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Abstract
Using a new composite climate-risk index, we show that population in high-risk counties
has grown disproportionately over the last few decades, even relative to the corresponding
commuting zone. We also find that the agglomeration is largely driven by increases in the
(white) working-age population. In addition, we show that high-risk tracts have typically
grown more than low-risk tracts within the same county, suggesting the presence of highly
localized amenities. We also document heterogeneous population dynamics by degree of
urbanization, region and type of natural hazard. Specifically, population has been retreating
from high-risk, low-urbanization locations, but continues to grow in high-risk areas with high
residential capital. Net migration flows have contributed to the higher growth of high-risk
counties in the South and Northeast of the country, but the opposite has happened in theWest
andMidwest. Last, we provide evidence ofmicroretreat in the case of coastal flooding: tracts
with high levels of this risk have grown significantly less than other tracts in the same county,
suggesting that residents are willing to relocate within short distances to avoid predictably
risky locations.

Keywords Climate risk · Agglomeration · Migration

Introduction

Over the last decades, the frequency and intensity of natural hazards in the United States
(U.S.) has increased. According to the National Oceanic and Atmospheric Administration
(NOAA), the U.S. experienced more than twice the number of billion-dollar disasters during
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2010-2020 than it did in the previous decade and, in fact, four of the five most costly natural
disasters have occurred since 2010.1 We illustrate this point in Fig. 1 using SHELDUS data
(CEMHS, 2022). The chart identifies themost damaging event in each year between 1960 and
2020 on the basis of inflation-adjusted cost, separately for each of the main types of natural
hazards. During the 1960s, the most damaging events were relatively benign (with costs
mostly in the first two quintiles of the distribution). However, over the following decades,
the most damaging events have become much more costly, with an increasing presence in
the fourth and fifth cost quintiles.

In addition to the increased frequency of extreme natural disasters, the increase in damage
over the last few decades appears to be intimately related to the increasing agglomeration
of people and economic activity in high-risk areas.2 Despite a few notable exceptions where
hurricanes led to a persistent reduction in local population (Deryugina et al., 2018), there
seems to be a general trend toward population agglomeration in hurricane-prone areas.3

Previous studies have shown that, for several decades, coastal counties in the U.S. have grown
disproportionately, including many counties that have been hit by large hurricanes over this
period of time (Wilson and Fischetti, 2010; Lin et al., 2021).4 Similar findings have been
found regarding the pace of new construction in places with a high risk of wildfires (Radeloff
et al., 2018) and heatwaves (Partridge et al., 2017). However, to the best of our knowledge,
no study has done a comprehensive analysis of population dynamics that considers all major
natural hazards, which also includes droughts, riverine flooding, tornados, hail, and so on.5

Our goal is to investigate population dynamics in areas that currently exhibit high climate
risk, with a focus on examining whether population retreat is taking place or, rather, local
population dynamics continue evolving along long-term trends. To do this, we introduce a
novel composite measure of current climate risk (based on the historical frequency of climac-
tic events) and merge it with population data at the county and sub-county levels over the last
century. A one-dimensional measure of climate risk that incorporates all climate hazards is a
useful construct. It provides a simple measure of the average climate risk associated with the
distribution of population (or economic activity) at the desired level of geography, whichmay
also be useful for the calibration of structural models featuring a large number of geographic
units (e.g. Pang and Sun (2022)). It is also worth highlighting that our construction of an
aggregate climate risk measure can be easily adapted to build analogous measures at lower
levels of aggregation.6

1 Hurricanes Sandy (2012), Harvey (2017), Irma (2017), and Maria (2017).
2 Across the world, infrastructure investment in flood-prone coastal areas continues to rise, often ignoring
sea-level rise projections (Balboni, 2021). Similarly, public expenditures on wildfire protection subsidize
development in places with fire hazards (Baylis and Boomhower, 2023).
3 Deryugina et al. (2018) analyzed the effects of hurricane Katrina on the population of New Orleans, along
with the effects on their employment and income. They find a persistent reduction in population but only small
and highly short-lived effects on labor market outcomes. Specifically, eight years after the storm, over a third
of the displaced population had not returned to New Orleans.
4 Over one third of the U.S. population lives in coastal counties. According to Wilson and Fischetti (2010),
between 1960 and 2008, the share of population living in coastal counties along the Gulf of Mexico soared by
150%, more than double the national average.
5 Jia et al. (2023) provide a recent review of the economic determinants of internal migration, including the
role played by climate risk.
6 For instance, one may want to create climate risk measures that aggregate all flooding-related hazards
(coastal flooding, riverine flooding and hurricanes) or all heat-related hazards (heat waves and droughts).
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Fig. 1 The costliest climate events between 1960 and 2020.Notes: The figure plots the costliest climate event,
by type of hazard, in each year. Specifically, each year we identify the most damaging event for each of the 6
natural hazards considered.We then color-code it on the basis of its inflation-adjustedmonetary cost. Green and
yellow squares correspond to quintiles 1 and 2, respectively, of the all-time distribution of (inflation-adjusted)
damage costs for each natural hazard. Orange and red squares correspond to quintiles 4 and 5 of the same
distribution. The data source is SHELDUS (CEMHS, 2022)

Since climate risk discussions gained saliency during the 1990s, we are primarily inter-
ested in population dynamics during the period 1990-2020 .7 However, we have assembled
county-level population counts going back to 1900 in order to characterize long-term local
population dynamics long before climate risk became a potentially relevant factor shaping
mobility decisions. Equippedwith our composite measure of climate risk, we estimate simple
econometric models for the change in log population over time, which differences out all
time-invariant local characteristics. These models allow us to estimate the gap in population
growth between counties with currently high (or medium) climate risk and counties with low
risk over a long period of time.We also examine whetherwithin-county population dynamics
mitigate or exacerbate cross-county population shifts. We use these estimates to test whether
population is retreating from counties or census tracts with relatively high climate risk.

Our analysis delivers several findings. First, we find that in the last three decades, high-
risk counties have grown about 2.9 log points more, per decade, than low-risk counties. Even
after netting out the average growth in the commuting zone (which is typically considered
a good approximation to the geographical scope of local economies), high-risk counties
have grown disproportionately more than low-risk ones over the last few decades (with an
excess of 0.5 log points per decade). These results suggest the presence of amenities in high
climate-risk areas that operate at the county or sub-county levels (as opposed to county-level
attributes or the gravitational pull of local economies). Additionally, we show that high-risk
tracts typically grow more than low-risk tracts within the same county, which exacerbates
the increase in climate exposure implied by the county-level analysis.

Our results also highlight that the effects of climate risk on population growth vary across
several dimensions. We have found stark differences in the geographic sorting of differ-
ent socio-demographic groups. More specifically, the increasing population agglomeration
in high climate-risk counties appears to be largely driven by white, working-age individu-
als. Retirement-age and (less affluent) non-white populations appear to be retreating from
counties with high climate risk.

We also documented differential local trends on the basis of the degree of urbaniza-
tion. Specifically, we find population retreat from high-risk, low-urbanization locations, but
increasing population agglomeration in high-risk, high-urbanization locations. We also find
that in the South and Northeast of the country, the gap in population growth has been fueled
by net migration into high-risk counties. In contrast, in the Midwest andWest, over the last 3
decades, net migration flows are responsible for lowering the population growth in high-risk
counties below the rate of growth for low-risk counties in the same region.

Lastly, we uncover evidence of micro-retreat in response to risk of coastal flooding.
Namely, we show that tracts with high risk of coastal flooding grew less than other tracts in

7 The United Nations officially recognized climate change as a serious global problem in 1992, with the Rio
Earth Summit.
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the same county. However, we do not find this pattern for other natural hazards.We argue that
this is because coastal flooding is an easily predictable, highly localized risk, which allows
residents to “insure” themselves by relocating to low-risk tracts while remaining in the same
county.

All in all, our findings show increasing agglomeration in high climate-risk areas in the
South and Northeast of the United States, likely driven by robust local economies. However,
the rate of excess growth in high-risk areas at the national level seems to be decreasing since
1990. This reversal is due to changing demographic trends in the West and Midwest, where
net migration flows have recently lowered the rate of population growth in high climate-risk
counties below the rate of growth in low climate-risk counties in the same region.

Literature

The literature on climate risk and population dynamics is growing rapidly. Many studies have
focused on the effect of extreme weather events and natural hazards on migration. Boustan
et al. (2020) analyze the effect of a wide range of natural disasters on net-migration over
the period 1920-2010 and find that severe disasters such as wildfires and hurricanes tend to
trigger county-level out-migration. However, they find that flooding episodes tend to attract
migrants.

The demographic effects of climatic events are also a function of population density and
pre-existing demographic trends. For example, Fussell et al. (2017) document that hurricanes
and tropical storms lower population growth only for the small subset of U.S. counties with
high-density and growing populations, which only represent 2% of all US counties. This
finding leads them to conclude that long-term local population trends overshadow the effects
of episodic weather events. Other studies have also suggested that the effects of flooding on
migration are heterogeneous in household and regional characteristics (as in the review by
Hauer et al. (2020)).

Interestingly, other papers have studied the information content of natural hazards and
whether residents in those affected areas do indeed update beliefs. For example, Petkov
(2022) studies whether unexpected hurricanes lead to belief updating by locals and lead
to larger population loss relative to more predictable hurricanes. His analysis shows that
population growth declines more in counties that had not suffered hurricanes in the past,
suggesting belief updating by residents exposed to large-scale climatic events for the first
time.8 Additional evidence in support of residents’ belief updating in response to first-time
experience of severe flooding is provided in Petkov andOrtega (2023). These authors analyze
flood insurance take-up in the aftermath of a large hurricane in NewYork and show persistent
increases in take-up among homeowners (located just outside the 100-year flood zone) that
were likely exposed to severe flooding for the first time.

Our work is more closely related to studies examining local population dynamics on the
basis of climate risk, rather than the effects of episodic climate events. Lin et al. (2021)
document that, between 1990 and 2010, new residential construction in the Gulf of Mexico
and Northeast regions of the U.S. was concentrated in high-density areas (Census blocks)
with high projected risk of coastal flooding. The authors argue that urban agglomeration
economies still overpower the risk associated with sea-level rise. Compared to their paper,
our analysis includes both earlier data (going back to 1920) and more recent data (for 2020).

8 Petkov (2022) also reports that unexpected hurricanes increase housing prices, but other studies find the
opposite effect on housing values (e.g. Ortega and Tapınar (2018); Indaco et al. (2021)).
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We also go beyond the analysis of coastal flooding risk and consider a wide range of climate
hazards.

In the context of wildfire risk, Fussell et al. (2017) study the number of housing units built
in the wildland-urban interface, an area prone to wildfires. The authors find that between
1990 and 2015, construction in the wildland-urban interface was the fastest-growing land
use type in the United States. Similar trends have been found in regions at risk of droughts
and heat waves. For instance, Partridge et al. (2017) document that, in the second half of
the 20th century, Americans moved to locations that are predicted to experience severe heat
waves and long-term droughts.

Social scientists have also used observed migration patterns and current climate projec-
tions to simulate future climate migration scenarios. These models make predictions of the
demographic effects of climate change. Some studies emphasize that economically vulnera-
ble populations may not be able to afford retreating to low-risk locations and may be trapped
in high-risk locations (Black et al., 2011; Hauer et al., 2020, 2022). On their part, Black et al.
(2011) point out that migration is already an important coping strategy in several countries, as
is the case in Bangladesh in response to large-scale flooding episodes. They also predict that
environmental factors will play an increasingly larger role in shaping international migration
in many other areas of the world.

Other authors have focused on the impact on the geographical distribution of economic
activity. Using a dynamic model of the world economy, Desmet et al. (2021) simulate the
effects of sea-level rise on firms’ location decisions, taking into account the effects of local
agglomeration economies. Based on conservative sea-level rise projections, they estimate
that by 2050 about 0.2% of the world’s population (and firms) will have been displaced
(reaching 1.5% in year 2100).9 Interestingly, welfare losses are estimated to be larger than
real GDP losses because the population endogenously retreats toward (non-coastal) areas
with worse amenities. Importantly, their analysis implies highly heterogeneous geographical
effects. For instance, while the U.S. as a whole is predicted to experience only a negligible
reduction in real GDP (peaking at 0.01%), coastal areas in South Florida and Texas (and to
a lesser extent in the Northeast) are predicted to suffer much larger output and population
losses, which are offset by gains in neighboring inland locations.

Data Sources

Population by County

We use the Surveillance, Epidemiology, and End Results Program (SEER) dataset compiled
by the National Cancer Institute. This dataset spans 1969-2020 and breaks down county
population by 19 age groups, race (3 groups) and gender. We impose a few data restrictions:
we drop Alaska and Hawaii due to the difficulty of linking counties over time for these states,
and a few groupings of counties that were only used in the 1970 Census (FIPS 36910, New
York City). As explained in detail in Appendix A, we used linear interpolation to impute
population values for a handful of counties for years 1970 and 1980.

We extend the SEER dataset in two ways. First, we extend it backward by merging
historical Census estimates for county population (overall) for the period 1900-1970. These
data allow us to trace the evolution of population for the vast majority of counties for over a

9 Their estimates only consider the costs associated with locations that will become permanently flooded and
do not take into account the increased frequency of flooding episodes in other coastal areas.
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century (1900 to 2020). For years prior to 1970 we use the county-level data as is. In addition,
we also make use of the county-level dataset in Egan-Robertson et al. (2023), which provides
county-level estimates for net migration for every decade from the 1960s to the 2010s. This
data allow us to separate out natural population growth from growth driven by net migration
into the county.

As shown in Table 1, population counts obtained aggregating our county dataset are fairly
accurate.10 As seen in Fig. 2, between 1920 and 2020 the country’s population increased by
about 220 million, corresponding to an average decadal growth of 11.3 log points (Table 1,
column 3). Population growth has slowed down since 1970, averaging 10.4 log points per
decade. Interestingly, the elderly and non-white populations have grown at much higher rates
than the rest of the population over the period 1970-2020. Over this 50-year period, the
population age 65 and above and the non-white population grew by an average of 21.3 and
23.3 log points per decade, respectively, more than twice the rate for the overall population.
The higher growth rate among the elderly population in the last 50 years reflects both the
aging of baby-boomers and the steady increase in longevity. The higher growth rates for non-
whites might reflect the increase in immigration (from abroad) since the 1965 changes to
US immigration policy (Immigration and Nationality Act), which opened the door to several
decades of high immigration.

The top half of Table 2 presents summary statistics for the county data. The first set of
variables reports the average decadal population growth (change in log population divided
by the number of decades). Over the two last decades, population in the average county has
grown by an average of 2.5 log points per decade (and solely 0.6 log points in the 2010s) but,
obviously, there’s a great deal of variation (ranging from a 31 log point reduction to a 51 log
point increase). The table also shows that population growth has slowed down considerably.
Between 1920 and 2020 the average population growth in the average county was 5.2 log
points per decade, more than twice the value for the 2000-2020 period.

Population by Census Tract

The Longitudinal Tract Data Base Census Dataset (LTBD) provides Census-tract population
data for the period 1970-2020. It combines data from the decennial Census and the ACS and,
crucially, the tract boundaries have been harmonized to 2010 Census tract boundaries as
described in Logan et al. (2014). We use the full-count (standard) dataset.11

The bottom half of Table 2 (and Fig. 9) presents summary statistics for the population
data at the Census tract level. The first set of variables reports the average decadal population
growth (change in log population divided by the number of decades). Over the last two
decades, population in the average tract has grown by an average of 6.7 log points per decade.
As expected, the variation in population growth across tracts is large, with population falling
by 285 log points in some tracts and increasing by 804 log points in others. As shown before,
population growth at the tract level has slowed down considerably. Between 1970 and 2020
the average population growth was 16.4 log points per decade, more than two times larger
than the value for the period 2000-2020.

10 According to the BLS, the U.S. population in 2020 was 331.4 (April 1 estimate). The SEER data report
327.3 million people. The 4-million disparity is due to the exclusion of Alaska, Hawaii and Puerto Rico.
11 The data is freely available at https://s4.ad.brown.edu/Projects/Diversity/Researcher/Bridging.htm. See
Appendix B for more details.
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Fig. 2 Nationwide trends. All regions pooled. Notes: Population trends in United States. Top-left figure is
in millions of individuals, top-right figure in logs, bottom-left figure is the decade-over-decade change in
log population and the bottom-right figure is the average decadal growth between the year indicated in the
horizontal axis and year 2020

Our Composite Climate Risk Index

We use natural hazard risk metrics provided by FEMA (November 2021 version).12 Our
starting point is the most comprehensive metric, which includes data for a large number
of natural hazards and is a function of both the expected annual losses from each of the 18
hazards in each geographic area, and the area’s social vulnerability and community resilience.
This index combines information on 18 natural hazards, and takes values that range from 0
to 100.13

It is important to note that expected annual losses are a combination of the expected annual
frequency of the climate events and the degree of exposure, which is a function of the area’s
population and its housing stock. Therefore there will be a mechanical correlation between
this risk metric and population, both in levels and growth rates.

Given our interest in examining how climate risk impacts population growth, it is more
appropriate to measure climate risk solely on the basis of annual frequency. Annualized
frequency for each hazard is calculated as the number of historical occurrences (in counts of
events or event-days) over the length of the time period, using a variety of primary sources
that vary across each of the 18 specific hazards. The methodology to produce these estimates

12 The data can be freely downloaded at https://hazards.fema.gov/nri.
13 The natural hazards are: Avalanche, Coastal Flooding, Cold Wave, Drought, Earthquake, Hail, Heat Wave,
Hurricane, Ice Storm, Landslide, Lightning, Riverine Flooding, Strong Wind, Tornado, Tsunami, Volcanic
Activity, Wildfire and Winter Weather. We ignore volcanic activity and earthquakes, which are not directly
related to climate.
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Table 2 Descriptive Statistics (counties and tracts)

Variable Obs Mean Std. Dev. Min Max
Counties

(Dln 2020-2010) / 1 3,107 0.006 0.089 -0.401 0.866

(Dln 2020-2000) / 2 3,106 0.025 0.094 -0.308 0.512

(Dln 2020-1990) / 3 3,106 0.048 0.100 -0.242 0.589

(Dln 2020-1980) / 4 3,104 0.043 0.105 -0.270 0.661

(Dln 2020-1970) / 5 3,091 0.062 0.110 -0.219 0.747

(Dln 2020-1960) / 6 3,088 0.058 0.112 -0.240 0.719

(Dln 2020-1950) / 7 3,084 0.055 0.113 -0.252 0.662

(Dln 2020-1940) / 8 3,080 0.051 0.112 -0.241 0.619

(Dln 2020-1930) / 9 3,080 0.051 0.107 -0.215 0.623

(Dln 2020-1920) / 10 3,049 0.052 0.104 -0.189 0.617

FEMA NRI Risk Score 3,104 10.628 6.759 0.000 100.000

Z Risk Composite 3,114 0.000 0.257 -0.844 1.757

ZW Risk Composite 3,114 0.000 0.404 -0.917 2.031

Low ZW Risk 3,114 0.250 0.433 0.000 1.000

Med ZW Risk 3,114 0.500 0.500 0.000 1.000

High ZW Risk 3,114 0.250 0.433 0.000 1.000

Tracts

(Dln 2020-2010) / 1 58,458 0.048 0.178 -3.924 4.369

(Dln 2020-2000) / 2 58,440 0.067 0.250 -2.853 8.041

(Dln 2020-1990) / 3 58,438 0.099 0.244 -2.111 6.363

(Dln 2020-1980) / 4 46,188 0.141 0.320 -1.637 4.939

(Dln 2020-1970) / 5 40,767 0.164 0.330 -1.336 4.564

FEMA NRI Risk Score 58,488 16.177 6.935 0.000 87.087

Z Risk Composite 58,488 0.000 0.232 -0.696 6.077

ZW Risk Composite 58,488 0.000 0.418 -0.764 4.766

Low ZW Risk 58,488 0.250 0.433 0.000 1.000

Med ZW Risk 58,488 0.500 0.500 0.000 1.000

High ZW Risk 58,488 0.250 0.433 0.000 1.000

Notes: Unweighted summary statistics. Z risk score is based on FEMA’s annual frequency of climate events.
We standardize the frequency of each event and compute a simple average (Z ) and a weighted average (ZW ).
We define the 3 categories of composite climate risk (low, medium and high) as follows: below the 25th
percentile, between 25th and 75th percentiles, or above the 75th percentile, respectively

differ somewhat for each hazard, depending on the nature of the hazard. In most cases,
the frequency of hazards is recorded at the Census block level. Once the total number of
recorded hazards is obtained, the annualized frequency is simply calculated as the number
of recorded hazard occurrences within the recording period divided by the corresponding
number of years. Once these measures are obtained at the Census block level, area-weighted
aggregates are computed in order to obtain frequencies at the Census tract and county levels.
AppendixC includes detailed information on the definition of occurrences and the calculation
of annualized frequencies for each of the main hazard types.
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Our frequency-based composite risk measure is built as follows. First, we standardize the
annual frequency for each hazard (using the corresponding mean and standard deviation).
Next, we average the standardized annual frequencies using hazard-specific weights, and
denote the weighted composite index by ZW. The weights are meant to capture the disparity
in the economic consequences of each hazard. Specifically, we compute each natural haz-
ard’s share in the expected annual loss due to property (buildings) damage and crop losses
nationwide.14 Because the main natural hazards in our composite risk index are geographi-
cally widespread across many counties and Census tracts, using their national dollar losses
is unlikely to contaminate our county-level composite risk index. We will also examine the
robustness of our results to the use of the weights in the calculation of our composite in two
ways: by estimating our main models using the unweighted version of our composite index
(which assigns equal weights to all hazards) and by repeating the analysis for each natural
hazard separately (i.e. without combining them into a scalar index).

Last, we compute the 25th and 75th percentiles of the composite (weighted) index and
classify a county as low risk if the composite annual frequency measure is below the 25th
percentile, medium risk if it falls between the 25th and 75th percentiles, and high risk if it is
above the 75th percentile.15

HousingValues and Residential Capital Data

In Heterogeneous Effects by Residential Capital, we will analyze local population growth
(for the period 1990-2020) on the basis of county-level climate risk and economic density.
The latter will be based on residential capital values obtained from the 2000 Census.16

Specifically, we will partition all U.S. counties on the basis of below or above median values
for each of the following three measures: (i) overall value of residential capital in the county,
(ii) median value of homes in the county, and (iii) value of residential capital over the county’s
surface area.

Definitions and Nationwide Trends

This section defines our measures of population growth and examines both nationwide trends
and the geographic distribution of climate risk. These exercises both provide an overview of
the data and help assess their quality.

14 For droughts the expected annual losses for building damages are not part of the dataset. We replaced them
with expected annual agricultural losses. Ten out of the 16 hazards considered account for the vast majority of
the nationwide economic damage caused by climate events and, in fact, the main 7 hazards account for 94% of
all economic damage. We list them next in decreasing order, along with the corresponding shares: hurricanes
(0.21), droughts (0.21), riverine flooding (0.18), tornados (0.13), wildfires (0.10), hail (0.06), coastal flooding
(0.05), strong winds (0.04), ice storms (0.01) and winter weather (0.01).
15 It is worth noting that the annual frequency distributions differ in the county and Census tract datasets,
which delivers different threshold values for the risk categories.
16 Given that our period of interest is 1990-2020, using pre-determined 1990 (or earlier) residential capital
values would have been clearly better. Unfortunately, we were not able to obtain such data with the required
geographic coverage. Nonetheless, the high persistence of housing stocks, and their value, over a 10-year
period suggests that the results will probably not be affected much. We conduct some auxiliary analysis in
Heterogeneous Effects by Residential Capital that shows this is a plausible assumption.
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Population Growth

We begin by pooling all counties together and examining the evolution of population over
time for the US as a whole. Figure 2 plots the evolution of population in levels (top-left)
and in logs (top-right).17 The top figures plot the evolution of the US population in levels
and logs. The bottom left figure plots the decadal population growth rates for the 10-years
beginning in year t . Namely,

gt = lnPopt+10 − lnPopt , for t = 1900, 1910, ..., 2010. (1)

As illustrated in Fig. 2 (bottom-left figure), there is a downward trend in decadal growth
rates, but there is also substantial variability, partly reflecting economic conditions. Specif-
ically, decadal population growth was the lowest in the 1930s and 2010s, with 6.9 and 6.3
log points, respectively.

To smooth out fluctuations, it is helpful to define the average decadal growth rate over
periods of time ranging from initial year t and final year 2020, or

gt = lnPop2020 − lnPopt
0.1 × (2020 − t)

, for t = 1900, 1910, ..., 2010, (2)

where the denominator simply counts the number of decades between initial year t and year
2020. A little algebra easily shows that gt is simply the average of the decadal population
growth rates (gt ) for the corresponding decades (beginning with years τ = t, ..., 2010). Note
also that g2010 = g2010.

The bottom-right figure in Fig. 2 clearly shows the downward trend in the growth rate
for the overall population. Between the years 1900 and 2020, the average population growth
rate has been around 12% per decade. In comparison, the corresponding rate fell to 10% for
the 1970-2020 period and fell further to roughly 6% for the 2010-2020 decade.18 To a large
extent this trend reflects the reduction in fertility rates accompanying the secular increase
in per-capita income. Despite large improvements in life expectancy and periods of high
immigration, population growth has trended downward between 1900 and 2020.

Population Growth and Climate Risk

It is helpful to consider our county-level population datasets and partition all counties into
3 groups on the basis of our composite climate risk index (ZW). Specifically, we consider
the three climate risk levels (indexed by r) defined in : low (r = 0), medium (r = 1) and
high risk (r = 2). We then classify all counties by their composite risk category and pool all
counties with the same risk category. Last, we compare the evolution of population across the
three risk categories. In particular, we are interested in assessing whether population growth
has been lower in high-risk areas, which would indicate population retreat.

We examine the trends in terms of the average decadal (10-year) growth rates {grt − g0t },
for r = 1, 2. As can be seen in Fig. 3 (bottom right), up until the 1970s, the average growth
differential between high-risk and low-risk areas was high and relatively stable, roughly 6
percentage points per decade. Since then, the gap in growth rates appears to have fallen
gradually: over the last 20 years the average growth rate has been about 4 percentage-points

17 The figures also plot the evolution of two demographic groups: the population age 65 and over and the
non-white population. Both groups have grown rapidly, relative to the overall population, since 1970.
18 The figures also plot the data for the population age 65 and over and the non-white population. Since 1970
these groups have increased at much higher rates, on average, than the overall population.
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Fig. 3 National trends. By climate risk (weighted composite). Notes: Composite risk with hazard weights.
Population trends in United States by climate risk, net of the corresponding value for the low-risk category.
Top-left figure is in millions of individuals, top-right figure in logs, bottom-left figure is the 10-year log change
between the year indicated in the horizontal axis and 10 years later, and the bottom-right figure is the average
decadal growth between the year indicated in the horizontal axis and year 2020

higher in high-risk areas than in low-risk ones. In comparison, medium-risk areas have grown
at similar rates as low-risk areas, except for the 1970-2000, period when medium-risk areas
grew at somewhat higher rates than low-risk areas.

In conclusion, the data indicate that population growth remains much higher in high-risk
areas than in low-risk areas, even though the gap appears to have been closing slowly in
the last few decades. In other words, nationwide population is not retreating from high-risk
counties. Rather, these counties continue to grow disproportionately, albeit at a decreasing
rate.

The Geographic Distribution of Climate Risk

To understand the geographical variation of our composite risk measure, we map it at the
county level. As shown in Fig. 4, there is substantial geographical heterogeneity in climate
riskmeasure (ZW). The higher values of the composite riskmeasure are found in the Southern
half of the country, particularly in the South east and South west. This pattern is also found
in a recent study by Amornsiripanitch and Wylie (2023) who document the highest climate
risk exposure in the Gulf of Mexico and South Atlantic coast. More specifically, our climate
risk index shows that high climate risk in the Northeast and in the South is more prevalent
among coastal counties. It is also worth noting that many counties in northern Texas and
Oklahoma also exhibit moderate levels of climate risk. In the West the highest climate risk
area falls in counties on both sides of the California-Arizona border. Last, the Midwest is
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Fig. 4 Composite risk index (ZW) at county level. Notes:Map plots composite risk measure for each county.
Map separates counties by Census region (Northeast, Midwest, South and West). Heat-map shows counties
with more risk in red and counties with lower risk in purple

generally a region with low climate risk and only some counties in Nebraska and Kansas
exhibit moderately high climate risk.

Naturally, there is regional variation in the specific climate hazards concerning the pop-
ulation. Obviously, landlocked counties are not exposed to coastal flooding and tornadoes
are much more frequent along the Tornado Alley (which includes parts of Texas, Louisiana,
Oklahoma, Kansas, South Dakota, Iowa and Nebraska). Figure 5 plots county-level risk lev-
els (based on estimated annual frequency) for the 10 natural hazards with positive weight in
our composite measure (see Population Growth and Climate Risk).19

Droughts are a serious concern in many counties in the western half of the United States.
In contrast, the eastern and southern coastal counties face moderate to high risk of hurricanes.
We also note that wildfire risk correlates with risk of droughts, whereas coastal flooding risk
largely coincideswith risk of hurricanes (particularly in southern counties in Texas, Louisiana
and Florida).20

In later sections we will also examine whether different natural hazards affect population
growth differently, possibly due to differences in the availability of mitigation technologies
or other factors.

Is There Population Retreat fromHigh Climate Risk Locations?

County-level Analysis

The findings in the previous section show that population is not retreating from high climate-
risk areas. At best, we observe a recent reduction in the gap between growth rates in regions

19 The figures are sorted (top to bottom) in decreasing weight in our composite index. The hazards with the
highest weights are droughts (0.21), hurricanes (0.21), riverine flooding (0.18) and tornadoes (0.13).
20 Note though that several counties in the northwest are at high risk of coastal flooding but are not exposed
to hurricanes.
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Fig. 5 Risk for individual hazards at county level.Notes: Risk score for each hazard at the county level, based
on the standardized average annual frequency of each hazard in each couty. We only include hazards who
have a positive weight in our composite measure. Order of hazards in this figure is determined by the hazard’s
weight in our composite measure. Heat-map shows counties with more risk in red and counties with lower
risk in purple
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with high and low climate risk. This section will offer a more formal test of the retreat
hypothesis exploiting cross-county variation.

Naturally, if population is growing faster in high-risk areas it must be because the pull
factors in those areas outweigh the expected losses associated to climate risk. The pull factors
may differ in terms of geographic scope.21 Some may spread across whole states (e.g.,
low taxation), other pull factors may better coincide with commuting zones (e.g., strong
labor markets), yet others may operate at the county or sub-county level (e.g., nice views or
proximity to nature).

We hypothesize that, if we were able to condition on all relevant pull factors, we would be
able to observe population retreat from high-risk areas. In other words, individuals currently
living in an area with high climate risk would be willing to relocate to lower climate-risk
areas with the same attributes. We refer to this as the conditional retreat hypothesis and we
will also test it below.

We analyze these questions exploiting cross-county variation to estimate differences in
population growth on the basis of climate risk, where growth will sometimes be defined
relative to the neighboring counties to net out the effects of region-specific factors. Our
primary interest is on the period 1990-2020, when climate risk has become increasingly
salient, but we provide estimates for a longer time period in order to examine if there has
been a departure from long-term population trends.22.

We consider a series of cross-sectional models that differ in their dependent variable. To
fix ideas, denote the average (decadal) change in log population in county c between years
1990 and 2020 by gc. We posit that

gc = α + β1RiskMedc + β2RiskHighc + uc, (3)

where RiskMedc and RiskHighc are dummy variables taking a value of one for medium
or high-risk counties, respectively. The omitted category are counties with low (or non-
existing) risk. Coefficients β1 and β2 estimate the excessmean population growth inmedium-
risk and high-risk counties relative to low-risk counties nationwide. We cluster standard
errors at the level of commuting zones. This clustering allows for arbitrary spatial correlation
patterns across counties (or tracts) within commuting zones.

It is also interesting to ask if counties with higher climate risk grow more (or less) than
neighboring counties located in the same commuting zone. Appropriately demeaning the
dependent variable allows us to address this question. In this case, we estimate the model

gc − gz = α + β̃1RiskMedc + β̃2RiskHighc + uc, (4)

where the dependent variable is the average population growth in county c net of the
average population growth among all counties in the same commuting zone z. To the extent
that commuting zones characterized by higher climate risk grow systematically more (less)
than commuting zoneswith low risk, the estimates for β̃1 and β̃2 will be lower (higher) than the
analogous estimates obtained in Eq. 3.23 Note also that Eq. 4 neutralizes the effect of factors

21 For example, Rappaport and Sachs (2003) show that US economic activity is overwhelmingly concentrated
in coastal counties and argue that this is a result of the opportunities that stem from proximity to the ocean in
terms of productivity and quality of life. Glaeser et al. (2001) argue that the inherent economic success of a
city hinges on its consumption value, which is closely related to the amenities it offers.
22 Beeson et al. (2001) show that migration decisions in the late 1800’s were largely driven by natural
characteristics of the counties, such as access to water transportation and mineral resources.
23 Note that β2 = E(gc|HighRisk) − E(gc|LowRisk), whereas in Eq. 4, β̃2 = β2 − (E(gz |HighRisk) −
E(gz |LowRisk)).
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Table 3 Estimates average population growth by composite climate risk

Period 1990-2020 (1) (2) (3) (4) (5) (6)
Climate index NRI ZW ZW ZW ZW ZW
Sample cty All All All All HM CZ All
AvDlnPop net State net CZ net CZ FE CZ

HighRisk 0.071*** 0.029*** 0.010 0.005** 0.007* 0.023***

[0.008] [0.008] [0.007] [0.002] [0.004] [0.007]

MedRisk 0.023*** 0.006 0.002 -0.001 0.001 0.003

[0.005] [0.006] [0.005] [0.002] [0.004] [0.005]

Constant 0.041*** 0.038*** -0.004 -0.001 -0.002 0.041***

[0.002] [0.005] [0.004] [0.001] [0.003] [0.004]

Observations 3,103 3,106 3,106 3,106 2,584 3,103

R-squared 0.027 0.013 0.002 0.002 0.002 0.006

Mean Dep. Var. 0.048 0.048 0 0 0 0.048

Notes: The dependent variable is the change in the log of population between 2020 and 1990, divided by 3
(decades). In column 1 the measure of climate risk is FEMA’s NRI. In columns 2-6, climate risk is measured
using our index based on the (weighted) aggregation of the standardized annual frequencies of all hazards,
where the weights are based on the monetary value of the nationwide damage due to each hazard. The
dependent variable in columns 3 and 4 nets out the average population growth in the State and Commuting
zone, respectively.Column5 restricts the sample to counties in commuting zoneswith above average proportion
of medium or high climate-risk counties. In column 6, the dependent variable is the (gross) change in the log
of population but the model includes (722) commuting-zone fixed effects. In all models the omitted category is
low risk. Standard errors are clustered at the level of commuting zones. P-values: *** p < 0.01, ** p < 0.05,
* p < 0.1

that make a commuting zone more (or less) attractive, on average, than other commuting
zones. Examples of such factors are cross-state (or cross-city) differences in taxation,weather,
or the robustness of their local economies during the period of consideration. Hence, this
model provides a test of the conditional retreat hypothesis.24

Main Results

We now turn to the estimation of Eq. 3. Table 3 reports the results. Before turning to our
composite climate risk index, we employ FEMA’s National Risk Index (NRI). As seen in
column 1, there is a strong positive association between high-risk counties (on the basis of
the NRI) and population growth. However, this index is constructed on the basis of the fre-
quency of natural disasters and a measure of exposure, which includes building values that
are obviously correlated with population. As a result, there is a nearly mechanical relation-
ship between high values of the NRI and a county’s population growth. Primarily for this

24 An alternative approach to netting out factors that affect all counties in a commuting zone equally would be
to include commuting-zone fixed-effects in the estimation of Eq. 3. However, in that case, the interpretation of
the coefficients of interest is less straightforward. When we include fixed-effects, identification is based on the
correlation between the transformed (demeaned) population growth and the transformed risk dummy. Note
that the transformed risk dummy becomes a continuous variable, so it is no longer the difference in the mean
for high-risk versus low-risk counties. The demeaned dummy variable then becomes a measure of relative risk
(vis-a-vis the corresponding commuting zone) whose variation is entirely driven by the fraction of high-risk
counties in the commuting zone. In our opinion, this ‘local’ measure of county risk (which depends on the
mean risk among the counties in the commuting zone) is less helpful than using a ‘global’ measure of county
risk. At any rate, we shall also report estimates obtained by including fixed-effects.
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reason, we built a composite index that is purely based on the average annual frequency of
natural hazards in each county. Instead, columns 2-6 employ our climate risk index (ZW).
As expected, the association between population growth and climate risk at the county level
is considerably weaker in column 2 than in column 1. Nonetheless, we still find evidence
of higher population growth (over the last 3 decades) in high-risk counties. We estimate the
growth gap between low and high-risk counties to be 2.9 log points (i.e., about 3%) per
decade. In contrast, medium-risk counties have grown, on average, at the same rate as low-
risk counties over the last 30 years. Thus, we reject the retreat hypothesis, confirming the
findings in Fig. 3. In other words, high-risk counties continue to gain population, presumably
because the pull factors in these locations offset the expected losses associated with climate
risk.

Columns 3 and 4 examine whether higher-risk counties have grown disproportionately
relative to their neighbors. Respectively, the dependent variables in these columns net out the
average population growth in the state and commuting zone where each county is located.
The point estimates fall in value, indicating that high-risk counties tend to be located in high-
risk areas (states or commuting zones). However, the estimates show that high-risk counties
have grown at a higher rate than the commuting zone (or state) where they are located. Based
on column 4, we estimate the high-low net gap in population growth to be 0.5 log points per
decade.

Column 5 restricts the sample to commuting zones with an above average proportion of
medium-risk or high-risk counties, which increases the net population growth gap between
high-risk and low-risk counties. Last, column 6 reports estimates from a model that includes
commuting-zone fixed-effects (where the dependent variable is the average change in log
population). Intuitively, this model correlates deviations in population growth relative to
each county’s commuting zone with a measure of relative risk. The estimates entail a larger
gap in population growth between high-risk and low-risk counties.

In sum, our estimates show that high-risk counties have grown substantially more than
low-risk counties over the last 3 decades, even when the comparison is restricted to counties
in the same commuting zone, which is commonly considered as a fair approximation of the
geographical scope of local economies. This result points to the presence of important pull
factors at the county or sub-county levels and imply a rejection of both the unconditional and
conditional retreat hypotheses.

Flexible Relationship

Let us now examine a more flexible model than Eq. 3 using local linear regression. This
analysis will be informative regarding the functional form for the relationship between our
composite index (as a continuous variable) and the average population growth. The results are
depicted in Fig. 6. The top figure plots average decadal population growth and our frequency-
based composite risk index at the county level. The figure shows a positive association
between climate risk and population growth across the whole range of the composite index,
with the exception of the first bin. The bottom figure is the conditional counterpart of the
previous figure, where each county’s average population growth rate has been demeaned
using the corresponding commuting-zone value. In this case, the relationship is both closer
to a linear function and exhibits a smaller slope.25

25 Conservatively, our regression models do not assign extra weight to more populated counties, which tend
to have the largest values for the composite climate risk index.
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Fig. 6 Population growth and composite climate risk. Flexible functional form. Notes: Each point is a county
and the horizontal axis correspond to our main composite climate risk index (weighted average of annual
frequency of each natural hazard). The top figure plots the average decadal population growth in the period
1990-2020 for each county. The bottom figure is analogous but the data for each county have been demeaned
using the average value in the corresponding the commuting zone. Each red square is the local linear regression
estimate for the corresponding bin. The shaded band depicts the 95% confidence interval

Evolution Over Time

It is also interesting to examine the evolution of the growth differentials between high (and
medium) risk counties and low risk counties over time.26 The results are collected in Fig. 7.

26 An important caveat is that county boundaries have only been harmonized for years 1980-2020 so as to be
stable over time. As we move back in time, there will be an increasing number of boundary changes, which
reduces the reliability of the estimates.
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Fig. 7 Evolution population growth differential. County population growth (top); demeaned by CZ average
growth (bottom). Notes: Risk categories based on weighted composite risk index (ZW). Each point estimate
refers to the average decadal change in the log of population between the corresponding initial year and final
year 2020. Point estimates obtained from models for the average decadal population growth (top) and for the
same variable but demeaned using average growth in the corresponding commuting zone (bottom). In all cases
the omitted category are counties with low risk

The top figure is based on models where the dependent variable is the average population
growth in the county, whereas in the bottom figure the dependent variable has been demeaned
using the average population growth in the corresponding commuting zone.

Both figures indicate a secular reduction of the excess growth of high risk-counties relative
to low-risk counties, but they diverge in regard to the recent trends. Over the last 30 years, the
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excess growth of high-risk counties (relative to low-risk counties) has trended down when
we do not net out the growth rate of the corresponding commuting zone (top figure), but
this is not the case when we consider county growth relative to each county’s commuting
zone (bottom figure). Tentatively, this finding suggests that in recent times commuting zones
exposed to high climate risk may be losing gravitational pull.

It is also interesting to examine the robustness of these findings to the weights used in
the construction of our composite risk index. Accordingly, Fig. 10 plots the estimated excess
population gaps based on the unweighted composite index (Z), which assigns equal weights
to all hazards. The patterns we obtain are qualitatively similar: throughout the whole period,
high-risk counties exhibit excess population growth relative to low-risk counties, regardless
of whether we net out population growth in the corresponding commuting zone. However,
the estimated excess growth is much lower when we use the unweighted composite index.
Specifically, between 1990 and 2020, the excess growth of high-risk counties is estimated to
be around 1 log point per decade when we rely on the unweighted composite index. This is
substantially lower than the 2.9 log point excess obtained using theweighted composite index.
Interestingly, the estimated excess growth in relation to the corresponding commuting zone
is very similar whether we use the weighted or unweighted versions of the composite index.
As we shall see later (in Heterogeneity by Climate Hazard), the quantitative discrepancies
between the two versions of the composite risk index reflect the diverging population-risk
dynamics for some individual natural hazards.

Summing Up

Our county-level analysis offers two main conclusions. First, we find no evidence of popu-
lation retreat from areas with high climate risk. In other words, we reject the unconditional
retreat hypothesis. Over the last three decades, on average, high-risk counties have grown
more than low-risk counties (by 2.9 log points per decade). In addition, the same qualitative
pattern is found when considering each county’s population growth relative to the growth
of the corresponding commuting zone, which neutralizes the effect of state and commuting-
zone characteristics (such as differences in taxation or strong local labor markets). Thus, we
also reject the conditional retreat hypothesis, suggesting that the factors that attract people
to high climate-risk areas operate at the county or sub-county levels.

Micro Retreat: tract-level Analysis

There is an important caveat to the conclusion of no retreat from high climate risk locations,
even after controlling for state and commuting-zone pull factors. It might be the case that
retreat takes place at the sub-county level. In other words, while population in high-risk
counties has been growing disproportionately, it is conceivable that the growth is concentrated
in low-risk towns or neighborhoods within those counties. If this were the case, the outlook
would be much more optimistic. We refer to the disproportionate growth of low-risk sub-
county locations as the micro retreat hypothesis.

In order to assesswhethermicro-retreat is taking place, we switch to tract-level data. There
are about 70,000 Census tracts in the United States. The main implementation challenge is
the changing tract boundaries between each decennial Census. We use the LTBD dataset
(Logan et al., 2014), which contains harmonized tract boundaries for the 1970 through 2010
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Table 4 Estimates population growth by composite climate risk. Tracts Analysis

1990-2020 (1) (2) (3) (4) (5) (6)
Tracts All All All All HM Cty FE Cty
AvDlnPop net State net CZ net County net County

HighRisk 0.090*** 0.016 0.017*** 0.015*** 0.031*** 0.071***

[0.023] [0.011] [0.005] [0.003] [0.006] [0.005]

MedRisk 0.028 0.015* 0.011* 0.008** 0.023*** 0.039***

[0.018] [0.009] [0.006] [0.004] [0.007] [0.004]

Constant 0.062*** -0.011* -0.010** -0.008*** -0.023*** 0.061***

[0.019] [0.006] [0.004] [0.002] [0.006] [0.003]

Observations 57,931 57,931 57,931 57,931 47,291 58,438

R-squared 0.018 0.001 0.001 0.001 0.001 0.003

Number FE 2,821

Mean Dep.Var. 0.099 0 0 0 0 0.099

Notes: Dependent variable is the average decadal change in the log of population between 1990 and 2020. In
all columns the climate risk categories are defined on the basis of the weighted composite index. Column 5
restricts the estimation to counties with an above-average proportion of medium-risk or high-risk tracts. In all
models the omitted category is low risk. Standard errors clustered by commuting zone in all columns, except
column 6 where clustering is at the county level. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1

Censuses. When we merge these data with the FEMA NRI dataset, we obtain 59,030 tracts
for years 1990, 2000, 2010 and 2020.27

Our empirical specifications are analogous to those used in our county-level analysis; the
only changes are that observations are now defined at the tract level (indexed by r ) and that
we use county-level averages to compute relative tract-level growth. Namely, the models we
consider are:

gr = α + β1RiskMedr + β2RiskHighr + ur (5)

gr − gc = α + β1RiskMedr + β2RiskHighr + ur (6)

The bottompanel inTable 2 describes themain variables in the tract-level dataset. Roughly,
our merged dataset (which excludes Hawaii and Alaska) contains 58,500 tracts. Over the last
5 decades, the average tract has grown by 16.4 log points per decade, which is much higher
than the corresponding value in the counties dataset (6.2 log points).28 The growth rate for
the average county has also declined over time. In the last decade this value was 4.8 log
points (compared to 0.6 log points in the county-level data).

The estimates of the relationship between current climate risk and population growth
over the last 3 decades are collected in Table 4. The first column estimates Eq. 5. The
estimates show that high climate-risk tracts have grown at a much higher rate than low-risk
tracts nationwide (by a differential of 9 log points per decade). In columns 2-4 we demean
the dependent variable using the average growth rate in the corresponding state, commuting
zone and county. As expected, the high-low relative gap decreases in size, but remains almost

27 For years 1970 and 1980 the number of tracts is significantly lower (around 49,000 tracts on average) so we
exclude these years from the main estimation sample. Census tracts in the LTBD data we use are harmonized
to 2010 boundaries.
28 It is worth noting that population growth at the tract level is censored. When a tract reaches a certain
threshold (around 4,000 individuals), the tract is split into two separate tracts. However, this is not the case in
our harmonized dataset, which keeps boundaries stable at their 2010 values.
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unchanged across the three columns. Namely, high-risk tracts have grown about 1.5 log points
more than low-risk tracts in the same state/CZ/county. Furthermore, column 5 shows that the
excess growth in high-risk tracts is even larger in counties with high climate risk (defined as
counties with above average proportion of medium-risk or high-risk tracts). Last, column 6
shows that the results are qualitatively similar when employing a model that includes tract-
level fixed-effects (though the estimated high-low excess growth is much larger than in our
preferred specification).

In sum, our estimates entail a clear rejection of the micro retreat hypothesis stated above.
In fact, not only high-risk counties are growing more than low-risk ones (within the same
commuting zones). Our results here show that that high-risk tracts are also growingmore than
low-risk (and medium-risk) tracts within the same county. Thus, the sub-county population
dynamics imply that the degree of exposure to climate risk is underestimated in the county-
level analysis. Furthermore, our estimates suggest that the pull factors that make high-risk
tracts attractive are highly localized in scope (at the sub-county level).

Heterogeneous Effects by Residential Capital

Our estimates based on the national sample have failed to provide evidence of population
retreat from high-risk locations, even after neutralizing the effects of state-level, commuting-
zone and county-level pull factors. This suggests the presence of powerful localized pull
factors that still outweigh the costs associated to exposure to climate risk.

However, these findings could vary on the basis of local characteristics, such as the degree
of urbanization. In particular, counties with robust local economies and highly concentrated
physical assets may invest more in resiliency measures to protect from climate shocks,
whereas capital-poor regions may not be able to afford such investments. As a result, popula-
tion dynamics may differ substantially across high climate-risk locations on the basis of the
value of their residential capital stock. In fact, in the context of coastal flooding risk, Lin et al.
(2021) show that residential construction in the United States is increasingly concentrated in
high-risk and high-density coastal areas, but it is not known if these dynamics apply more
generally to other climate hazards.29

To analyze these questions, we partition counties on the basis of (i) overall value of their
residential capital, (ii) median value of homes, and (iii) economic density (defined as overall
value per unit of surface). We measure housing values using the 2000 Census (100% sample,
Census Table) and extend our previous empirical model to allow for heterogeneous effects
of climate risk on population growth for counties above and below the median value of
the corresponding discriminating variable.30 The overall housing stock in the median U.S.
county in year 2000 had a value of $0.9 billion; the median home value in the median county
was $75,600 (and the median homeownership rate was 80.1%). We use these cutoff values to

29 Relatedly, Balboni (2021) estimates large costs from coastal favoritism in deciding the location of public
infrastructure works.
30 So far we have not located comprehensive data on housing values for all U.S. counties for year 1990 so we
use year-2000 values. We do have the 1990 data for Census tracts based on the 5% Census sample. However,
aggregation of the median tract housing values to the county level results in 1,877 counties, well short of the
approximately 3,100 plus counties in the United States. As we show below, the stock of residential capital is
very persistent at the county level over a 10-year period, resulting in the partition of counties being practically
the same. Hence, relying on year-2000 values to analyze population growth over the 1990-2020 period is a
fairly safe choice.
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partition counties according to whether their year-2000 values for these variables are above
or below the corresponding mean.31

Our dependent variable is the 1990-2020 average change in log population. As before, we
present both estimates of models where the dependent variable is the gross population growth
rate of counties and models where we net out the mean value for neighboring counties.

Table 5 collects the results. Column 1 estimates the model for the average change in
population growth. This specification includes interactions terms that allow for heterogeneous
coefficients for counties with low (versus high) overall residential capital stock, where the
cutoff is given by the median value of residential capital across all counties (in year 2000).
The estimates in column 1 show that in counties with low residential capital stock, climate
risk is not related to population growth. Instead, the picture is very different in counties with
high residential capital stock. First, population growth in these counties is uniformly higher
in these counties (by 5.9 log points per decade) regardless of climate risk. But, additionally,
high-capital, high-risk counties have grownmore than low-risk counties that also have a large
residential capital stock. The estimates in column 2 show that the excess growth in high-risk,
high-capital counties is also observed after netting out the growth of the corresponding
commuting zone. However, as before, this population agglomeration in high-risk counties
is not happening in counties with lower residential capital. Column 3 focuses on population
growth between years 2000 and 2020, which is better aligned with the year in which we
measure housing values. The results are practically identical to those in column 2, confirming
that the correlation for county housing values for years 2000 and 1990 is very high.

Columns 4-5 repeat the analysis but, this time, counties are partitioned on the basis of
median housing values (among homeowners). The estimates confirm the agglomeration of
population in high-risk counties with high median housing values. In regard to low-value
counties, we now find higher population growth in high-risk counties (column 4), but this
is largely due to the relatively high population growth in the corresponding commuting
zones. In fact, high-risk counties with low median housing values have grown less than their
neighboring counties (in the same commuting zone).

Columns 6 and 7 partition counties by economic density, defined as the value of the stock
of residential capital divided by the area of the county. The results are also in line with what
we found in the previous columns of the table.

In conclusion, our analysis in this section clearly indicates that the agglomeration of
population in high-risk areas is a phenomenon taking place in economically dense, urban
areas, with large stocks of residential capital and high median values. This finding echoes the
conclusions in Lin et al. (2021). In contrast, population is not booming in high-risk counties
in less urbanized areas. If anything, these counties are growing disproportionately less than
otherwise similar low-risk counties. All in all, these findings suggest that to live in high-
risk areas, local residents require a compensating differential, possibly associated with high
residential capital or robust local economies.

Regional Heterogeneity and Net Migration

This section investigates if the finding of higher population growth in areas with higher
climate risk found in the national samples is also present in regional subsamples (defined as

31 Our results also relate to Fussell et al. (2017) who analyze the effects of hurricanes (and tropical storms)
on population growth and also find heterogeneous effects (on the basis of prior population trends).
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Census divisions). In addition, we will assess whether the findings are driven by disparities
between high-risk and low-risk areas in natural population growth or in net migration.

Regional Heterogeneity

Table 7 estimates gaps in average decadal population growth at the county level for the period
1990-2020 on the basis of climate risk. Column 1 simply reproduces our earlier finding:
nationwide high-risk counties have grown more than low-risk counties (by 2.9 percent per
decade). Columns 2 through 5 provide estimates for each census division separately. We
find substantial regional heterogeneity in the growth gap between high-risk and low-risk
counties. As seen in columns 2 and 4, between 1990 and 2020, in the Northeast and South,
population has increased much more rapidly in high-risk counties than in low-risk counties
(by approximately 3.7 percent and 4.9 percent, respectively).

Interestingly, the pattern is markedly different in theMidwest andWest (columns 3 and 5).
In these regions, high-risk counties have grown less than low-risk counties between 1990 and
2020. In fact, in the Midwest, the average high-risk county actually experienced a population
decline (by 1.1 log point per decade) whereas low-risk counties actually gained population.
In the West, the average county experienced robust population growth between 1990 and
2020 regardless of climate risk, but high-risk (and medium-risk) counties grew 1 to 2 log
points less per decade than high-risk counties.

The Role of Net Migration

Next, we examine whether the the heterogeneous regional patterns in the differential growth
of countieswith high climate risk is driven by diverging patterns of netmigration. Specifically,
the estimates in Table 7 suggest that high-risk counties in the Northeast and South have been
net recipients of migrants whereas high-risk counties in the Midwest and the West have
experienced negative net migration.

To address this question, we rely on a recent dataset by Egan-Robertson et al. (2023).
This dataset contains decadal county level net migration from 1950 to 2020. Net migration
for each decade is estimated as a residual, computed as the overall population change minus
the counterfactual population growth driven purely by natural growth. In turn, the latter is
estimated by aging forward the population at the beginning of the decade, subtracting deaths,
and adding births. Importantly, we computed the counterfactual population change in the
absence of net migration over, say, the period 1990-2020 as the 2020 population resulting
purely from natural growth over the 3 decades minus the overall population in 1990.

Figure 8 reports the results. Let us consider first the nationwide estimates. As we did
earlier (Fig. 7), the solid (blue) line reports the gap in the average decadal change in the log
population of high-risk versus low-risk counties, between each initial year and 2020. As was
the case in Fig. 7 (top panel), the average total population growth gap (between high-risk and
low-risk counties) in the netmigration dataset (Egan-Robertson et al., 2023) is estimated to be
around 4 percentage points per decade higher in the high-risk counties for the time windows
starting in 1960 through 1980, but narrowing substantially for time windows starting from
1990 onward. In fact, Fig. 8 implies that the population growth gap during the 2010s has
fallen almost to zero. This decline was also displayed in Fig. 7 (top panel), but quantitatively
less drastic. The discrepancy between the two datasets is largely due to the exclusion of the
population age 75 and over in the dataset by Egan-Robertson et al. (2023), as explained in
Appendix A.
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Fig. 8 Population growth gaps, inclusive and exclusive of net migration. Notes: County-level population
estimates (overall or absent net migration) are from Egan-Robertson et al. (2023) and exclude population age
75 or older. The solid (blue) line reports point estimates of the gap in average decadal change in the log of
total population in high-risk counties relative to low-risk counties between the corresponding initial year and
final year 2020. The dashed (red) line reports analogous estimates but for the change in log population absent
net migration into the county from the initial year onward

The dashed (red) line in the top subfigure in Fig. 8 plots the gap in the counterfactual
population growth absent net migration (throughout the full period of interest) between high-
risk and low-risk counties for the national sample.32 The data show that high-risk counties
would have grown about 2 percentmore per decade than low-risk counties uniformly between
1960 and 2020. Hence, since 1980, the gap between total and counterfactual population
growth has been narrowing, turning negative in the 2010s. In other words, since 1980 net

32 Importantly, the dashed (red) line in Fig. 7 plotted the overall population growth gap between medium-risk
and low-risk counties.
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migration into high-risk counties has been falling in relative terms and, since 2010, net
migration in high-risk counties has fallen below net migration in low-risk counties.

Let us now turn to examine the estimated growth gaps by census division. Consider first
counties in the South of the country.Absent netmigration, the population in high-risk counties
would have steadily grown by about 3 percent per decade more than in low-risk counties.
But net migration increased the excess growth in high-risk counties to around 5-6 percent per
decade. The pattern is similar in the Northeast, with net migration contributing to the higher
overall population growth of high-risk counties.

In contrast, in the Midwest and the West, net migration has had the opposite effect, as
indicated by the uniformly lower solid line in the figures as compared to the dashed line.
Specifically, since 1960 in the Midwest, population growth would have been very similar in
high-risk and low-risk counties in the absence of net migration, but net migration resulted in
a substantially lower overall population growth in high-risk counties (by about 3 percent per
decade). In the West, in the absence of net migration, high-risk counties would have grown
more (by about 2 percent per decade) than low-risk counties. But, similarly to what took
place in the Midwest, net migration flows reversed the sign of the gap in overall population
growth, which turned negative (i.e. in favor of low-risk counties) since 1990.

It is likely that several factors explain these regional disparities in the sign of net migration
into high-risk counties. One such factor is probably the prevalence of economically vibrant
local economies on flood-prone coastal areas in the South andNortheastern coast. Differences
in the specific hazard mix affecting each region may also play a role.33 Seeking further clues,
next we compare counties that experienced population growth (over the period 1990-2020) to
those that suffered a decline in terms of their climate risk exposure. The top panel in Table 6
reports this information for the U.S. as a whole.34 Among counties with negative population
growth, the composite risk index takes a value of negative 0.04. In contrast, the mean value
for growing counties is 0.02. The difference between the two values is small but already
indicates that growing counties tend to have (slightly) higher exposure to climate risk.

Let us now turn our attention to the Northeast region (in the second panel). The first row
of the panel already indicates that the Northeast is heavily exposed to hurricanes (0.43),
riverine flooding (0.68) and coastal flooding (0.88). Moreover, growing counties have a very
high exposure to these hazards, even relative to the rest of the region (with values of 0.73,
0.79 and 1.43, respectively). In contrast, counties with falling population have substantially
lower exposure to these hazards. Rather similarly, hurricanes are the most prominent natural
hazard in the South (0.47 for all counties in the region), and growing Southern counties are
characterized by high risk of hurricanes (0.58 for growing counties). In contrast, the main
natural hazard in theMidwest is hail (0.47) and growing counties have relatively low exposure
to this particular hazard (0.36). In turn, the main exposure in theWest is to drought (0.96) and
wildfires (0.94). Interestingly, shrinking counties exhibit a very high risk of drought (1.37),
consistent with our retreat hypothesis. However, wildfire risk is higher in growing counties
(1.01) than in those losing population (0.60). All in all, these observations underscore the
presence of regional differences in exposure to each type of natural hazard. The following
sections will try to shed some light on the nature of this distinction.

33 As illustrated in Fig. 5, the West is mainly exposed to droughts, wildfires and, to a lesser extent, coastal
flooding. Coastal areas in the South and the Northeast are at high risk of coastal flooding and hurricanes. In
contrast, the Midwest has a relatively low exposure to all climate hazards. We explore this dimension in the
next section.
34 The average value across all counties for all risk measures in the table is zero because we standardized the
annual frequencies of each hazard (and the composite ) to have a zero mean and a unit standard deviation.
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Heterogeneity by Demographic Group

This section examines if the population trends described above differ along two demographic
dimensions: age and race. For ease of comparison, the top panel in Table 8 simply reproduces
results from the previous section (Table 7).

The middle panel of the table focuses the analysis on the growth of the population age 65
and above. The estimated intercepts in columns 1-5 show that this demographic group has
grown substantially more than the whole population over the 1990-2020 period (15.6 versus
3.8 log points per decade), fueled by the aging of the baby boom. However, the excess growth
of the 65-and-older population in high climate-risk counties has been smaller than the excess
growth for the overall population. In other words, the attraction power of high climate-risk
locations appears to be linked to considerations that are less important to older individuals,
suggesting that job opportunities may be the driving factor behind the increasing population
agglomeration in high climate-risk areas. It is also worth noting that the South stands out
from the other regions because the excess growth of the 65-and-older population in high-risk
areas is almost as large as the excess growth for the population as a whole. Namely, the
factors attracting the older and younger populations to high-risk locations are much more
aligned in the South than elsewhere in the United States.

The bottom panel of the table examines the association between climate risk and the local
growth in the non-white population. Once again, the growth of this demographic group over
the 1990-2020 period has beenmuch larger than that of the overall population (41.9 log points
per decade, as shown in column 1). But, as was the case for the population age 65 and above,
the excess growth for this group in the high climate-risk counties has been much smaller
than for the overall population. In fact, our estimates suggest that, except for the Midwest,
the non-white population has grown less in high-risk counties than in low-risk ones. This
pattern suggests that the non-white population may have been priced out of rapidly growing
high-risk areas.

Before concluding the section, it is worth turning to column 6, where the dependent
variable has been demeaned using the average population growth rate in the commuting
zone. This transformation is meant to remove the attraction power of the commuting zone,
helping isolate the role of county-level pull factors. As discussed earlier, the estimate in the

Table 7 Regional heterogeneity. Avg. decadal county population growth 1990-2020

Since 1990 (1) (2) (3) (4) (5)
Region All NE MW South West
avGPop

HighRisk 0.029*** 0.037*** -0.030** 0.049*** -0.014

[0.008] [0.008] [0.012] [0.014] [0.017]

MedRisk 0.006 0.015* -0.011 0.027** -0.022*

[0.006] [0.008] [0.008] [0.012] [0.013]

Constant 0.038*** 0.006 0.019*** 0.034*** 0.113***

[0.005] [0.007] [0.006] [0.011] [0.011]

Observations 3,106 217 1,054 1,421 411

Notes: The dependent variable in the top panel is the average decadal change in the log of population between
2020 and 1990. Column 1 pools all counties. Columns 2-5 restrict samples to the corresponding Census region.
In all models the omitted category is low risk. Standard errors are clustered at the level of commuting zones.
P-values: *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 8 Demographic heterogeneity. Avg. decadal population growth 1990-2020. County analysis

Region (1) (2) (3) (4) (5) (6)
Demean All NE MW South West All
Pop CZ

HighRisk 0.029*** 0.037*** -0.030** 0.049*** -0.014 0.005**

[0.008] [0.008] [0.012] [0.014] [0.017] [0.002]

MedRisk 0.006 0.015* -0.011 0.027** -0.022* -0.001

[0.006] [0.008] [0.008] [0.012] [0.013] [0.002]

Constant 0.038*** 0.006 0.019*** 0.034*** 0.113*** -0.001

[0.005] [0.007] [0.006] [0.011] [0.011] [0.001]

Observations 3,106 217 1,054 1,421 411 3,106

R-squared 0.013 0.079 0.014 0.021 0.008 0.002

Age≥ 65

HighRisk 0.011 -0.014 -0.066*** 0.040** -0.029 0.005*

[0.011] [0.012] [0.016] [0.017] [0.026] [0.003]

MedRisk -0.005 0.006 -0.047*** 0.033** -0.006 -0.000

[0.009] [0.014] [0.012] [0.016] [0.021] [0.003]

Constant 0.156*** 0.149*** 0.124*** 0.145*** 0.266*** -0.001

[0.007] [0.012] [0.010] [0.013] [0.018] [0.002]

Non-whites

HighRisk -0.101*** -0.131*** 0.049 -0.031 -0.018 -0.030***

[0.022] [0.048] [0.040] [0.040] [0.044] [0.006]

MedRisk -0.075*** -0.030 0.031 -0.075* -0.023 -0.025***

[0.019] [0.043] [0.027] [0.038] [0.029] [0.007]

Constant 0.419*** 0.385*** 0.474*** 0.282*** 0.462*** 0.020***

[0.016] [0.039] [0.022] [0.036] [0.025] [0.005]

Notes: The dependent variable in the top panel is the average decadal change in the log of population between
2020 and 1990, except in the last column where the variable has been demeaned using the commuting-zone
average. Analogously, the middle and bottom panels refer to the average decadal change in the log of the
population age 65 or older and the non-white population, respectively. Columns 1 and 6 pool all counties in
the United States. Columns 2-5 restrict samples to the counties within the corresponding Census region. In
all models the omitted category is low risk. Standard errors are clustered at the level of commuting zones.
P-values: *** p < 0.01, ** p < 0.05, * p < 0.1

top panel suggests that high-risk counties have more attraction power than other counties in
the same commuting zone. The analogous estimate in the middle panel shows that this is also
the case for the population age 65 and older, who also seem willing to accept the higher risk
of some counties in order to enjoy the local attributes, such as proximity to the coast or to
wooded areas. In contrast, the falling non-white population in high-risk relative to low-risk
counties reveals that the attributes found in high climate-risk counties are not strong enough
to attract this population, or that the average individual in this group cannot afford to live in
those counties.

To sumup, our analysis in this section highlights stark differences in the geographic sorting
of different socio-demographic groups. More specifically, the increasing population agglom-
eration in high climate-risk counties appears to be largely driven by white, working-age
individuals. Retirement-age and (less affluent) non-white populations appear to be retreating
from counties with high climate risk.
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This finding is in some sense contrary to that in Amornsiripanitch and Wylie (2023), who
find that residents in high-risk areas have lower household incomes than those in low-risk
areas. Nonetheless, their study is a reflection of the stock of residents in these areas while our
finding refers to the change in that stock. Thus, the presumption that low-income families
are trapped in high-risk areas may need some qualification.

Heterogeneity by Climate Hazard

This section starts by constructing hazard-specific risk categories, also based on average
annual frequencies, but using different thresholds than the composite index that account
for the low frequency for some natural hazards. Next, we will examine the conditional and
unconditional retreat hypotheses separately for each natural hazard.

There are reasons to suspect that local population dynamics will vary across different
natural hazards. For instance, the geographic scope of a natural hazard may be an important
aspect shaping residents’ adaptation (or the feasibility of resiliency investments). Namely,
while some natural hazards impact a whole county with similar intensity (e.g., hurricanes),
others are much more localized and affect only a small subset of the county (e.g., coastal
flooding). We will refer to the latter as micro-hazards and identify them in the data on the
basis of within-area variability. Importantly, individuals can easily adapt to micro-hazards
by simply relocating to nearby towns or neighborhoods with relatively lower climate risk,
while still enjoy certain elements that operate at higher geographic levels (such as a strong
labor market).

Hazard-specific Risk Categories

Some climate hazards are very infrequent: for 6 of the hazards in our data, the 25th percentile
of annual frequency is zero.35 Thus, the definitions for our categories of low,medium and high
risk need to account for this feature of the data. Accordingly, in our definition the Low risk
category includes locations (counties or Census tracts) with zero or below the 10th percentile
of annual frequency. The medium (Mid) risk category includes locations with an annual
frequency higher than the 10th percentile (hence, strictly positive) but lower than the 50th
percentile conditional on positive annual frequency. Naturally, the High category contains
the locations with an annual frequency above the conditional 50th percentile.

Table 9 reports the resulting classification (for counties).36 As can be seen in column 2,
avalanches, coastal flooding, and to a lesser extent, cold waves, hurricanes and heat waves are
infrequent hazards. The low frequency partly reflects that some locations have zero exposure
to that particular hazard, such as counties in the interior with zero risk of coastal flooding.
Our hazard-specific partition of counties into low, medium and high-risk categories can be
seen in columns 3-5. Infrequent hazards, such as coastal flooding, entail a high concentration
of counties in the low-risk category (88% of counties). In contrast, widespread events, such
as lightning, entail a higher concentration of counties in the medium and high-risk categories.

35 In fact for 3 hazards (avalanches, coastal flooding and tsunamis) even the 75th percentile is zero.
36 As reported in column 6, just 7 hazards account for 94% of the economic cost of natural hazards in the
U.S., which determines the weights in our composite risk index (defined as the importance-weighted annual
frequency for each hazard). In decreasing order of importance (and weights in parentheses): drought (0.21),
hurricane (0.21), riverine flooding (0.18), tornados (0.13), wildfires (0.10), hail (0.06) and coastal flooding
(0.05).
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Table 9 Risk categories individual hazards (counties)

Hazard Counties Freq. Zero Freq. Low Freq. Med. Freq. High Weights

Composite NRI 3,106 0.79 0.17 0.05

Z Composite 3,116 0.25 0.50 0.25

ZW Composite 3,116 0.25 0.50 0.25

Drought 3,116 0.10 0.10 0.45 0.45 0.21

Hurricane 3,116 0.29 0.29 0.36 0.36 0.21

Riverine flooding 3,116 0.01 0.11 0.40 0.49 0.18

Tornados 3,116 0.00 0.10 0.40 0.50 0.13

Wildfires 3,116 0.00 0.10 0.40 0.50 0.10

Hail 3,116 0.00 0.10 0.40 0.50 0.06

Coastal flooding 3,116 0.88 0.88 0.06 0.06 0.05

Strong winds 3,116 0.00 0.10 0.40 0.50 0.04

Ice storm 3,116 0.04 0.12 0.40 0.48 0.01

Winter weather 3,116 0.03 0.10 0.43 0.47 0.01

Avalanche 3,116 0.93 0.93 0.04 0.03 0.00

Cold wave 3,116 0.37 0.37 0.32 0.31 0.00

Heat wave 3,116 0.26 0.26 0.38 0.35 0.00

Landslide 3,116 0.00 0.81 0.10 0.10 0.00

Lightning 3,116 0.00 0.10 0.40 0.50 0.00

Tsunamis 3,116 0.99 0.99 0.01 0.01 0.00

Notes: Specifically, we define the Low risk category to include locations (counties or Census tracts) with zero
or below the 10th percentile of annual frequency. The medium (Mid) risk category includes locations with
annual frequency higher than the 10th percentile (hence, strictly positive) but lower than the 50th percentile
conditional on positive annual frequency. Naturally, the High category contains the locations with annual
frequency above the conditional 50th percentile. The last column reports the weights given to each hazard
in our composite risk index, computed on the basis of each hazard’s share in the expected annual loss at the
national level (adding the monetary value of buildings and people). Adding the weights in the last column
results in a number lower than one due to rounding

Unconditional Retreat

We now turn to the estimation of (average decadal) population growth gaps on the basis of
climate risk based on Eq. 3, but this time we consider each natural hazard separately. The
results are collected in the top panel of Table 10. Column 1 reproduces the estimates using the
composite index, which show substantially higher population growth in high-risk counties
than in low-risk ones over the period 1990-2020 (by about 2.9 log points per decade). The
following columns consider all major climate hazards separately (defined as those with the
highest weights in the composite index). Clearly, population growth is significantly higher
in high-risk counties (relative to low-risk ones) for droughts, hurricanes, wildfires, coastal
flooding and, to a lesser extent, riverine flooding. The only exceptions to this pattern are
counties with high risk of tornadoes and counties with high risk of hail. In sum, we reject the
unconditional retreat hypothesis for 5 out of the 7 main natural hazards.

These estimates also shed light on why the estimated excess population growth exhibited
by high-risk counties is substantially lower when we rely on the (unweighted) composite risk
index that assigns equal weights to all natural hazards (Evolution Over Time). Among the 7
natural hazards with the highest weight in our composite index (which account for 94% of
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Table 11 Within tract and county variability by natural hazard

Commuting zones Counties
(1) (2) (3)
Share of CZ where Share of counties where CoV
all tracts have 0 risk all tracts have 0 risk (counties with mean> 0)

Composite NRI 0.00 0.00 16.5

Composite (unweighted) 0.00 0.00 620.6

Composite 0.00 0.00 497.8

Drought 0.07 0.11 26.1

Hurricane 0.35 0.27 9.5

Riverine flooding 0.06 0.01 14.4

Tornados 0.00 0.00 103.2

Wildfires 0.00 0.00 66.4

Hail 0.00 0.00 6.1

Coastal flooding 0.87 0.88 111.2

Strong winds 0.00 0.00 7.1

Ice storm 0.03 0.03 14.0

Winter weather 0.02 0.02 6.5

Notes: These calculations are based on the tract-level dataset. The first (second) column computes the share of
commuting zones (counties) for which all tracts have zero risk for the corresponding natural hazard. The third
column reports the within-county dispersion of each hazard’s risk. Specifically, we compute the coefficient
of variation (CoV ) for each county, based on the county-specific standard deviation and mean of the average
annual frequency, and then average across all counties with positive mean average annual frequency. The table
only includes hazards with positive weight in our composite index

all economic damage nationwide), for only 2 hazards with relatively low weights (tornados
and hail) do we estimate negative excess growth for high-risk counties. These two hazards
play an outsized role in the unweighted composite index, relative to the version that weighs
each hazard on the basis of its nationwide economic damage.

Growth Relative to the Commuting Zone

We now turn to the estimation of models for county population growth net of the average for
the commuting zone. By construction, this comparison neutralizes the effect of pull factors
that operate at the level of commuting zones (or a higher geographical level).

The estimates are reported in the middle panel of Table 10. Two main observations stand
out. First, we do not estimate any excess population growth in counties at high risk of
drought, hurricane and hail. Furthermore, the sign for the coefficient for coastal flooding
turns negative and the point estimate implies a (marginally statistically significant) 0.4 log
point lower decadal population growth in high-risk counties relative to low-risk counties
within the same commuting zone.

The vanishing of the excess population growth in counties with high risk of droughts, hur-
ricanes and coastal flooding when using the corresponding commuting zones as benchmark
indicates that the pull factors that drive population growth operate at the geographic level of
commuting-zones (or higher), or that the scope of these natural hazards encompasses entire
commuting zones. This could plausibly be the case for droughts and hurricanes, but does
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not explain the reversal of the sign for coastal flooding, which is much more geographically
localized.

Tract-level Data and Growth Relative to the County

We now turn to our tract-level dataset to examine sub-county population dynamics by natural
hazard, which will allow us to investigate if micro-retreat is taking place. In other words,
it will reveal whether sub-county population shifts exacerbate or mitigate the increasing
exposure of high-risk counties.37

The bottompanel in Table 10 presents the estimates for population growth net of the county
average. Two results stand out. First, we find a negative (and statistically significant at a 10%
level) coefficient for the high-risk dummy variable for coastal flooding risk. Namely, over the
last 3 decades, these tracts have grown less than other tracts within the same county (by about
0.8 log points per decade). Secondly, this is not the case for any of the other natural hazards:
on the basis of within-county comparisons, tracts at high risk of droughts or hurricanes grew
at the same rate as low-risk tracts, and tracts with high-risk of riverine flooding, tornadoes,
wildfires or hail grew more than tracts with low risk levels for those specific hazards.38

In sum, for most natural hazards, high-risk counties have grown disproportionately more
than low-risk counties (with the exceptions of counties with high risk of tornados or hail).
When we turn to within-county, cross-tract comparisons, we find that these agglomeration
dynamics are reinforced in counties with high risk of riverine flooding, tornadoes, wildfires
and hail. In contrast, we do not find within-county variation in population growth on the basis
of risk of drought or hurricanes. In the case of coastal flooding risk, our estimates suggest
that high-risk tracts have grown less than low-risk tracts within the county.

TheMicro-retreat Hypothesis

What explains the differential sub-county population dynamics in areas exposed to coastal
flooding relative to other types of climate risk? We hypothesize that residents of areas with
high risk of coastal flooding can reduce their risk exposure by relocating within the same
county, which allows them to continue enjoying many of the same attributes. In contrast, this
type of micro-retreat may not be feasible for residents exposed to other natural hazards.

The first step toward investigating themicro-retreat hypothesis is to determine which natu-
ral hazards entail high variation in exposure across tracts within a given county. Additionally,
this variation should be easily predictable; otherwise, county residents cannot determine
which low-risk tracts can provide “insurance” against that specific climate risk.

To measure the degree of cross-tract, within-county variability of each natural hazard, we
follow the following 3 steps. For each county c, we first compute the mean and standard
deviation (across tracts) of the average annual frequency of the climactic event, which we
denote by (mc, sc). We then compute the coefficient of variation specific to each county c as
CoVc = sc/mc. Last, we average CoVc across all counties (with mc > 0). For instance, we
expect high variability in exposure to coastal flooding within coastal commuting zones or
counties, but much lower variability in exposure to hurricanes, which tend to impact whole
counties to a similar degree (and even commuting zones).

37 Table 12 shows the classification of risk categories for individual hazards at the tract level.
38 Estimates for additional model using the tract-level dataset are reported in Table 13.
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The resulting cross-tract variability measures are reported in Table 11, which considers
the natural hazards used in the construction of our composite climate risk index. Column 1
reports the share of commuting zones where all tracts have zero risk (for the corresponding
natural hazard). We observe that 87% of the commuting zones have zero exposure to coastal
flooding (followed by 35% with zero risk of hurricanes), reflecting that only coastal areas
are exposed to coastal flooding. In contrast, all commuting zones are exposed to tornados,
wildfires, hail and strongwinds. Similarly, column 2 reports on the share of counties that have
no exposure to the corresponding natural hazard, meaning that all tracts in the county have
zero risk.Both qualitatively andquantitatively, the results resemble column1: 88%of counties
are not exposed to coastal flooding, and 27% have no exposure to hurricanes. Clearly, only
coastal counties (mostly in the Northeast and South of the country) are exposed to coastal
flooding, and while hurricanes have a much larger geographical scope, large areas in the
interior and north of the country have zero exposure. We turn next to column 3, which reports
the coefficient of within-county variation for each of the natural hazards, which averages
only the counties with positive exposure to the corresponding natural hazard. Two natural
hazards stand out in terms of their within-county variability: coastal flooding (CoV = 111)
and tornados (CoV = 103).

It is worth noting that there is a fundamental difference in the nature of the within-county
variability for coastal flooding and for tornados. For coastal flooding, the high variability
reflects the large disparity in risk for tracts on the coast and tracts in the interior of the same
county. Thus, it is fairly obvious to any county resident which tracts provide “insurance”
against the risk of coastal flooding. In contrast, the within-county variability of tornados has
to do with the randomness of their path, which implies that no tracts in the county can be
considered entirely risk-free. As a result, micro-retreat is only an effective way to mitigate
climate risk, without losing access to county-level attributes, in the case of risk of coastal
flooding. More colloquially, residents of counties with high risk of coastal flooding can ‘have
it both ways’, that is, they can reside in low-risk tracts within attractive counties. It is worth
noting that this finding is consistent with the results in Lin et al. (2021). Their analysis of
residential construction inU.S. coastal areas shows that building density peaks at 2.5 km from
the coast (and declines asymmetrically, falling more rapidly as we approach the waterfront).

In sum, the feasibility ofmicro-retreat is a plausible explanation for the pattern of estimates
in the bottom panel of Table 10, which entails that county-level estimates of climate risk over-
estimate the actual risk in areas at high risk of coastal flooding, but under-estimate risk in
locations highly exposed to some of the other natural hazards (such as riverine flooding,
tornados or wildfire).

Conclusions

Our paper introduces a new composite climate-risk index designed to analyze the relation-
ship between current climate risk and local population dynamics. The composite index has
both high geographic granularity and includes all major natural hazards. While it is closely
related to FEMA’s National Risk Index (or NRI), cross-county (or cross-tract) variation in
our composite index stems exclusively from differences in the average annual frequency of
each hazard and is not mechanically related to local population levels.

On the basis of our climate risk index, we find that population is not retreating from the
average county with high climate risk. In fact, since 1990, we find that high-risk counties
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have grown more than low-risk ones (by about 2.9 log points per decade), although there are
signs pointing to a recent decline in the excess population growth of high-risk counties.

Importantly, the disproportionate growth of high-risk counties remains even after netting
out the average growth in the commuting zone: over the past three decades, high-risk counties
grew about 0.5 percent more, per decade, than low-risk counties within the same commuting
zone. This finding also implies that the factors that attract people to high climate-risk areas
operate at more narrow (i.e., county or sub-county) geographical levels. Further, we show that
the increasing population agglomeration in high climate-risk counties appears to be largely
driven by white, working-age individuals. We also analyzed population dynamics at a more
granular geographical level and found that high-risk Census tracts have typically grown
more than low-risk tracts within the same county. This finding indicates that the county-level
analysis underestimates the degree of population agglomeration in high-risk areas.

We also conducted heterogeneity analysis along various dimensions. First, we investi-
gated the role of urbanization in mediating the relationship between climate risk and local
population growth. We did not find increasing agglomeration in high-risk areas with low res-
idential capital (in terms of scale, median value and density). In contrast, we clearly rejected
the retreat hypothesis in more urbanized areas. Our finding of increasing agglomeration in
high-risk, high-urbanization areas implies that the conclusions in Lin et al. (2021) extend to
natural hazards other than coastal flooding. Our analysis is too descriptive in nature to fully
identify the factors responsible for shifting population toward high-risk, high-urbanization
local areas. However, our findings suggest that these areasmay be highly productive and offer
high wages. As a result, people gravitate toward those areas despite the high exposure to dis-
ruptive climate shocks. In a way, suffering damaging climate shocks once in a while is viewed
as “the cost of doing business" in those locations. In a recent study, Pang and Sun (2022)
provide a dynamic model with endogenous migration across multiple locations (across the
Texas coastline) that differ by flood risk and productivity. The previous interpretation of our
findings is consistent with the equilibrium dynamics in his setup.39

Our analysis has also uncovered important regional heterogeneity. In the South and North-
east of the country, high-risk countries have consistently grown more than low-risk counties
due to net migration into high-risk counties. In contrast, in the Midwest and West, over the
last 3 decades, net migration flows are responsible for lowering the population growth in
high-risk counties below the rate of growth of low-risk counties.

Last, we analyzedwhether our results vary by hazard type. Formost individual hazards, we
find that population growth is higher in counties with high climate risk than in counties with
low risk (except for tornados and hail). Thus, the unconditional retreat hypothesis is rejected
for most natural hazards. On the other hand, within commuting-zone comparisons reveal that
excess population growth in high-risk counties disappears for droughts, hurricanes, hail, and
coastal flooding. This implies that commuting-zone pull factors, such as strong labormarkets,
may explain the vigorous population growth in areas with high exposure to these types of
climate risk.40 We also find evidence of micro-retreat, namely lower population growth in
high-risk Census tracts (relative to the corresponding county), in the case of coastal flooding
risk, but not for the other natural hazards. We argue that this might be because counties with

39 Our findings are also in line with the implications of the modeling framework in Rafols (2023), which
evaluates the implications of projected warming temperatures and flood risk in the Philippines. In her model,
individuals tend to migrate to locations with high consumption amenities and high productivity.
40 Desmet et al. (2021) analyze the costs of sea-level rise using a model where individuals and firms make
location decisions taking into account both agglomeration economies and mobility costs. In their setting,
firm-level spillovers slow down retreat from high-risk locations.
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high-coastal risk are characterized by predictable, highly localized risk. As a result, residents
can ‘have it all’, that is, they can reside in low-risk tracts within attractive counties.

All in all, our findings show increasing agglomeration in high climate-risk areas in the
South andNortheast of theUnited States, likely driven by robust local economies and possibly
reinforced by inertia in public investments in densely population risky locations (Balboni,
2021). However, our analysis also tentatively suggests that the excess population growth in
high-risk counties may be shrinking in the 2010s (Fig. 8), largely driven by intense out-
migration from high-risk counties in the West. Perhaps the recent increase in insurance
costs (and the exit of some of the major insurance providers in California) may have begun
reshaping the mobility decisions of residents in some parts of the country.

Appendix A

Adjustments to County Population Dataset

Our main dataset is the Surveillance, Epidemiology, and End Results Program (SEER) pro-
vided by the National Cancer Institute. To address county boundary changes, we make the
following adjustments:

1. Alaska and Hawaii are dropped from the dataset due to difficulties in linking county-level
data over time.

2. We drop two groupings of counties (with a FIPS code) that were only used in the 1970
Census: 36910 - New York City and 51918 - Arling/Alexan/Fairfax/Falls Church.

3. We impute some county population values for a few counties using linear interpolation.
In particular, we use the 1960 and 1990 values to impute values for 1970 and 1980 for
counties with FIPS 35061, 51095, 51153, 51830. And we use the 1960 and 1980 value
to impute the missing 1970 value for counties with FIPS 51165, 51177, 51179, 51199,
51510, 51580, 51610, 51630, 51660, 51690.

4. For a few counties in Virginia (FIPS 51683, 51685, 51735 and 51830), the 1982 data is
available, but the 1980 is not. We use the 1982 value for 1980.

5. Last, we note that there are missing values for a few counties in Virginia that cannot be
interpolated because we lack values after 1970, but we keep them in the data. In any case,
they have small populations and they will not appear in the estimation sample.

6. More details on the construction of the SEER data can be found at:
https://seer.cancer.gov/seerstat/variables/countyattribs/ruralurban.html.

We obtained the county-level net migration data and the counterfactual population counts
in the absence of net migration fromEgan-Robertson et al. (2023). The data contain estimates
of net migration for the 1950s through the 2010s, and can be disaggregating by gender and
(5-year) age groups. The data are freely available and detailed documentation is available
online at https://netmigration.wisc.edu.

Net migration is estimated as a residual, by subtracting the observed population (in the
Census) at the end of the decade from the counterfactual (“expected”) population in the
absence of migration. In turn, the latter is estimated as follows: the actual population at
the beginning of the decade is aged forward, subtracting out deaths and adding in births, to
generate an "expected population" at the end of the decade. The deaths and births are obtained
from vital statistics records. Next, we highlight a few important points regarding this dataset:

1. At the time we downloaded the dataset (December 2023), the most updated version of the
net migration dataset is based on a preliminary version of the 2020 population Census.
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As explained in Egan-Robertson et al. (2023), the authors of the net migration dataset
felt that the estimates for the 2010-2020 change in the population age 75 and older at the
county level were unreliable and decided to eliminate this age group, which introduces a
discontinuity with the data for the previous decades. To address this issue and maintain
comparability, we removed this age group from all previous decades in our analysis of
the role of net migration.

2. We verified that the population counts in the SEER and Net Migration datasets were
consistent with each other. We were able to match exactly the values in 1970. For other
years, the values were fairly close, though not exactly the same. More details can be
provided upon request.

3. The county-to-countymerge between the SEERand netmigration datasetswas successful
for over 99 percent of the counties. Practically all counties that did not merge belonged
to Hawaii, Alaska or Virginia, because we had dropped them already from the SEER
dataset (as explained earlier in this section).

Appendix B

Adjustments to Tract Population Data

Our Census-tract population data is the Longitudinal Tract Data Base Census Dataset
(LTBD) available at https://s4.ad.brown.edu/Projects/Diversity/Researcher/Bridging.htm. It
combines data from the decennial Census and the ACS, harmonized to 2010 Census tract
boundaries as described in Logan et al. (2014). The data covers the period 1950-2020.

We use the full-count (standard) dataset. The specific sources for the population counts
(and age and race variables) in our analysis are as follows: Total population for the 1970-
2020 period is obtained from 1970 Census (Count 2, 100% Data, T1), 1980 (STF1, 100%
Data, T1), 1990 (STF1, 100% Data, P1), 2000 (SF1, 100% Data, P1), 2010 (SF1, 100%
Data, P1), 2020 (PL94, 100% Data). While the geographic coverage of the LTDB is very
comprehensive, some tracts are missing for the following reasons:

1. In 1970, some areas did not belong to any Census tracts. They were only included in
block numbering areas. These areas were not included in the LTDB crosswalk.

2. Some tracts had zero population in one (or more) of the following years: 1970, 1980,
1990, 2000. These tracts were not omitted from the LTDB crosswalk to year-2010 tracts.

3. Some tracts were populated entirely by crews of vessels in one (or more) of the following
years: 1970, 1980, 1990. These tracts were not omitted from the LTDB crosswalk to year-
2010 tracts.

Appendix C

FEMA data on Hazard Occurrence and Annual Frequency

As part of their efforts to construct a National Risk Index, FEMA calculates the annual
probabilitywith which a given natural hazard will occur for each Census block in the country.
This is done separately for each of the 18 natural hazards in order to adapt the methodology
to the nature of each hazard. In most cases, the annualized block-level frequency is based on
the count of hazard occurrences in polygons that intersect the corresponding block. However,

123

https://s4.ad.brown.edu/Projects/Diversity/Researcher/Bridging.htm


100 Economics of Disasters and Climate Change (2024) 8:61–106

for widespread hazards, like strong winds, hurricanes and ice storms, a 49km2 fishnet grid
is cast to count the number of hazard occurrences in each cell. Each Census block contained
in a cell gets assigned the same total number of occurrences for these widespread hazards.

What is considered a hazard occurrence differs across types of hazard. For some hazards,
the hazard occurrence count is basedon the number of distinct events,whereas for other hazard
types, the hazard occurrence is based on the count of days a hazard has lasted. Table 14 collects
the information for each hazard type and further below we discuss the detailed calculation
of occurrences and annual frequencies for the main natural hazards in our composite index.

Once the tally of the total number of occurrences has been calculated for each hazard in
each Census block, it is straightforward to calculate the annualized frequency (AF):

AF = Number of Recorded Hazard Occurrences

Recording Period Years
(C.1)

To produce annual frequencies at the Census tract or county levels, FEMA aggregates the
Census block values using area weights:

Census Tract AF =
∑

(Census Block AF × Area of Census Block)

Area of Census Tract
(C.2)

County AF =
∑

(Census Block AF × Area of Census Block)

Area of County
(C.3)

In what follows, we go into more detail in terms of the process for calculating the annual-
ized frequency for the hazards with the most significant weight in our Composite Risk Index
measure. The following five natural hazards make up 83% of the weighted Composite risk
index.

Hurricanes The total aggregate number of Hurricane occurrences is taken from the HUR-
DAT2 dataset. This dataset registers all storms between 1851-2020 for counties along the
Atlantic ocean and between 1949-2020 for those along the Pacific ocean. Based on its asso-
ciated wind speeds, each registered Hurricane is assigned a category.41 Using tracking data,
a multi-segment line is created for each storm that tracks its geographical spatial location as
well as the storm category in each segment. These hurricane event paths are then intersected
with Census block polygons to help determine the number of hurricanes suffered by each
Census block.

The aggregate count of hurricanes is then divided by the total number of years for the
period over which the hurricanes occurred in order to calculate the annualized frequency for
each Census block. These values are then used to construct the area-weighted annualized
frequencies for both Census tracts and counties using Eqs. C.2 and C.3, respectively.

Droughts The University of Nebraska-Lincoln National Mitigation Center (NDMC) U.S.
Drought Monitor provides historical data on the areas that have experienced droughts on a
weekly basis since year 2000. Each drought event is then categorized by the severity of the
event, with an indicator that goes from abnormally dry (D0) to exceptional drought (D4). The
sum of the annualized recorded Drought occurrences in a given Census tract, in event-days,
over the number of years in the recording period constitutes the annualized frequency for
a particular Census tract. These Census tract measures are then used to construct the area-
weighted annualized frequency values at the County level using Equation refeq:AFcounty.

Riverine Flooding FEMA relies on the NCEI Storm Events Database to record each
riverine flooding event for the period 1996-2019. The number of days in which riverine

41 These range from Topical Storms, which are the least violent, to Category 5 hurricanes which have wind
speeds above 157 mph.
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flooding events occurred for counties (and Census tracts) that intersect a 1% annual chance
riverine floodplain (as determined by FEMA’s National Flood Insurance Program) are then
tallied. The annualized frequency for each county is the calculated as the number of riverine
flooding occurrences, in event-days, over the period of record. Census tracts simply inherit
the annualized frequency occurrence from the county they belong to.

Wildfires FEMA use a series of raster datasets created by the US Forest Service Missoula
Fire Sciences Laboratory that assess both the burn probability (BP) and the conditional fire
intensity level (FIL) at different locations throughout the US. These raster files work in
parallel; each of them at a 270-meter grid spatial resolution. On one hand, the BP raster
dataset assesses the probability that a particular area is exposed to a large fire, defined as a
fire that "escapes initial fire suppression and spreads". On the other hand, the FIL dataset
contains six independent raster files, each of which determines the portion of simulated fires
in a particular area that reach a specified intensity. FEMA developed a a custom raster-
vector intersect tool to determine the intersections of the raster cells with Census blocks. The
annualized frequency is then calculated as the area-weighted BP for every Census block at a
given year. These Census block estimates are then aggregated to the Census tract and County
levels using area-weighted Eqs. C.2 and C.3, respectively.

Appendix D

Figures and Tables

Fig. 9 National trends (pooling tracts) by climate risk.Notes:Census tract dataset. Composite risk with hazard
weights. Population trends in United States by climate risk, net of the corresponding value for the low-risk
category. Top-left figure is in millions of individuals, top-right figure in logs, bottom-left figure is the 10-year
log change between the year indicated in the horizontal axis and 10 years later, and the bottom-right figure is
the average decadal growth between the year indicated in the horizontal axis and year 2020
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Fig. 10 Evolution population growth differential.Unweighted composite risk index.County population growth
(top); demeaned by CZ average growth (bottom). Notes: Risk categories based on unweighted composite risk
index (Z). Each point estimate refers to the average decadal change in the log of population between the
corresponding initial year and final year 2020. Point estimates obtained from models for the average decadal
population growth (top) and for the same variable but demeaned using average growth in the corresponding
commuting zone (bottom). In all cases the omitted category are counties with low risk
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Table 12 Risk categories individual hazards (tracts)

Climate hazard Tracts Zeros Low Mid High Weights

Composite NRI 58,488 0.69 0.20 0.11

Composite (unweighted) 58,488 0.25 0.50 0.25

Composite 58,488 0.25 0.50 0.25

Drought 58,488 0.20 0.20 0.40 0.40 0.21

Hurricane 58,488 0.14 0.14 0.44 0.42 0.21

Riverine flooding 58,488 0.20 0.20 0.40 0.40 0.18

Tornados 58,488 0.00 0.12 0.38 0.50 0.13

Wildfires 58,488 0.15 0.15 0.42 0.42 0.10

Hail 58,488 0.00 0.10 0.41 0.49 0.06

Coastal flooding 58,488 0.75 0.75 0.12 0.12 0.05

Strong winds 58,488 0.00 0.10 0.40 0.50 0.04

Ice storm 58,488 0.07 0.12 0.42 0.46 0.01

Winter weather 58,488 0.08 0.11 0.44 0.45 0.01

Avalanche 58,488 0.95 0.95 0.03 0.02 0.00

Cold wave 58,488 0.43 0.43 0.32 0.24 0.00

Heat wave 58,488 0.22 0.22 0.40 0.38 0.00

Landslide 58,488 0.00 0.98 0.00 0.02 0.00

Lightning 58,488 0.00 0.10 0.40 0.50 0.00

Tsunamis 58,488 1.00 1.00 0.00 0.00 0.00

Notes: Specifically, we define the Low risk category to include locations (counties or Census tracts) with zero
or below the 10th percentile of annual frequency. The medium (Mid) risk category includes locations with
annual frequency higher than the 10th percentile (hence, strictly positive) but lower than the 50th percentile
conditional on positive annual frequency. Naturally, the High category contains the locations with annual
frequency above the conditional 50th percentile. The last column reports the weights given to each hazard
in our composite risk index, computed on the basis of each hazard’s share in the expected annual loss at the
national level (adding the monetary value of buildings and people)
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Table 13 Heterogeneity by climate hazard. Tracts-analysis

30 year (1) (2) (3) (4) (5) (6) (7) (8)
AvGPop ZW Dght Hrcn RFld Tornds Wildfir Hail CFld

HighRisk 0.090*** 0.122*** -0.052 0.049** -0.022 0.117*** -0.133*** 0.006

[0.023] [0.021] [0.036] [0.020] [0.046] [0.019] [0.050] [0.014]

MedRisk 0.028 0.037** -0.095*** 0.035 -0.089* 0.038** -0.146*** 0.015

[0.018] [0.014] [0.037] [0.023] [0.046] [0.017] [0.049] [0.017]

Constant 0.062*** 0.035*** 0.162*** 0.065*** 0.143*** 0.033* 0.224*** 0.096***

[0.019] [0.013] [0.034] [0.023] [0.046] [0.020] [0.048] [0.012]

Observations 57,931 57,931 57,931 57,931 57,931 57,931 57,931 57,931

net CZ

HighRisk 0.017*** 0.002 -0.000 0.049*** 0.037*** 0.087*** 0.004 -0.012*

[0.005] [0.001] [0.001] [0.009] [0.006] [0.017] [0.002] [0.006]

MedRisk 0.011* 0.000 0.000 0.041*** -0.026*** 0.043** -0.001 0.004

[0.006] [0.001] [0.001] [0.010] [0.006] [0.017] [0.003] [0.005]

net County

HighRisk 0.015*** 0.000 0.000 0.030*** 0.030*** 0.062*** 0.003* -0.008*

[0.003] [0.001] [0.000] [0.006] [0.005] [0.013] [0.001] [0.005]

MedRisk 0.008** -0.000 -0.000 0.025*** -0.013*** 0.026** -0.001 0.008**

[0.004] [0.001] [0.000] [0.005] [0.005] [0.012] [0.002] [0.003]

Notes: The header of each column labels the natural hazard considered. The dependent variable is the average
decadal change in the log of population between 1990 and 2020. All panels based on the tract-level dataset.
In all models the omitted category is low risk. Standard errors clustered by commuting zone. P-values: ***
p < 0.01, ** p < 0.05, * p < 0.1

Table 14 Geographic Level and Count Determination of Hazard Occurrence

Hazard Type Hazard Occurrence Basis Geographic Level of Occurrence

Avalanche Distinct events County

Coastal Flooding No event count No event count

Cold Wave Event-days Census block

Drought Event-days Census tract

Hail Distinct events 49km2 fishnet

Heat wave Event-days Census block

Hurricane Distinct events 49km2 fishnet

Ice storm Event-days 49km2 fishnet

Landslide Distinct events Census tract

Lightning Distinct events 4km2 fishnet

Riverine Flooding Event-days County

Strong Wind Distinct events 49km2 fishnet

Tornado Distinct events 49km2 fishnet

Tsunami Distinct events Census tract

Wildfire No event count No event count

Winter Weather Event-days Census block

Notes: Our own elaboration based on FEMA (2020)
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