of layered MoTe2. Adv. Funct. Mater. 29, 1904504 (2019)

    Article  Google Scholar 

  73. Lu, D.L., Ren, X.H., Ren, L., et al.: Direct vapor deposition growth of 1T’ MoTe2 on carbon cloth for electrocatalytic hydrogen evolution. ACS Appl. Energy Mater. 3, 3212–3219 (2020)

    Article  CAS  Google Scholar 

  74. He, H.Y., He, Z., Shen, Q.: One-pot synthesis of non-precious metal RGO/1T’-MoTe2: Cu heterohybrids for excellent catalytic hydrogen evolution. Mater. Sci. Eng. B Adv. 260, 114659 (2020)

    Article  CAS  Google Scholar 

  75. Mc Manus, J.B., Cunningham, G., et al.: Growth of 1T’ MoTe2 by thermally assisted conversion of electrodeposited tellurium films. ACS Appl. Energy Mater. 2, 521–530 (2019)

    Article  CAS  Google Scholar 

  76. McGlynn, J.C., Dankwort, T., Kienle, L., et al.: The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nat. Commun. 10, 4916 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li, J., Hong, M.L., Sun, L.J., et al.: Enhanced electrocatalytic hydrogen evolution from large-scale, facile-prepared, highly crystalline WTe2 nanoribbons with weyl semimetallic phase. ACS Appl. Mater. Interfaces. 10, 458–467 (2018)

    Article  CAS  PubMed  Google Scholar 

  78. Habib, M.R., Wang, S.P., Wang, W.J., et al.: Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale 11, 20123–20132 (2019)

    Article  CAS  PubMed  Google Scholar 

  79. Kobayashi, S., Katayama, N., Manjo, T., et al.: Linear trimer formation with antiferromagnetic ordering in 1T-CrSe2 originating from peierls-like instabilities and interlayer Se-Se interactions. Inorg. Chem. 58, 14304–14315 (2019)

    Article  CAS  PubMed  Google Scholar 

  80. Lasek, K., Coelho, P.M., Zberecki, K., et al.: Molecular beam epitaxy of transition metal (Ti-, V-, and Cr-) tellurides: from monolayer ditellurides to multilayer self-intercalation compounds. ACS Nano 14, 8473–8484 (2020)

    Article  CAS  PubMed  Google Scholar 

  81. Sun, F., Hong, A., Zhou, W., et al.: Prediction for structure stability and ultrahigh hydrogen evolution performance of monolayer 2H-CrS2. Mater. Today Commun. 25, 101707 (2020)

    Article  CAS  Google Scholar 

  82. Liu, Y., Liang, C., Wu, J., et al.: Atomic layered titanium sulfide quantum dots as electrocatalysts for enhanced hydrogen evolution reaction. Adv. Mater. Interfaces 5, 1700895 (2018)

    Article  Google Scholar 

  83. Hu, P., Long, G., Chaturvedi, A., et al.: Agent-assisted VSSe ternary alloy single crystals as an efficient stable electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 7, 15714–15721 (2019)

    Article  CAS  Google Scholar 

  84. Qu, Y., Shao, M., Shao, Y., et al.: Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. J. Mater. Chem. A 5, 15080–15086 (2017)

    Article  CAS  Google Scholar 

  85. Zhang, Y., Chen, X., Huang, Y., et al.: The role of intrinsic defects in electrocatalytic activity of monolayer VS2 basal planes for the hydrogen evolution reaction. J. Phys. Chem. C 121, 1530–1536 (2017)

    Article  CAS  Google Scholar 

  86. Li, H., Tan, Y., Liu, P., et al.: Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv. Mater. 28, 8945–8949 (2016)

    Article  CAS  PubMed  Google Scholar 

  87. Huan, Y., Shi, J., Zou, X., et al.: Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc. 141, 18694–18703 (2019)

    Article  CAS  PubMed  Google Scholar 

  88. Lai, Z., Chaturvedi, A., Wang, Y., et al.: Preparation of 1T-phase ReS2xSe2(1-x) (x = 0-1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 140, 8563–8568 (2018)

    Article  CAS  PubMed  Google Scholar 

  89. Martín-García, B., Spirito, D., Bellani, S., et al.: Extending the colloidal transition metal dichalcogenide library to ReS2 nanosheets for application in gas sensing and electrocatalysis. Small 15, 1904670 (2019)

    Article  Google Scholar 

  90. Liu, Y., Wu, J., Hackenberg, K.P., et al.: Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2, 17127 (2017)

    Article  CAS  Google Scholar 

  91. Pan, H.: Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production. Sci. Rep. 4, 5348 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yuan, J., Wu, J., Hardy, W.J., et al.: Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv. Mater. 27, 5605–5609 (2015)

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, H., Liu, L.M., Lau, W.M.: Dimension-dependent phase transition and magnetic properties of VS2. J. Mater. Chem. A 1, 10821–10828 (2013)

    Article  CAS  Google Scholar 

  94. Fan, X., Wang, S., An, Y., et al.: Catalytic activity of MS2 monolayer for electrochemical hydrogen evolution. J. Phys. Chem. C 120, 1623–1632 (2016)

    Article  CAS  Google Scholar 

  95. Shi, J., Wang, X., Zhang, S., et al.: Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 8, 958 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hart, L., Dale, S., Hoye, S., et al.: Rhenium dichalcogenides: layered semiconductors with two vertical orientations. Nano Lett. 16, 1381–1386 (2016)

    Article  CAS  PubMed  Google Scholar 

  97. Gao, J., Li, L., Tan, J., et al.: Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett. 16, 3780–3787 (2016)

    Article  CAS  PubMed  Google Scholar 

  98. Qi, F., Wang, X., Zheng, B., et al.: Self-assembled chrysanthemum-like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 224, 593–599 (2017)

    Article  CAS  Google Scholar 

  99. Zhuang, M., Xu, G.L., Gan, L.Y., et al.: Sub-5 nm edge-rich 1T′-ReSe2 as bifunctional materials for hydrogen evolution and sodium-ion storage. Nano Energy 58, 660–668 (2019)

    Article  CAS  Google Scholar 

  100. Putungan, D.B., Lin, S.H., Kuo, J.L.: A first-principles examination of conducting monolayer 1T′-MX2 (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain. Phys. Chem. Chem. Phys. 17, 21702–21708 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. Chen, X., Wang, G.: Tuning the hydrogen evolution activity of MS2 (M = Mo or Nb) monolayers by strain engineering. Phys. Chem. Chem. Phys. 18, 9388–9395 (2016)

    Article  CAS  PubMed  Google Scholar 

  102. Shang, B., Cui, X.Q., Jiao, L., et al.: Lattice-mismatch-induced ultrastable 1T-phase MoS2-Pd/Au for plasmon-enhanced hydrogen evolution. Nano Lett. 19, 2758–2764 (2019)

    Article  CAS  PubMed  Google Scholar 

  103. Zheng, X.L., Zhang, G.Y., Xu, X.P., et al.: Synergistic effect of mechanical strain and interfacial-chemical interaction for stable 1T-WSe2 by carbon nanotube and cobalt. Appl. Surf. Sci. 496, 143694 (2019)

    Article  CAS  Google Scholar 

  104. Lu, W.G., Birmingham, B., Zhang, Z.R.: Defect engineering on MoS2 surface with argon ion bombardments and thermal annealing. Appl. Surf. Sci. 532, 147461 (2020)

    Article  CAS  Google Scholar 

  105. Chen, J., Ryu, G.H., Zhang, Q.Y., et al.: Spatially controlled fabrication and mechanisms of atomically thin nanowell patterns in bilayer WS2 using in situ high temperature electron microscopy. ACS Nano 13, 14486–14499 (2019)

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, J.M., Xu, X.P., Yang, L., et al.: Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 3, 1900653 (2019)

    Article  CAS  Google Scholar 

  107. Cao, D.F., Ye, K., Moses, O.A., et al.: Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 13, 11733–11740 (2019)

    Article  CAS  PubMed  Google Scholar 

  108. Huang, Y.C., Sun, Y.H., Zheng, X.L., et al.: Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 10, 982 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He, Y.M., Tang, P.Y., Hu, Z.L., et al.: Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 11, 57 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhao, X., Ma, X., Sun, J., et al.: Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 10, 2159–2166 (2016)

    Article  CAS  PubMed  Google Scholar 

  111. Qu, Y., Pan, H., Kwok, C.T.: Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties. Sci. Rep. 6, 34186 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Luxa, J., Vosecký, P., Mazánek, V., et al.: Cation-controlled electrocatalytical activity of transition-metal disulfides. ACS Catal. 8, 2774–2781 (2018)

    Article  CAS  Google Scholar 

  113. Chia, X., Ambrosi, A., Sedmidubský, D., et al.: Precise tuning of the charge transfer kinetics and catalytic properties of MoS2 materials via electrochemical methods. Chem. Eur. J. 20, 17426–17432 (2014)

    Article  CAS  PubMed  Google Scholar 

  114. Leong, S.X., Mayorga-Martinez, C.C., Chia, X., et al.: 2H → 1T phase change in direct synthesis of WS2 nanosheets via solution-based electrochemical exfoliation and their catalytic properties. ACS Appl. Mater. Interfaces 9, 26350–26356 (2017)

    Article  CAS  PubMed  Google Scholar 

  115. Ejigu, A., Kinloch, I.A., Prestat, E., et al.: A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors. J. Mater. Chem. A 5, 11316–11330 (2017)

    Article  CAS  Google Scholar 

  116. Chen, W., Gu, J., Liu, Q., et al.: Quantum dots of 1T phase transitional metal dichalcogenides generated via electrochemical Li intercalation. ACS Nano 12, 308–316 (2018)

    Article  CAS  PubMed  Google Scholar 

  117. Nguyen, V.T., Le, P.A., Hsu, Y.C., et al.: Plasma-induced exfoliation provides onion-like graphene-surrounded MoS2 nanosheets for a highly efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 12, 11533–11542 (2020)

    Article  CAS  PubMed  Google Scholar 

  118. Tang, Q.: Tuning the phase stability of Mo-based TMD monolayers through coupled vacancy defects and lattice strain. J. Mater. Chem. C 6, 9561–9568 (2018)

    Article  CAS  Google Scholar 

  119. Patra, T.K., Zhang, F., Schulman, D.S., et al.: Defect dynamics in 2-D MoS2 probed by using machine learning, atomistic simulations, and high-resolution microscopy. ACS Nano 12, 8006–8016 (2018)

    Article  CAS  PubMed  Google Scholar 

  120. Zhu, J.Q., Wang, Z.C., Yu, H., et al.: Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139, 10216–10219 (2017)

    Article  CAS  PubMed  Google Scholar 

  121. Gan, X.R., Lee, L.Y.S., Wong, K.Y., et al.: 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies. ACS Appl. Energy Mater. 1, 4754–4765 (2018)

    Article  CAS  Google Scholar 

  122. Nam, D.H., Kim, J.Y., Kang, S., et al.: Anion extraction-induced polymorph control of transition metal dichalcogenides. Nano Lett. 19, 8644–8652 (2019)

    Article  CAS  PubMed  Google Scholar 

  123. Radisavljevic, B., Radenovic, A., Brivio, J., et al.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  CAS  PubMed  Google Scholar 

  124. Coleman, J.N., Lotya, M., O’Neill, A., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)

    Article  CAS  PubMed  Google Scholar 

  125. Tan, C.L., Luo, Z.M., Chaturvedi, A., et al.: Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 (2018)

    Article  Google Scholar 

  126. Chua, C.K., Loo, A.H., Pumera, M.: Top-down and bottom-up approaches in engineering 1T phase molybdenum disulfide (MoS2): towards highly catalytically active materials. Chem. Eur. J. 22, 14336–14341 (2016)

    Article  CAS  PubMed  Google Scholar 

  127. Liu, Z., Li, N., Su, C., et al.: Colloidal synthesis of 1T’ phase dominated WS2 towards endurable electrocatalysis. Nano Energy 50, 176–181 (2018)

    Article  CAS  Google Scholar 

  128. Wang, J., Wang, N., Guo, Y., et al.: Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution. ACS Sustain. Chem. Eng. 6, 13435–13442 (2018)

    Article  CAS  Google Scholar 

  129. Venkateshwaran, S., Senthil Kumar, S.M.: Template-driven phase selective formation of metallic 1T-MoS2 nanoflowers for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 7, 2008–2017 (2018)

    Article  Google Scholar 

  130. Yin, Y., Zhang, Y., Gao, T., et al.: Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen evolution reaction. Adv. Mater. 29, 1700311 (2017)

    Article  Google Scholar 

  131. Gao, G., Jiao, Y., Ma, F., et al.: Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T’ phase. J. Phys. Chem. C 119, 13124–13128 (2015)

    Article  CAS  Google Scholar 

  132. Park, S., Kim, C., Park, S.O., et al.: Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 32, 2001889 (2020)

    Article  CAS  Google Scholar 

  133. Attanayake, N.H., Thenuwara, A.C., Patra, A., et al.: Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction. ACS Energy Lett. 3, 7–13 (2018)

    Article  CAS  Google Scholar 

  134. Liu, S., Li, M., Wang, C., et al.: Tuning the electronic structure of Se via constructing Rh-MoSe2 nanocomposite to generate high-performance electrocatalysis for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6, 9137–9144 (2018)

    Article  CAS  Google Scholar 

  135. Chia, X., Sutrisnoh, N.A.A., Sofer, Z., et al.: Morphological effects and stabilization of the metallic 1T phase in layered V-, Nb-, and Ta-doped WSe2 for electrocatalysis. Chem. Eur. J. 24, 3199–3208 (2018)

    Article  CAS  PubMed  Google Scholar 

  136. Huang, C., Wang, X., Wang, D., et al.: Atomic pillar effect in PdxNbS2 to boost basal plane activity for stable hydrogen evolution. Chem. Mater. 31, 4726–4731 (2019)

    Article  CAS  Google Scholar 

  137. Ji, L., Yan, P., Zhu, C., et al.: One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Appl. Catal. B 251, 87–93 (2019)

    Article  CAS  Google Scholar 

  138. Sarma, P.V., Tiwary, C.S., Radhakrishnan, S., et al.: Oxygen incorporated WS2 nanoclusters with superior electrocatalytic properties for hydrogen evolution reaction. Nanoscale 10, 9516–9524 (2018)

    Article  CAS  PubMed  Google Scholar 

  139. Sun, Q., Zhang, B., Diao, L., et al.: Engineering the electronic structure of 1T’-ReS2 through nitrogen implantation for enhanced alkaline hydrogen evolution. J. Mater. Chem. A 8, 11607–11616 (2020)

    Article  CAS  Google Scholar 

  140. Kwak, I.H., Kwon, I.S., Abbas, H.G., et al.: Nitrogen-rich 1T′-MoS2 layered nanostructures using alkyl amines for high catalytic performance toward hydrogen evolution. Nanoscale 10, 14726–14735 (2018)

    Article  CAS  PubMed  Google Scholar 

  141. Maiti, A., Srivastava, S.K.: Sulphur edge and vacancy assisted nitrogen–phosphorus co-doped exfoliated tungsten disulfide: a superior electrocatalyst for hydrogen evolution reaction. J. Mater. Chem. A 6, 19712–19726 (2018)

    Article  CAS  Google Scholar 

  142. Benson, E.E., Zhang, H., Schuman, S.A., et al.: Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization. J. Am. Chem. Soc. 140, 441–450 (2018)

    Article  CAS  PubMed  Google Scholar 

  143. Linghu, Y., Li, N., Du, Y., et al.: Ligand induced structure and property changes of 1T-MoS2. Phys. Chem. Chem. Phys. 21, 9391–9398 (2019)

    Article  CAS  PubMed  Google Scholar 

  144. Pandey, M., Jacobsen, K.W., Thygesen, K.S.: Atomically thin ordered alloys of transition metal dichalcogenides: stability and band structures. J. Phys. Chem. C 120, 23024–23029 (2016)

    Article  CAS  Google Scholar 

  145. Chen, Y., Zhang, J., Guo, P., et al.: Coupled heterostructure of Mo-Fe selenide nanosheets supported on carbon paper as an integrated electrocatalyst for efficient hydrogen evolution. ACS Appl. Mater. Interfaces. 10, 27787–27794 (2018)

    Article  CAS  PubMed  Google Scholar 

  146. Yang, S.Z., Gong, Y., Manchanda, P., et al.: Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 30, 1803477 (2018)

    Article  Google Scholar 

  147. Liang, K., Yan, Y., Guo, L., et al.: Strained W(SexS1–x)2 nanoporous films for highly efficient hydrogen evolution. ACS Energy Lett. 2, 1315–1320 (2017)

    Article  CAS  Google Scholar 

  148. Liu, Z., Gao, Z., Liu, Y., et al.: Heterogeneous nanostructure based on 1T-phase MoS2 for enhanced electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces. 9, 25291–25297 (2017)

    Article  CAS  PubMed  Google Scholar 

  149. Sun, Z., Yang, M., Wang, Y., et al.: Novel binder-free three-dimensional MoS2-based electrode for efficient and stable electrocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2, 1102–1110 (2019)

    Article  CAS  Google Scholar 

  150. Shi, S., Gao, D., Xia, B., et al.: Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase. J. Mater. Chem. A 3, 24414–24421 (2015)

    Article  CAS  Google Scholar 

  151. Zhang, J., Wang, T., Liu, P., et al.: Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution. Electrochim. Acta 217, 181–186 (2016)

    Article  CAS  Google Scholar 

  152. Wang, D., Zhang, X., Bao, S., et al.: Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 5, 2681–2688 (2017)

    Article  CAS  Google Scholar 

  153. Tong, X., Qi, Y., Chen, J., et al.: Supercritical CO2-assisted reverse-micelle-induced solution-phase fabrication of two-dimensional metallic 1T-MoS2 and 1T-WS2. ChemNanoMat 3, 466–471 (2017)

    Article  CAS  Google Scholar 

  154. Wang, S., Zhang, D., Li, B., et al.: Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 8, 1801345 (2018)

    Article  Google Scholar 

  155. Yang, J., Wang, K., Zhu, J., et al.: Self-templated growth of vertically aligned 2H-1T MoS2 for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces. 8, 31702–31708 (2016)

    Article  CAS  PubMed  Google Scholar 

  156. Song, W., Wang, K., Jin, G., et al.: Two-step hydrothermal synthesis of CoSe/MoSe2 as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Chem ElectroChem. 6, 4842–4847 (2019)

    CAS  Google Scholar 

  157. Choi, K.H., Park, J.E., Suh, D.H.: Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS2 nano-scrolls. Phys. Chem. Chem. Phys. 19, 18356–18365 (2017)

    Article  PubMed  Google Scholar 

  158. He, Q., Wang, L., Yin, K., et al.: Vertically aligned ultrathin 1T-WS2 nanosheets enhanced the electrocatalytic hydrogen evolution. Nanoscale Res. Lett. 13, 167 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  159. Voiry, D., Fullon, R., Yang, J., et al.: The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016)

    Article  CAS  PubMed  Google Scholar 

  160. Yu, Q., Luo, Y., Qiu, S., et al.: Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano 13, 11874–11881 (2019)

    Article  CAS  PubMed  Google Scholar 

  161. Lee, Y.B., Kim, S.K., Ji, S., et al.: Facile microwave assisted synthesis of vastly edge exposed 1T/2H-MoS2 with enhanced activity for hydrogen evolution catalysis. J. Mater. Chem. A 7, 3563–3569 (2019)

    Article  CAS  Google Scholar 

  162. Wang, H., Lu, Z., Kong, D., et al.: Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8, 4940–4947 (2014)

    Article  CAS  PubMed  Google Scholar 

  163. Xiang, Z., Zhang, Z., Xu, X., et al.: MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon 98, 84–89 (2016)

    Article  CAS  Google Scholar 

  164. Qiao, J., Song, F., Hu, J., et al.: Ultrathin MoSSe alloy nanosheets anchored on carbon nanotubes as advanced catalysts for hydrogen evolution. Int. J. Hydrogen Energy 44, 16110–16119 (2019)

    Article  CAS  Google Scholar 

  165. Liu, Y., Liu, J., Li, Z., et al.: Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution. Int. J. Hydrogen Energy 43, 13946–13952 (2018)

    Article  CAS  Google Scholar 

  166. Hui, L., Xue, Y., He, F., et al.: Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy 55, 135–142 (2019)

    Article  CAS  Google Scholar 

  167. Xiong, J., Li, J., Shi, J., et al.: Metallic 1T-MoS2 nanosheets in situ entrenched on N, P, S-codoped hierarchical carbon microflower as an efficient and robust electro-catalyst for hydrogen evolution. Appl. Catal. B 243, 614–620 (2019)

    Article  CAS  Google Scholar 

  168. Yang, M., Sun, Z., Hu, Y.H.: Novel WS2-based 3D electrode with protecting scaffold for efficient and stable hydrogen evolution. J. Phys. Chem. C 123, 12142–12148 (2019)

    Article  CAS  Google Scholar 

  169. Cao, J., Zhou, J., Zhang, Y., et al.: A clean and facile synthesis strategy of MoS2 nanosheets grown on multi-wall CNTs for enhanced hydrogen evolution reaction performance. Sci. Rep. 7, 8825 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  170. Liu, Q., Fang, Q., Chu, W., et al.: Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater. 29, 4738–4744 (2017)

    Article  CAS  Google Scholar 

  171. Zhang, G., Zheng, X., Xu, Q., et al.: Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe2/MWNT heterostructure for enhanced hydrogen evolution reaction. J. Mater. Chem. A 6, 4793–4800 (2018)

    Article  CAS  Google Scholar 

  172. Deng, S., Zhong, Y., Zeng, Y., et al.: Directional construction of vertical nitrogen-doped 1T–2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater. 29, 1700748 (2017)

    Article  Google Scholar 

  173. Sharma, M.D., Mahala, C., Basu, M.: Nanosheets of MoSe2@M (M = Pd and Rh) function as widespread pH tolerable hydrogen evolution catalyst. J. Colloid Interf. Sci. 534, 131–141 (2019)

    Article  CAS  Google Scholar 

  174. Hao, Y., Wang, Y.T., Xu, L.C., et al.: 1T-MoS2 monolayer doped with isolated Ni atoms as highly active hydrogen evolution catalysts: a density functional study. Appl. Surf. Sci. 469, 292–297 (2019)

    Article  CAS  Google Scholar 

  175. Kagkoura, A., Canton-Vitoria, R., Vallan, L., et al.: Bottom-up synthesized MoS2 interfacing polymer carbon nanodots with electrocatalytic activity for hydrogen evolution. Chem. Eur. J. 26, 6635–6642 (2020)

    Article  CAS  PubMed  Google Scholar 

  176. Deng, S., Yang, F., Zhang, Q., et al.: Phase modulation of (1T–2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Adv. Mater. 30, 1802223 (2018)

    Article  Google Scholar 

  177. Xue, X., Zhang, J., Saana, I.A., et al.: Rational inert-basal-plane activating design of ultrathin 1T′ phase MoS2 with a MoO3 heterostructure for enhancing hydrogen evolution performances. Nanoscale 10, 16531–16538 (2018)

    Article  CAS  PubMed  Google Scholar 

  178. Jin, X., Shin, S.-J., Kim, J., et al.: Heterolayered 2D nanohybrids of uniformly stacked transition metal dichalcogenide-transition metal oxide monolayers with improved energy-related functionalities. J. Mater. Chem. A 6, 15237–15244 (2018)

    Article  CAS  Google Scholar 

  179. Shang, B., Ma, P., Fan, J., et al.: Stabilized monolayer 1T MoS2 embedded in CoOOH for highly efficient overall water splitting. Nanoscale 10, 12330–12336 (2018)

    Article  CAS  PubMed  Google Scholar 

  180. Li, H., Chen, S., Zhang, Y., et al.: Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 9, 2452 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  181. Huang, W.T., Zhou, Q.W., Su, S.Q., et al.: Ion beam defect engineering on ReS2/Si photocathode with significantly enhanced hydrogen evolution reaction. Adv. Mater. Interfaces 6, 1801663 (2019)

    Article  Google Scholar 

  182. He, Z.Y., Zhao, R., Chen, X.F., et al.: Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS Appl. Mater. Interfaces. 10, 42524–42533 (2018)

    Article  CAS  PubMed  Google Scholar 

  183. Bentley, C.L., Kang, M., Maddar, F.M., et al.: Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity. Chem. Sci. 8, 6583–6593 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Takahashi, Y., Kobayashi, Y., Wang, Z.Q., et al.: High-resolution electrochemical mapping of the hydrogen evolution reaction on transition-metal dichalcogenide nanosheets. Angew. Chem. Int. Ed. 59, 3601–3608 (2020)

    Article  CAS  Google Scholar 

  185. Hill, J.W., Fu, Z.G., Tian, J.F., et al.: Locally engineering and interrogating the photoelectrochemical behavior of defects in transition metal dichalcogenides. J. Phys. Chem. C 124, 17141–17149 (2020)

    Article  CAS  Google Scholar 

  186. Zhang, X., Zhang, Y.Y., Zhang, Y., et al.: Phase-controlled synthesis of 1T-MoSe2/NiSe heterostructure nanowire arrays via electronic injection for synergistically enhanced hydrogen evolution. Small Methods 3, 1800317 (2019)

    Article  Google Scholar 

Download references

Funding

U.S. National Science Foundation (CMMI-1661699) partially supported this work. The support of Charles and Carroll McArthur is also highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Yun Hang Hu, Liang Chang and Zhuxing Sun made contributions to the manuscript preparation.

Corresponding author

Correspondence to Yun Hang Hu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Sun, Z. & Hu, Y.H. 1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction. Electrochem. Energ. Rev. 4, 194–218 (2021). https://doi.org/10.1007/s41918-020-00087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00087-y

Keywords

Navigation