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Abstract
This paper presents estimates of the association between maize yield and weather using 
survey data from Ghana, Mali and Nigeria, allowing for the possibility that farmers’ 
choices about agricultural technology may themselves depend on weather. We find that 
the association between yield and weather varies substantially according to these choices. 
We then use our estimates to forecast the change in yield under alternative weather change 
scenarios. All of these scenarios envisage an increase in temperature, but some envisage a 
rise in rainfall while others envisage a fall. In almost all scenarios, there is a substantial fall 
in productivity. In the absence of adaptation measures, weather change is likely to substan-
tially reduce farm income in all three countries.
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Introduction

Maize is among the most important agricultural commodities produced in Africa. It serves 
as the staple food crop for more than 300 million Africans, the majority of whom fall below 
the poverty line. The crop is widely grown across sub Saharan Africa, where it occupies 25 
million hectares of land and provides 20% of the calorific intake of half of the population, 
as well as being an important source of carbohydrates, protein, fats, minerals and vitamins 
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(Badu-Apraku and Fakorede 2017). In 2009, per capita consumption of maize in Africa was 
more than four times that of Asia (International Maize and Wheat Improvement Center 2014).

Maize farmers in West Africa are generally smallholders producing under rain-fed con-
ditions; their yields are typically very much lower than the international mean, and they 
are very vulnerable to climate change (Cairns et al. 2013; Tesfaye et al. 2018). The rela-
tively low yields in West Africa can be attributed to unfavorable climate, low soil fertility, 
inadequate crop protection, and low use of agricultural inputs. High temperature can slow 
the ability of crops to uptake and utilize carbon dioxide for photosynthesis, which in turn 
depresses leaf development, facilitates early leaf senescence during grain filling, prevents 
silk elongation and induces ovule abortion. It can also reduce maize productivity by inhib-
iting root functioning and stunting plant growth. Low rainfall can reduce maize productiv-
ity by inducing stomatal closure and facilitating the production of abscisic acid as a result 
of difficulties in transpiration. (See Badu-Apraku and Fakorede (2017) and Lobell et  al. 
(2011) for discussions of these points.)

While the economies of Africa are not the main cause of climate change, they have 
already been affected by it. There is a serious risk that these effects will worsen as climatic 
stresses interact with non-climatic factors and increase the vulnerability of the agricultural 
sector, particularly in semiarid regions of the continent where exposure to climate change is 
high and adaptive capacity is low. Sub-Saharan Africa has been warming at an average rate of 
0.5 °C per century, and available data indicate that Africa will warm faster than other parts of 
the world; under some scenarios, temperature in maize-growing regions are predicted to rise 
by over 2 °C by 2050. The forecast increase in temperature in West Africa over 2020–2100 
is between 3 °C and 6 °C. Maize-producing areas are predicted to become warmer, and heat 
is expected to replace drought as the most important stressor affecting maize productivity. 
There is much more uncertainty about changes in rainfall in West Africa, but extreme rainfall 
events such as storms and floods are predicted to become more frequent and severe.1 Climate 
change poses a serious food security risk for millions of smallholder farmers who cultivate 
maize in already fragile tropical agricultural systems in Africa. The maize plant is more sen-
sitive to high temperature than other crops (Tesfaye et al. 2015); there is evidence that 50% of 
the variation in maize yields is caused by variations in climate (Cairns and Prasanna 2018), 
and it is estimated that climate change could reduce maize yields in semiarid areas by up to 
10 million tons per annum. In West Africa, maize farmers are vulnerable to increases in tem-
perature, especially when such increases are accompanied by a decline in rainfall.

There is therefore interest in agricultural technologies that could mitigate the effects of 
climate change on smallholder agriculture (Di Falco et al. 2011). The use of improved vari-
eties of maize that are tolerant to heat and drought is a potentially important adaptation 
mechanism (Cairns et  al. 2013), as is the increased use of inorganic fertilizer, although 
there is some concern that climate change will limit the effectiveness of fertilizer in 
increasing the yield of improved maize varieties (Tesfaye et al. 2015).

In this paper, we present estimates of the association of maize yield with temperature 
and rainfall using farm-level survey data from Ghana, Mali and Nigeria, allowing for the 
possibility that farmers’ choices about agricultural technology may themselves depend on 
the weather. The first part of our analysis identifies the factors determining whether maize 
farmers use (i) inorganic fertilizer and (ii) improved hybrid maize varieties (IMV) instead 
of open-pollinated varieties; these factors include local temperature and rainfall, household 

1 See Cairns et al. (2013), Niang et al. (2014), and Tesfaye et al. (2018) for further information about these 
predictions.
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characteristics, whether the farm has been contacted by an agricultural extension agent, 
and whether it is a member of a co-operative farming association. The second part of our 
analysis estimates the association of farm-level maize yields with temperature, rainfall, 
and household characteristics, allowing the size of these associations to vary according 
to whether the farm uses fertilizer and/or IMV. These analyses form the basis of forecasts 
of the change in maize yields under eight alternative scenarios. The forecasts pertain to 
changes in maize yields for (i) farms which currently operate in average climatic condi-
tions, (ii) farms which currently operate in moderately mild conditions, and (iii) farms 
which currently operate in moderately severe conditions. The forecasts in case (i) are based 
on estimated yields on farms that currently experience the conditions that would be expe-
rienced by the average farms after climate change; the forecasts in cases (ii-iii) are con-
structed in an analogous way.

All eight scenarios involve a rise in temperature; some involve a fall in rainfall, but oth-
ers involve a rise in rainfall. We find that under the most pessimistic scenarios (with a large 
rise in temperature and a fall in rainfall), there is likely to be a very large fall in maize 
yields, and even under most of the optimistic scenarios (with a moderate rise in tempera-
ture and a rise in rainfall), maize yields can still be expected to fall. The consequence of 
climate change for maize productivity in these three countries is therefore likely to be more 
serious than in the world as a whole, for which a moderate decline in productivity is fore-
cast (Haile et al. 2017).2

The rest of the paper is organized as follows. Section "Literature Review" reviews 
research on the determinants of farmer choices and maize yields in Africa, Section "Our 
Data" describes the dataset, Section  "Methods" presents our statistical method, Sec-
tion "Results" presents the results, and Section "Conclusion" concludes.

Literature Review

The research presented in this paper involves modeling both farmers’ choices about tech-
nology (whether to apply inorganic fertilizer and whether to use IMV instead of an open 
pollinated variety) and maize yields per hectare conditional on these choices. Most of the 
existing African literature presents evidence on either one or other of these things. Moreo-
ver, when models of maize yield do control for fertilizer or seed variety choice, these are 
typically included as linearly separable terms, whereas we allow the association of yield 
with temperature and rainfall to depend on the choices. In this section, we review the litera-
ture on farmers’ choices and then the literature on maize yield.

Evidence on Fertilizer Use in Africa

Whether rainfall increases or reduces inorganic fertilizer use will depend on whether they 
are complements or substitutes in the maize production function. We could not find any 
literature explicitly addressing the question of complementarity versus substitutability, but 
a few African studies using farm-level data implicitly address the question by modelling 
fertilizer use conditional on rainfall. These studies employ a variety of different modeling 

2 We note that some studies (for example Coulibaly et al. 2020) classify Ghana and Nigeria as countries 
facing a low level of climate change risk relative to the average for Africa. Our results do not contradict this 
classification: it is possible that other countries in Africa face even higher levels of risk.
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approaches. Some researchers just use a Probit model to estimate the association of rainfall 
(and other factors) with the probability of inorganic fertilizer use; other researchers model 
both the probability of fertilizer use and the quantity of fertilizer applied per hectare, if 
data on such quantities are reliable. Estimates of the association of quantity with rainfall 
are based either on a Tobit model or on a Hurdle model, although the latter requires a plau-
sible exclusion restriction to identify the parameters in the quantity equation.

Several authors report a significant association of the probability of fertilizer use with 
rainfall, although the magnitude of the association is difficult to ascertain because these 
authors either (i) report only regression coefficients, not marginal effects, or (ii) fit a quad-
ratic model and report separate marginal effects on rainfall and rainfall squared. We could 
not find any paper that reported informative marginal effects, i.e. plots of the probability 
of fertilizer use conditional on the level of rainfall. Nevertheless, Zerfu and Larson (2011) 
report a significantly positive association of the probability of fertilizer use with rainfall in 
Ethiopia, which suggests that inorganic fertilizer and rainfall are complements. This result 
is probably consistent with the Ethiopian study of Alem et al. (2010), who report a posi-
tive coefficient on rainfall and a negative coefficient on rainfall squared. Although Alem 
et al. do not discuss the distribution of their rainfall data, rainfall would have to be twice its 
mean level for the estimated association to be negative. Using Tanzanian data, Heisse and 
Morimoto (2023) also find a positive coefficient on rainfall and a negative coefficient on 
rainfall squared. These authors do report enough information about the rainfall distribution 
to ascertain that the association is significantly positive at all rainfall levels. This contrasts 
with the results of Ricker-Gilbert et al. (2011), who report a significantly negative associa-
tion of the probability of fertilizer use with rainfall in Malawi.

Among these studies, only Alem et al. and Ricker-Gilbert et al. model the association of 
the quantity of fertilizer with the rainfall level: Alem et al. use a Tobit model while Ricker-
Gilbert et al. report results from both a Tobit model and a Hurdle model. In all cases, there 
is a significantly positive association of quantity with rainfall. Ricker-Gilbert et al. do not 
discuss why rainfall might reduce the probability of fertilizer use but increase the quan-
tity of fertilizer on those farms that do use it. Taking a different approach, Naseem and 
Kelly (1999) model country-level average levels of fertilizer use in an African panel data-
set. They find a significantly positive association with rainfall, but rainfall is measured as 
an index that is not described in detail, so the magnitude of the association is again difficult 
to ascertain. Overall, there is more evidence for the complementarity of inorganic fertilizer 
use and rainfall than there is for substitutability, but this may not be a common feature of 
all countries and all parts of the production function.

Of the studies cited above, only Heisse and Morimoto (2023) include temperature as an 
explanatory variable, finding a significantly negative association of the probability of ferti-
lizer use with temperature. The Probit function is linear for temperatures below 28 degrees 
centigrade, the reported marginal effect implying that each extra degree reduces the prob-
ability of fertilizer use by about four percentage points.

Evidence on Crop Variety Choice in Africa

Several studies have employed Probit or Multinomial Logit models to explore the associa-
tion of climate variables with farmers’ choices about crop varieties. However, these studies 
are difficult to compare directly with our own, because either (i) marginal effects are not 
reported, or (ii) the choice variable is defined differently, or (iii) the climate variables are 
defined differently. For example, Deressa et al. (2009) find that the probability of selecting 
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new varieties in Ethiopia is positively associated with temperature and negatively associated 
with rainfall, but they do not report marginal effects. Mukarumbwa and Taruvinga (2023) 
find that the adoption of GM varieties of maize in South Africa is positively associated with 
rainfall; they do report marginal effects, but they do not report the units in which rainfall is 
measured. Using data from Ethiopia, Kenya, Tanzania and Uganda, Kom et al. (2022) find a 
negative association of the probability of selecting improved varieties with a recent decrease 
in rainfall and with high temperature, but both of these factors are defined as binary vari-
ables; the marginal effects are 0.38 and 0.14 respectively. Using data from Ethiopia and 
Tanzania, Shikuku et al. (2017) find that the probability of selecting new short-cycle crop 
varieties is positively associated with both delayed rainfall and erratic rainfall; the marginal 
effects are 0.45 and 0.24 respectively. Taken together, these results include both positive and 
negative associations of the selection of non-traditional varieties of crop with rainfall, and 
both positive and negative associations with temperature; they are therefore inconclusive.

Evidence on Maize Yield

A number of studies report estimated associations between maize yield and climate variables 
in Africa, using either farm-level or country-level data. These studies employ a variety of dif-
ferent methods and functional forms, so making direct comparisons between them is often 
difficult. Using farm-level data from Tanzania, Rowhani et al. (2011) fit a linear model of yield 
per hectare as a function of rainfall, temperature, rainfall squared and temperature squared. 
They find yield to be a positive but concave function of rainfall, and a negative and approxi-
mately linear function of temperature. Using these results, they report forecasts for (i) a 20% 
increase in rainfall and (ii) two degree increase in temperature. The increase in rainfall is fore-
cast to increase the average yield by 5% while the increase in temperature is forecast to reduce 
the average yield by 20–30%. Using farm-level data from Morocco, Achli et al. (2022) fit a 
linear model of yield per hectare as a function of growing-season rainfall, estimating that a 
1 mm increase in rainfall leads to an increase in yield of about 20 kg per hectare. Given the 
different units of measurement and the limited information about sample distributions in these 
two papers, it is not possible to make a direct comparison of the estimated sizes of the effects. 
Jayanthi et  al. (2013) report a positive and significant association between maize yield and 
rainfall in Malawi, but rainfall is measured as a standardized index, which limits comparison 
with other studies. Both Epule and Bryant (2014) and Sounders et al. (2017) find no signifi-
cant rainfall or temperature effects in Cameroon. Atiah et al. (2022) report a negative associa-
tion between maize yield and rainfall in Ghana, with no significant association between yield 
and temperature. The absence of other covariates in their model means that these results may 
be fragile, although very high rainfall may reduce yields because of waterlogging.

Perhaps the most comprehensive study of maize yield and climate using country-level 
panel data is Blanc (2012). The dependent variable in this study is the log of mean yield in 
an individual country in Sub-Saharan Africa in a particular year, and the explanatory varia-
bles include mean rainfall, rainfall squared, temperature, temperature squared. The model also 
includes country fixed effects, so the results are to be interpreted as estimates of the associa-
tion between inter-temporal variation in climate and inter-temporal variation in maize yield, 
averaged across all countries in Sub-Saharan Africa. This contrasts with the farm-level results, 
which are based on variation across space. The results include plots of predicted log yield at (i) 
mean temperature (24.3 degrees) and different rainfall levels, and (ii) mean rainfall (1,057 mm) 
and different temperatures. The association of log yield with temperature is approximately lin-
ear, with each 0.1ºrise in temperature leading to a reduction in yield of about 7%. The rainfall 
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plots are non-linear, the curve becoming flat when rainfall reaches about 1,000 mm. Below 
this level, each 10 mm increase in rainfall is associated with an increase in yield of about 4%. 
We emphasize these results because they are the most comprehensive in any African study 
that we are aware of, and we will report our initial results in a similar way.

Our Data

Data on maize yields and household characteristics for individual farms come from 
a 2013 survey of Ghanaian, Malian and Nigerian households. The survey was imple-
mented by each country’s national agricultural research system (NARS) with funding 
from the International Institute of Tropical Agriculture (IITA). The NARS research-
ers (including two of the authors of this paper) first consulted with government agen-
cies responsible for agriculture in the three countries. They confirmed which regions 
of Ghana and Mali (and which states of Nigeria) have maize as a major food crop. 
The survey was designed to be representative of farms in these regions and states.3 
Two maize-producing districts were randomly selected from each region, ten maize-
producing communities were randomly selected from each district, and ten maize-pro-
ducing households in each community were randomly selected for interview. In order 
to ensure consistency in interpretation, a member of the questionnaire drafting team 
from IITA was involved in the training of enumerators (mostly NARS staff) in each 
country. Ghana, Mali and Nigeria are three out of the four main West African coun-
tries for adaptive trials and dissemination of maize technologies developed by the IITA 
(the other country is Benin).

The study produced responses relating to farm and household characteristics from 
2,089 out of the 2,200 households selected, and data relating to maize yield were 
obtained from 1,872 households.4 Across all farms, the logarithm of maize yield is 
approximately normally distributed. Measuring yield in kilograms per hectare, the mean 
of this distribution is 6.27, i.e. the geometric mean of the yield is equal to exp(6.27) ≈ 
530 kg/ha. The Supplementary Materials include further descriptive statistics and pro-
vide information about the locations selected in each country. Two farm characteristics 
central to our analysis are whether inorganic fertilizer is applied to fields (which is the 
case on 70% of the farms) and whether the farm uses IMV (which is the case on 24% of 
the farms). Overall, 22% of farms use both fertilizer and IMV, 28% use neither, 48% use 
fertilizer only, and just 2% use IMV only. The two choices are highly correlated, since 
farms not using fertilizer are very unlikely to use IMV.

Temperature and rainfall data were obtained from the El Tiempo database (see http:// 
www. tutie mpo. net/ clima). Our statistical model employs mean annual temperature and 
rainfall figures for 2013, which are available for 121 distinct geographical units across 
the three countries; these units are larger than communities but smaller than districts. 
Figures 1 and 2 illustrate the sample distributions of temperature in degrees centigrade 
and rainfall in millimetres. Almost all farms in our sample experience mean temperatures 

3 For the sake of brevity, we will refer to “Ghanaian, Malian and Nigerian maize yields,” but this is more 
properly described as “yields in the major maize-producing regions of Ghana and Mali and states of Nige-
ria.” It is farms in these regions and states that form the population from which we are sampling.
4 The yield distribution is broadly consistent with the distribution in other data sources: see for example 
Ragasa et al. (2014).

http://www.tutiempo.net/clima
http://www.tutiempo.net/clima
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between 24ºC and 28ºC and mean rainfall between 800 mm and 1,600 mm, although there 
are a few outliers.5

When modelling the association of the choice to use inorganic fertilizer (or IMV) with 
temperature and rainfall, it will be important to control for other farm and household char-
acteristics that might be associated with these choices. First, inorganic fertilizer (or the use 
of IMV) could be a complement or a substitute for a number of other inputs in the produc-
tion process, including soil quality, mechanisation, herbicides, and the number of people 
in the household. Previous studies have found significant associations of the probability 
of fertilizer use with soil quality (e.g. Marenya and Barrett 2009) and household size (e.g. 
Zerfu and Larson 2011). We include the following control variables; for our purposes, it is 
not necessary to make any assumptions about the shape of the production function, so we 
have no priors about the signs of the coefficients on these variables.6

Fig. 1  Histogram for temperature
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Fig. 2  Histogram for rainfall
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5 Omission of the outliers (observations below 24º, above 28º, below 800 mm, or above 1,600 mm) makes 
no substantial difference to our results.
6 If these characteristics were completely uncorrelated with temperature and rainfall then it would not be 
necessary to control for them, but in fact the correlations are not exactly equal to zero. Descriptive statistics 
for all of the control variables appear in the Supplementary Materials.
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• soil = 1 if the household head states the farm’s soil quality is high; otherwise soil = 0. In a 
model of decision-making, perceived quality is likely to matter more than actual quality.

• tractor = 1 if a tractor is used on the farm; otherwise tractor = 0.
• herbicide = 1 if herbicide is used on the farm; otherwise herbicide = 0.
• size is the number of people in the household.

In principle, it is possible to use continuous variables measuring the intensity of the use 
of other factor inputs, for example, the number of hours of tractor use or litres of herbicide 
per hectare. However, farmers’ recall about these quantities is likely to be less reliable than 
information about whether the inputs have been used at all.

Second, the technology choices of many maize farmers in Africa are constrained by the 
limited information available to them: see for example Mastenbroek et al. (2021). Informa-
tion about fertilizers or IMV may be more readily available to households with young, male 
heads: younger individuals may be more open to new information, and males (who are in 
the majority) are likely to communicate more readily with each other than with females. 
Previous studies have found significant associations of the probability of fertilizer use with 
both age (e.g. Ricker-Gilbert et al. 2011) and gender (e.g. Alem et al. 2010). We include 
the following two control variables.

• female = 1 if the household head is female; otherwise female = 0.
• age is the age of the household head in years.

Finally, information may be more readily available when the household head has access 
to a co-operative association or to an extension programme. Co-operative associations are 
one of the main channels through which information about inorganic fertilizer and maize 
varieties is disseminated (Awunyo-Vitor et  al. 2016), so association membership is likely 
to influence these technology choices. Antwi-Agyei and Stringer (2021) discuss of the role 
of West African agricultural extension in facilitating the adoption of new technologies, and 
Nkonya et al. (1997) discuss evidence on the association of IMV and fertilizer adoption with 
extension agent activity elsewhere in Africa. We include the following two control variables.

• association = 1 if the household head belongs to is a farmers’ co-operative association, 
otherwise association = 0.

• extension = 1 if the household head has had contact with an agricultural extension 
agent; otherwise extension = 0.

Methods

Modelling technology selection

First, we fit a model of the probability of fertilizer and IMV use conditional on temperature 
(tempi), rainfall (prepi), contact with an extension agent (extensioni), membership of a co-opera-
tive association (associationi), and the six other household characteristics (xik).7 It is possible that 
there exists some unobserved heterogeneity across farms that is correlated with both fertilizer 
use and IMV use: in particular, farms not using fertilizer, for whatever reason, are very unlikely 

7 We also include a country fixed effect.
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to use IMV. Therefore, in order to avoid biased parameter estimates, it is preferable to model the 
two choices simultaneously. This can be achieved using a Multinomial Probit model (MNP) or a 
Bivariate Probit model (BVP). In the MNP, there is a separate regression equation for three out 
of the four possible combinations (neither fertilizer nor IMV; fertilizer only; IMV only; both fer-
tilizer and IMV): the probability of the fourth combination is implicit, because the four probabili-
ties must sum to one. In the BVP, there two regression equations: one for the probability of ferti-
lizer use and one for the probability of IMV use, from which the probabilities of the four different 
combinations can be inferred. With two equations instead of three, the BVP is more restrictive, 
but if the restrictions are valid then it is more efficient. The restrictions cannot be tested directly, 
because imposing them on the MNP produces a singular covariance matrix (Weeks and Orme 
1999); for this reason, we fit both types of model to our data.8 Fortunately, the two approaches 
produce very similar results. Given the similarity of the results and the relative parsimony of the 
BVP, we report the BVP results in the main text. The Supplementary Materials contain a com-
parison of the BVP and MNP results. The BVP takes the following form.

Here, εi and ηi are error terms, Φ [.] is a multivariate normal distribution, and the α and β 
terms are parameters to be estimated. The coefficient ρ measures the degree of correlation of 
the two error terms, i.e. the extent to which unobserved heterogeneity in fertilizer preferences 
is associated with unobserved heterogeneity in IMV preferences. We allow the latent vari-
ables ferti* and imvi* to be quadratic functions of temperature and rainfall, but otherwise the 
functions are linearly separable. Having fitted this model, we will be able to approximate the 
probability of each choice combination for different values of the explanatory variables. These 
joint probabilities are as follows.

(1a)
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[
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]

= 𝛼0 + 𝛼1 ⋅ tempi + 𝛼2 ⋅ prepi + 𝛼3 ⋅ tempi ⋅ prepi + 𝛼4 ⋅
(

tempi
)2

+ 𝛼5 ⋅
(

prepi
)2

+𝛼6 ⋅ extensioni + 𝛼7 ⋅ associationi +
∑k=13

k=8
𝛼k ⋅ x

k
i

fert∗
i
= E

[

fert∗
i

]

+ 𝜀i; ferti = 1 if fert∗
i
> 0, otherwise ferti = 0

(1b)

E
[

imv∗
i

]

= 𝛽0 + 𝛽1 ⋅ tempi + 𝛽2 ⋅ prepi + 𝛽3 ⋅ tempi ⋅ prepi + 𝛽4 ⋅
(

tempi
)2

+ 𝛽5 ⋅
(

prepi
)2

+ 𝛽6 ⋅ extensioni + 𝛽7 ⋅ associationi +
∑k=13

k=8
𝛽k ⋅ x

k
i

imv∗
i
= E

[

imv∗
i

]

+ 𝜂i; imvi = 1 if imv∗
i
> 0, otherwise imvi = 0

[

�i, �i
]

∼ Φ[(0, 0), (1, 1), �]

(2a)P11
i

= Φ
[

E
[

fert∗
i

]

, E
[

imv∗
i

]

, �
]

∶ the farm uses both fertilizer and IMV

(2b)P10
i

= Φ
[

E
[

fert∗
i

]

,−E
[

imv∗
i

]

, �
]

∶ the farm uses fertilizer but not IMV

(2c)P
01

i
= Φ

[

E
[

fert∗
i

]

,−E
[

imv∗
i

]

, �
]

∶ the farm uses IMV but not fertilizer

8 Weeks and Orme (1999) propose a score test, but this proposal has not been peer reviewed and the 
method has not been widely adopted in the literature.
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We will be particularly interested in the association between each of the four esti-
mated joint probabilities and the values of tempi and prepi: these associations will under-
lie our predictions about the effects of climate change. We cannot capture any of the 
associations in a single coefficient, because the model is not linear. Instead, we will plot 
each estimated joint probability for a range of different values of tempi at the mean val-
ues of other covariates, and for a range of different values of prepi at the mean values of 
other covariates.

We will then construct predictions of the change in each of the joint probabilities under 
different climate change scenarios. These predictions are based on the assumption that farms 
experiencing a particular level of temp and prep in the future will eventually have the same 
probability of selecting a particular technology as do farms which currently experience that 
level of temp and prep. The scenarios are described in a later section of the paper: each sce-
nario involves a certain change in mean temperature in West Africa (Δtemp) and a certain 
change in mean rainfall (Δprep). These scenarios do not vary according to the current climate 
of a specific location, so we will consider three cases.

 (i) A location which is currently at the 50th percentile of the temperature distribution 
in our sample (temp50) and at the 50th percentile of the rainfall distribution (prep50). 
We will refer to this location as “the 50th percentile case”.

 (ii) A location which is currently at the 25th percentile of the temperature distribution 
(temp25) and at the 75th percentile of the rainfall distribution (prep75). We will refer 
to this location – with an initially moderate climate – as “the 25th percentile case”.

 (iii) A location which is currently at the 75th percentile of the temperature distribution 
(temp75) and at the 25th percentile of the rainfall distribution (prep25). We will refer 
to this location – with an initially severe climate – as “the 75th percentile case”.

In each case, we will consider the effect of the predicted changes in temperature and rain-
fall (Δtemp and Δprep) on the probability of fertilizer use and IMV use. Taking for example 
the 50th percentile case, we will first calculate the following quantities.

(2d)P00
i

= Φ
[

−E
[

fert∗
i

]

,−E
[

imv∗
i

]

, �
]

∶ the farm uses neither fertilizer nor IMV

(3a)
E
[

fert∗
50

]

= �̂�0 + �̂�1 ⋅ temp50 + �̂�2 ⋅ prep50 + �̂�3 ⋅ temp50 ⋅ prep50 + �̂�4 ⋅
(

temp50
)2

+ �̂�5 ⋅
(

prep50
)2
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∑k=13

k=8
�̂�k ⋅ x

k

(3b)
E
[
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50

]
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(
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)2

+ 𝛽5 ⋅
(
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50

)2
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k
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E
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Δ
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Δ
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Here, tempΔ
50

= temp50 + Δtemp , prepΔ
50

= prep50 + Δprep , hats denote fitted parameter 
values, and bars denote mean sample values. These four equations indicate (i) the current 
expected latent values of fert and imv for a farm at the 50th percentile of the temperature 
and rainfall distributions with the mean values of all other explanatory variables, and (ii) the 
expected latent values for such a farm after the predicted changes in temperature and rain-
fall. We will then substitute these latent values into the formulae in Eqs. (2a-2d). Estimated 
current probabilities of each outcome for farms at the 50th percentile can be produced by 
substituting E

[

fert∗
50

]

 for E
[

fert∗
i

]

 and E
[

imv∗
50

]

 for E
[

imv∗
i

]

 . These probabilities are denoted 
P11
50

,P10
50

 , P01
50

 , and P00
50

 . Estimated probabilities of each outcome for these farms after climate 
change can be produced by substituting E

[

fertΔ
50

]

 for E
[

fert∗
i

]

 and E
[

imvΔ
50

]

 for E
[

imv∗
i

]

 . These 
probabilities are denoted PΔ11

50
 , PΔ10

50
 , PΔ01

50
 , and PΔ00

50
 . The estimated changes in the probabil-

ity of each outcome are PΔ11
50

− P11
50

 , PΔ10
50

− P10
50

 , PΔ01
50

− P01
50

 , and PΔ00
50

− P00
50

 . We will also 
calculate these quantities for the 25th percentile case and the 75th percentile case. It turns 
out that the change in the probability of using IMV but not maize ( PΔ01

c
− P01

c
 ) is almost zero 

in all cases and all scenarios, so we will not report the change in this probability.

Modelling Maize Yield

The second stage in our modelling exercise is to fit a model of farm i’s maize yield (yieldi) 
conditional on temperature (tempi), rainfall (prepi) and the six other household character-
istics (xik). We will allow for the possibility that the relationship between yield and tem-
perature / rainfall depends on the farmer’s technology choice. (To our knowledge, there is 
no theory that predicts which technology choices are likely to lead to a greater sensitivity 
of yield to temperature or rainfall. However, in the absence of clear evidence that there is 
no such variation in sensitivity, it is prudent to accommodate this possibility. Not doing so 
could entail invalid parameter restrictions and biased parameter estimates.) The model is 
of the following form.

Here, υi is an error term and the φc terms are parameters to be estimated. It is pos-
sible that the relationship between the yield and the explanatory variables depends on 
whether the farm uses fertilizer or whether it uses IMV, so Eq. (4) will be fitted to three 
sub-samples, the superscript c distinguishing between the three cases. The sub-samples 
are as follows: observations for which ferti = 1 and imvi = 1 (i.e. c = 11), observations for 
which ferti = 1 and imvi = 0 (i.e. c = 10), and observations for which ferti = 0 and imvi = 0 
(i.e. c = 00). Note that there are too few cases with ferti = 0 and imvi = 1 to fit the model 
to this sample. A priori, it is possible that technology choice is endogenous to maize 
yield, but we can test this conjecture by fitting the following model to each of the three 
samples.9

(4)

log
(

yieldi
)

= �c
0
+ �c

1
⋅ tempi + �c

2
⋅ prepi + �c

3
⋅ tempi ⋅ prepi + �c

4
⋅

(

tempi
)2

+ �c
5
⋅

(

prepi
)2

+
∑k=11

k=6
�c
k
⋅ xk

i
+ �i

9 If we were concerned only with modelling log(yield), then it would be preferable to use actual soil quality 
rather than perceived soil quality as a control variable. However, testing the exogeneity of decisions about 
fertilizer and IMV to maize yields requires that the control variables xk in Eqs. (4–5) are the same as those 
in Eqs. (1a–1b). In principle, it is possible to include measures of both actual and perceived quality in all 
of the equations, but there would be a high level of multicollinearity between the two different measures. 
Equations (4–5) include perceived quality, acknowledging that this might entail some measurement error.
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Here, millsc
i
 is an Inverse Mills Ratio implicit in the estimates of the parameters in 

Eqs. (1a–1b): mills11
i

 =  dPi
11/Pi

11, mills10
i

 =  dPi
10/Pi

10, and mills00
i

 =  dPi
00/Pi

00. If the parameter 
λc is significantly different from zero, then the null hypothesis of exogeneity can be rejected 
and estimates of the φc parameters should be based on Eq. (5). Otherwise, Eq. (4) is to be pre-
ferred, as the assumption of exogenous sample selection entails greater statistical efficiency.

Note that Eq. (5) is identified by the exclusion of extensioni and associationi. In other 
words, we assume that together with the explanatory variables in Eq. (4) – which include, 
for example, herbicide and tractor use – fertilizer and IMV use fully capture the ways 
in which contact with an extension agent or membership of a farmers’ association influ-
ences yield. The exclusion restriction would be invalid if there existed some other farm 
input that we could not measure, that affected yield, and that was influenced by contact 
with an extension agent or membership of a co-operative association. While we cannot 
entirely rule out such a possibility, we note that when we do fit Eqs.  (4–5) to the data, 
none of the individual coefficients on the xk variables is significantly different from zero: 
see Table S4 in the Supplementary Materials. This is because the different farm character-
istics that we use as control variables are highly correlated with each other. (We have no 
need to test any hypotheses about the coefficients on the control variables, so the multicol-
linearity does not present a problem.) If there did exist an additional, unobservable input, 
the exclusion restrictions would only seriously bias our estimates if this input exhibited a 
level of correlation with the observable inputs that was much lower than the correlations 
between the observables. It is difficult to imagine what such an input would be.

Having estimated the φc parameters, we can then illustrate the association between yield 
and climate by plotting E[log(yieldi)] for a range of different values of tempi at the mean 
values of other covariates, and for a range of different values of prepi at the mean values of 
other covariates. We will do this for each of the three technology combinations.

We will then estimate the change in expected yield under the eight different climate 
change scenarios, taking technology choice as given. In the 50th percentile case, the esti-
mated change is equal to E

[

log
(

yieldΔc
50

)]

− E
[

log
(

yieldc
50

)]

 , where the two expected values 
are calculated as follows.

We will also calculate these quantities for the 25th percentile and 75th percentile cases.
Finally, we will estimate the expected change in yield allowing for changes in tech-

nology choice. The expected value of log(yield) after climate change is calculated as the 
sum over the three technology combinations of the probability of that combination times 
the expected yield for that combination. In the 50th percentile case, we use the following 
equation.

(5)
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2
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3
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This quantity is compared to a corresponding baseline value, calculated as follows.

Note that we have no expected yield estimates for the rare case of ferti = 0 and imvi = 1, 
and our comparison needs to make an adjustment for this. We scale both of the quantities 
by the probability of not being in the rare case and calculate the expected change in yield 
using the following formula.

This formula is also applied to the 25th percentile case and to the 75th percentile case.10

When reporting the estimates described above, a choice needs to be made about the way 
in which standard errors and confidence intervals are calculated. If our focus were on hypoth-
eses about the association of maize yield with household characteristics, then it would be 
appropriate to allow for the clustering of errors at the levels of the household sample design, 
i.e. the community, district and region. However, our focus is on the association of maize 
yield with temperature and rainfall, which are reported at a different level of geographical 
aggregation (larger than a community but smaller than a district). The calculation of standard 
errors will therefore allow for clustering at this alternative level of aggregation.

Results11

Results for Technology Selection

Estimated coefficients and standard errors in the Bivariate Probit model (Eqs.  (1a–1b)) 
appear in the Supplementary Materials. We are not directly interested in the association 
of technology choice with the explanatory variables other than temp and prep, but we note 
for future reference that the individual coefficients on both association and extension are 
significantly different from zero at the one percent level in the imv equation as is the coef-
ficient on association in the fert equation. The four coefficients are jointly significant at the 
one percent level, as are the two association coefficients; the two extension coefficients are 
jointly significant at the five percent level.12

Our predictions about the changes in fertilizer and IMV use under the different cli-
mate change scenarios depend on our estimates of the effects of temperature and rainfall in 

(7a)
E
[

log
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50

)]

= PΔ11
50

⋅ E
[

log
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50

)]

+ PΔ10
50

⋅ E
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)]

+PΔ00
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⋅ E
[
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)]

(7b)
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(
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[
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50

)]

1 − PΔ01
50

)

−

(

E
[

log
(

yield
50

)]

1 − P01
50

)

10 The standard errors for these estimates are computed using a bootstrap. However, we note as a caveat 
that since the estimates are based on separate regressions for technology selection and yield, the size of the 
confidence intervals may still have been underestimated (see Angrist and Pischke 2009).
11 All estimates were produced using Stata 15.
12 All four estimated coefficients are positive, indicating that both membership of a farmers’ association 
and contact with an extension agent increase the probability of both inorganic fertilizer use and IMV use.
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Eqs. (1a–1b). However, these relationships are not linear: the effect of a one degree or one 
percent change in temperature on these probabilities depends on the initial temperature; the 
same is true of rainfall. In order to provide an overview of the association of the probability of 
fertilizer and IMV use with temperature and rainfall, we will use charts that plot these prob-
abilities against observed temperature and rainfall levels: these charts appear in Figs. 3 and 4.

Figures 3 and 4 show the estimated probability of each technology choice at different 
temperature and rainfall levels; in all cases, the estimates are for farms with mean values 
of all other characteristics. The 95% confidence intervals are constructed by applying the 
Delta Method to the standard errors on individual coefficients in Eqs.  (1a–1b). It can be 
seen that the probability of using neither inorganic fertilizer nor IMV is positively associ-
ated with temperature but has no association with rainfall, while the probability of using 
both inorganic fertilizer and IMV is negatively associated with both temperature and rain-
fall. The probability of using just inorganic fertilizer is positively associated with both tem-
perature and rainfall. The probability of using IMV only is always very low. The positive 
and negative associations are all significant at the five percent level but of moderate size. 
The largest associations are for rainfall and the probability of using inorganic fertilizer only 
(or using both inorganic fertilizer and IMV), but even in these cases, the change in prob-
ability between 800 mm and 1,650 mm is only about 30 percentage points.

The positive associations with using fertilizer only and the negative associations with 
using both inorganic fertilizer and IMV are of very similar magnitude. In other words, there 
is no strong association of inorganic fertilizer use with temperature or rainfall. By contrast, 
the probability of using IMV declines in both temperature and rainfall. Assuming that maize 
yields are (thought to be) higher at lower temperatures and higher rainfall levels, our results 
suggest that in the maize production function, IMV is a complement for low temperature 
but a substitute for high rainfall. This result accords with some existing studies but not with 
others: as noted in the literature review, there is evidence for a positive association of IMV 
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Fig. 3  The estimated association of technology choice with temperature (with 95 percent confidence inter-
vals)
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use with temperature and/or rainfall in some studies and evidence for a negative association 
in others. We find no evidence for strong complementarity or substitutability with respect to 
inorganic fertilizer, which is not entirely surprising, given the contrasting results for fertilizer 
in the existing literature. There is a need for more research into the shape of the maize pro-
duction function in Africa, and specifically into the conditions under which different inputs 
are treated as complements or substitutes. Taken together, the results of this study and of pre-
vious studies suggest that these conditions vary from one part of Africa to another.

We now turn to the climate change simulations. These simulations are based on eight alter-
native scenarios, which are listed in Table 1. All of the scenarios involve a rise in mean tem-
perature, but scenarios 1–3 involve a rise in mean rainfall while scenarios 4–8 involve a fall in 
mean rainfall. Scenarios 2–3 are projections for West Africa in 2035 by the Intergovernmental 
Panel for Climate Change (IPCC), as discussed in Christensen (2013); scenario 1 is slightly 
more optimistic than these projections, with a smaller rise in temperature and a larger rise in 
rainfall. Scenario 4 is also an IPCC projection, with mean temperature rising by 1.5ºC and 
mean rainfall falling by four percent. Scenarios 5–8 represent outcomes that are either more or 
less extreme than this. Scenario 5 is the most pessimistic of all, with mean temperature rising 
by 2.0ºC and mean rainfall falling by ten percent, and scenario 4 is the next most pessimistic.13 
Figure 5 shows the predicted changes in the probability of using both inorganic fertilizer and 
IMV, neither inorganic fertilizer nor IMV, and fertilizer only. There are predictions for all eight 
scenarios in the 25th, 50th, and 75th percentile cases. In each case, the figures show the 95 
percent confidence interval, which is constructed using the Delta Method.14 Since the prob-
ability of using IMV only is always close to zero, we do not report results for this outcome.

Fig. 4  The estimated association of technology choice with rainfall (with 95 percent confidence intervals)

13 This scenario is still within the range of some climate change predictions: see for example Fitzpatrick 
et al. (2020).
14 These calculations impose the restriction ρ = 0, but note that the correlation between the predicted prob-
abilities with and without this restriction is greater than 0.98 in all cases.
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The probability of using both inorganic fertilizer and IMV is a negative function of both 
temperature and rainfall. Moreover, the probability of using neither (or fertilizer only) is a 
non-negative function. It is therefore unsurprising that in all cases, scenarios 1–3, which 
involve rises in both temperature and rainfall, entail a decrease in the probability of using 
both inorganic fertilizer and IMV and an increase in the probability of the other outcomes. 
Across the three scenarios, the decreases are between five and seven percentage points (an 
effect which is significant at the five percent level), but do not vary substantially across the 
25th percentile, 50th percentile and 75th percentile cases. Scenarios 4–8 involve a rise in 
temperature and a fall in rainfall, which have opposite effects on the probability of each 
outcome. However, except in scenario 6 (which has the largest rainfall change relative to 
temperature change), the temperature effects dominate, so there is still a fall in the prob-
ability of using both inorganic fertilizer and IMV. In scenario 6, the predicted changes are 
all very close to (and insignificantly different from) zero.

The most important qualitative result in this section is as follows. IMV use appears to be 
regarded as a complement to low temperature and a substitute for high rainfall in the maize 
production function, and almost all farms using IMV also use inorganic fertilizer. All cli-
mate scenarios involve a rise in temperature and therefore a fall in the predicted proportion of 
farms using IMV; rainfall effects are generally too small for it to matter whether rainfall rises 
or falls in a particular scenario. In this sense, climate change is predicted to lead to a greater 
frequency of traditional farming practices with just open-pollinated varieties of maize.

Results for Maize Yield

The first choice to make in modelling maize yield is between Eq. (4), with exogenous sample 
selection, and Eq. (5), with endogenous sample selection. When we fit Eq. (5) to the data, 
we find that none of the λc coefficients is significantly different from zero at the ten percent 
level.15 The significance of the association and extension coefficients in Eqs. (1a–1b) means 
that Eq. (5) is identified, and the null hypothesis that sample selection is exogenous cannot 
be rejected. Further results in this section are based on estimates using Eq. (4).

The association of maize yield with temperature and rainfall is illustrated in Figs. 6 and 7. 
Figure 6 shows that yield is negatively associated with temperature on farms using both inor-
ganic fertilizer and IMV, on farms using just inorganic fertilizer, and on farms using neither. (The 

Table 1  The different climate 
change scenarios

Scenario Change in temperature Change in rainfall

1  + 0.5ºC  + 15 percent
2  + 0.7ºC  + 8 percent
3  + 0.9ºC  + 1 percent
4  + 1.5ºC – 4 percent
5  + 2.0ºC – 10 percent
6  + 0.5ºC – 10 percent
7  + 0.7ºC – 4 percent
8  + 0.9ºC – 10 percent

15 This is the case whether or not we use a Bonferroni correction to correct for multiple hypothesis testing.
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sample size for farms using only IMV is too small to produce a reliable estimate.) The effect 
is strongest on farms using neither inorganic fertilizer nor IMV. On such farms, the difference 
between log(yield) at 25º and log(yield) at 28º is about 1.7, i.e. the yield on the hottest farms is 
only about 20% as large as the yield on the coolest ones.16 The effect is weakest on farms using 
inorganic fertilizer only, where the difference between log(yield) at 25º and log(yield) at 28º is 
about 0.5, i.e. the yield on the hottest farms is about 60% as large as the yield on the coolest 
ones.17 Figure 7 shows that yield is positively associated with rainfall on farms using inorganic 
fertilizer only, but this is the only case with a significant positive association. On these farms, the 
difference between log(yield) at 1,650 mm and log(yield) at 800 mm is about 0.7, i.e. the yield on 
the driest farms is about 50% as large as the yield on the wettest ones.18

Comparing our results with those in the paper where African temperature and rainfall 
effects on maize yield are most comprehensively reported (Blanc 2012), our largest tem-
perature effect (when neither inorganic fertilizer nor IMV is used) is roughly equal to the 
effect for all farms reported by Blanc. Blanc’s results imply that a 0.1º rise in temperature 
leads to fall in yield of about 7%, while our results imply that the figure is around 6%. Our 
largest rainfall effect (when only inorganic fertilizer is used) is roughly equal to the effect 
for all farms reported by Blanc, although Blanc’s function is more convex. This is despite 
the fact that Blanc’s results are based on time-series variation and ours are based on cross-
sectional variation. Comparison with the other papers discussed in the literature review is 
restricted by the limited detail in the results reported in these papers.

We now turn to the climate change simulations for log(yield) using Eqs. (6a–6b). Sim-
ulations for farms with different technology choices appear in Fig.  8; these simulations 
assume that no farm changes its decision about the use of fertilizer or IMV. Scenarios 1–3 
involve a rise in both temperature and rainfall, and on farms using inorganic fertilizer only, 
these two effects offset each other, so the predicted change in yield is very close to (and 
insignificantly different from) zero. On other farms, where the temperature effect domi-
nates, there is a predicted fall in yield, although this effect is only significantly different 
from zero on farms using neither inorganic fertilizer nor IMV. On such farms, the predicted 
fall in log(yield) is about 0.4, i.e. yield is predicted to fall by about one third.19 There is lit-
tle variation across the 25th, 50th and 75th percentile cases. Scenarios 4–8 involve a rise in 
temperature and a fall in rainfall. In all cases, yield is predicted to fall, and in most cases, 
this effect is significant at the five percent level. As one might expect, the effects are larg-
est in the maximally pessimistic scenarios 4–5. Here, the effects are largest on farms using 
either both inorganic fertilizer and IMV or neither: log(yield) on such farms is predicted to 
fall by 0.6–0.8 under scenario 4 and by 0.8–1.0 under scenario 5. On farms using inorganic 
fertilizer only, log(yield) is predicted to fall by 0.2–0.3 under scenario 4 and by 0.4–0.5 
under scenario 5. On farms using both inorganic fertilizer and IMV, the effects at the 75th 
percentile are larger than the effects at the 25th percentile. On other farms, this difference 
is reversed, but neither difference is statistically significant. Predicted effects are smaller 
under the less pessimistic scenarios 6–8, but even here, the smallest effect – under scenario 
7 with farms using inorganic fertilizer only – is a decline in log(yield) of 0.15.

Finally, Fig.  9 shows predicted changes in yield allowing for changes in technol-
ogy choice, using Eqs.  (7a–7b). In the maximally optimistic scenario 1, the fall in mean 

16 Because exp(-1.7) ≈ 0.2.
17 Because exp(-0.5) ≈ 0.6.
18 Because exp(-0.7) ≈ 0.5.
19 Because exp(-0.4) ≈ 0.67.
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Fig. 5  The vertical axes in the figure measure the change in the probability of a farm (i) using both fertilizer 
and IMV, (ii) using fertilizer only, and (iii) using neither fertilizer nor IMV under different climate change 
scenarios. Estimates with 95 percent confidence intervals are shown for farms in the 25th, 50th and 75th 
percentile cases. The upper chart shows results for climate scenarios 1 and 2; the lower chart shows results 
for climate scenarios 3 and 4. The vertical axes in the figure measure the change in the probability of a farm 
(i) using both fertilizer and IMV, (ii) using fertilizer only, and (iii) using neither fertilizer nor IMV under 
different climate change scenarios. Estimates with 95 percent confidence intervals are shown for farms in 
the 25th, 50th and 75.th percentile cases. The upper chart shows results for climate scenarios 5 and 6; the 
lower chart shows results for climate scenarios 7 and 8
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log(yield) is very small and insignificantly different from zero. Under this scenario, the 
predicted increase in the frequency of fertilizer-only farms (Fig. 5), combined with the rel-
atively small effect of climate change on such farms (Fig. 8), means that negative climate 
change effects are mitigated. Under all other scenarios, log(yield) is predicted to fall; under 

Fig. 5  (continued)
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Fig. 6  The estimated association of log(yield) with temperature. (with 90 percent confidence intervals)
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Fig. 7  The estimated association of log(yield) with rainfall. (with 90 percent confidence intervals)
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Fig. 8  The vertical axes in the figure measure the change in log(yield) for farms (i) using both fertilizer 
and IMV, (ii) using fertilizer only, and (iii) using neither fertilizer nor IMV under different climate change 
scenarios. Estimates with 95 percent confidence intervals are shown for farms in the 25th, 50th and 75th 
percentile cases. The upper chart shows results for climate scenarios 1 and 2; the lower chart shows results 
for climate scenarios 3 and 4. The vertical axes in the figure measure the change in log(yield) for farms (i) 
using both fertilizer and IMV, (ii) using fertilizer only, and (iii) using neither fertilizer nor IMV under dif-
ferent climate change scenarios. Estimates with 95 percent confidence intervals are shown for farms in the 
25th, 50th and  75th percentile cases. The upper chart shows results for climate scenarios 5 and 6; the lower 
chart shows results for climate scenarios 7 and 8
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scenarios 3–8, this decline is significantly different from zero at the five percent level. 
Under the maximally pessimistic scenario 5, log(yield) is predicted to fall by 0.5–0.6 (i.e. 
yield is predicted to fall by around 50 percent). Even with a moderate increase in tempera-
ture and little change in rainfall (scenarios 3 and 7), log(yield) is predicted to fall by 0.2 

Fig. 8  (continued)
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(i.e. yield is predicted to fall by around 20 percent). In no case is there any substantial vari-
ation in these estimates across the 25th, 50th and 75th percentile cases.

Our results indicate that under plausible alternative scenarios for climate change, mean 
Ghanaian, Malian and Nigerian maize yields are likely to fall. Only under the most opti-
mistic scenario (scenario 1) is there no substantial fall in yield; other scenarios entail large 
losses for maize farmers and represent a serious risk to the Ghanaian, Malian and Nigerian 
economies.

Conclusion

This study presents new evidence on the relationship between temperature, rainfall, tech-
nology use and maize yields in Ghana, Mali and Nigeria. Maize is a major staple food crop 
in these countries, but productivity is already constrained by stresses such as drought, and 
mean yields are far below the world mean. We estimate the association of maize yield with 
temperature and rainfall conditional on a range of farm characteristics, including whether 
the farm uses inorganic fertilizer and/or IMV, and allow for the fact that the probability of 
using inorganic fertilizer and IMV may itself depend on temperature and rainfall.

We find that temperature and rainfall have some influence on farm choices: farms in 
warmer, wetter conditions are somewhat less likely to use IMV, and choices about IMV 
use do affect our predictions about the effect of climate change on yield. However, the 
main source of uncertainty in our predictions is that mean rainfall is predicted to rise under 
some climate change scenarios and fall under others. In the most optimistic scenario, with 
a moderate increase in mean temperature accompanied by a large increase in mean rain-
fall, no substantial change in yield is predicted. In other scenarios, with either a moderate 
increase or a reduction in mean rainfall, large decreases in yield are predicted. Climate 

Fig. 9  The vertical axis measures the change in estimated log(yield) under different climate change sce-
narios (1–8), allowing for changes in technology choice. Estimates with 95 percent confidence intervals are 
shown for farms in the 25th, 50th and 75th percentile cases
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change therefore represents a very substantial risk to West Africa. These results reflect evi-
dence on the sensitivity of maize yields to climate in other parts of Africa (see for example 
Abera et al 2018; Mulungu et al. 2021; Omoyo et al. 2015; Shi and Tao 2014), and there is 
a pressing need to mitigate this risk.

One part of mitigating risk will be to understand better the relationship between farm-
ers’ decision-making processes and the production functions that they face. Results here 
(and in previous studies) indicate that publicly subsidised interventions such as extension 
programmes and farmer associations raise the uptake of agricultural innovations such as 
inorganic fertilizer and IMV use, and the sensitivity of yield to temperature appears to be 
highest on farms using neither. However more detailed quantitative and qualitative data 
will be required for a comprehensive understanding of this issue.
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