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Abstract
The Fisher metric on a manifold of probability distributions is usually treated as a
metric on the tangent bundle. In this paper, we focus on the metric on the cotangent
bundle induced from the Fisher metric with calling it the Fisher co-metric. We show
that the Fisher co-metric can be defined directly without going through the Fisher
metric by establishing a natural correspondence between cotangent vectors and random
variables. This definition clarifies a close relation between the Fisher co-metric and
the variance/covariance of random variables, whereby the Cramér-Rao inequality is
trivialized.We also discuss themonotonicity and the invariance of the Fisher co-metric
with respect toMarkovmaps, and present a theoremcharacterizing the co-metric by the
invariance, which can be regarded as a cotangent version of Čencov’s characterization
theorem for the Fisher metric. The obtained theorem can also be viewed as giving a
characterization of the variance/covariance.

Keywords Information geometry · Fisher metric · Cotangent space · Čencov’s
(Chentsov’s) theorem

1 Introduction

The Fisher metric on a statistical manifold (a manifold consisting of probability distri-
butions) is one of the most important notions in information geometry [1]. It is usually
treated as a Riemannian metric which is a metric on the tangent bundle. The subject
of the present paper is the metric on the cotangent bundle corresponding to the Fisher
metric, which we call the Fisher co-metric. The Fisher metric and the Fisher co-metric
are essentially a single geometric object so that one is induced from another. Never-
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theless, studying the Fisher co-metric has several implications as mentioned below,
which are what the present paper intends to show.

Firstly, as will be seen in Sect. 2, the Fisher co-metric is defined via the vari-
ance/covariance of random variables based on a natural correspondence between
cotangent vectors and random variables. This definition is very natural and does not
seem arbitrary. There is no room for questions such as why log p appears in the defi-
nition of the Fisher metric.

Secondly, the above relationship between cotangent vectors and random variables
directly links the variance/covariance of an unbiased estimator and the Fisher co-
metric, which trivializes the Cramér-Rao inequality. Recognizing this fact, the Fisher
metric appears to be a detour for the Cramér-Rao inequality, at least conceptually.

Thirdly, once we focus on the Fisher co-metric, we are motivated to reconsider a
known result for the Fisher metric as a source of similar problems for the Fisher co-
metic and the variance/covariance, which may lead to a new insight. As an example,
co-metric and variance/covariance versions of Čencov’s theorem on characterization
of the Fisher metric are investigated in this paper.

The paper is organized as follows. In Sect. 2, we introduce the Fisher co-metric on
the manifoldP(�), which is the totality of positive probability distributions on a finite
set �, via the variance/covariance of random variables on �. In Sect. 3, the Fisher co-
metric is shown to be equivalent to the Fisher metric by a natural correspondence. In
Sect. 4, the Fishermetric and co-metric on an arbitrary submanifold ofP are discussed,
where we see that the Cramér-Rao inequality is trivialized by considering the co-
metric. Section5 treats the e- and m-connections on P(�), where it is clarified that,
in application to estimation theory, the role of the m-connection as a connection on
the cotangent bundle and its relation to the Fisher co-metric are crucial. Sections2–5
can be considered to constitute a first half of the paper, which is aimed at showing the
naturalness and the usefulness of considering the Fisher co-metric.

The second half of the paper focuses on the monotonicity and the invariance of the
Fisher metric and co-metric with respect to Markov maps. In Sect. 6, we investigate
the monotonicity. We show there that the monotonicity of the Fisher metric, which is
well known as a characteristic property of the metric, is equivalently translated into the
monotonicity of the Fisher co-metric and that of the variance. In Sect. 7, after reviewing
the invariance of the Fisher metric and Čencov’s theorem, we consider their co-metric
versions. It is shown that, being different from the monotonicity, the invariance of the
metric and that of the co-metric are not logically equivalent. We present a theorem on
characterization of the Fisher co-metric in terms of the invariance, which corresponds
to Čencov’s theorem but does not follow from it. The obtained theorem can also
be expressed as a theorem on characterization of the variance/covariance. In Sect. 8,
we investigate a stronger version of the invariance, which can be regarded as the
joint condition that combines the invariance of the metric and that of the co-metric.
The formulation used for expressing this condition is applied to affine connections
in Sect. 9, whereby a kind of invariance condition for affine connection is obtained.
The condition is shown to be equivalent to a known version of invariance condition
which is seemingly weaker than the original condition used by Čencov to characterize
the α-connections, but actually characterizes the α-connection as well. Section10 is
devoted to concluding remarks.
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Remark 1.1 Throughout this paper, we denote the tangent space and the cotangent
space of a manifold M at a point p ∈ M by Tp(M) and T ∗

p (M), respectively. We also
denote the totality of smooth vector fields and that of smooth differential 1-forms on
M by X(M) and D(M), respectively. We generally use capital letters X , Y , . . . for
vector fields inX(M), which are maps assigning tangent vectors X p, Yp, . . . in Tp(M)

to each point p ∈ M . To save the symbols, we also denote general tangent vectors in
Tp(M) by X p, Yp, . . ., not onlywhen they are the values of vector fields. Similarly,We
use Greek letters α, β, . . . for 1-forms inD(M), which are maps assigning cotangent
vectors αp, βp, . . . in T ∗

p (M) to each point p ∈ M , and also denote general cotangent
vectors by αp, βp, . . ., not only when they are the values of 1-forms. The pairing of
X p ∈ Tp(M) and αp ∈ T ∗

p (M) is expressed as αp(X p), considering a cotangent
vector as a function on the tangent space. We keep the first capital letters A, B, . . . for
random variables (R-valued functions on sample spaces).

2 The Fisher co-metric

We introduce the Fisher co-metric in this section, while its equivalence to the Fisher
metric will be shown in the next section.

Let� be a finite set with cardinality |�| ≥ 2, and letP(�) be the totality of strictly
positive probability distributions on �:

P = P(�) :=
{

p
∣∣∣ p : � → (0, 1),

∑
ω∈�

p(ω) = 1
}
, (2.1)

which is regarded as a manifold with dimP(�) = |�|−1. Let the totality ofR-valued
functions on � be denoted by R�, and define

(
R

�
)

c := {A ∈ R
� | ∑

ω∈� A(ω) = c}
for a constant c ∈ R. Since P is an open subset of the affine space

(
R

�
)
1, its tangent

space can be identified with the linear space
(
R

�
)
0. Following the terminology of [1],

we denote this identification Tp(P) → (
R

�
)
0 by X p �→ X (m)

p , and call X (m)
p the

m-representation of X p.
For an arbitrary submanifold M of P (including the case when M = P) we define

T (m)
p (M) := {X (m)

p | X p ∈ Tp(M)}, which is a linear subspace of T (m)
p (P) = (

R
�
)
0.

When the elements of M are parametrized as pξ by a coordinate system ξ = (ξ i )

of M , the m-representation of (∂i )p ∈ Tp(M), where ∂i := ∂
∂ξ i , with p = pξ is

represented as

(∂i )
(m)
p = ∂i pξ , (2.2)

and {(∂i )
(m)
p }n

i=1 (n = dim M) constitute a basis of T (m)
p (M).

We denote the expectation of a random variable A ∈ R
� w.r.t. a distribution p ∈ P

by
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〈A〉p :=
∑
ω∈�

p(ω)A(ω), (2.3)

and define the function

〈A〉 : P → R, p �→ 〈A〉p. (2.4)

Since 〈A〉 is a smooth function on the manifold P , its differential (d〈A〉)p ∈ T ∗
p (P)

at each point p ∈ P is defined. We introduce the following map:

δp : R� → T ∗
p (P), A �→ δp(A) := (d〈A〉)p, (2.5)

for which we have

∀A ∈ R
�, ∀X p ∈ Tp(P), δp(A)(X p) = X p〈A〉 =

∑
ω∈�

X (m)
p (ω)A(ω). (2.6)

Proposition 2.1 For every p ∈ P , the linear map δp : R� → T ∗
p (P) is surjective

with Ker δp = R, where R is regarded as a subspace of R� by identifying a constant
c ∈ R with the constant function ω �→ c. Hence, δp induces a linear isomorphism
R

�/R → T ∗
p (P).

Proof Every cotangent vector αp ∈ T ∗
p (P) is a linear functional on Tp(P), which is

represented as αp : X p �→ ∑
ω X (m)

p (ω)A(ω) by some A ∈ R
�. This means that

αp = δp(A) due to (2.6). Hence, δp is surjective. For any A ∈ R
�, we have

A ∈ Ker δp ⇔ ∀X p ∈ Tp(P), δp(A)(X p) =
∑
ω

X (m)
p (ω)A(ω) = 0

⇔ ∀B ∈ (
R

�
)
0,

∑
ω

A(ω)B(ω) = 0

⇔ A ∈ R,

which proves Ker δp = R. ��
For each p ∈ P , denote the L2 inner product and the covariance of randomvariables

A, B ∈ R
� by

〈A, B〉p := 〈AB〉p and (2.7)

Covp(A, B) := 〈A − 〈A〉p, B − 〈B〉p〉p. (2.8)

Then Covp : (A, B) �→ Covp(A, B) is a degenerate nonnegative bilinear form on
R

� with kernel R, and defines an inner product on R�/R. Therefore, Proposition 2.1
implies that an inner product on T ∗

p (P), which we denote by gp, can be defined by

gp(δp(A), δp(B)) = Covp(A, B). (2.9)
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The Fisher metric as a metric on the cotangent bundle S655

Denoting the norm for gp by ‖ · ‖p, we have

‖δp(A)‖2p = Vp(A), (2.10)

where the RHS is the variance Vp(A) := 〈(A − 〈A〉p)
2〉p.

We have thus defined the map g which maps each point p ∈ P to the inner product
gp on T ∗

p (P). We generally call such a map (a metric on the cotangent bundle) a co-
metric. Although a co-metric is essentially equivalent to a usual (Riemannian) metric
(a metric on the tangent bundle) by the correspondence explained in the next section,
it is often useful to distinguish them conceptually. The co-metric defined by (2.9) is
called the Fisher co-metric, since it corresponds to the Fisher metric as will be shown
later.

Remark 2.2 Eq. (2.10) is found in Theorem 2.7 of the book [1], where the norm and the
inner product on the cotangent space were considered to be induced from the Fisher
metric.

3 The correspondence between ametric and a co-metric

By a standard argument of linear algebra, an inner product 〈·, ·〉 on an R-linear space
V establishes a natural linear isomorphism between V and its dual space V ∗, which
we denote by

〈·,·〉←→. This gives a one-to-one correspondence between a metric on a
manifold M and a co-metric on M as follows. Given a metric g on M , a tangent vector
X p ∈ Tp(M) and a cotangent vector αp ∈ T ∗

p (M) at a point p ∈ M correspond each
other by

X p
gp←→ αp ⇔ ∀Yp ∈ Tp(M), αp(Yp) = gp(X p, Yp). (3.1)

The correspondence is extended to the correspondence between a vector field X ∈
X(M) and a 1-form α ∈ D(M) by

X
g←→ α ⇔ ∀p ∈ M, X p

gp←→ αp. (3.2)

(Note: some literature refers to this correspondence as the musical isomorphism with
notation α = X 	 and X = α
, while we will use the symbol 
 for a different meaning
later.) This correspondence determines a co-metric on M , which is denoted by the
same symbol g, such that for every p ∈ M

X p
gp←→ αp and Yp

gp←→ βp ⇒ gp(αp, βp) = gp(X p, Yp). (3.3)

Conversely, given a co-metric g on M , the correspondence
gp←→ is defined by

X p
gp←→ αp ⇔ ∀βp ∈ T ∗

p (M), βp(X p) = gp(αp, βp), (3.4)
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and a metric on M is defined by the same relation as (3.3). It should be noted that
when a metric and a co-metric correspond in this way, the relations (3.1) and (3.4) are
equivalent, so that there arises no confusion even if we use the same symbol g for the

corresponding metric and co-metric in
gp←→ and

g←→.
Note that for an arbitrary coordinate system (ξ i ) of M , gi j := g( ∂

∂ξ i ,
∂

∂ξ j ) and

gi j := g(dξ i , dξ j ) form the inverse matrices of each other at every point of M . Note
also that the norms for (Tp(M), gp) and (T ∗

p (M), gp) are linked by

‖X p‖p = max
αp∈T ∗

p (M)\{0}
|αp(X p)|
‖αp‖p

(3.5)

and ‖αp‖p = max
X p∈Tp(M)\{0}

|αp(X p)|
‖X p‖p

, (3.6)

where themax’s in these equations are achieved by those X p and αp which correspond

to each other by
gp←→ up to a constant factor.

For a tangent vector X p ∈ Tp(P), define

L X p := X (m)
p /p ∈ {A ∈ R

� | 〈A〉p = 0}, (3.7)

which is the derivative of themapP → R
�, p �→ log p w.r.t. X p. (In [1], L X p is called

the e-representation of X p and is denoted by X (e)
p .) Note that L X p is characterized by

(cf. (2.6))

∀A ∈ R
�, δp(A)(X p) = X p〈A〉 = 〈L X p , A〉p. (3.8)

The following proposition shows that the metric induced from the Fisher co-metric

g by the correspondence
g←→ is the Fisher metric.

Proposition 3.1 For each point p ∈ P , we have:

1. ∀A ∈ R
�, ∀X p ∈ Tp(P), X p

gp←→ δp(A) ⇔ L X p = A − 〈A〉p.
2. ∀X p, Yp ∈ Tp(P), gp(X p, Yp) = 〈L X p , LYp 〉p.

Proof 1: According to (3.4), the condition X p
gp←→ δp(A) is equivalent to

∀B ∈ R
�, gp(δp(A), δp(B)) = δp(B)(X p). (3.9)

Here the LHS is equal to

〈A − 〈A〉p, B − 〈B〉p〉p = 〈A − 〈A〉p, B〉p,

while the RHS is equal to 〈L X p , B〉p by (3.8). Hence, (3.9) is equivalent to L X p =
A − 〈A〉p.

2: Obvious from item 1 and (3.3). ��
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4 The Fisher co-metric on a submanifold and the Cramér–Rao
inequality

Let M be an arbitrary submanifold of P . Then a metric on M is induced as the
restriction of the Fisher metric g, which we denote by gM : p �→ gM,p = gp|Tp(M)2 .

When a coordinate system ξ = (ξ i ) is given on M , corresponding to (2.2) it holds
that

L(∂i )p = ∂i log pξ at p = pξ . (4.1)

We have

gM,i j (p) := gM,p((∂i )p, (∂ j )p) = 〈∂i log pξ , ∂ j log pξ 〉p, (4.2)

which defines the Fisher information matrix G M (p) = [gM,i j (p)]. The metric gM

induces a co-metric on M , which is denoted by the same symbol gM . Letting

gi j
M (p) := gM,p((dξ i )p, (dξ j )p), (4.3)

we have G M (p)−1 = [gi j
M (p)].

Suppose that a cotangent vector αp ∈ T ∗
p (M) on M is the restriction of a cotangent

vector α̃p ∈ T ∗
p (P) on P; i.e., αp = α̃p|Tp(M). Then, it follows from (3.6) that

‖αp‖M,p= max
X p∈Tp(M)\{0}

|αp(X p)|
‖X p‖M,p

= max
X p∈Tp(M)\{0}

|α̃p(X p)|
‖X p‖p

≤ max
X p∈Tp(P)\{0}

|α̃p(X p)|
‖X p‖p

= ‖α̃p‖p. (4.4)

(Note that ‖X p‖p = ‖X p‖M,p since the metric on M is the restriction of the metric
on P .) Furthermore, for an arbitrary αp ∈ T ∗

p (M), there always exists α̃p ∈ T ∗
p (P)

satisfying αp = α̃p|Tp(M) and ‖αp‖M,p = ‖α̃p‖p. Indeed, letting X p ∈ Tp(M) be

defined by X p
gM,p←→ αp, such an α̃p is obtained by X p

gp←→ α̃p.
The above observations lead to the following proposition.

Proposition 4.1 1. For any αp ∈ T ∗
p (M), we have

‖αp‖M,p = min{‖α̃p‖p | α̃p ∈ T ∗
p (P) and αp = α̃p|Tp(M)}

= ‖(αp)

‖p, (4.5)

where (αp)

 := argminα̃p {‖α̃p‖p | · · · }.
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2. For any αp, βp ∈ T ∗
p (M), we have

gM,p(αp, βp) = gp((αp)

, (βp)


). (4.6)

The above proposition shows that the Fisher co-metric on M can be defined from
the Fisher co-metric on P directly by (4.5) and (4.6), not by way of the Fisher metric.

Corollary 4.2 (The Cramér-Rao inequality) Suppose that an n-tuple of random vari-
ables �A = (A1, . . . , An) ∈ (R�)n satisfies

∀i ∈ {1, . . . , n}, (dξ i )p = δp(Ai )|Tp(M) (4.7)

for a coordinate system ξ = (ξ i ) of an n-dimensional submanifold M of P and for a
point p ∈ M. Letting Vp( �A) = [vi j ] ∈ R

n×n be the variance-covariance matrix of �A
defined by

vi j := Covp(Ai , A j ) (4.8)

and letting G M (p) be the Fisher information matrix, we have

Vp( �A) ≥ G M (p)−1. (4.9)

Proof For an arbitrary column vector c = (ci ) ∈ R
n , let

α̃p :=
∑

i

ciδp(Ai ) ∈ T ∗
p (P),

αp :=
∑

i

ci (dξ i )p ∈ T ∗
p (M).

Since (4.7) implies that α̃p|Tp(M) = αp, it follows from Proposition 4.1 that ‖α̃p‖p ≥
‖αp‖M,p. Noting that ‖α̃p‖2p = tc Vp( �A) c and ‖αp‖2M,p = tc G M (p)−1c, where t

denotes the transpose, we obtain (4.9). ��

5 On the e, m-connections

An affine connection is usually treated as a connection on the tangent bundle, while it
corresponds to a connection on the cotangent bundle by the relation

∀X , Y ∈ X(M), ∀α ∈ D(M), Xα(Y ) = α(∇X Y ) + (∇Xα)(Y ). (5.1)

This correspondence is one-to-one, so that we can define an affine connection by speci-
fying a connection on the cotangent bundle. Therefore, theα-connection in information
geometry can also be introduced in this way. Although affine connections are out of
the main subject of this paper, we will briefly discuss the significance of defining the
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The Fisher metric as a metric on the cotangent bundle S659

m-connection (i.e. (α = −1)-connection) in this way, since it is closely related to the
role of the Fisher co-metric in the Cramér-Rao inequality.

We start by introducing the m-connection ∇(m) on P = P(�) as a flat connection
on the cotangent bundle for which the 1-form d〈A〉 is parallel for any A ∈ R

�; i.e.,

∀X ∈ X(P),∀A ∈ R
�, ∇(m)

X d〈A〉 = 0. (5.2)

Since dim{d〈A〉 | A ∈ R
�} = |�| − 1 = dimP , (5.2) implies that every parallel

1-from is represented as d〈A〉 by some A ∈ R
�. Then the correspondence (5.1)

determines a connection on the tangent bundle, which is denoted by the same symbol
∇(m). Letting α = d〈A〉 in (5.1) and applying (5.2), we have

∀X , Y ∈ X(P),∀A ∈ R
�, XY 〈A〉 = (∇(m)

X Y )〈A〉. (5.3)

This implies that, for any Y ∈ X(P),

Y is m-parallel

⇔ ∀A ∈ R
�, ∀X ∈ X(P), XY 〈A〉 = 0

⇔ ∀A ∈ R
�, Yp〈A〉 =

∑
ω

Y (m)
p (ω)A(ω) does not depend on p ∈ P

⇔ Y (m)
p does not depend on p ∈ P, (5.4)

where “m-parallel” means “parallel w.r.t. ∇(m)”. Since this property characterizes the
m-connection on P (e.g. Equation (2.39) of [1]), our definition of the m-connection
is equivalent to the usual definition in information geometry.

Next, we define the e-connection ∇(e) as the dual connection of ∇(m) w.r.t. the
Fisher metric g ([1], [2]), which means that

∀X , Y , Z ∈ X(P), Zg(X , Y ) = g(∇(e)
Z X , Y ) + g(X ,∇(m)

Z Y ). (5.5)

Using (5.1), we can rewrite (5.5) into

∀X , Y , Z ∈X(P), ∀α ∈ D(P),

X
g←→ α ⇒ (∇(m)

Z α)(Y ) = g(∇(e)
Z X , Y ). (5.6)

This implies that, for any X ∈ X(P) and α ∈ D(P),

X
g←→ α ⇒

[
X is e-parallel ⇔ α is m-parallel

]
. (5.7)

Now, let us recall the situation of Corollary 4.2. An estimator �A = (A1, . . . , An)

is said to be efficient for the statistical model (M, ξ) when it is unbiased (i.e. ∀i ,
ξ i = 〈Ai 〉|M ) and achieves the equality in the Cramér-Rao inequality (4.9) for every
p ∈ M . Noting that the achievability at each p ∈ M is represented by the condition
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∀i , δp(Ai )= (d〈Ai 〉)p = ((dξ i )p)


and recalling (5.2), we can see that the condition

for (M, ξ) to have an efficient estimator is expressed as

∀i, ∃α̃i ∈ D(P), α̃i is m-parallel and ∀p ∈ M, α̃i
p = ((dξ i )p)



. (5.8)

On the other hand, it is well known that the existence of an efficient estimator is
equivalent to the condition that M is an exponential family and that ξ is an expectation
coordinate system, which can be rephrased as (see Theorem 3.12 of [1])

M is an e-autoparallel submanifold of P,

and ξ is an m-affine coordinate system. (5.9)

Therefore, the two conditions (5.8) and (5.9) are necessarily equivalent. These
are both purely geometrical conditions for a submanifold of the dually flat space
(P, g,∇(e),∇(m)), and we can prove their equivalence within this geometrical frame-
work, forgetting its statistical background. Indeed, the equivalence can be proved for
a more general situation where M is a submanifold of a manifold S equipped with
a Riemannian metric g and a pair of dual affine connections ∇,∇∗ on the assump-
tion that ∇∗ is flat. Note that this assumption is weaker than the dually-flatness of
(S, g,∇,∇∗) in that ∇ is allowed to have non-vanishing torsion, which is essential in
application to quantum estimation theory. See section 7 of [4] for details.

6 Monotonicity

The monotonicity with respect to a Markov map is known to be an important and
characteristic property of the Fishermetric. In this sectionwe discuss themonotonicity
of the Fisher co-metric and its relation to the variance of random variables.

Let �1 and �2 be arbitrary finite sets, and let Pi := P(�i ) for i = 1, 2. A map
� : P1 → P2 is called a Markov map when it is affine in the sense that ∀p, q ∈ P1,
0 ≤ ∀a ≤ 1, �(ap + (1 − a)q) = a �(p) + (1 − a)�(q). Every Markov map � is
represented as

∀p ∈ P1, �(p) =
∑

x∈�1

W (· | x)p(x), (6.1)

where W is a surjective channel from �1 to �2; i.e.,

∀(x, y) ∈ �1 × �2, W (y | x) ≥ 0, ∀x ∈ �1,
∑
y∈�2

W (y | x) = 1, (6.2)

and ∀y ∈ �2, ∃x ∈ �1, W (y | x) > 0. (6.3)

When � is represented as (6.1), we write � = �W .
More generally, for a submanifold M of P1 and a submanifold N of P2, a map

ϕ : M → N is called a Markov map when there exists a Markov map � : P1 → P2
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such that ϕ = �|M . Since a Markov map ϕ is smooth, it induces at each p ∈ M the
differential

ϕ∗ = ϕ∗,p = (dϕ)p : Tp(M) → Tϕ(p)(N ) (6.4)

and its dual

ϕ∗ = ϕ∗
p = t(dϕ)p : T ∗

ϕ(p)(N ) → T ∗
p (M), (6.5)

where t denotes the transpose of a linear map. See Remark 6.2 below for the notation
ϕ∗ = ϕ∗

p.
As is well known, the Fisher metric satisfies the following monotonicity property

for its norm:

∀p ∈ M,∀X p ∈ Tp(M), ‖ϕ∗(X p)‖ϕ(p) ≤ ‖X p‖p. (6.6)

The cotangent version of the monotonicity is given below.

Proposition 6.1 We have

∀p ∈ M,∀αϕ(p) ∈ T ∗
ϕ(p)(N ), ‖ϕ∗(αϕ(p))‖M,p ≤ ‖αϕ(p)‖N ,ϕ(p), (6.7)

where ‖ · ‖M,p and ‖ · ‖N ,ϕ(p) denote the norms w.r.t. the Fisher co-metrics gM and
gN , respectively.

Proof Since the inequality is trivial when ‖ϕ∗(αϕ(p))‖M,p = 0, we assume
‖ϕ∗(αϕ(p))‖M,p > 0. Then, invoking (3.6), we have

‖ϕ∗(αϕ(p))‖M,p = max
X p∈Tp(M)\{0}

|ϕ∗(αϕ(p))(X p)|
‖X p‖M,p

= max
X p∈Tp(M)\{0}

|αϕ(p)(ϕ∗(X p))|
‖X p‖p

= max
X p∈Tp(M):ϕ∗(X p) �=0

|αϕ(p)(ϕ∗(X p))|
‖X p‖p

≤ sup
X p∈Tp(M):ϕ∗(X p) �=0

|αϕ(p)(ϕ∗(X p))|
‖ϕ∗(X p)‖ϕ(p)

≤ max
Yϕ(p)∈Tϕ(p)(N )\{0}

|αϕ(p)(Yϕ(p))|
‖Yϕ(p)‖ϕ(p)

= ‖αϕ(p)‖N ,ϕ(p),

where the third equality follows since X p achieving maxX p∈Tp(M)\{0} should satisfy
ϕ∗(X p) �= 0 due to the assumption ‖ϕ∗(αϕ(p))‖M,p > 0, and the first≤ follows from
(6.6). ��
Remark 6.2 We have written ϕ∗(αϕ(p)) for ϕ∗

p(αϕ(p)) above (and will use similar
notations throughout the paper), considering that omitting p from ϕ∗

p is harmless in

123



S662 H. Nagaoka

the context and is better for the readability of expressions. Note that the notation
ϕ∗(αϕ(p)), if it appears alone, is mathematically ambiguous unless ϕ−1(ϕ(p)) is the
singleton {p} in that ϕ∗

p′(αϕ(p)) ∈ T ∗
p′(M) depends on a choice of p′ ∈ ϕ−1(ϕ(p)).

On the other hand, the notation ϕ∗(X p) has no such ambiguity, since we know that
the argument X p belongs to Tp(M) and hence ϕ∗ must be ϕ∗,p.

Let us consider the case when M = P1 and N = P2, and let � = �W : P1 → P2
be an arbitrary Markov map represented by a surjective channel W . Recalling (6.1)
and the definition of m-representation of tangent vectors, we have

Y�(p) = �∗(X p) ⇔ Y (m)
�(p) =

∑
x∈�1

W (· | x)X (m)
p (x) (6.8)

for X p ∈ Tp(P1) and Y�(p) ∈ T�(p)(P2). We claim that

∀A ∈ R
�2 , �∗(δ�(p)(A)) = δp(EW (A | ·)), (6.9)

where �∗ = �∗
p, and EW (A | ·) ∈ R

�1 denotes the conditional expectation of A
defined by

∀x ∈ �1, EW (A | x) =
∑
y∈�2

W (y | x)A(y). (6.10)

Eq. (6.9) is verified as follows; for every βp = δp(B) ∈ T ∗
p (P1), where B ∈ R

�2 , we
have

βp = �∗(δ�(p)(A))

⇔ ∀X p ∈ Tp(P1), βp(X p) = δ�(p)(A)(�∗(X p))

⇔ ∀X p ∈ Tp(P1),
∑

x∈�1

X (m)
p (x)B(x) =

∑
(x,y)∈�1×�2

W (y | x)X (m)
p (x)A(y)

⇔ B − EW (A | ·) ∈ R

⇔ βp = δp(EW (A | ·)), (6.11)

where the second⇔ follows from (2.6) and (6.8), the third⇔ follows from T (m)
p (P) =(

R
�
)
0, and R is identified with the set of constant functions on �1.

Invoking (2.10) and (6.9), we see that the monotonicity (6.7) is equivalent to the
following well-known inequality for the variance:

∀A ∈ R
�2 , Vp(EW (A | ·)) ≤ V�(p)(A), (6.12)

which we refer to as the monotonicity of the variance.

123



The Fisher metric as a metric on the cotangent bundle S663

In the above proof of Proposition 6.1, we derived (6.7) from (6.6). Conversely, we
can derive (6.6) from (6.7) by the use of (3.5) as follows; for any X p ∈ Tp(M),

‖ϕ∗(X p)‖ϕ(p) = max
αϕ(p)∈T ∗

ϕ(p)
(N )\{0}

|αϕ(p)(ϕ∗(X p))|
‖αϕ(p)‖N ,ϕ(p)

= max
αϕ(p)∈T ∗

ϕ(p)
(N )\{0}

|ϕ∗(αϕ(p))(X p)|
‖αϕ(p)‖N ,ϕ(p)

= max
αϕ(p)∈T ∗

ϕ(p)
(N ):ϕ∗(αϕ(p)) �=0

|ϕ∗(αϕ(p))(X p)|
‖αϕ(p)‖N ,ϕ(p)

≤ sup
αϕ(p)∈T ∗

ϕ(p)
(N ):ϕ∗(αϕ(p)) �=0

|ϕ∗(αϕ(p))(X p)|
‖ϕ∗(αϕ(p))‖M,p

≤ max
βp∈T ∗

p (M)\{0}
|βp(X p)|
‖βp‖M,p

= ‖X p‖p, (6.13)

where we have assumed ‖ϕ∗(X p)‖ϕ(p) > 0 with no loss of generality, which yields
the third equality (cf. the proof of Proposition 6.1), and the first ≤ follows from
(6.7). Thus, (6.6) and (6.7) are equivalent. Note that this equivalence is derived solely
from a general argument on metrics and co-metrics, and does not rely on the special
characteristics of the Fisher metric/co-metric. In this sense, we say that (6.6) and (6.7)
are logically equivalent.

Recalling that the Fisher metric is characterized as the unique monotone metric up
to a constant factor, we obtain the following propositions from the logical equivalence
mentioned above.

Proposition 6.3 The monotonicity (6.7) characterizes the Fisher co-metric up to a
constant factor.

Proposition 6.4 The variance is characterized up to a constant factor as the positive
quadratic form for random variables satisfying the monotonicity (6.12).

Remark 6.5 We have described the above propositions in a rough form for the sake of
readability. For the exact statement, we need a formulation similar to Theorems 7.1,
7.2 and 7.3 in the next section. See also Remark 8.4.

Remark 6.6 Since the monotonicity of the Fisher metric (6.6), that of the Fisher co-
metric (6.7), and that of the variance (6.12) are all logically equivalent, we can derive
(6.6) from the more popular (6.12).

7 Invariance

Čencov showed in [3] that the Fisher metric is characterized up to a constant factor as
a covariant tensor field of degree 2 satisfying the invariance for Markov embeddings.
Note that the invariance is weaker than the monotonicity and that the tensor field is
not assumed to be positive nor symmetric. In this section we review Čencov’s theorem
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and then investigate its co-metric version, which will be shown to be equivalent to a
theorem characterizing the variance/covariance of random variables.

We begin by reviewing the invariance property of the Fisher metric. Suppose that
M and N are arbitrary submanifolds of P1 = P(�1) and P2 = P(�2), respectively,
and that a pair of Markov maps

ϕ : M → N and ψ : N → M (7.1)

satisfis

ψ ◦ ϕ = idM , (7.2)

where ◦ denotes the composition ofmaps. Note that ϕ is injective whileψ is surjective.
Given a pair of points (p, q) ∈ M × N satisfying

q = ϕ(p) and p = ψ(q), (7.3)

we have

ψ∗,q ◦ ϕ∗,p = idTp(M). (7.4)

It then follows from the monotonicity (6.6) that

‖X p‖M,p ≥ ‖ϕ∗(X p)‖N ,q ≥ ‖ψ∗(ϕ∗(X p))‖M,p = ‖X p‖M,p, (7.5)

so that we have the invariance of the Fisher metric

∀X p ∈ Tp(M), ‖X p‖M,p = ‖ϕ∗(X p)‖N ,q , (7.6)

which is equivalent to

∀X p,∀Yp ∈ Tp(M), gM,p(X p, Yp) = gN ,q(ϕ∗(X p), ϕ∗(Yp)). (7.7)

This means that ϕ∗,p : Tp(M) → Tq(N ) is isometry, which is represented as

(ϕ∗,p)
† ◦ ϕ∗,p = idTp(M), (7.8)

where (ϕ∗,p)
† : Tq(N ) → Tp(M) denotes the adjoint (Hermitian conjugate) of ϕ∗,p

w.r.t. the inner products gM,p and gN ,q .
A Markov map � : P1 → P2 is called an Markov embedding when there exists a

Markov map � : P2 → P1 such that

� ◦ � = idP1 . (7.9)
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Note that |�1| ≤ |�2| necessarily holds in this case. As a special case of the invariance
(7.7), we have

∀p ∈ P1, ∀X p,∀Yp ∈ Tp(P1), gp(X p, Yp) = g�(p)(�∗(X p),�∗(Yp)).(7.10)

According to Čencov, this property characterizes the Fisher metric up to a constant
factor. The exact statement is presented below.

Theorem 7.1 (Čencov [3]) For n = 2, 3, . . ., let �n := {1, 2, . . . , n} and Pn :=
P(�n), and let gn be the Fisher metric on Pn. Suppose that we are given a sequence
{hn}∞n=2, where hn is a covariant tensor field of degree 2 on Pn which continuously
maps each point p ∈ Pn to a bilinear form hn,p : Tp(Pn)2 → R. Then the following
two conditions are equivalent.

(i) ∃c ∈ R, ∀n, hn = cgn.
(ii) For any m ≤ n and any Markov embedding � : Pm → Pn, it holds that

∀p ∈ Pm, ∀X p,∀Yp ∈ Tp(Pm),

hm,p(X p, Yp) = hn,�(p)(�∗(X p),�∗(Yp)). (7.11)

We now proceed to the invariance property of co-metrics. Let us consider the same
situation as (7.1)-(7.3), which implies that

ϕ∗
p ◦ ψ∗

q = idT ∗
p (M). (7.12)

Then it follows from the monotonicity (6.7) that, for any αp ∈ T ∗
p (M),

‖αp‖M,p ≥ ‖ψ∗(αp)‖N ,q ≥ ‖ϕ∗(ψ∗(αp))‖M,p = ‖αp‖M,p, (7.13)

so that we have the invariance of the Fisher co-metric

∀αp ∈ T ∗
p (M), ‖αp‖M,p = ‖ψ∗(αp)‖N ,q , (7.14)

which is equivalent to

∀αp, βp ∈ T ∗
p (M), gM,p(αp, βp) = gN ,q(ψ∗(αp), ψ

∗(βp)) (7.15)

This means that ψ∗
q : T ∗

p (M) → T ∗
q (N ) is isometry, which is represented as

(ψ∗
q )† ◦ ψ∗

q = idT ∗
p (M), (7.16)

where (ψ∗
q )† : T ∗

q (N ) → T ∗
p (M) denotes the adjoint (Hermitian conjugate) of ψ∗

q

w.r.t. the inner products gM,p and gN ,q on the cotangent spaces. Due toψ∗
q = t(ψ∗,q),

(7.16) can be rewritten as

ψ∗,q ◦ (ψ∗,q)† = idTp(M). (7.17)
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We observed in Sect. 6 that the monotonicity of metrics (6.6) and that of co-metrics
(6.7) are logically equivalent. On the other hand, such an equivalence does not hold
for the invariance properties (7.6) and (7.14). Indeed, a linear-algebraic consideration
shows that the implications (7.4) ∧ (7.8) ⇒ (7.17) and (7.4) ∧ (7.17) ⇒ (7.8) do not
hold unless ϕ∗,p is a linear isomorphism (cf. Lemma 8.2). This means that we cannot
expect Čencov’s theorem to yield a corollary which states that the Fisher co-metric
is characterized by the invariance (7.14). Nevertheless, the statement itself is true as
explained below.

Let us return to the situation of (7.9).We call aMarkovmap� : P2 → P1 aMarkov
co-embedding when there exists a Markov embedding � : P1 → P2 satisfying (7.9).
As an example of (7.14), (7.9) implies the invariance

∀p ∈ P1,∀αp ∈ T ∗
p (P1), ‖αp‖p = ‖�∗(αp)‖�(p), (7.18)

which can be rewritten as

∀q ∈ �(P1),∀α�(q) ∈ T ∗
�(q)(P1), ‖α�(q)‖�(q) = ‖�∗(α�(q))‖q . (7.19)

Actually, the range ∀q ∈ �(P1) in the above equation can be extended to ∀q ∈ P2
for the reason described below.

It is known (e.g. Lemma 9.5 of [3]) that every pair (�,�) of Markov embedding
and co-embedding satisfying (7.9) is represented in the following form:

∀q ∈ P2, �(q) = q F with q F (x) :=
∑

y∈F−1(x)

q(y), (7.20)

and

∀p ∈ P1, �(p) =
∑

x∈�1

p(x) rx , (7.21)

where F is a surjection �2 → �1 which yields the partition �2 = ⊔
x∈�1

F−1(x),
and {rx }x∈�1 is a family of probability distributions on �2 such that the support of rx

is F−1(x) for every x ∈ �1. We note that a Markov co-embedding � is determined
by F alone, while a Markov embedding � is determined by F and {rx }x∈�1 together.
Consequently, � is uniquely determined from �, while � for a given � has the
degree of freedom corresponding to {rx }x∈�1 . According to this fact, when a Markov
co-embedding� and a distribution q ∈ P2 are arbitrarily given, we can always choose
a Markov embedding � satisfying (7.9) and q ∈ �(P1); indeed, defining rx by

rx (y) :=
{

q(y)/q F (x) if F(y) = x
0 otherwise,

(7.22)
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the resulting � satisfies q = �(q F ) ∈ �(P1). This is the reason why ∀q ∈ �(P1) in
(7.19) can be replaced with ∀q ∈ P2. We thus have

∀q ∈ P2,∀α�(q) ∈ T ∗
�(q)(P1), ‖α�(q)‖�(q) = ‖�∗(α�(q))‖q , (7.23)

or equivalently,

∀q ∈ P2,∀α�(q), ∀β�(q) ∈ T ∗
�(q)(P1),

g�(q)(α�(q), β�(q)) = gq(�∗(α�(q)), �
∗(β�(q))) (7.24)

for every Markov co-embedding �.
The invariance (7.23) characterizes the Fisher co-metric up to a constant factor.

Namely, we have the following theorem.

Theorem 7.2 For n = 2, 3, . . ., let �n := {1, 2, . . . , n} and Pn := P(�n), and let
gn be the Fisher co-metric on Pn. Suppose that we are given a sequence {hn}∞n=2,
where hn is a contravariant tensor field of degree 2 on Pn which continuously maps
each point p ∈ Pn to a bilinear form hn,p : T ∗

p (Pn)2 → R. Then the following two
conditions are equivalent.

(i) ∃c ∈ R, ∀n, hn = cgn.
(ii) For any m ≤ n and any Markov co-embedding � : Pn → Pm, it holds that

∀q ∈ Pn, ∀α�(q),∀β�(q) ∈ T ∗
�(q)(Pm),

hm,�(q)(α�(q), β�(q)) = hn,q(�∗(α�(q)), �
∗(β�(q))).

(7.25)

The proof will be given by rewriting the statement in terms of variance/covariance
for random variables. Suppose that a Markov co-embedding � : P1 → P2 is repre-
sented as (7.20) by a surjection F : �2 → �1. Then � is represented as � = �W by
the channel W from �2 to �1 defined by

W (x | y) =
{
1 if x = F(y),

0 otherwise.
(7.26)

For an arbitrary A ∈ R
�1 , its conditional expectation w.r.t. W is represented as

EW (A | y) =
∑

x∈�1

W (x | y)A(x) = A(F(y)), (7.27)

so that it follows from (6.9) that

�∗(δq F (A)) = δq(A ◦ F), (7.28)
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wherewe have invoked�(q) = q F from (7.20). Hence, (7.23) and (7.24) are rewritten
as

Vq F (A) = Vq(A ◦ F) (7.29)

and

Covq F (A, B) = Covq(A ◦ F, B ◦ F). (7.30)

These identities themselves are obvious, but what is important is that they character-
ize the variance/covariance up to a constant factor. Namely, we have the following
theorem.

Theorem 7.3 In the same situation as Theorem 7.2, suppose that we are given a
sequence {γn}∞n=2, where γn is a map which continuously maps each point p ∈ Pn to
a bilinear form γn,p on R

�n . Then the following conditions (i) and (ii) are equivalent.

(i) ∃c ∈ R, ∀n,∀p ∈ Pn, γn,p = cCovp.
(ii) : (ii-1) ∧ (ii-2)

(ii-1) ∀n,∀p ∈ Pn,∀A ∈ R
�n , γn,p(A, 1) = 0.

(ii-2) For any m ≤ n and any surjection F : �n → �m, it holds that

∀p ∈ Pn,∀A, B ∈ R
�m , γm,pF (A, B) = γn,p(A ◦ F, B ◦ F). (7.31)

Note that, if we assume that {γn}n are all symmetric tensors, then (7.31) can be
replaced with

∀p ∈ Pn,∀A ∈ R
�m , γm,pF (A, A) = γn,p(A ◦ F, A ◦ F), (7.32)

which corresponds to (7.29).
See A1 in Appendix for the proof, where we use an argument similar to Čencov’s

proof of Theorem 7.1. It is obvious that Theorem 7.2 immediately follows from this
theorem.

Remark 7.4 If we delete (ii-1) from (ii) in Theorem 7.3, then we have (i)′ ⇔ (ii-2) by
replacing (i) with

(i)′ ∃c1, ∃c2 ∈ R, ∀n,∀p ∈ Pn,

∀A, B ∈ R
�n , γn,p(A, B) = c1 〈A, B〉p + c2 〈A〉p〈B〉p.

We give a proof for (i)′ ⇔ (ii-2) in A1, from which Theorem 7.3 is straightforwad.

8 Strong invariance

In the preceding two sections, we have observed the following facts.

• The monotonicity of metrics and that of co-metrics are logically equivalent.
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• Themonotonicity logically implies the invariance ofmetrics and that of co-metrics.
• The invariance of metrics and that of co-metrics are not logically equivalent.

In this section we introduce a new notion of invariance called the strong invariance,
and show that:

• The strong invariance of metrics and that of co-metrics are logically equivalent.
• The monotonicity of metrics/co-metrics logically implies the strong invariance of
metrics/co-metrics.

• The strong invariance of metrics/co-metrics logically implies the invariance of
metrics and that of co-metrics.

Recall the situation of (7.1), (7.2) and (7.3), where we are given submanifolds
M ⊂ P1 and N ⊂ P2, Markov mappings ϕ : M → N and ψ : N → M satisfying
ψ ◦ϕ = idM , and points p ∈ M and q ∈ N satisfying q = ϕ(p) and p = ψ(q). Then
we have the following proposition.

Proposition 8.1 The Fisher metrics gM and gN on M and N satisfy

∀X p ∈ Tp(M),∀Yq ∈ Tq(N ), gM,p(X p, ψ∗(Yq)) = gN ,q(ϕ∗(X p), Yq), (8.1)

or equivalently,

ψ∗,q = (ϕ∗,p)
†. (8.2)

In addition, (ψ∗,q)† ◦ψ∗,q = ϕ∗,p ◦ψ∗,q is the orthogonal projector from Tq(N ) onto
ϕ∗,p(Tp(M)) = Tq(ϕ(M)).

The property (8.1) is called the strong invariance of the Fisher metric. The propo-
sition will be proved by using the following lemma.

Lemma 8.2 Let U and V be finite-dimensional metric linear spaces, and let A : U →
V and B : V → U be linear maps satisfying B A = I . Then the following two
conditions are equivalent.

(i) A†A = B B† = I .
(ii) B = A†.

When these conditions hold, B†B = AB is the orthogonal projector from V onto the
image Im A of A.

Proof It is obvious that (ii) ⇒ (i) under the assumption B A = I . Conversely, if we
assume (i) with B A = I , then we have

(B − A†)(B − A†)† = B B† − B A − A†B† + A†A

= I − I − I + I = 0,

from which (ii) follows.
Assume (i) and (ii). Then (B†B)2 = B†B due to B B† = I , which implies that

B†B is the orthogonal projector onto Im B† = Im A. ��
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Proof of Prop 8.1.
Letting U := Tp(M), V := Tq(N ), A := ϕ∗,p and B := ψ∗,q in the previous

lemma, we see from (7.4), (7.8) and (7.17) that the assumption B A = I and the
condition (i) are satisfied, so that we have (ii), which means (8.2). ��

As can be seen from Lemma 8.2, the strong invariance (8.1) is equivalent to the
condition that both the invariance for the metric (7.6)–(7.8) and the invariance for the
co-metric (7.14)–(7.16) hold. Taking the transpose of both sides of (8.2), the strong
invariance is also expressed

ψ∗
q = (ϕ∗

p)
†, (8.3)

which means that the Fisher co-metric satisfies

∀αp ∈ T ∗
p (M),∀βq ∈ T ∗

q (N ), gM,p(αp, ϕ
∗(βq)) = gN ,q(ψ∗(αp), βq). (8.4)

Since the strong invariance (8.4) logically implies the invariance (7.7) for the Fisher
metric via (8.1), we see that the following proposition, which is stated in a rough form
similar to Proposition 6.3, is obtained as a corollary of Čencov’s theorem (Theo-
rem 7.1).

Proposition 8.3 The strong invariance (8.4) characterizes the Fisher co-metric up to
a constant factor.

An exact formulation of this proposition will be given in A2 of Appendix with a
proof based on Čencov’s theorem.

Remark 8.4 The above proposition is stronger than Proposition 6.3 and weaker than
Theorem 7.2. To formulate Proposition 6.3 and Proposition 8.3 in exact forms similar
to Theorem 7.2, it matters what assumptions should be imposed on bilinear forms
{hn,p} on the cotangent spaces prior to the monotonicity or the strong invariance.
Here we should keep in mind that the significance of these propositions, which are
weaker than Theorem 7.2, lies in the fact that they follow from Čencov’s theorem
while Theorem 7.2 does not. For Proposition 6.3, we need to assume that {hn,p} are
inner products (positive symmetric forms) to ensure that the monotonicity of them is
translated into the monotonicity of the corresponding inner products on the tangent
spaces. For Proposition 8.3, on the other hand, we only need to assume {hn,p} to be
non-degenerate (nonsingular) and symmetric. See A2 for details.

Let us consider the strong invariance (8.4) for the case when (φ,ψ) is a Markov
embedding/co-embedding pair (�,�) and rewrite it into an identity for the covariance
of random variables. Let �1 and �2 be arbitrary finite sets satisfying |�1| ≤ |�2|
and let Pi := P(�i ), i = 1, 2. Given a surjection F : �2 → �1 and a distribution
q ∈ P2, let (�,�) be defined by (7.20) and (7.21) with (7.22). For arbitrary A ∈ R

�1

and B ∈ R
�2 , let αq F := δq F (A) ∈ T ∗

q F (P1) and βq := δq(B) ∈ T ∗
q (P2), for which

the strong invariance (8.4) is represented as

gq F (αq F ,�∗(βq)) = gq(�∗(αq F ), βq). (8.5)
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Recalling (7.28), we have

�∗(αq F ) = δq(A ◦ F). (8.6)

On the other hand, � is represented as � = �V by the channel V defined by

V (y | x) =
{

rx (y) = q(y)

q F (x)
if x = F(y)

0 otherwise,
(8.7)

so that (6.9) yields

�∗(βq) = δq F (EV (B | ·)). (8.8)

Hence, the strong invariance (8.5) is rewritten as

Covq F (A, EV (B | ·)) = Covq(A ◦ F, B). (8.9)

This identity can be verified directly as follows. Letting a := 〈A〉q F = 〈A ◦ F〉q and
b := 〈B〉q = 〈EV (B | ·)〉q F , we have

RHS =
∑

y

q(y)(A(F(y)) − a)(B(y) − b)

=
∑

x

∑

y∈F−1(x)

q(y)(A(F(y)) − a)(B(y) − b)

=
∑

x

(A(x) − a)
∑

y∈F−1(x)

q(y)(B(y) − b)

=
∑

x

q F (x)(A(x) − a)(EV (B | x) − b)

= LHS, (8.10)

where the fourth equality follows from

EV (B | x) =
∑

y

V (y | x)B(y) = 1

q F (x)

∑

y∈F−1(x)

q(y)B(y). (8.11)

Note that (7.30) is obtained from (8.9) by substituting B ◦ F for B.

9 Weak invariance for affine connections

In addition to characterizing the Fishermetric by the invariancewith respect toMarkov
embeddings, Čencov also gave a characterization of the α-connections by the invari-
ance condition. In this section we show that a similar notion to the strong invariance
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of metrics, which is described in terms of Markov embedding/co-embedding pairs,
can be considered for affine connections.

Let �1,�2 be arbitrary finite sets satisfying 2 ≤ |�1| ≤ |�2|, and let � : P1 →
P2 be a Markov embedding, where Pi := P(�i ), i = 1, 2. Suppose that affine
connections ∇ and ∇′ are given on P1 and P2, respectively. When these connections
are the α-connection on P1 and that on P2 for some common α ∈ R, they satisfy

∀X , Y ∈ X(P1), �∗(∇X Y ) = ∇′
�∗(X)�∗(Y ). (9.1)

Some remarks on the meaning of the above equation are in order. First, we define
�∗(X) for an arbitrary vector field X on S1 as a vector field on K := �(P1) that maps
each point q = �(p) ∈ K , where p ∈ P1, to

(�∗(X))q := �∗,p(X p) ∈ Tq(K ). (9.2)

Since K is a submanifold of S2 on which the connection ∇′ is given, ∇′
�∗(X)�∗(Y ) in

(9.1) is defined as a map which maps each point q ∈ K to a tangent vector in Tq(P2),
although∇′

�∗(X)�∗(Y ) does not belong toX(K ) in general. The condition (9.1) means
that K is autoparallel in P2 with respect to ∇′ and that the restricted connection of
∇′ induced on the autoparallel K is obtained from ∇ by the diffeomorphism � :
P1 → K . Čencov [3] showed that the invariance condition characterizes the family
{α-connection}α∈R by a formulation similar to Theorem 7.1.

Remark 9.1 As is mentioned above, the fact that {α-connection}α∈R satisfy the invari-
ance (9.1) implies that K = �(P1) is autoparallel in P2 w.r.t. the α-connection for
every α ∈ R. A kind of converse result is found in [5], which states that if a subman-
ifold K of P2 = P(�2) is autoparallel w.r.t. the α-connection for every α ∈ R (or,
for some two different values of α), then K is represented as �(S1) by some Markov
embedding � from some S1 = S(�1) into S2.

Let g and g′ be the Fisher metrics on P1 and P2, respectively. Noting that �∗ is an
isometry with respect to these metrics due to the invariance of the Fisher metric, (9.1)
implies that

∀X , Y , Z ∈ X(S1), g(∇X Y , Z) = g′(∇′
�∗(X)�∗(Y ), �∗(Z)) ◦ �, (9.3)

where the RHS denotes the function on P1 such that

p �→ g′
�(p)

((∇′
�∗(X)�∗(Y )

)
�(p)

, �∗,p(Z p)
)
. (9.4)

Since (9.3) is apparently weaker than (9.1), we call this property the weak invariance
of the connections ∇,∇′. In an actual fact, however, as is mentioned in [6] and is
proved in [7], the weak invariance (9.3) characterizes the family {α-connection}α∈R
as well as the stronger condition (9.1).
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Now, recalling the strong invariance (8.1) of the Fisher metric, we see that the weak
invariance (9.3) is equivalent to

∀X , Y ∈ X(S1), ∇X Y = �∗
(∇′

�∗(X)�∗(Y )
)
, (9.5)

where the RHS denotes the map

P1 � p �→ �∗,�(p)

((∇′
�∗(X)�∗(Y )

)
�(p)

)
. (9.6)

The fact that the weak invariance is a condition on connections is more clearly
expressed in (9.5) than (9.3) in that (9.5) does not include the Fisher metric.

10 Concluding remarks

In this paper we have focused on the face of the Fisher metric as a metric on the
cotangent bundle, calling it the Fisher co-metric to distinguish it from the original
Fisher metric on the tangent bundle. What we have shown are listed below.

1. Based on a correspondence between cotangent vectors and random variables, the
Fisher co-metric is defined via the variance/covariance in a natural way (Sect. 2).

2. The Cramér-Rao inequality is trivialized by considering the Fisher co-metric
(Sect. 4).

3. The role of the m-connection as a connection on the cotangent bundle is important
in considering the achievability condition for the Cramér-Rao inequality (Sect. 5).

4. The monotonicity of the Fisher metric is equivalently translated into the mono-
tonicity of the Fisher co-metric and that of the variance (Sect. 6).

5. The invariance of the Fishermetric and that of the Fisher co-metric are not logically
equivalent, and a new Čencov-type theorem for characterizing the Fisher co-metric
by the invariance is established, which can also be regarded as a theorem for
characterizing the variance/covariance (Sect. 7).

6. The notion of strong invariance is introduced, which combines the invariance of
the Fisher metric and that of the Fisher co-metric (Sect. 8).

7. The weak invariance of the α-connections is expressed in a formulation similar to
the strong invariance of the Fisher metric/co-metric (Sect. 9).

It should be noted that, although this paper emphasizes the importance of the Fisher
co-metric, this does not diminish the importance of the Fisher metric at all. Apart from
the importance as a metric on the tangent bundle itself, which is essential for geometry
of statistical manifolds, we should not forget that the Fisher information matrix (i.e.
the components of the Fisher metric) is of primary importance as a practical tool to
compute the Fisher co-metric. Even if we know that gi j

M (p) = gM,p((dξ i )p, (dξ j )p)

in (4.3) can be defined by (4.5) and (4.6) and that understanding gi j
M (p) in this way

is important for conceptual understanding of the Cramér-Rao inequality, this does
not tell us a method to compute gi j

M (p) for a given statistical model (M, ξ) better
than computing the inverse of the Fisher information matrix G M (p) := [gM,i j (p)] in
general.
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Finally, we note that some of the results obtained here can be extended to the
quantum case in several directions, which will be discussed in a forthcoming paper.
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Appendix

A1 Proof of Theorem 7.3

As mentioned in Remark 7.4, we show the equivalence (i)′ ⇔ (ii-2), with expressing
(i)′ as
(i)′ ∃c1, ∃c2 ∈ R, ∀n,∀p ∈ Pn, γn,p = c1 〈·, ·〉p + c2 〈·〉p〈·〉p.

The implication (i)′ ⇒ (ii-2) is obvious. To show the converse, we assume (ii-2) and
will derive (i)′ by several steps. The uniform distribution on �n is denoted by un in
the sequel.

(a) ∀n, ∃c1,n, ∃c2,n ∈ R, γn,un = c1,n 〈·, ·〉un + c2,n 〈·〉un 〈·〉un .

Proof Fix n ≥ 2 arbitrarily, and let m = n, and F be a permutation on �n . Define
en,i ∈ R

�n for i ∈ �n by en,i ( j) = δi, j . Then un
F = un , and condition (ii-2) claims

that

∀i,∀ j ∈ �n, γn,un (en,i , en, j ) = γn,un (en,i ◦ F, en, j ◦ F)

= γn,un (en,F−1(i), en,F−1( j)).

Since this holds for any permutation F , there exist an, bn ∈ R such that

∀i,∀ j ∈ �n, γn,un (en,i , en, j ) = anδi, j + bn .

Comparing this with

〈en,i , en, j 〉un = 1

n
δi, j and 〈en,i 〉un 〈en, j 〉un = 1

n2 ,
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we have the assertion of (a) with letting c1,n := nan and c2,n := n2bn . ��
(b) ∃c1, ∃c2 ∈ R, ∀n, γn,un = c1 〈·, ·〉un + c2 〈·〉un 〈·〉un .

Proof It suffices to show that the constants {c1,n} and {c2,n} in (a) satisfy c1,n = c1,m
and c2,n = c2,m for every n, m ≥ 2. Let F : �mn → �n be defined by

F(i) = k if (k − 1) m + 1 ≤ i ≤ km, k ∈ N.

Then we have uF
mn = un , and (ii-2) yields

∀A,∀B ∈ R
�n , γn,un (A, B) = γmn,umn (A ◦ F, B ◦ F).

Due to (a), the LHS of the above equation is represented as

γn,un (A, B) = c1,n〈A, B〉un + c2,n〈A〉un 〈B〉un ,

while the RHS is represented as

γmn,umn (A ◦ F, B ◦ F) = c1,mn〈A ◦ F, B ◦ F〉umn + c2,mn〈A ◦ F〉umn 〈B ◦ F〉umn

= c1,mn〈A, B〉un + c2,mn〈A〉un 〈B〉un .

Thuswe have c1,n = c1,mn and c2,n = c2,mn . Similarly, we can show that c1,m = c1,mn

and c2,m = c2,mn . Hence we obtain c1,n = c1,m and c2,n = c2,m . ��
(c) For any n ≥ 2 and any p ∈ Pn whose components {p(i)}i∈�n are all rational

numbers, we have γn,p = c1 〈·, ·〉p + c2〈·〉p〈·〉p, where c1 and c2 are the constants
in (b).

Proof Suppose that the components of p are represented as p(i) = ki/m by natural
numbers m, k1, . . . , kn satisfying

∑n
i=1 ki = m. Let �m = ⊔n

i=1 Ki be a partition of
�m such that |Ki | = ki , and define F : �m → �n by

F( j) = i if j ∈ Ki .

Then we have uF
m = p. Letting γ ′

n,p := c1 〈·, ·〉p + c2〈·〉p〈·〉p and noting that both
{γn,p} and {γ ′

n,p} satisfy condition (ii-2), we obtain

∀A, B ∈ R
�n , γn,p(A, B) = γm,um (A ◦ F, B ◦ F)

= γ ′
m,um

(A ◦ F, B ◦ F)

= γ ′
n,p(A, B),

where the second equality follows from (b). ��
(d) (i)′ is derived from (c) and the continuity of p �→ γn,p.

��
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A2 An exact form of Proposition 8.3

We present a proposition of Čencov-type that can be regarded as an exact version of
Proposition 8.3, and show that the proposition follows from Theorem 7.1 (Čencov’s
theorem).

Proposition A.1 For n = 2, 3, . . ., let �n := {1, 2, . . . , n} and Pn := P(�n), and let
gn be the Fisher co-metric onPn. Suppose that we are given a sequence {hn}∞n=2, where
hn is a contravariant tensor field of degree 2 on Pn which continuously maps each
point p ∈ Pn to a non-degenerate and symmetric bilinear form hn,p : T ∗

p (Pn)
2 → R.

Then the following two conditions are equivalent.

(i) ∃c ∈ R \ {0}, ∀n, hn = cgn.
(ii) For any m ≤ n and any pair (�,�) of Markov embedding � : Pm → Pn and

Markov co-embedding � : Pn → Pm satisfying � ◦ � = idPm , it holds that

∀p ∈ Pm, ∀αp ∈ T ∗
p (Pm),∀β�(p) ∈ T ∗

�(p)(Pn),

hm,p(αp,�
∗(β�(p))) = hn,�(p)(�

∗(αp), β�(p)). (A.1)

Proof Since the Fisher co-metric satisfies (8.4), we have (i) ⇒ (ii). To prove the
converse, assume that {hn}∞n=2 satisfies (ii). Due to the assumption that hn,p is non-

degenerate for every n and p ∈ Pn , hn,p induces the correspondence
hn,p←→ between

Tp(Pn) and T ∗
p (Pn) together with the bilinear form hn,p : Tp(Pn)

2 → R as in the
case of inner products by

X p
hn,p←→ αp ⇔ ∀βp ∈ T ∗

p (Pn), βp(X p) = hn,p(αp, βp)

and

X p
hn,p←→ αp and Yp

hn,p←→ βp ⇒ hn,p(X p, Yp) = hn,p(αp, βp).

Then, similar to the equivalence between (8.1) and (8.4), we see that (A.1) is equivalent
to

∀p ∈ Pm, ∀X p ∈ Tp(Pm),∀Y�(p) ∈ T�(p)(Pn),

hm,p(X p, �∗(Y�(p))) = hn,�(p)(�∗(X p), Y�(p)). (A.2)

Indeed, if

X p
hm,p←→ αp and Yq

hn,q←→ βq , where q := �(p),

then

hm,p(αp,�
∗(βq)) = �∗(βq)(X p) = βq(�∗(X p)) = hn,q(�∗(X p), Yq)
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and

hn,q(�∗(αp), βq) = �∗(αp)(Yq) = αp(�∗(Yq)) = hm,p(X p, �∗(Yq)),

which shows the equivalence of (A.1) and (A.2). Due to�∗◦�∗ = idTp(Pm ), Eq. (A.2)
implies (7.11) in (ii) of Theorem 7.1. Thus we have the following train of implications:

(ii) ⇒ (ii) of Theorem 7.1 ⇒ (i) of Theorem 7.1 ⇒ (i).

��
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