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Abstract
It is shown that, on any Lie group, the density ratio of the right invariant measure to the
left invariant measure is harmonic with respect to the left invariant Riemannianmetric.
This result is applied to the Bayesian prediction theory on group invariant statistical
models. A method of constructing Bayesian prior distributions that asymptotically
dominate the right invariant priors is provided.

Keywords Bayesian prediction · Fisher metric · Group invariant model · Laplacian ·
Superharmonic prior

1 Introduction

In Bayesian statistics, if the model has a group structure, inference based on the right
invariant prior is known to have desirable properties; see [1] and references therein.
The same holds true in Bayesian prediction [5, 10].

On the other hand, in the theory of Bayesian prediction, prior distributions that
are superharmonic with respect to the Fisher metric have better performance than the
Jeffreys prior [6].

These two facts raise the problem of the relation between right invariant priors
and superharmonic priors. The Jeffreys prior corresponds to the left invariant prior in
the models with group structures. In some examples such as location-scale models,
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the ratio of the right invariant prior to the left invariant prior is known to be harmonic
with respect to the Fisher metric [7]. However, it was not known whether the harmonic
property of the ratio of the right invariant prior to the left invariant prior holds in general.
This paper proves the claim. The result is helpful for understanding the dominance
property of the right invariant prior to the Jeffreys prior as shown in Lemma 2.We also
provide a method of constructing prior distributions that asymptotically dominate the
right invariant prior in Lemma 3, as we will demonstrate through examples.

In Sect. 2, we prove that the ratio of the right invariant measure to the left invariant
measure is harmonic with respect to any left invariant metric. In Sect. 3, we apply the
theorem to the Bayesian prediction problem.

2 Main result

Let G be a Lie group and e be its identity element. Choose a left invariant Riemannian
metric h on G. We use the symbol h for Riemannian metrics to distinguish with
elements of G usually denoted as g. In application to statistics, h is the Fisher metric
of group-invariant models; see Sect. 3.

Let νL be the left invariant measure (left Haar measure) on G. Up to multiplicative
constants, νL is written in terms of h as

νL(dx) = √|h|dx1 ∧ · · · ∧ dxn,

where xi is a local coordinate of x ∈ G and |h| is the determinant of the metric with
respect to the local coordinate system. Denote the reciprocal of the modulus of G by
πR/L, that is,

πR/L(g)
∫

G
f (x)νL(dx) =

∫

G
f (xg)νL(dx) (1)

(Eq. (1.2) of [1]) for any g ∈ G and f ∈ C0(G), where C0(G) denotes the set of
continuous functions with compact supports. The map πR/L : G → R>0 is a group
homomorphism. Define the right invariant measure νR by

νR(dx) = πR/L(x)νL(dx)

(see Eq. (1.4) of [1]). It is said that G is unimodular if πR/L(x) = 1 for all x ∈ G. We
are interested in groups that are not unimodular.

Define the Laplace–Beltrami operator � associated with the metric h by

� f = 1√|h|∂i (
√|h|hi j∂ j f ), f ∈ C2(G),

where ∂i denotes the partial derivative with respect to the local coordinate, hi j is the
inverse matrix of hi j = h(∂i , ∂ j ), and Einstein’s summation convention is used. We
call� the Laplacian for simplicity. The Laplacian does not depend on the choice of the
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local coordinate system. A function f is said to be harmonic if � f = 0 everywhere
and superharmonic if � f ≤ 0 everywhere.

Our main theorem is stated as follows.

Theorem 1 The function πR/L is harmonic.

Proof Take a function f ∈ C∞
0 (G) such that

∫
f (x)νL(dx) �= 0. Equation (1) is

written as

πR/L(g)
∫

f (x)νL(dx) =
∫

( f ◦ Lx )(g)νL(dx),

where Lx is the left translation by x . Applying the Laplacian to both sides with respect
to g yields

(�πR/L)(g)
∫

f (x)νL(dx) =
∫

�( f ◦ Lx )(g)νL(dx)

=
∫

((� f ) ◦ Lx )(g)νL(dx)

= πR/L(g)
∫

(� f )(x)νL(dx)

= 0,

where the first equality uses Lebesgue’s convergence theorem, the second equality
uses the isometric property of Lx and the invariance of � with respect to isometries
(see p.246, Proposition 2.4 of [4]), the third equality uses Eq. (1) again, and the fourth
equality uses an integral formula on the Laplacian (see p.245 Proposition 2.3 of [4]).
This proves �πR/L(g) = 0. 
�
Example 1 (Affine transformations) Consider the group of affine transformations

G =
{
g =

(
1 0
μ σ

)
| μ ∈ R, σ > 0

}
,

which is used to analyze the location-scale family in statistics. Let us directly show
that πR/L is harmonic, as pointed out by [7]. It is widely known that the left and right
invariant measures are

νL(dg) = dμ ∧ dσ

σ 2

and

νR(dg) = dμ ∧ dσ

σ
,

respectively (p. 63 of [3]). The density function of νR with respect to νL is

πR/L(g) = σ.
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To derive the Laplacian, we determine a left invariant Riemannian metric. The metric
tensor he at the identity element e is arbitrarily chosen. From the G-invariance, the
metric tensor at g ∈ G is

hg = (Lg−1)∗he = BheB = 1

σ 2 he,

where (Lg−1)∗ denotes the pull-back operator associated with the left translation Lg−1

and B is the Jacobian matrix of Lg−1 . Indeed, the left translation

(
1 0
μy σy

)
=

(
1 0
μ σ

)−1 (
1 0
μx σx

)

has the Jacobian matrix

B = ∂(μy, σy)

∂(μx , σx )
= 1

σ

(
1 0
0 1

)
.

The Laplacian is

� = 1
√|hg|

∂i (
√|hg|(hg)i j∂ j )

= σ 2

√|he| (∂μ, ∂σ )

{
σ−2

√|he|σ 2h−1
e

(
∂μ

∂σ

)}

= σ 2(∂μ, ∂σ )

{
h−1
e

(
∂μ

∂σ

)}
.

It is immediate to see that πR/L(g) = σ is harmonic for any choice of he.

3 Application to Bayesian prediction

3.1 Bayesian prediction problem

We briefly recall the Bayesian prediction problem and its relation with geometric
quantities such as the Fisher metric and Laplacian.

A statistical model, or simply called a model, is a set of probability measures on a
given measurable space (X ,F) indexed by a parameter θ as

P = {Pθ | θ ∈ �}.

We assume that the model is identifiable, that is, θ1 �= θ2 implies Pθ1 �= Pθ2 . The
parameter space� is assumed to be an orientable d-dimensionalC∞-manifold. Let Pθ

be absolutely continuous with respect to a base measure v(dx) and its density function
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p(x |θ) be positive everywhere and differentiable with respect to θ . The Fisher metric
on � is defined by

hi j (θ) =
∫

{∂i log p(x |θ)}{∂ j log p(x |θ)}Pθ (dx),

where ∂i is the partial derivative with respect to local coordinates of θ . We assume that
the Fisher metric is of C∞ class and positive definite everywhere. The Fisher metric
does not depend on the choice of the base measure v(dx).

A Borel measure on � is called a Bayesian prior distribution or just a prior. The
volume element

J (dθ) = √|h|dθ1 ∧ · · · ∧ dθd

induced from the Fisher metric is called the Jeffreys prior. The Jeffreys prior does not
depend on the choice of the local coordinate system. We focus on priors π(θ)J (dθ)

that are absolutely continuous with respect to the Jeffreys prior. We call π(θ) the
prior density. Since J (dθ) does not depend on the local coordinate system, π(θ) is a
scalar function. The functions π are assumed to be positive-valued and of C2 class.
We consider not only proper priors but also improper priors.

A statistical prediction problem is to estimate the distribution of future observation
y ∈ X based on an independent sample xn = (x1, . . . , xn) ∈ X n from Pθ . The
Bayesian predictive density

pπ (y|xn) =
∫

p(y|θ)π(θ |xn)J (dθ), (2)

based on the posterior density

π(θ |xn) =
∏n

i=1 p(xi |θ)π(θ)
∫ ∏n

i=1 p(xi |θ)π(θ)J (dθ)

is of interest.
The Bayesian prediction problem is to find a prior density function that has smaller

prediction risk. We adopt the following risk function.

Definition 1 (Asymptotic risk; Eq. (13) of [7]) The asymptotic risk function of the
prior density π ∈ C2(�) is defined by

r(π) = r(π, θ) = 1√
π(θ)

�
√

π(θ),

where � denotes the Laplacian on �with respect to the Fisher metric. A prior density
π1 is said to dominateπ2 asymptotically if r(π1, θ) ≤ r(π2, θ) for all θ and r(π1, θ) <

r(π2, θ) for some θ .
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The asymptotic risk is the leading termof the asymptotic expansion of theKullback–
Leibler risk of the Bayesian predictive density (2) as n → ∞. See Eq. (4) of [6] and
Eq. (13) of [7] for details. It is straightforward to see

r(π) = 1

2π
�π − 1

4
hi j (∂i logπ)(∂ j logπ). (3)

This is proved as

1√
π

�
√

π = 1√
π

√|h|∂i (h
i j

√|h|∂ j
√

π)

= 1√
π

√|h|∂i
(
hi j

√|h| ∂ jπ

2
√

π

)

= 1√
π

√|h|

(
∂i (hi j

√|h|∂ jπ)

2
√

π
− (hi j

√|h|∂ jπ)
∂iπ

4π3/2

)

= 1

2π
�π − 1

4
hi j (∂i logπ)(∂ j logπ).

Our problem is to find a prior density π that has smaller asymptotic risk. The
asymptotic risk of the Jeffreys prior density is 0 from the definition. Non-constant
superharmonic prior densities asymptotically dominate the Jeffreys prior density since
(3) holds.

3.2 Group invariant models

We consider the Bayesian prediction problem over group invariant models. Refer to
[1, 2, 13] for comprehensive textbooks on the invariant models.

For simplicity, we suppose that the sample space X is also a C∞ manifold. Let a
Lie group G act on X smoothly from the left. For a probability measure P on X and
g ∈ G, the push-forward measure g∗P is defined by g∗P(B) = P(g−1B) for Borel
sets B. The group G acts on the set of all probability measures by the push-forward
operation.

Definition 2 (Group invariant model; Definition 3.1 of [1]) A statistical model P is
said to be G-invariant if for each P ∈ P , g∗P ∈ P for all g ∈ G.

If a G-invariant statistical model is parameterized as P = {Pθ | θ ∈ �}, the left
action of G on � is well defined by Pgθ = g∗Pθ under identifiability. We assume that
G transitively acts on �.

Let v(dx) be the base measure of P as in the preceding subsection. We say that
tensors on � are G-invariant if they are preserved under the group action.

Lemma 1 Let P be a G-invariant model. Then, the Fisher metric h is G-invariant. In
particular, the Jeffreys prior is a left G-invariant measure on �.

See “Appendix” for the proof. Lemma 1 is used to prove Lemma 2.
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We say that G acts freely on � if gθ = θ for some θ ∈ � implies g = e. If the
action is free, the parameter space � = {gθ0 | g ∈ G} is identified with G, where
θ0 ∈ � is a fixed element. Under the identification, the left invariant measure νL on G
is equal to the Jeffreys prior and the right invariant measure νR is a prior on �, which
we call the right invariant prior. It is known that the right invariant prior provides the
best invariant predictive distribution [5, 10], which means that the right invariant prior
attains the minimum of the Kullback–Leibler risk in the class of invariant predictive
distributions. In particular, the right invariant prior dominates the Jeffreys prior if G
is not unimodular. This fact is reflected in the following lemma. We prove the lemma
in “Appendix” without using the fact.

Lemma 2 Suppose that G is not unimodular and acts freely on�. Then, the asymptotic
risk of the right invariant prior density πR/L(θ) is a negative constant.

Even if the action of G is not free, the theorem holds for any Lie subgroup G1 of
G that acts freely and transitively on �. In that case, we can identify � with G1 and
construct harmonic prior densities from the right invariant measures on G1. Further-
more, since all the conjugate subgroups gG1g−1 (g ∈ G) act freely as well, various
harmonic prior densities are obtained. The prior densities have the same asymptotic
risk because G1 and gG1g−1 are isomorphic. We can reduce the asymptotic risk by
aggregating the prior densities as follows.

Lemma 3 Let π1 and π2 be smooth positive functions on �. Define the generalized
mean π̄β by

π̄β =
(

π
β
1 + π

β
2

2

)1/β

for β �= 0 and π̄0 = (π1π2)
1/2 for β = 0. If β < 1/2, then

r(π̄β) ≤ π
β
1 r(π1) + π

β
2 r(π2)

π
β
1 + π

β
2

.

The equality holds for all θ ∈ � if and only if π1/π2 is constant.

See “Appendix” for the proof. The case β = 0 is proved in [12].
We provide two applications of the lemma. In the applications, we first find a

closed subgroup G1 that freely and transitively acts on �. Then, take g ∈ G and
put G2 = gG1g−1. Under the identifications G1 � �, g1 �→ g1θ0, and G2 � �,
g2 �→ g2gθ0 as G-spaces, the following equality holds for any θ ∈ �:

π2(θ) = π1(g
−1θ),

where π1 and π2 are the densities of the right invariant priors of G1 and G2,
respectively. Indeed, the left and right invariant measures on G2 are the push-
forward of those on G1 by g1 �→ gg1g−1. Then the density π1(g1θ0) is equal to
π2((gg1g−1)gθ0) = π2(gg1θ0), which proves π2(θ) = π1(g−1θ) for θ = gg1θ0.
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Example 2 (Cauchy location-scale family [11])Consider the Cauchy density function

p(x |μ, σ) = 1

πσ(1 + (x − μ)2/σ 2)
, x ∈ R,

with respect to the Lebesgue measure, where μ and σ are called the location and scale
parameters, respectively. The parameter space is � = {(μ, σ ) | μ ∈ R, σ > 0}. The
density function is written in terms of complex numbers as

p(x |μ, σ) = σ

π |x − (μ + iσ)|2 , i = √−1.

The general linear groupG = GL+(2,R)with positive determinant acts on this model
through the linear fractional transformation

(
a b
c d

)
· x = ax + b

cx + d
,

(
a b
c d

)
∈ G, x ∈ X = R.

The action of G on the parameter space is

(
a b
c d

)
· (μ + iσ) = a(μ + iσ) + b

c(μ + iσ) + d

= acσ 2 + (aμ + b)(cμ + d)

(cσ)2 + (cμ + d)2
+ i

(ad − bc)σ

(cσ)2 + (cμ + d)2

for (μ, σ ) ∈ �. See [11] for details. Although the action of G on � is not free, a
subgroup

G1 =
{(

σ μ

0 1

)
| μ ∈ R, σ > 0

}

acts freely. We can identify G1 with �. As in Example 1, the left and right invariant
measures of G1 are σ−2dμ ∧ dσ and σ−1dμ ∧ dσ , respectively. The density of the
right invariant prior on G1 is

π1(μ, σ ) = σ.

From Theorem 1 and Lemma 2, the asymptotic risk of π1 is negative constant. Now
consider a conjugate group

G2 = gG1g
−1, g =

(
0 1

−1 0

)
∈ G,

which also acts freely on �. The density of the right invariant prior on G2 is

π2(μ, σ ) = π1(g
−1(μ, σ )) = σ

σ 2 + μ2 .
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This prior density is discussed in [7].
Finally, by taking the geometric mean of π1 and π2, we obtain a prior density

√
π1π2 = σ

√
σ 2 + μ2

= 1
√
1 + (μ/σ)2

,

which shrinks the signal-noise ratio μ/σ to the origin. Lemma 3 implies that the
asymptotic risk of (π1π2)

1/2 is smaller than those of the right invariant priors π1 and
π2.

For location-scale families other than the Cauchy family, the general linear group
does not act because the family is not closed under the reciprocal 1/X of the random
variable X . However, the dominance relationship on the asymptotic risk remains true
because the asymptotic risk depends only on the Riemannian structure. See also [7]
for this point.

Example 3 (two-dimensional Wishart model [8, 12]) Suppose that a random variable
X has the two-dimensional Wishart distributionW2(n, 
) with the degree of freedom
n and the covariance parameter


 =
(

σ11 σ12
σ21 σ22

)
.

The model is G-invariant with respect to the general linear group G = GL(2,R),
where the group action is defined by (g, X) �→ gXg and (g, 
) �→ g
g. The
sample space X and the parameter space � are the set of positive definite symmetric
matrices. The subgroup

G1 =
{(

a 0
b c

)
| a, c > 0, b ∈ R

}

of G has a one-to-one correspondence with � through the Cholesky decomposition

 = gg with g ∈ G1. The left and right invariant measures of G1 are

νL = 1

ac2
da ∧ db ∧ dc = 1

4|
|3/2 dσ11 ∧ dσ12 ∧ dσ22

and

νR = 1

a2c
da ∧ db ∧ dc = 1

4σ11|
|dσ11 ∧ dσ12 ∧ dσ22,

respectively. The density of the right invariant prior on G1 is

π1(
) = |
|1/2
σ11
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in the 
-coordinate. A conjugate group

G2 = gG1g
, g =

(
0 1
1 0

)
,

also acts freely on �. The density of the right invariant prior on G2 is

π2(
) = π1(g
g) = |
|1/2
σ22

.

The harmonic mean of π1 and π2 is

(
π−1
1 + π−1

2

2

)−1

= 2|
|1/2
tr(
)

,

which is orthogonally invariant and shrinks the ratio of the two eigenvalues towards
one. Lemma 3 implies that the prior asymptotically dominates the right invariant priors
π1 and π2. The dominance relationship holds even in finite-sample cases as shown by
[8].

Similarly, the geometric mean of π1 and π2 is

√
π1π2 = |
|1/2

(σ11σ22)1/2
,

which is scale invariant and shrinks the correlation coefficient towards the origin.
Again, Lemma 3 tells us that the prior asymptotically dominates the right invariant
priors π1 and π2. This relation holds even in finite-sample cases as shown by [12].

The two examples show how Theorem 1 is useful in Bayesian inference.
We finally mention the predictive metric defined by [9], which appears in the

asymptotic risk when the observed and predicted variables have different statisti-
cal models. The predictive metric is G-invariant whenever the statistical models for
observed and predicted variables are G-invariant. The method of obtaining harmonic
prior distributions is applicable to this case.

A Proof of lemmas

A.1 Proof of Lemma 1

Recall that the Fisher metric is a (0, 2) symmetric tensor

h(θ) =
∫

{d log p(x |θ)}2 p(x |θ)v(dx),
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where d log p(x |θ) = ∂i log p(x |θ)dθ i is the exterior derivative with respect to θ ∈ �.
We prove g∗h = h. The pull-back g∗h is

g∗h = g∗
∫

{d log p(x |θ)}2 p(x |θ)v(dx)

=
∫

{g∗d log p(x |θ)}2 p(x |gθ)v(dx).

=
∫

{d log p(x |gθ)}2 p(x |gθ)v(dx).

By assumption, the statistical model satisfies g∗Pθ = Pgθ , which is equivalent to
g∗(p(x |θ)v(dx)) = p(x |gθ)v(dx) and therefore

p(g−1x |θ)(g∗v)(dx) = p(x |gθ)v(dx).

In particular, g∗v and v are absolutely continuous with respect to each other because
p(x |θ) is assumed to be positive everywhere. We have

p(x |gθ) = p(g−1x |θ)
d(g∗v)

dv
(x).

Since d(g∗v)/dv does not depend on θ , we obtain

d log p(x |gθ) = d log p(g−1x |θ).

Therefore

g∗h =
∫

{d log p(x |gθ)}2 p(x |gθ)v(dx)

=
∫

{d log p(g−1x |θ)}2 p(g−1x |θ)(g∗v)(dx)

=
∫

{d log p(x |θ)}2 p(x |θ)v(dx)

= h.

This proves the G-invariance of h.

A.2 Proof of Lemma 2

From Eq. (3) and Theorem 1, the asymptotic risk of πR/L is

r(πR/L) = −1

4
hi j (∂i logπR/L)(∂ j logπR/L).

TheG-invariance of the asymptotic risk follows from the facts that h isG-invariant and
πR/L is group homomorphic. Therefore, r(πR/L) is a constant function on � since G
acts transitively by assumption. If G is not unimodular, the asymptotic risk is negative
because ∂i logπR/L(θ) �= 0 at some θ ∈ �.
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A.3 Proof of Lemma 3

Consider K smooth positive functions π1, . . . , πK for K ≥ 2. The lemma is a special
case K = 2. Denote the generalized mean by

π̄ =
(

K−1
K∑

k=1

π
β
k

)1/β

.

We prove r(π̄) ≤ ∑K
k=1 λkr(πk), where

λk = π
β
k

∑K
l=1 π

β
l

, 1 ≤ k ≤ K .

Define

μi =
K∑

k=1

λk
∂i

√
πk√

πk
, 1 ≤ i ≤ d.

It is straightforward to see

∂i
√

π̄ = √
π̄μi

and

∂i

(√
π̄λk√
πk

)

=
√

π̄λk√
πk

(2β − 1)

(
∂i

√
πk√

πk
− μi

)
.

By using the formulas, we obtain

r(π̄) = 1√
π̄ |h|∂i

(√|h|hi j∂ j
√

π̄
)

= 1√
π̄ |h|∂i

(
√|h|hi j√π̄

∑

k

λk
∂ j

√
πk√

πk

)

=
∑

k

λk√
πk

1√|h|∂i
(√|h|hi j∂ j

√
πk

)
+

∑

k

hi j
1√
π̄

∂i

(√
π̄λk√
πk

)

∂ j
√

πk

=
∑

k

λkr(πk) +
∑

k

hi j (2β − 1)λk

(
∂i

√
πk√

πk
− μi

)
∂ j

√
πk√

πk

=
∑

k

λkr(πk) + (2β − 1)
∑

k

hi jλk

(
∂i

√
πk√

πk
− μi

) (
∂ j

√
πk√

πk
− μ j

)
.

The last term is non-positive since β < 1/2. This proves the desired inequality r(π̄) ≤∑
k λkr(πk). The equality holds if and only if (∂i

√
πk)/

√
πk = μi for all i and k, or

equivalently, πk/πl are constants for all k, l.
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