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Abstract
We introduce a new information-geometric structure associated with the dynamics on
discrete objects such as graphs and hypergraphs. The presented setup consists of two
dually flat structures built on the vertex and edge spaces, respectively. The former is the
conventional duality between density and potential, e.g., the probability density and its
logarithmic form induced by a convex thermodynamic function. The latter is the dual-
ity between flux and force induced by a convex and symmetric dissipation function,
which drives the dynamics of the density. These two are connected topologically by the
homological algebraic relation induced by the underlying discrete objects. The gen-
eralized gradient flow in this doubly dual flat structure is an extension of the gradient
flows on Riemannian manifolds, which includeMarkov jump processes and nonlinear
chemical reaction dynamics aswell as the natural gradient. The information-geometric
projections on this doubly dual flat structure lead to information-geometric extensions
of the Helmholtz–Hodge decomposition and the Otto structure in L2-Wasserstein
geometry. The structure can be extended to non-gradient nonequilibrium flows, from
whichwe also obtain the induced dually flat structure on cycle spaces. This abstract but
general framework can broaden the applicability of information geometry to various
problems of linear and nonlinear dynamics.
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Information geometry of dynamics on graphs and hypergraphs

1 Introduction

Information geometry is finding and establishing a firm position as a geometric lan-
guage in various scientific disciplines [1, 2]. Information geometry enables us to
gain an intuitive understanding of the structures behind complicated problems of
inference and estimation, for which Euclidean or Riemannian geometry may not be
sufficient. In addition, it can provide ways to devise new solutions and approaches for
the problems [1]. While information geometry was originally developed for statistics,
its applicability now reaches far beyond statistical problems. Whenever the notions
of probability, information, or positive density appear in a problem, it is natural to
consider its information–geometric structure.

1.1 Information geometry of dynamics

Dynamical systems and phenomena can be naturally analyzed with information
geometricmethods, as conventionally one considers the dynamics of probability distri-
butions [3–5], e.g., via the Fokker–Planck equations (FPE) and the Master equation,
or those of positive densities, e.g, via population dynamics, epidemic models, dif-
fusion dynamics on networks, and chemical reaction dynamics [6–8]. Although the
application of information geometry to dynamical systems has been attempted almost
since its birth, information geometry for dynamics is much less organized and prin-
cipled compared with those for static problems in statistics, optimization, and others
[1]. In connection with statistical inference, information geometry was employed by
Amari and others to investigate Gaussian time series and autoregressive moving aver-
age (ARMA) models by representing their power spectrum as parametric manifolds
[9–11]. This idea was also used to investigate linear systems [12]. Markov jump pro-
cesses on finite states1 were investigated information-geometrically by considering the
hierarchical structure of joint or conditional probabilities at different time points, e.g.,
Pθ (x1, x2, . . . , xt ) [13], or by introducing exponential families of Markov kernels
(transition matrices), Tθ (x |x ′), via exponential tilting of the kernels [14–20]. Fur-
thermore, information geometry was applied to studies of random walks, nonlinear
diffusion equations of porous media, and networks [21–23]. In relation to mechanics,
integrable systems were associated with the dualistic gradient flow of information
geometry in the seminal works [24, 25], and other connections of information geom-
etry with Lagrangian or Hamiltonian mechanics have been pursued [26–28].

1.2 Informationmeasures for dynamics

Concurrently with and almost independently of these attempts within the community
of information geometry, informationmeasures relevant to information geometry have
been employed in various problems of dynamical systems and stochastic processes
in information theory [29], filtering theory [30, 31], control theory [32–34], and non-
equilibrium physics and chemistry [35–37]. The Kullback–Leibler (KL) divergence

1 Also known as Markov chains.
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[38] for probabilities and positive densities was shown to be a Lyapunov function
of Markov jump processes (MJP) [5], FPE [3, 39], deterministic chemical reaction
networks (CRN) [40, 41], andother dynamical systems [42, 43], the origin ofwhich can
be dated back to Gibbs’ H-theorem [44]. Among those topics, since the establishment
of chemical thermodynamics by Gibbs [44] and chemical kinetics by Guldberg and
Waage [45], CRN has played the role of a seedbed for cultivating the theory between
dynamics and divergences owing to its close connection with thermodynamics [46–
48]. More recently, it was also clarified that the divergences and information geometry
are fundamental in stochastic thermodynamics [49–53].

In addition to the KL divergence, the Fisher-information-like quantity

IF [p] :=
∫

p(r)(∇r ln p(r))2dr ∈ R≥0 (1)

was also revealed to play an important role in characterizing dynamics for densities
on a continuous space, e.g., Gaussian convolution, diffusion processes, and FPE [54–
56]. Various governing equations in physics were claimed to be derived in a unified
way from this quantity [36]. The quantity IF looks like the Fisher information [57]
but is different from the conventional Fisher information matrix [58–60] because the
derivative∇r ln p(r) is not for the parameters but for the base space variable of p(r).2

Because IF is a scalar, we follow [59] and call it Fisher information number. The
Fisher information number IF is related to the KL divergence in additive Gaussian
channels [54] and other systems [56, 62], which is known as the De Bruijn identity
[54]. In addition, the logarithmic Sobolev inequality also provides a relation between
the Fisher information number and the KL divergence (or Shannon information) [63,
64]. These results have recently been associatedwith the formalRiemannian geometric
structure induced by the L2-Wasserstein geometry [65, 66].

1.3 Information geometry and dynamics in machine learning

On top of these traditional trends, information geometry is now playing a pivotal
role in machine learning for designing and evaluating online optimization algorithms
(dynamics) in the space of model parameters such as natural gradient [67] and mirror
descent [68, 69] as well as evolutionary computation (information-geometric opti-
mization) [70]. Geometric interpretation allows us to understand the behaviors and
efficiency of algorithms and their dynamics more intuitively in a principled manner
[69–71].

1.4 Aim and contributions of this work

Despite the wide applicability and the long history of information geometry, we still
lack a solid theoretical framework to unify these outcomes that spread across different

2 The relation between the two forms of Fisher information has been explained in multiple ways. For
example, they are related as the shift of the base space via parameters [36, 61]. The Fisher information
number was introduced by Rao [58].
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Fig. 1 Diagrammatic illustration of the doubly dual flat structure established on the vertex affine spaces
(left) and the edge spaces (right), which are topologically related via the underlying graph or hypergraph

fields from the viewpoint of information geometry. In this work, we introduce a new
information geometric structure for the dynamics of probability and positive densities.
In this structure, we consider not only the single dually flat structure built on the space
of densities as in [24, 25] but also another structure constructed on the space of fluxes.
These two structures are linked algebraically and topologically via the continuity
equation and the gradient equation as illustrated in Fig. 1.

Under this doubly dual flat structure, we can consider the dynamics of densities
as a generalized flow, and various previous results can be unified in this framework.
We exclusively consider dynamics of densities on finite-dimensional discrete mani-
folds, i.e., finite graphs or hypergraphs, because the structure introduced here can be
explicitly manifested in this setup and also because we do not need the mathematically
elaborated setup for infinite-dimensional information geometry on a smooth manifold
[72]. For the case of FPE in a continuous state space, the dually flat structure built
on the flux space can be reduced to the formal Riemannian geometric structure of L2

Wasserstein geometry where the convex functions that induce the dually flat structure
become quadratic. Our structure generalizes the linear inner product on the tangent
and cotangent spaces with the nonlinear Legendre transform, thereby requiring infor-
mation geometry. By elucidating this information geometric structure, we can easily
see that some quantities such as the bilinear product, convex thermodynamic potential
functions, the Fisher information matrix, and the Fisher information number are con-
solidated into one quantity for FPE with the quadratic convex functions (see Sect. 5.3
and Sect. 5.4). Therefore, our structure provides a way to unify the dualistic gradient
flowmentioned in Sect. 1.1 and also the information-number related topics in Sect. 1.2.

From the viewpoint of homological algebra, the structure we work on is a modifi-
cation of the chain and cochain complexes of graphs or hypergraphs, which replace
the usual inner product duality [73] on each pair of chains and cochains with Leg-
endre duality. Moreover, the dually flat space built on the flux space is linked to a
finite-dimensional version of Orlicz spaces [74], which have been employed for con-
structing infinite-dimensional information geometry [72]. From the nice properties
of the doubly dual flat structures, we can obtain information-geometric extensions of

123



T. J. Kobayashi et al.

the Helmholtz-Hodge-Kodaira (HHK) decomposition (Theorem1), the Otto calculus
(Theorem2), and its induction to cycle spaces(Theorem3).

Our construction of an information geometry for dynamics is heavily based on the
idea of using Legendre duality for the force and flux relation, proposed in the recent
work of large deviations theory and the macroscopic fluctuation theorem for MJP and
CRN led byA.Mieleke, R.I.A.Petterson,M.A.Peletier, D.R.M. Renger, J.Zimmer, and
others3 [75–82]. We clarified its information-geometric aspects in the context of CRN
and thermodynamics in our previous work [83]. We also concurrently elucidated the
intimate link of equilibrium chemical thermodynamics and information geometry on
the density state space [48, 84, 85]. In light of those, the contribution of this work is
three-fold. First, we integrate these results in terms of information geometry, which
clarifies the underlying geometric nature of the problem, provides transparent interpre-
tations for known results, and leads to new information geometric results and insights
(Theorem1–Theorem3); Second, this structure substantially extends the applicability
of information geometry to a wide variety of dynamical problems; Lastly, the structure
links information geometry to algebraic graph theory, discrete calculus, and homo-
logical algebra, which were not fully appreciated yet but provides a versatile way to
consider the topology of the base manifold in information geometry.

1.5 Organization of this paper

This work is organized as follows: In Sect. 2, we introduce a range of models of
dynamics on graphs and hypergraphs. In Sect. 3, we outline the homological algebra
of graphs and hypergraphs. In Sect. 4, we abstractly introduce the doubly dual flat
structures on the density and flux spaces and define the generalized flow associated
with these structures. In Sect. 5, we clarify that the introduced structures include a
wide class of dynamics on graphs and hypergraphs. In Sect. 6 and Sect. 7, we further
define information-geometric objects and quantities, which naturally appear from this
setup and play an integral role in the subsequent analysis of dynamics. In Sect. 8 and
Sect. 9, we derive several results for equilibrium and nonequilibrium flows, respec-
tively. Finally, we provide a summary and prospects of our work in Sect. 10. The
notations and symbols are listed in the appendix.

2 Classes of models for density dynamics on graphs and hypergraphs

In this work, we focus on linear and nonlinear dynamics defined on graphs [86] and
hypergraphs [87].

The linear dynamics of densities on graphs (LDG) includesMarkov jump processes
(MJP) [88], monomolecular chemical reaction networks [89], and others [86].We con-
sider an extension of LDG to hypergraphs and nonlinear dynamics, common instances
of which are chemical reaction networks (CRN) with the law of mass action (LMA)
kinetics [8] and polynomial dynamical systems (PDS) [90]. Because the extension we

3 Ordered alphabetically.
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(a) (b)

Fig. 2 Schematic diagrams of a reversible finite graph G (a) and a CRN-hypergraph H (b). Each pair of
thick and thin arrows represents the pair of forward and reverse orientations of the corresponding edge. The
CRN-hypergraph H in (b) corresponds to the simplified Brusselator reaction. The hypervertex v̂1 contains
no vertices

deal with in this work is a subclass of nonlinear dynamical systems on hypergraphs,
we use CRN to designate this subclass.

In the following subsections, LDG and CRN are introduced using the language of
algebraic graph theory [86, 91]. Then, we also give a brief and formal introduction
of the Fokker-Planck equation (FPE) [3], a linear dynamics of probability densities
defined in Euclidean space. We use the FPE throughout this paper only to contrast our
results with the previous ones obtained for the FPE.

2.1 Reversible linear dynamics of densities on graphs

Definition 1 (Edge-weighted finite graph Gk± ) A finite graph G := ({vi }, {ee},B)

consists of Nv ∈ Z>0 vertices, {vi }i∈[1,Nv], and Ne ∈ Z>0 oriented edges, {ee}e∈[1,Ne],
each of which connects two different vertices4 (Fig. 2a). The incidence relation is
represented by the incidence matrix B ∈ {0,±1}Nv×Ne where, for B = (bi,e),

bi,e := +1 if vi is the tail of edge ee,

bi,e := −1 if vi is the head of edge ee,

bi,e := 0 otherwise.

An edge-weighted finite graphGk± := ({vi }, {ee},B, {k±e }) has two positiveweighting
parameters k±e = (k+e , k−e ) ∈ R>0 for each edge ee. The parameters k+e and k−e are
denoted as forward and reverse rates or weights of edge ee, respectively.

A reversible linear dynamics (rLDG) on a graphs is defined on the edge-weighted
finite graph Gk± :

Definition 2 (Reversible linear dynamics of density on graph Gk± ) The reversible
linear dynamics of non-negative density x(t) = (x1(t), · · · , xNv(t))

T ∈ RNv≥0 on Gk±
is defined by the continuity equation

ẋ = −B j(x) = −B[ j+(x)− j−(x)], (2)

4 This means that we exclude self loops.
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and linear forward and reverse one-way fluxes j±(x) = ( j±1 (x), · · · , j±Ne
(x))T ∈

RNe≥0 with the following specific functional form5:

j±(x) = k± ◦ (B±)T x, (3)

where j(x) := j+(x)− j−(x) is the total flux, the symbol ◦ denotes the component-
wise product of two vectors,6 and B+ and B− are the head and tail incidence matrices
defined respectively as B+ := max[B, 0] and B− := max[−B, 0]. The incidence
matrix B in Eq.2 is often regarded as the discrete divergence operator on a graph [73]
and denoted also by divB = B to emphasize this interpretation in this work.7

Reversible Markov jump processes (rMJP) are a representative class of the rLDG
describing random jumps of noninteracting particles on Gk± .

8 The weighting param-
eter k+e is interpreted as the forward jump rate from the tail of the oriented edge ee
to its head, whereas k−e is the reverse jump rate from the head to the tail of ee.9 For
infinitely many such particles, we consider pi (t) ∈ [0, 1], the fraction of particles on
vertex vi at time t , which is a non-negative density on vertices. Then, the forward and
reverse one-way fluxes on the eth edge defined by Eq.3 are represented as

j+e ( p) = k+e pv+e ∈ R≥0, j−e ( p) = k−e pv−e ∈ R≥0, (4)

where v+e and v−e are the head and tail vertices of edge ee10. The linearity of j±e ( p)
with respect to p comes from the independence of particles on the graph. Then, the
continuity equation (Eq.2) with the state vector p(t) := (p1(t), · · · , pNv(t))

T ∈ RNv≥0
is reduced to the master equation: ṗ = −B j( p).

Definition 3 (Weighted asymmetric graph Laplacian [91, 92]) For Gk± , the corre-
sponding weighted asymmetric graph Laplacian is defined by

Lθ := B
[
diag[k+](B+)T − diag[k−](B−)T

]
, (5)

5 We may consider other functional forms for j(x), which can induce nonlinear dynamics on the graph. In
this work, we focus mainly on the linear case.
6 Also known as the Hadamard product or Schur product of vectors.
7 This interpretation is because Eq.2 is associated with the continuity equation on a Euclidean space or
on a Riemannian manifold where we have the divergence operator ∇· instead of B. However, divergence
on a Riemannian manifold implicitly includes the information of the metric via the Hodge operator. On
the contrary, B does not. From the viewpoint of homological algebra, B should be regarded as the adjoint
(transpose) of the discrete exterior derivative operator δ0 := BT , which is also often called a discrete
gradient operator [73]. For a Euclidean space, they are the same.
8 We use the word ’reversible’ in this work to mean that each edge allows both forward and reverse jumps
while reversible Markov jump processes sometimes mean that the detailed balance condition is satisfied.
We introduce the notion of equilibrium later to designate the detailed balanced situation.
9 If we allow k±e to be 0, we can include the irreversible MJP and also LDG in this formulation. We leave
this extension for future work because it should require additional assumptions on the Legendre duality
introduced in the subsequent sections.
10 Here, we have abused the notation v+e to indicate the index of the vertex v+e . Equation3 is reduced to
Eq.4 because b±i,e = +1 only when i is the index of the tail (head) vertex v±e of ee and 0 otherwise.
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where θ := (k+, k−) and diag[k+] is the diagonal matrix whose diagonal elements
are k+. Using Lθ , Eq. 2 and Eq.3 are represented as

ẋ = −B j(x) = −B
[
diag[k+](B+)T − diag[k−](B−)T

]
x = −Lθ x. (6)

The operator Lθ is reduced to the weighted symmetric graph Laplacian if k+ = k−
and also to the conventional graph Laplacian if k+ = k− = 1 [91, 92]. Equation6 can
also cover linear transport on graphs, a class of linear electric circuits [93], consensus
dynamics on graphs [94], and other linear dynamics on graphs [86, 95].11

2.2 Chemical reaction network and polynomial dynamical systems on
hypergraphs

Next, we introduce a class of nonlinear dynamics on hypergraphs, which includes the
rLDG (Eq.2 and Eq.3) as a special case. The most common instance is deterministic
chemical reaction networks (CRN) with the law of mass action (LMA) kinetics [7,
8, 45, 96], and this class is sometimes referred to as polynomial dynamical systems
(PDS). Because the major part of the PDS theory has been developed for CRN, we
use CRN to introduce and specify this class in this work.

Definition 4 (Reversible edge-weighted CRN hypergraph Hk± ) The reversible CRN
hypergraphH := ({Xi }, {ee},L,B) consists of a finite number of vertices {Xi }i∈[1,NX]
and hyperedges {ee}e∈[1,Ne] where NX, Ne ∈ Z>0 (Fig. 2b). Each hyperedge ee con-
nects two different hypervertices v̂+e and v̂−e where v̂+e �= v̂−e .12 The hypervertices are
multisets of vertices {Xi }i∈[1,NX], each of which is defined as v̂� = ∑NX

i=1 γi,�Xi

where γi,� ∈ Z≥0 is the number of the i th vertex included in the �th hyper-
vertex.13 Thus, the nonnegative integer vector γ � := (γ1,�, · · · , γNX,�)

T ∈ ZNX≥0
defines the �th hypervertex. Let Nv̂ ∈ Z>0 be the total number of the hyperver-
tices and

L := (γ 1, · · · , γ Nv̂
) ∈ ZNX×Nv̂≥0 be the hypervertex matrix. The matrix

B ∈ {0,±1}Nv̂×Ne is the incidence matrix encoding the incidence relations among the
hypervertices and the hyperedges. The hypergraph incidence matrix S ∈ ZNX×Ne is
then defined as

S := L
B. (7)

If
L = I where I is the identity matrix, then H = ({Xi }i∈[1,NX], {ee}e∈[1,Ne],

L
,B) is

reduced toG = ({v�}�∈[1,NX], {ee}e∈[1,Ne],B)where v� = X�. An edge-weightedCRN
hypergraph Hk± := ({Xi }, {ee},L,B, {k±e }) has forward and reverse rates k±e > 0 as
the weights of edge ee.

11 For some of these applications, the relevant state space is RNv instead of RNv≥0 .
12 This means that we exclude self loop hyperedges. However, the head and tail hypervertices are allowed
to contain the same vertices as long as v̂+e �= v̂−e holds.
13 Our definition of CRN hypergraph differs in a couple of aspects from the conventional definition because
of the additional information required to define CRN. For example, while the definition of edges is usually
extended from those of graphs [87], our definition extends vertices instead.
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In the context of CRN theory, the vertices {Xi } correspond to the molecular species
involved in a CRN, and each hyperedge ee represents a pair of forward and reverse
reactions:

γ+1,eX1 + · · · + γ+NX,eXNX
−⇀↽− γ−1,eX1 + · · · + γ−NX,eXNX , (8)

where the forward and reverse reactions are from left to right and from right to left,
respectively. Head and tail hypervertices v̂+e := (γ+1,eX1+· · ·+γ+NX,eXNX) and v̂−e :=
(γ−1,eX1 + · · · + γ−NX,eXNX) in Eq.8 are the sets of reactants and products of the

eth forward reaction, respectively. More specifically, γ+i,e ∈ Z≥0 and γ−i,e ∈ Z≥0
are the numbers of the molecule Xi involved as the reactants and products of the eth
forward reaction, respectively. For the reverse reaction, v̂−e and v̂+e are the reactants and
products. Some head and tail hypervertices are overlapping among different reactions
(hyperedges) as in Fig. 2b. As a result, {v̂�}�∈Nv̂ is the union of the head and tail
hypervertices, {v̂�}�∈Nv̂ =

⋃
e∈Ne

{v̂+e , v̂−e }.
The hypervertices are called complexes in CRN theory [8]14. From {γ+i,e} and {γ−i,e},

we can define

se := (γ+1,e − γ−1,e, · · · , γ+NX,e − γ−NX,e)
T ∈ ZNX , (9)

where ∓se specify the change in the number of molecules induced when the eth
forward and reverse reaction occurs just once, respectively. The hypergraph incidence
matrixS defined inEq.7 is represented asS = (s1, · · · , sNe) ∈ ZNX×Ne . In chemistry,
the negative of se and S, i.e., −se and −S, are called the stoichiometric vector and
matrix, respectively [8].

Remark 1 To define a reversible CRN hypergraph, the hypergraph matrix S is not
sufficient. If the head and tail hypervertices of a hyperedge contain the same vertex
(molecule), the corresponding element in S of such a shared vertex becomes 0 by
canceling out. Thus, the existence of shared vertices (molecules) is invisible in S, and
the pair (

L
,B) is required to define H. Such shared molecules are called catalysts in

CRN.

For a CRN hypergraph, the continuity equation for CRN is defined:

Definition 5 (CRN continuity equation) Let a vector of nonnegative densities x =
(x1, · · · , xNX)T ∈ RNX≥0 represents the concentration of molecules {Xi }. The CRN
continuity equation is defined as

ẋ = −S j(x) = −divS j(x), (10)

where j+e (x) ∈ R≥0 and j−e (x) ∈ R≥0 are the one-way fluxes of the eth forward and
reverse reactions, j±(x) := ( j±1 (x), · · · , j±Ne

(x))T ∈ RNe≥0 are their vector represen-
tations, and j(x) := j+(x) − j−(x) ∈ RNe is the total reaction flux [7, 8, 96]. The
hypergraph divergence operator divS := S is defined accordingly.

14 Because we reserve the term complex for the cell complex in homological algebra, we use hypervertices
to indicate the complexes of the CRN theory.
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To define the dynamics of a CRN, the functional form of j±e (x) is required.15 Before
introducing specific forms, we define two important properties of the fluxes and also
other functions defined on edges:

Definition 6 (Consistency of fluxes j±(x)with hypergraphH) One-way fluxes j±(x)

are consistent with the hypergraph H if, for all e ∈ [1, Ne], j±e (x) becomes 0 when
xi = 0 where Xi is any reactant of j±e (x), respectively. In other words, j±e (x) satisfies
γ±i,e j±e (x) = 0 if xi = 0 for any i ∈ [1, NX].
Definition 7 (Locality of function on edges over H) A vector function g(x) ∈
RNe defined on edges is local on H if, for all e ∈ [1, Ne], ge(x) is a func-
tion only of the elements of x incident to the edge ee on H, i.e., ge(x) =
ge(γ̄

+
1,ex1, · · · , γ̄+NX,exNX , γ̄−1,ex1, · · · , γ̄−NX,exNX) where γ̄±i,e := min[1, γ±i,e] ∈

{0, 1}.
The consistency condition is indispensable to prohibit a reaction that can decrease

xi from occurring when xi = 0. For j±(x), the locality means that the fluxes of the
eth reaction depend only on the concentrations of their reactants and products. The
local flux is determined solely by the information stored on the vertices incident to the
edge and plays a crucial role when we regard the structure introduced in this work as
an extension of differential forms on continuous manifolds to graphs and hypergraphs.
When we work on specific forms of fluxes in this work, we consider only local fluxes
consistent with the given hypergraph H.

In chemistry, we have a variety of candidates for the functional form of flux, e.g.,
the Michaelis-Menten function, Hill’s function, and others [7, 97]. Among others, the
LMA kinetics is the most basic and well-established one.

Definition 8 (Waage–Guldberg’s law of mass action kinetics (LMA kinetics)) A CRN
follows the LMA kinetics if, for all e ∈ [1, Ne], the eth forward and reverse reaction
fluxes are represented as

j±e (x) = k±e
NX∏
j=1

x
γ±j,e
j = k±e

Nv̂∑
�=1

b±�,e
NX∏
j=1

x
γ j,�
j , (11)

where k+e ∈ R>0 and k−e ∈ R>0 are the reaction rate constants of the eth forward
and reverse reactions, respectively. The fluxes under LMA kinetics can be compactly
represented as

j±MA(x) = k± ◦ (B±)T x
LT

, (12)

where xγ := ∏NX
j=1 x

γ j
j ∈ R≥0 and x

LT := (xγ 1 , · · · , xγ Nv̂ )T ∈ RNv̂≥0.16 We use

the subscript MA as in j±MA(x) to discriminate this specific form of the fluxes from

15 Even though the functional form of j±e (x) is automatically determined in the case of LDG because of
the linearity, we have multiple possibilities to define nonlinear j±e (x).
16 We should note an important relation, (B±)T x

LT = x(
L
B±)T , which holds because every column

vector of B± contains only one +1 and the others are 0.
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others. We can easily observe that j±MA(x) is consistent and local with respect to H.
Furthermore, j±MA(x) is specified by the edge-weighted CRN hypergraph Hk± :=
({Xi }, {ee},L,B, {k±e }).
Remark 2 (Algebraic aspect of LMA kinetics) Because x

LT
is a vector of monomials

of x, each one-way flux, j±e (x), is a monomial of x under Eq.12 and thus the total
flux je(x) = j+e (x)− j−e (x) is a binomial. This fact links the real algebraic geometry
of toric varieties [98, 99] to CRN [84, 100] as it does in algebraic statistics [48, 101].

Remark 3 (Extended LMAkinetics)While wemainlywork on the normal LMAkinet-
ics, we can extend it. The extended LMA kinetics defined on H is defined as

j±eMA(x) = k± ◦ g(x) ◦ (B±)T x
LT

, (13)

where g(x) ∈ RNe
>0 and is local with respect toH.

17 An example of the extended LMA
kinetics is reversible Michaelis-Menten kinetics [103].

By combining the continuity equation (Eq.10) and the LMA kinetics (Eq.12), we
have the following chemical rate equation:

ẋ = −S jMA(x) = −LB
[
diag[k+](B+)T − diag[k−](B−)T

]
x
LT

= −LLθ x
LT

, (14)

whereLθ is theweighted asymmetric graph Laplacian defined as in Eq.5. Now,we can
see that CRN contains rLDG (Eq.6) as a special case if

L = I . Owing to this inclusion
relation, CRN with LMA kinetics is a mathematically sound generalization of rLDG.
Because LDG has been used in various fields of social science, network science,
machine learning, and so on, CRN theory is potentially important for extending the
results there.

Example 1 (Simplified Brusselator CRN [8, 104]) The Brusselator is a representative
CRN, which can generate non-trivial dynamic behaviors such as oscillations.We use a
reversible CRNversion of the simplified Brusselator [8, 104], whose CRN-hypergraph
depicted in Fig. 2b has the following structural information:

(15)

,

17 There exists another type of extension known as generalized LMA kinetics where the monomials x
LT

are replaced with fractional monomials, i.e., powers of x with nonnegative real-valued exponents [102].
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The rate equation (Eq.14) can be represented as

d

dt

(
x1
x2

)
= −

S︷ ︸︸ ︷(−1 +1 −1
0 −1 +1

)
⎡
⎢⎢⎢⎢⎢⎣

j+(x)︷ ︸︸ ︷⎛
⎝ k+1

k+2 x1
k+3 x21 x2

⎞
⎠−

j−(x)︷ ︸︸ ︷⎛
⎝k−1 x1
k−2 x2
k−3 x31

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎦

. (16)

2.3 Fokker Planck equations

While our main focus is the dynamics on graphs and hypergraphs, we use FPE as a
representative class of density dynamics on a continuous Euclidean space. Specifically,
we use FPE only to demonstrate the relation of our results with previous ones obtained
for FPE in various contexts. Because FPE is infinite-dimensional, we treat it here only
formally.

Let r ∈ Rd be a vector in a d dimensional Euclidean space. We consider infinitely
many noninteracting particles randomly walking in the space and describe the dynam-
ics by a probability density pt (r) ∈ R≥0 of the particles. The continuity equation for
pt (r) is

∂t pt (r) = −∇ · jFP[pt (r)] (17)

where jFP[pt (r)] ∈ Rd is the probability flux, ∇ := (∂/∂r1, · · · , ∂/∂rd)T is the
gradient operator on the Euclidean space, and (∇·) : ∇ · F(r) := ∑d

i=1 ∂Fi (r)/∂ri ∈
R is the divergence. The flux of the FPE is defined as

jFP[p(r)] = [F(r)p(r)− D0∇ p(r)] , (18)

where F(r) ∈ Rd is the drift force, and D0 ∈ R>0 is the diffusion constant.

3 Discrete calculus and homological algebra of graphs and
hypergraphs

The algebraic and topological structure of the dynamics on graphs and hypergraphs
can be explicitly and abstractly treated using the language of discrete calculus and
homological algebra. The discrete version of the gradient and divergencementioned in
Sect. 2 is also characterized. In this section, we briefly introduce the chain and cochain
complexes defined for a finite graph or a hypergraph and discrete calculus [73, 91,
105, 106]. We first introduce the complexes for a graph G and then extend them to a
hypergraphH algebraically.18 It should be noted that the conventional discrete calculus
(the discrete version of the theory for differential forms) presumes the Riemannian
metric in the dual space of chains and cochains or that of cochains on primal and dual

18 The complex used here should not be confused with complexes used in CRN theory [8]
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complexes [107, 108]. However, we are going to introduce Legendre duality instead.
For this purpose, our introduction of chain and cochain complexes depends only on
the topological (algebraic) information of the underlying graph and hypergraph [73]
without specifying the metric information.

3.1 Chain and cochain complexes on graphs

The elements of a graph G are called cells in discrete calculus.19 A vertex and an
edge are, respectively, called 0-cell and 1-cell, and the graph G is denoted as a cell-
complex.20 For each type of the cells, we consider vectors (chains and cochains)
defined on the cells. ForG, a 0-chain with field R is an Nv-tuple of real scalars, each of
which is assigned to a vertex, i.e., a 0 cell. Thus, a 0-chain is a real vector defined on
the vertices of G with the basis {vi }. This basis is called the standard basis. The vector
space of real 0-chains is called the vertex space here and denoted as C0(G) = RNv

[91].21 The components of the vector x ∈ C0(G) are given as x(vi ) := xi . Similarly,
a real 1-chain is a real vector defined on the edges of G. The real vector space of
1-chains is called the edge space and denoted as C1(G) = RNe . The standard basis is
introduced by using edges {ee}, accordingly. A flux j is a 1-chain: j(ee) := je. The
graph incidence matrix B induces the discrete differential δ1 : C1(G) → C0(G) as
δ1 j := B j .22

To obtain an exact sequence, we algebraically define the (−1) and 2 chains and
the corresponding differentials δ0 and δ2. Let C2(G) = RNz where Nz = dim[KerB]
and {vi }i∈[1,Nz] is a set of complete basis of KerB where vi ∈ {0,+1,−1}Ne23. In
algebraic graph theory, KerB is called a cycle subspace [86, 91, 109]. For a graph G,
we can construct {vi }i∈[1,Nz] by, for example, using the fundamental cycle basis of
G obtained from a fixed spanning tree of G24 [86]. Thus, C2(G) is the vector space
defined on the cycles of G and isomorphic to the cycle subspace. We define a matrix,
V := (v1, · · · , vNz)

25, and the differential δ2 : C2(G) → C1(G) as δ2 := V. From the
construction,BV = δ1δ2 = 0 and Im[δ2] = Ker[δ1] hold. Similarly, letC−1(G) = RNl

where Nl = dim[KerBT ] and {u�}�∈[1,Nl] is a set of complete basis of KerBT where
u� ∈ {0,+1,−1}Nv . The subspace KerBT is related to the connected components of

19 We follow the terminology in [73]. While we use “cell”, we do not presume any N -dimensional topo-
logical manifold underlying the graph. The graph is just treated algebraically as in algebraic graph theory
and homological algebra.
20 Depending on the choice of which elements of a graph are considered, the content of the complex
changes. For example, vertices and edges are the major ingredients of the complex of a graph. The faces of
a graph are often included in the complex. The definition of the higher-order elements than edges requires
additional structural information to the incidence matrix of the graph, e.g., the edge-face incidence matrix.
21 In algebraic graph theory, the chain of a graph G is defined as an integer-valued vector space ZNv to
represent the discrete and combinatorial nature of G and also to specify the domain of integration. Here,
we use R as the field of the vector space.
22 In algebraic graph theory, B is also identical to the discrete boundary operator from C1(G;Z) to
C0(G;Z).
23 Nz = 0 when G is a set of trees.
24 The spanning tree chosen specifies a fundamental cycle and cocycle bases.
25 VT is called the fundamental tieset matrix in graph theory
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G and ui can be chosen such that ui,� = +1 if the i th vertex is included in the �th
connected component and ui,� = 0, otherwise. Thus, C−1(G) is the vector space on
the connected components. From the matrix U := (u1, · · · , uNl)

T , the differential
δ0 : C0(G) → C−1(G) is defined as δ0 := U. From the construction, UB = δ0δ1 = 0
and Im[δ1] = Ker[δ0] hold. Then, we obtain the exact chain sequence2627:

0←− C−1(G)
δ0=U←−−− C0(G)

δ1=B←−−− C1(G)
δ2=V←−−− C2(G) ←− 0. (19)

BecauseCp(G) is a vector space for each p ∈ {−1, 0, 1, 2}, we can consider its dual
vector spaceC p(G) := C∗p(G) consisting of the linear functions onCp(G). An element
ofC p(G) is called p-cochain. Let 〈·, ·〉 : Cp(G)×C p(G) → R be the standard bilinear
pairing of the p-chain and p-cochain defined with the standard basis. The transposes
of U, B, and V induce the differentials between cochains as δ−1 := UT : C−1(G) →
C0(G), δ0 := BT : C0(G) → C1(G), and δ1 := VT : C1(G) → C2(G). The
differentials δ p on cochains are the adjoints of the differentials δp on chains, which
induce the exact cochain sequence:

0 −→ C−1(G)
δ−1=UT−−−−−→ C0(G)

δ0=BT−−−−→ C1(G)
δ1=VT−−−−→ C2(G) −→ 0. (20)

Note that the definition of chains, cochains, and differential operators are topological
in the sense that we do not include any metric information.

3.2 Chain and cochain complexes on hypergraphs

The definitions of chain and cochain complexes introduced above are algebraically
extended to hypergraphs H simply by replacing the graph incidence matrix Bwith the
hypergraph incidence matrix S.

Definition 9 (Exact chain and cochain sequences on a hypergraph) The chain and
cochain complexes on a hypergraph are defined by the following diagram:

0 −→ C−1(H)
δ−1=UT−−−−−→ C0(H)

δ0=ST−−−−→ C1(H)
δ1=VT−−−−→ C2(H) −→ 0

0←− C−1(H)
δ0=U←−−− C0(H)

δ1=S←−−− C1(H)
δ2=V←−−− C2(H) ←− 0.

where C−1(H) � C−1(H) � RNl , C0(H) � C0(H) � RNX , C1(H) � C1(H) � RNe ,
and C2(H) � C2(H) � RNz .

The bases, V and U, are obtained as integral bases, i.e., the components of V and U
can be chosen from Z because S is an integer-valued matrix.28 As we will explain in

26 We should note that the sequence is not canonical because U and V depend on the choice of bases.
27 Upon necessity, we can consider the harmonic components by employing an under-complete basis for
V.
28 As far as we know, there is not a systematic and widely-appreciated way to define these bases because
we have multiple ways to extend the notion of spanning tree of a graph to a hypergraph.
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Sect. 6 and Sect. 9, the meaning of C2(H) can be retained as the space on generalized
cycles. The meaning of C−1(H) becomes the space of conserved quantities under the
dynamics (Eq.10).

3.3 Discrete calculus on graphs and hypergraphs

The p-cochain and p-chain introduced above are an algebraic abstraction of the p-
differential form and its Hodge dual on a differential manifold [73]. Accordingly, the
discrete versions of gradient, divergence, and curl are associated with the differentials
(exterior derivative).

Definition 10 (Discrete gradients, divergences, and curls) The discrete gradient is
defined as gradB := δ0 = BT for G and also as gradS := δ0 = ST forH. The adjoints
of the gradients are defined with the corresponding adjoint differentials: grad∗B :=
δ1 = B and grad∗S := δ1 = S. They are called discrete divergences and denoted also
as divB = grad∗B and divS = grad∗S.

29 The discrete curl and its adjoint are defined as
curlV := δ1 = VT and curl∗V := δ2 = V, respectively.

3.4 Linear graph Laplacian dynamics andmetric structure in discrete calculus

In the theory of graph Laplacian, a metric matrix Mp and its associated inner product
are typically endowed for each p. To contrast it with the Legendre duality introduced
later, we briefly outline it here. For an edge-weighted graph Gk± and for the case that
k+ = k− = k ∈ RNe

>0, M0 = I and M1 = diag[1/k] are conventionally employed.
With these metric matrices, the graph Laplacian introduced in Eq.5 can be described
as

Lk = divBM
1gradBM0 (21)

where Mp := M−1
p . By including such metric information, the following pair of

metric gradient and divergence is often used in graph theory and network theory:
gradM := √

M1BT and divM := B
√
M1 where

√
M1 := diag[√k]. This symmetric

graph Laplacian Lk induces a linear dynamics of x ∈ RNv on graph via Eq.630:

ẋ = −Lkx. (22)

The eigenvalues and eigenvectors of Lk enable us to obtain spectral information of
the underlying graph [92]. Even for nonlinear dynamics on a hypergraph as in Eq.14,
the same symmetric Laplacian can provide some information when k+ = k− = k.
We can also include other information in the metric matrices such as the degree of
vertices [110]. Various normalizations of the graph Laplacian can be attributed to the
choice of metrics.

29 These notations are consistent with those in Sect. 2
30 Here x is not density but a vector in RNv .
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However, such a choice of metric matrices ends up only with linear dynamics on
RNv and is relevant only when the weighting is symmetric: k+ = k− = k. In addition,
it may not always capture important aspects of the density dynamics such as gradient
flow properties and information–theoretic properties, because nonlinear terms such
as ln p appear in information–theoretic quantities. To extend the class of dynamics
being covered and to enable the information-geometric characterization of dynamics,
we have to generalize the conventional inner product structure by replacing it with the
Legendre dual structure induced by convex functions.

4 Dually flat spaces on vertices and edges and generalized flow

In this section, we introduce two pairs of dually flat spaces (Fig. 1): one is associated
with the vertex spaces, i.e., the dual spaces of 0-chains and 0-cochains. The other
corresponds to the edge spaces, i.e., the dual spaces of 1-chains and 1-cochains. By
combining them, the dynamics on graphs and hypergraphs are characterized as a
generalized flow.

4.1 Dually flat spaces on vertices and thermodynamic functions

Wework on the density x and the vertex space for CRN because its reduction to rLDG
is straightforward. For a probability vector p, the introduction of dually flat spaces of p
and ln p is natural from the information-geometric viewpoint. In CRN, x is the vector
of concentrations of molecular species. As we recently clarified [48], the dually flat
spaces, in this case, result from the Legendre duality between extensive and intensive
variables in thermodynamics, which is also natural from the physical viewpoint.

Definition 11 (Density space (primal vertex affine space)) The density space (also
called primal affine vertex space) is the positive orthant X := RNX

>0 of a vector space
RNX , which is isomorphic to C0(H); RNX � C0(H) (Fig. 1, lower left).

Remark 4 The density space X is defined as the positive orthant rather than as RNX≥0 .
This excludes the cases where some elements of x become 0. From the viewpoint of
information geometry, this restriction is necessary to consider densities with the same
support (all x in X should be equivalent in terms of absolute continuity of measures).
From the viewpoint of dynamical systems, depending on the specific functional form
of the flux j(x), the trajectory x(t) may not be restricted within X . The property
x(t) in X for t ∈ [0,∞] is known as persistence.31 Without going into this intricate
problem, we simply assume that x(t) ∈ X for t ∈ [0,∞]. We call ∂X := RNX≥0 \X the
boundary of X .

We define the dual of the density space by the Legendre transformation via the ther-
modynamic function:

31 The persistence of a dynamical system is a hard problem, and the persistence for a subclass of CRN is
an open problem [111, 112], which goes by the name of Global Attractor Conjecture since 1974.
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Definition 12 (Primal thermodynamic function) A strictly convex differentiable func-
tion� : X → R is called the primal thermodynamic function3233 if the following two
conditions are satisfied: (1) the associated Legendre transformation

∂� : X → RNX (23)

x �−→ y := ∂x�(x) =
(

∂�(x)

∂x1
, · · · ,

∂�(x)

∂xNX

)T

(24)

has the image Y := { y| y = ∂�(x), x ∈ X } being equal to RNX , i.e., Y = RNX ; (2)
for any xin ∈ X and any point on the boundary xbd ∈ ∂X ,

lim
λ→+0

d�(xλ)

dλ
= −∞ (25)

holds where xλ := λxin + (1− λ)xbd for λ ∈ [0, 1].
Definition 13 (Potential space (dual affine vertex space) and dual thermodynamic
function) The potential (field) space Y = RNX (also called the dual affine vertex
space) is an affine space dual to X with the associated vector space C0(H)((Fig. 1,
upper left)).34 The dual thermodynamic function�∗ : Y → R is theLegendre-Fenchel
conjugate of the primal thermodynamic function:

�∗ : Y → R, y �→ �∗( y) := max
x′∈X

[〈x′, y〉 −�(x′)
]
, (26)

where 〈·, ·〉 : X × Y → R is the bilinear pairing under the standard basis. From
the properties of the primal function, �∗( y) is also a strictly convex differentiable
function. From �∗( y), we have the inverse Legendre transformation ∂�∗ : Y →
X , y �→ x = ∂ y�

∗( y).

The Legendre transformations, ∂� and ∂�∗, are continuous and establish a bijection
betweenX and Y , where ∂�∗ = ∂�−1. In the following, we regard a pair (x, y) with
the same decoration as a Legendre dual pair satisfying y = ∂�(x). For a pair, the
Legendre-Fenchel-Young identity holds:

�(x)+�∗( y) = 〈x, y〉. (27)

32 In information geometry, the convex function inducing duality is often called a potential function. We
avoid using the word “potential” to discriminate it with an element of the dual vertex affine space, which is
called a potential (field) or chemical potential in physics and chemistry.
33 We may consider a convex function �(x), which does not induce a bijection between X and Y , e.g.,
the one which is not strictly convex. Such a situation can arise if a phase transition occurs. It would be an
important direction to include this class of functions in this framework.
34 Y is not only associated with but also isomorphic to the 0-cochain. This condition is important when
we consider information-geometric projections in the later sections. In the theory of differential forms, a
0-form is often described as a potential field on a manifold. Our choice of the potential space is consistent
with this convention.
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Different pairs are discriminated with the difference of decorations as (x′, y′) or
(x p, yp).

For a thermodynamic function, the Bregman divergence can be defined:

Definition 14 (Bregman divergence [1, 113]) The Bregman divergence on X with the
generating thermodynamic function �(x) is defined as

DX
� [x‖x′] := �(x)−�(x′)− 〈x − x′, ∂�(x′)〉 ∈ R≥0. (28)

The non-negativity of the Bregman divergence follows from the Fenchel-Young
inequality for products [114, 115]. Furthermore, from the strict convexity of the
thermodynamic function, DX

� [x‖x′] is also strictly convex with respect to x and
DX

� [x‖x′] = 0 if and only if x = x′. Bregman divergences are defined for ( y, y′) and
also for (x, y′) as

DY
�∗ [ y′‖ y] := �∗( y′)−�∗( y)− 〈∂�∗( y), y′ − y〉, (29)

DX ,Y
�,�∗ [x; y′] := �(x)+�∗( y′)− 〈x, y′〉. (30)

Because (x, y) and (x′, y′) are Legendre pairs, all the three representations are equiv-
alent35: DX

� [x‖x′] = DY
�∗ [ y′‖ y] = DX ,Y

�,�∗ [x; y′].36 DX
� [x‖x′], DY

�∗ [ y′‖ y], and
DX ,Y

�,�∗ [x; y′] are abbreviated asDX [x‖x′],DY [ y′‖ y], andDX ,Y [x; y′], respectively.
Finally, the Hessian matrices of the primal and dual thermodynamic functions are

defined when they are twice differentiable37:

Definition 15 (Hessian matrices) The primal and dual Hessian matrices, Gx ∈
RNv×Nv andG∗

y ∈ RNv×Nv , of thermodynamic functions,�(x) and�∗( y), are defined
as

(Gx)i, j := ∂2�(x)

∂xi∂x j
, (G∗

y)i, j :=
∂2�∗( y)
∂ yi∂ y j

. (31)

In addition, they are positive definite and G−1
x = G∗

y holds for a Legendre dual pair
x and y.

The Hessian matrices induce a Riemannian metric over X . The tangent and cotangent
spaces TxX and T ∗

x X are isomorphic to the corresponding tangent and cotangent
spaces T ∗

y Y and T yY over Y and also to C0(H) and C0(H): TxX ∼= T ∗
y Y ∼= C0(H)

and T ∗
x X ∼= T yY ∼= C0(H).

The typical example of the duality between x and y in statistics is that between
probability p and its logarithm ln p. Other than this typical one, depending on the pur-
pose, we adopt different forms of thermodynamic functions (�(x),�∗( y)), associated
dual variables, and Bregman divergence to endow different properties to inference or

35 DX ,Y
�,�∗ [x; y′] is also called Fenchel-Young divergence [116].

36 We here used the Legendre-Fenchel-Young identity (Eq.27).
37 When we work on Hessian matrices, we always suppose additionally that they are twice-differentiable.
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estimation methods that we are designing [1]. In the case of CRN, the thermodynamic
functions and Legendre duality are associated with the equilibrium thermodynamics
[117]. Specifically, aswe recently demonstrated [48],X andY are the conjugate spaces
of the extensive and intensive thermodynamic variables (density ofmolecules and their
chemical potential), �(x) is the thermodynamic potential function of the system, and
the Bregman divergence becomes the difference of the total entropy. These correspon-
dences are derived directly from the axiomatic formulation of thermodynamics [48,
117]. The explicit functional form of �(x) is then determined by the physical details
of the thermodynamic system that we work on.

Before closing this subsection, we introduce the notion of separability, which will
be linked to the locality of the flux.

Definition 16 (Separability of a thermodynamic function) A thermodynamic function
�(x) is separable if it can be represented as

�(x) =
Nv∑
i=1

ciφ(xi/x
o
i ), (32)

where ci > 0, xoi > 0, and φ(x) : R>0 → R is a scalar primal thermodynamic
function.

If �(x) is separable, then its conjugate �∗( y) is also separable as �∗( y) =∑Nv
i=1 ciφ∗(

xoi
ci
yi ) where φ∗(y) : R → R is the Legendre conjugate of φ(x).38 If

a thermodynamic function is separable, then the corresponding Bregman divergence
is separable. The Hessian matrices become diagonal for a separable thermodynamic
function. Most of our results can hold without the separability, but common thermo-
dynamic functions and related quantities are typically separable. For example, the
Kullback-Leibler divergence is an example of separable Bregman divergences.

4.2 Dually flat spaces on edges and dissipation functions

Next, we introduce another dually flat structure onto the edge space of graphs and
hypergraphs based on the flux-force relation.

Definition 17 (Fluxand force spaces (primal anddual edge spaces)) Thefluxand force
spaces on the edges,Jx = RNe andFx = RNe , are a pair of the primal and dual vector
spaces defined for each x ∈ X ,which are isomorphic toC1(H) andC1(H), respectively
(Fig. 1, right). The bilinear pairing under the standard basis 〈·, ·〉 : C1(H)×C1(H) → R
is inherited to (Jx,Fx).

To introduce Legendre duality on (Jx,Fx), we use the dissipation functions:

Definition 18 (Dissipation function39) A dissipation function on Fx , �∗
x : Fx →

R, f �→ �∗
x( f ), is a strictly convex and continuously differentiable function with

38 One may further generalize the separability so that φ(x) depends on i as φi (x).
39 The definition of dissipation functions is more strict than those used in the previous works, e.g., [75].
This is because we define extended projections in this space as in [83].
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respect to f for all x ∈ X that also satisfies the following additional conditions:

1-coercive:
�∗

x( f )
‖ f ‖ → ∞ as ‖ f ‖ → ∞, (33)

Symmetric: �∗
x( f ) = �∗

x(− f ) (34)

Bounded below by 0 : �∗
x(0) = 0, (35)

Proposition 1 (Duality of dissipation functions) The Legendre-Fenchel conjugate of
�∗

x( f ), i.e., �x( j) := max f
[〈 j , f 〉 −�∗

x( f )
]
, is also the dissipation function on

Jx . �x( j) and �∗
x( f ) are called primal and dual dissipation functions.

Proof For each x ∈ X , the function �x( j) is strictly convex, continuously dif-
ferentiable, 1-coercive, and �x( j) < +∞ for all j ∈ Jx because �∗

x( f ) is (
see Corollary 4.1.4 in [118]). For j ∈ Jx , the symmetry holds as �x(− j) =
max f

[〈− j , f 〉 −�∗
x( f )

] = max f
[〈 j ,− f 〉−�∗

x( f )
]=max f

[〈 j , f 〉−�∗
x(− f )

]
= max f

[〈 j , f 〉 −�∗
x( f )

] = �x( j). From the convexity and symmetry, the
minimum of �x( j) is attained at j = 0 and min j �x( j) = �x(0) =
max f

[〈0, f 〉 −�∗
x( f )

] = −min f �∗
x( f ) = 0. ��

From these properties, for each x ∈ X , the one-to-one Legendre duality via Leg-
endre transformations is established for all over (Jx,Fx):

j = ∂ f �
∗
x( f ), f = ∂ j�x( j). (36)

In the following, we abbreviate the Legendre transformations as ∂ f �
∗
x( f ) = ∂�∗

x( f )
and ∂ j�x( j) = ∂�x( j) 40. Similarly to the Legendre dual pair (x, y) in X and Y , a
pair of flux and force with the same decoration, e.g., ( j , f )x or ( j0, f 0)x , represents
a Legendre dual pair linked by Eq.36 at x. We omit the x-dependency for simplicity.
The Legendre dual pair ( j , f ) satisfies the Legendre-Fenchel-Young identity for each
x ∈ X :

�∗
x( f )+�x( j)− 〈 j , f 〉 = 0. (37)

Furthermore, the additional conditions of dissipation functions enable the Legendre
duality to work as an extension of a Riemannian metric structure:

Proposition 2 ([75]) The Legendre transformations satisfy the following properties:

Pairing of 0 ∈ J and 0 ∈ F : 0 = ∂�∗
x(0), 0 = ∂�x(0) (38)

Symmetry:− f = ∂�x(− j), − j = ∂�∗
x(− f ). (39)

Nonnegativity of bilinear pairing:〈 j , f 〉 = �∗
x( f )+�x( j) ≥ 0. (40)

Thefirst propertymeans that zero force f = 0 and zeroflux j = 0 are alwaysLegendre
dual regardless of x, and the second one indicates that if ( j , f ) is a Legendre dual

40 We do not use differentiation of �∗
x( f ) and �x( j) with respect to x in this work.
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pair, then (− j ,− f ) is as well.41 The third property, as well as the nonnegativity of
the dissipation functions, enables them to play the similar roles to the metric-induced
norm in Riemannian geometry.42

With the dissipation functions, �x( j) and �∗
x( f ), we now have the second dually

flat structure on the edge spaces (Jx,Fx). On these dually flat spaces, we define the
Bregman divergence and Hessian matrices:

Definition 19 (Bregman divergence and Hessian matrices on the edge spaces) For
each x ∈ X , the Bregman divergence between j ∈ Jx and f ′ ∈ Fx is defined as

DJ ,F
x [ j; f ′] := �x( j)+�∗

x( f
′)− 〈 j , f ′〉. (41)

DJ
x [ j‖ j ′] and DF

x [ f ‖ f ′] are also defined analogously to the Bregman divergence
on the vertex space (X ,Y). For a Legendre conjugate pair of twice differentiable
dissipation functions, the Hessian matrices, Gx, j and G∗

x, f , are defined as

(Gx, j )e,e′ := ∂2�x( j)
∂ je∂ je′

, (G∗
x, f )e,e′ :=

∂2�∗
x( f )

∂ fe∂ fe′
. (42)

These matrices are positive-definite.

The Legendre dual structure via the dissipation functions provides an extension of
a Riemannian metric structure in the following sense. If the dissipation function is a
quadratic function, i.e., a positive definite quadratic form as

�
q,∗
x ( f ) := 1

2
〈 f , M∗

x f 〉, (43)

where M∗
x is a positive definite Ne × Ne matrix, the Legendre transformation is

reduced to the linear mapping j = ∂�
q,∗
x ( f ) = M∗

x f 43. Then, the bilinear pairing,
〈 j , f ′〉 = 〈 j , Mx j ′〉 = 〈M∗

x f , f ′〉, becomes the inner product under the metric
matrix Mx where Mx = (M∗

x)
−1. The dissipation functions are associated with the

induced norms: �∗
x( f ) = 1

2‖ f ‖2M∗
x
, �x( j) = 1

2‖ j‖2Mx
. The Bregman divergence

is reduced to the norm-induced squared distance: DJ ,F
x [ j; f ′] = 1

2‖ j − j ′‖2Mx
=

1
2‖ f − f ′‖2M∗

x
.

Finally, we also introduce the notion of separability to the dissipation functions:

41 From the physical point of view, these conditions are consistent with the thermodynamic requirement
that, if the force is zero, the corresponding flux becomes zero, and vice versa and that a sign-reversed force
induced the sign-reversed flux.
42 In the context of thermodynamics, the nonnegativity of 〈 j , f 〉 is linked to the nonnegativity of the
entropy production rate and thus the second law of thermodynamics.
43 This correspondence illustrates that the dependency of �

q,∗
x ( f ) on x is a formal generalization of the

Riemannian metric. But for this case, the relevant state space for x is not the positive orthant but the vector
space RNv .

123



Information geometry of dynamics on graphs and hypergraphs

Definition 20 (Separability and locality of dissipation functions) A dissipation func-
tion �∗

x( f ) is separable if it can be represented as

�∗
x( f ) =

Ne∑
e=1

ωe(x)ψ∗( fe/ f oe (x)), (44)

where ωe(x) > 0 and f oe (x) > 0 for x ∈ X are positive weights and ψ∗( f ) : R→ R
is a scalar dissipation function, i.e., a strictly convex differentiable scalar function
satisfying Eq.34, Eq.35, and Eq.33. If ωe(x) and f oe (x) are additionally local, then
the dissipation function is separable and local. If �∗

x( f ) is separable, then its dual
�x( j) is also separable. The same is true for the locality.

Remark 5 (Young functions and N functions) The scalar dissipation function is a N
function, which appears in the theory of Orlicz spaces. A function ψ̃( j) : [0,∞) →
[0,∞] represented as ψ̃( j) = ∫ j

0 ς( j ′)d j ′ is called Young function where ς( j) :
[0,∞) → [0,∞] is a non-decreasing function satisfying ς(0) = 0 and being left-
continuous on (0,∞). If ς( j) additionally satisfies 0 < ς( j) < +∞(0 < j < ∞),
lim j→+0 ς( j) = 0, and lim j→∞ ς( j) = +∞, then ψ̃( j) is called anN-function. Ifwe
define a functionψ( j)with aN-function ψ̃( j) asψ( j) = ψ̃(| j |), this becomes a scalar
dissipation function [119]. A separable dissipation function (Eq.44) is often called
a weighted N-function [120, 121]. The dissipation function and induced Legendre
duality are, therefore, related to Birnbaum-Orlicz spaces, which are an extension of
L p spaces.

4.3 Generalized flow on graphs and hypergraphs and its steady state

Because of the one-to-one Legendre duality between ( j , f )x , the continuity equation
(Eq.10) can be represented as a generalized flow driven by the force f (x) dual to
j(x) [77]:

Definition 21 (Generalized flow) A curve x(t) is a generalized flow on H driven by
force f (x) under the dissipation function �∗

x if it can be represented as

ẋ = −divS j(x) = −divS∂�∗
x [ f (x)]. (45)

This representation is independent of the specific functional form of f (x) and �∗
x( f )

and also on the definition of divS as long as the generated j(x) is consistent with
H44,45. Thus, we can potentially apply this framework to various systems by choosing
these functions appropriately depending on the system or the problem we work on.

The generalized flow naturally encompasses three types of steady states:

Definition 22 (Steady state, complex-balanced state, and detailed-balanced state)We
define the manifolds of steady state MST, complex-balanced (CB) state MCB, and
detailed-balanced (DB) state MDB, respectively, as follows:

44 The consistency is required because of our choice of R
NX≥0 as the density space.

45 The consistency with H is assumed to hold.
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MST := {x ∈ X |S j(x) = 0}, (46)

MCB := {x ∈ X |B j(x) = 0}, (47)

MDB := {x ∈ X | j(x) = 0} = {x ∈ X | f (x) = 0}, (48)

where we used j(x) = 0 iff f (x) = 0 from the properties of the dissipation functions.
The relations j(x) = 0 and B j(x) = 0 are called the detail-balanced (DB) condition
and the complex-balanced (CB) condition, respectively. From the decomposition S =L
B, an inclusion relation holds: MDB ⊆ MCB ⊆ MST. It should be noted that,

depending on the details of j(x), these manifolds can be empty.

A steady state is a state at which ẋ = 0 holds. The DB condition j(x) = 0 means
that all the fluxes are zero at x. In other words, all the forward and reverse fluxes are
balanced at x, i.e., j+e (x) = j−e (x). The CB condition is equivalent to the balance
of all influx and outflux at each hypervertex of H. As we will see later, DB states are
tightly linked to the equilibrium state and equilibrium flow. The CB state is relevant
as an extension of the equilibrium state to nonequilibrium flows.

4.4 Generalized gradient flow and De Giorgi’s formulation

When f (x) can be represented as a gradient, i.e., f (x) = gradS∂F(x) of a function
F(x) ∈ R on the density space, Eq.45 is reduced to the generalized gradient flow of
F(x).

Definition 23 (Generalized gradient flow) x(t) is a generalized gradient flow when it
is a generalized flow driven by a gradient force of F(x), i.e., f (x) = gradS∂F(x)

and

ẋ = −divS j(x) = −divS∂�∗
x [gradS∂F(x)]. (49)

The following proposition ensures that the generalized gradient flow behaves like the
conventional gradient flow:

Proposition 3 (F(x) is non-increasing along the trajectory of generalized gradient
flow) For a trajectory {xt }t∈[0,τ ] of the generalized gradient flow of F(x), F(xt ) is
always decreasing except at the DB states MDB. In addition, all the steady states of
the generalized gradient flow are the DB states, i.e., MST =MDB46.

Proof F(xt ) is non-increasing over time as follows:

Ḟ(xt ) = 〈ẋ,∂xF(x)〉=−〈divS∂�∗
x [ f (x)],∂xF(x)〉

= −〈∂�∗
x [ f (x)], gradS∂xF(x)〉

= −〈 j(x), f (x)〉 = − (
�x[ j(x)] +�∗

x [ f (x)]) ≤ 0, (50)

where Eq.40 is used. The equality holds iff f (x) = gradS∂F(x) = 0 because
�∗

x [ f (x)] = �x[ j(x)] = 0 iff f (x) = j(x) = 0. Thus, Ḟ(xt ) = 0 iff xt ∈ MDB.
Because ẋt = 0⇒ Ḟ(xt ) = 0, MST =MDB. ��
46 MST =MDB = ∅ can hold, e.g., when F(x) is a strictly monotonous function.
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It should be noted that, even if F(x) has a single minimum, the steady state xst :=
limt→∞ x(t)may not be theminimum, because Ḟ(xt ) = 0 holds for any x ∈MDB.47

The generalized gradient flow of this form (Eq.49) was devised in the process to
extend the conventional gradient flow to metric spaces [122, 123].48 Furthermore,
dissipation functions have been recognized since the seminal work of Onsager [124–
126]. However, only quadratic dissipation functions have been investigated until very
recently [75–82]. This may be partly because we lack an adequate geometric language
to handle the non-quadratic cases, i.e., information geometry. Actually, if the dissi-
pation function is quadratic �

q,∗
x [ f ] as in Eq.43, then the generalized flow (Eq. 45)

formally reduces to the flow on a Riemannian manifold with the metric (SM∗
xS

T )−1.
The non-negativity of Ḟ(xt ) is essentially attributed to the fact that Ḟ(xt ) =

−〈 j(x), f (x)〉 holds in Eq.50 for the generalized gradient flow. The converse also
holds.

Proposition 4 (De Giorgi’s formulation of generalized gradient flow [75, 79]) Let xt
be a generalized flow induced by a force f (x). xt is the generalized gradient flow of
F(x) iff

Ḟ(xt ) = −〈 j(x), f (x)〉 = − (
�x[ j(x)] +�∗

x [ f (x)]) . (51)

holds. The integral form of Eq.51,

F(x0)− F(xt ) =
∫ t

0

[
�∗

xt ′ ( f (xt ′))+�xt ′ ( j(xt ′))
]
dt ′, (52)

is called De Giorgi’s (�,�∗)-formulation of generalized gradient flow.

Proof For a generalized flow xt driven by force f (x) as in Eq.45 and for any F(x),
the following inequality holds:

Ḟ(xt ) =
〈
ẋ,

∂F(xt )
∂x

〉
=

〈
− j(xt ), gradS

∂F(xt )
∂x

〉
(53)

= − [
�xt ( j(xt ))+�∗

xt ( f
′(xt ))

]
+DJ ,F

xt [ j(xt ); f ′(xt )] (54)

≥ − [
�xt ( j(xt ))+�∗

xt ( f
′(xt ))

]
, (55)

where we define f ′(x) := gradS∂F(x). The last inequality becomes an equality if
and only if f ′(xt ) is the Legendre dual of j(xt ),49 i.e.,

DJ ,F
xt [ j(xt ); f ′(xt )] = 0⇐⇒ j(xt ) = ∂�∗

xt [ f ′(xt )] (56)

47 In addition, there exists the possibility that x(t) converges to the boundary of X .
48 The metric here means a general metric, which is not restricted to one associated with the inner product.
49 These inequality and equality conditions are usually derived by using Cauchy-Schwarz inequality [127].
From the information-geometric framework, they are trivially attributed to the non-negativity of Bregman
divergence.
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Thus, Eq.51 holds only when xt is the generalized gradient flow of F(x). ��
De Giorgi’s formulation is a well-established approach for defining gradient flow in
metric spaces [122].

4.5 Equilibrium and nonequilibrium flow

In this work, we mainly focus on the case that F(x) = DX
� [x‖x̃] where DX

� is the
Bregman divergence associated with a thermodynamic function �.

Definition 24 (Equilibrium force, equilibrium flux, and equilibrium flow) The force
generated by the gradient of Bregman divergence associated with a thermodynamic
function� is called the (thermodynamic) equilibrium force, and the following equation
is denoted as the thermodynamic gradient equation:

f (x) = gradS∂DX
� [x‖x̃], (57)

where x̃ ∈ X is a parameter. The dual of f (x), i.e., j(x) = ∂�∗
x[ f (x)], is called the

equilibrium flux: A generalized flow x(t) is an equilibrium flow if it is driven by the
equilibrium force:

ẋ = −divS∂�∗
x [gradS∂DX

� [x‖x̃]]. (58)

Using the relation ∂DX
� [x‖x̃] = ∂�(x)− ỹwhere ỹ = ∂�(x̃), Eq. 58 can be rewritten

as

ẋ = −divS
[
∂�∗

x
[
gradS {∂�(x)− ỹ}]] , (59)

which explicitly shows the contribution of both the thermodynamic function and the
dissipation function to the dynamics (Fig. 3a).

Various properties of the equilibrium flow (Eq.58) can be obtained from the doubly
dual flat structure as we will see in the following sections. In addition, the equilibrium
flow captures the properties that the dynamics of thermodynamic equilibrium systems
should have. In this sense, the equilibrium flow is the mathematical representation of
the dynamics of equilibrium systems.

Beyond the gradient equilibrium flow, we also consider the non-gradient nonequi-
librium flow of the following type:

Definition 25 (Nonequilibrium force and nonequilibrium flow) The force generated
by a shift of the equilibrium force

f (x) = gradS∂DX
� [x‖x̃] + f NE , (60)

is called nonequilibrium force if f NE /∈ Im[ST ].50 If the shift f NE satisfies f NE ∈
Im[ST ], then f (x) is reduced to the equilibrium force f NE = 0 by appropriately

50 In physics, such f NE can be identified with a nonequilibrium force applied externally to the system.
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Parameter (external effect)(a) (b) Parameter (external effect)

Fig. 3 Schematic representation of the equilibrium (a) and nonequilibrium flow (b)

changing x̃. The nonequilibrium flow is the flow induced by the nonequilibrium force
(Fig. 3b):

ẋ = −divS∂�∗
x

[[
gradS∂xDX

� [x‖x̃]
]
+ f NE

]
. (61)

In the next section, we show that this equation can cover a sufficiently wide class of
models, e.g., all types of rLDG and CRN with extended LMA kinetics. Equation61
can also be associated with nonequilibrium dynamics with a constant environmental
force. The techniques in information geometry, Hessian geometry, and convex analysis
enable us to investigate such non-gradient dynamics.

Remark 6 (Variational modeling [128]) We introduced and characterized dynamics
based on the thermodynamic functions anddissipation functions.Whilewe employed a
restricted definition in order to link dynamics to information geometry, wemay further
generalize this approach by appropriately choosing the state space, f (x), �∗

x( f ), and
divS. For example, we may consider a x-dependent and noninteger-valued matrix
for S(x). The equilibrium flow may not be restricted to F(x) = DX

� [x‖x̃], and the
nonequilibrium flow may be defined for x-dependent f NE (x). This type of approach
for modeling dissipative dynamics has been known as variational modeling.

Before closing this section, wemention that the existence of DB states, i.e.,MDB �= ∅,
is necessary and sufficient for a nonequilibrium flow to be an equilibrium flow.

Proposition 5 (Detailed balance condition and equilibrium flow) Consider a flow
given by Eq.61. IfMDB �= ∅, then the flow is equilibrium, i.e., f NE ∈ ImST .

Proof MDB �= ∅ means that there exists xDB satisfying j(xDB) = 0. Then we have
j(xDB) = 0 ⇔ f (xDB) = 0. If f NE /∈ Im[ST ], f NE �= 0 and thus f (x) �= 0 for
all x ∈ X . Thus, f NE ∈ Im[ST ] ifMDB �= ∅.
The necessity follows basically from Prop. 3, but we have to show MST �= ∅. This
will be shown in the following section (Lemma1).

5 Explicit form of thermodynamic and dissipation functions

Before investigating the dynamics of the equilibrium (Eq.58) and nonequilibrium
(Eq.61) flows, we show how the flows can be associated with the dynamics on graphs

123



T. J. Kobayashi et al.

and hypergraphs via specific forms of the thermodynamic and dissipation functions.
The forms of functions depend on the functional form of the flux that we assume:
Eq.3 for rLDG, Eq.12 for CRN with LMA kinetics, and Eq.18 for FPE. It should
be noted that the choice of the thermodynamic function and the dissipation function
is not unique for a given dynamics in general. Depending on the purpose, we should
choose or find an appropriate set of functions.

5.1 Explicit form of thermodynamic functions for rLDG and CRN

For rLDG (Eq.3) and CRN with LMA kinetics (Eq. 12), the following pair of thermo-
dynamic functions is particularly relevant51:

�(x) := [
ln x − ln xo − 1

]T x =
NX∑
i=1

[
ln

xi
xoi
− 1

]
xi ,

�∗( y) := (xo)T e y =
NX∑
i=1

xoi e
yi , (62)

which induce the following Legendre transformation:

y = ∂�(x) = ln x − ln xo, x = ∂�∗( y) = xo ◦ e y. (63)

Here, Y = RNX , and xo ∈ X is a parameter determining the point in X that is associ-
ated with the origin of Y via the Legendre transformation. For these thermodynamic
functions, the Bregman divergence is reduced to the generalized Kullback-Leibler
divergence.

DX [x‖x′] =
(
ln

x
x′

)T
x − 1T (x − x′). (64)

These thermodynamic functions and the generalized KL divergence are separable.
If we choose xo = 1, then the conventional dual representation for the probability

density p on a discrete space is recovered:

�( p)= [
ln p−1

]T p, �∗( y) = 1T e y,

y= ∂ p�( p)= ln p, p= ∂ y�
∗( y) = e y. (65)

51 For CRN, these forms of the thermodynamic functions are derived from the conventional thermody-
namics of ideal gas or dilute solution with non-reactive solvent [48]. Mathematically, we may employ
other functions as we introduce different information geometric structures onto a family of probabilities
depending on the purpose. Such exploitation is an interesting open problem.
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In this case, Y is the space of the logarithm of p. These representations hold even if
p is not a probability density. If p satisfies 1T p = 1, the generalized KL divergence

becomes the normal KL divergence DX [ p‖ p′] =
(
ln p

p′
)T

p.52

5.2 Explicit form of dissipation functions for rLDG and CRN

To determine the dissipation functions, we need the definition of force, which may
depend on the phenomena and purpose.53 In physics, the flux-force relations, which
are also called constitutive equations [129], are central because they determine what
kind of change is induced by an incurred force.54 For rMJP and CRNs, the flux and
force are conventionally defined using the one-way fluxes, j+(x) and j−(x) as

j = j+ − j−, f = ln j+ − ln j−, (66)

where the dependency of j±(x) on x is abbreviated for notational simplicity. In
physics, assuming this formof force-flux relation goes by the name of the local detailed
balance (LDB) assumption,55 or the generalized detailed balance assumption.56 By
defining the frenetic activity [132]:

ω := 2
√

j+ ◦ j− ∈ RNe≥0, (67)

we have a relation j = ω ◦
[
exp( f /2)−exp(− f /2)

2

]
. For a fixed ω, this relation between

the pair ( j , f ) is a one-to-one Legendre duality induced by the following specific
form of dissipation functions:

�∗
ω( f ) := 2ωT [

cosh( f /2)− 1
]
,

�ω( j) := 2ωT

⎛
⎝diag

[
j
ω

]
sinh−1

(
j
ω

)
−

⎡
⎣
√
1+

(
j
ω

)2

− 1

⎤
⎦
⎞
⎠ ,

(68)

which lead to the Legendre transformation:

j = ∂�∗
ω( f ) = ω ◦ sinh( f /2), f = ∂�ω( j) = 2 sinh−1

(
j
ω

)
. (69)

52 As we will see later, the condition 1T p(t) = 1 need not be assumed but is automatically satisfied due
to the topological constraint of the graph and the initial condition 1T p(0) = 1 when we work on rMJP.
53 This is parallel to the problem of how to define the dual of x. The choice of logarithm is contingent on
the domain and knowledge of physics and statistics.
54 Some relations were obtained empirically through experiments and others were computed theoretically
from microscopic models.
55 LDB assumption is different from the DB condition in Def. 22.
56 The validity of LDB was shown for rMJP and CRN with LMA kinetics via large deviation theory for
the corresponding microscopic Markovian models or via its consistency with the macroscopic chemical
thermodynamics [130, 131].
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Wecan easily verify that these functions satisfy the conditions for dissipation functions,
i.e., Eq. 34, Eq.35, and Eq.33.

For the flux jMA(x) of LMA kinetics (Eq.12), the force and activity become57

fMA(x; K ) =
[
ln K + ST ln x

]
, ωMA(x; κ) = 2κ ◦ x[

L
(B++B−)]T /2. (70)

wherewe introduced a transformation of the kinetic parameters (k+, k−) into the force
part K and activity part κ as κ := √

k+ ◦ k− and K := k+/k−.58 Because k± =
κ◦K±1/2 holds, (κ, K ) has the same information as (k+, k−).Moreover,we can verify
that the force and activity are dependent only on K and κ , respectively. The dissipation
functions of the forms above and their relations to rLDG and CRN were derived from
the large deviation function of the corresponding microscopic stochastic models [75,
133]. Actually, the Bregman divergence DJ

x [ j; jMA(x)] of the dissipation functions
is identical to the rate function of the flux for rMJP and CRN. Thus, these dissipation
functions are keystones connecting macroscopic and microscopic dynamics.

If there exists ỹ satisfying −ST ỹ = ln K , i.e., ln K ∈ ImST , the force in Eq.70 is
represented as

fMA(x; K ) = gradS
(
ln

x
x̃

)
= gradS∂xDX [x‖x̃] ∈ ImST , (71)

where x̃ is the Legendre conjugate of ỹ.59 Thus, CRN (and rMJP) is an equilibrium
flow of the generalized KL divergence DX [x‖x̃] when the parameter K satisfies
ln K ∈ ImST . In chemistry, the condition ln K ∈ ImST is called Wegscheider’s
equilibrium condition [47, 134], and the CRN satisfying this parametric condition is
called equilibrium CRN.60 Even if ln K ∈ ImST is not satisfied, we can represent
ln K = −ST ỹ + f NE with f NE /∈ ImST . The force in Eq.70 is always represented
as

fMA(x; K ) = gradS
(
ln

x
x̃

)
+ f NE =

[
gradS

[
∂xDX [x‖x̃]

]
+ f NE

]
, (72)

which leads to the nonequilibrium flow (Eq.61). Thus, CRN with LMA kinetics as
well as rLDG are generally within the class of Eq.61.

57 The dissipation functions in Eq.68 and the induced Legendre transformation in Eq.69 are not necessarily
restricted to these particular types of force and activity. Actually, the extended LMA kinetics (Eq.13) can
also be represented by replacing ωMA(x) with ωeMA(x) = g(x) ◦ωMA(x). Thus, Eq.68 could be applied
to a wider class of kinetics than Eq.12.
58 For CRN, K is referred as the equilibrium constant in chemistry.
59 It should be noted that, while ỹ is not uniquely determined by K in general, it does not cause problems.
This is clarified in the following section (Sect. 8) by introducing appropriate affine subspaces.
60 Historically, the equilibrium chemical systems were characterized by macroscopic thermodynamics.
The equilibrium condition was derived as the necessary and sufficient condition that the flux of the LMA
kinetics (Eq.12) should satisfy to have consistent properties with the thermodynamic equilibrium systems.
It was found only recently that the equilibrium properties are mathematically attributed to the generalized
gradient flow structure.
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Example 2 (Simplified Brusselator CRN [8, 104] (continued)) For the Brusselator
CRN introduced in Ex. 1, the force and activity defined in Eq.70 can be explicitly
represented as

f (x) =

ln K︷ ︸︸ ︷⎛
⎝ln(k+1 /k−1 )

ln(k+2 /k−2 )

ln(k+3 /k−3 )

⎞
⎠+

ST ln x︷ ︸︸ ︷⎛
⎝ − ln x1
ln x1 − ln x2
ln x2 − ln x1

⎞
⎠,

ω(x) = 2

κ︷ ︸︸ ︷⎛
⎜⎜⎜⎝

√
k+1 k

−
1√

k+2 k
−
2√

k+3 k
−
3

⎞
⎟⎟⎟⎠ ◦

x[
L

(B++B−)]T /2︷ ︸︸ ︷⎛
⎜⎝
√
x1√
x1x2√
x51 x2

⎞
⎟⎠ . (73)

Remark 7 (Wegscheider’s equilibrium condition and Detailed balance condition)
Whilewedefined equilibriumflowby the specific functional formof force andobtained
Wegscheider’s equilibrium condition as the necessary and sufficient condition to have
the equilibrium force under LMA kinetics, the equilibrium dynamics is often defined
by the existence of the steady state satisfying the DB condition (Eq. 48) in CRN theory.
In addition, the DB condition is also often assumed in statistics when we design or
analyze a random walk in parameter spaces, e.g., in the Markov Chain Monte Carlo
(MCMC) simulations or in other random-walk-based optimization schemes.61 These
two are equivalent for (extended) LMA kinetics. Actually,MDB �= ∅means that there
exists xDB ∈ X such that jMA(xDB) = 0 ⇔ −ST ln xDB = ln K . From the Fred-
holm alternative, we obtain the Wegscheider’s equilibrium condition ln K ∈ ImST

for the existence of xDB .

Remark 8 (Linear graph Laplacian dynamics) The linear graph Laplacian dynamics
defined by Eq.22 can be formally regarded as a generalized flow. From the form of
the graph Laplacian (Eq.21),62 it is easy to see that Eq.22 coincides with Eq.58 if

�(x) = 1

2
〈x, M0x〉, �

∗,q
x ( f ) = 1

2
〈 f , M1 f 〉, (74)

where M0 = I , M1 = diag[k], and x̃ = 0. In contrast to rLDG, the natural state
space and the corresponding dual is X = Y = RNv .63 In [23], non-quadratic general
�(x) is considered as a class of nonlinear diffusion on a network from information
geometric viewpoint.

61 The DB condition is conventionally adopted because, for example, it makes it easy to obtain an MCMC
with a desirable stationary distribution. This nice property comes from the gradient-flow property of the
equilibrium flow.
62 It should be noted that this representation holds only when k+ = k− holds.
63 Even if we restrict the dynamics to X = Y = RNv

>0, no problem arises for defining the generalized flow
as long as we do not consider projections that we are going to introduce.
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5.3 Some remarks on the dissipation functions for rLDG and CRN

The dissipation functions in Eq.68 have several notable properties. First, they are
separable:

�∗
ω(x)( f ) =

Ne∑
e=1

ωe(x)ψ∗( fe), �ω(x)( j) =
Ne∑
e=1

ωe(x)ψ( je/ωe(x)), (75)

where

ψ∗( f ) := 2 [cosh( f /2)− 1] ∈ [0,∞), (76)

ψ( j) := 2

(
j sinh−1 ( j)−

[√
1+ j̄2 − 1

])
∈ [0,∞). (77)

and ω(x) is local: ωe(x) = 2κe
∏NX

i=1 x
(γ+i,e+γ−i,e)/2
i . The thermodynamic functions in

Eq.62 are also separable.64

Second, the scalar function ψ∗( f ) is the N-function. The N-function of the
(cosh( f ) − 1)-type and the associated Orlicz space have been employed for estab-
lishing the infinite-dimensional information geometry by Pistone [72, 135, 136]. In
functional analysis, the Orlicz space is a generalization of the L p spaces, which arise
naturally when we work on the L log+ L space for the divergences and large deviation
functions. Hence, the dissipation functions in Eq.68 are tightly related to such topics.

Third, various information geometric measures and quantities are related to the
dissipation functions in Eq.68 and also to the associated quantities as follows:

1

4
�∗

ω( f ) = 1

2

Ne∑
e=1

[√
j+e −

√
j−e

]2
=: DHel [ j+; j−]2 (78)

1

2
1Tω =

Ne∑
e=1

√
j+e j+e =: BC[ j+; j−] (79)

〈 j , f 〉 =
Ne∑
e=1

( j+e − j−e ) ln
j+e
j−e

=: DJe f [ j+; j−], (80)

where DHel [ j+; j−], BC[ j+; j−], and DJe f [ j+; j−] are the Hellinger–Kakutani
distance, the Bhattacharyya coefficient, and the Jeffreys divergence (symmetrized KL
divergence) for j+ and j−, respectively. In addition, in physics, the bilinear pairing
〈 j , f 〉 of a Legendre dual pair and its approximation using theHessianmatrix are often
referred to as the entropy production rate (EPR) �̇ and pseudo-entropy production rate
(pEPR) �̇ p, respectively [83, 137]:

64 The locality and separability may sound natural. However, from the physical viewpoint, the Onsager
matrix can have nondiagonal components, which implies nonseparable dissipation functions. In addition,
equilibrium thermodynamics does not preclude thermodynamic functions from being nonseparable.
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�̇ := 〈 j , f 〉 =
Ne∑
e=1

( j+e − j−e ) ln
j+e
j−e

. (81)

�̇ p := 〈 j ,Gω, j j〉 = 2
Ne∑
e=1

( j+e − j−e )2

j+e + j−e
, (82)

where we treat j ∈ Jx as a member of T jJx by the isomorphism: Jx ∼= T jJx ∼=
C1(H). The pEPR �̇ p is an approximation of EPR by replacing f = ∂�ω( j) with
Gω, j j and works as a lower bound of �̇: �̇ ≥ �̇ p [137]65.

Finally, the dissipation functions in Eq.68 are not the unique choice to repro-
duce the force-flux relation in Eq.66. The quadratic dissipation functions �

q,∗
x ( f ) :=

1
2 〈 f , M∗

x f 〉 in Eq.43 with the following diagonal metric tensor can reproduce the
relation in Eq.66:

M∗
x = diag

[
j+(x)− j−(x)

ln j+(x)− ln j−(x)

]
= diag

[(
j+e (x)− j−e (x)

ln j+e (x)− ln j−e (x)

)
e

]
. (83)

This type of quadratic dissipation function was proposed even earlier than the non-
quadratic ones [138–140] and has been investigated [104, 141, 142]. Its advantage is
that the induced geometry is Riemannian, and thus the information geometric argu-
ment is not necessarily required. In addition, this Riemannian geometric structure is
analogous to the formal Riemannian geometric structure of FPE and other diffusion
processes on continuous manifolds induced via the L2-Wasserstein geometry [65, 66]
(Fig. 4). Thus, this quadratic dissipation function provides a consistent extension of
these results for FPE and diffusion processes to graphs and hypergraphs. Neverthe-
less, the doubly dual flat structure with the non-quadratic dissipation functions that
we introduce is also another sound generalization of the formal Riemannian geometry
of FPE, as we see in the next subsection.

As long as we focus only on the trajectory of the generalized flow (Eq.45), the
difference between the quadratic and non-quadratic functions does not matter because
both induce the same dynamics. However, the Bregman divergence of the quadratic
dissipation functions is not directly related to the rate function of the microscopic
stochastic models, while that of nonquadratic ones in Eq.68 is [133]. Thus, if we
consider projections of fluxes and forces in the edge spaces, different choices of dissi-
pation functions lead to different projections. In addition, for non-quadratic dissipation
functions, the contributions of the kinetic parameters k± can be clearly separated into
the force part K and the activity part κ in the case of CRN with the LMA kinetics
(Eq.70). This separation enables a physical realization of the projected flux as we
derive in the following section.

65 This inequality is obtained directly from the inequality 2(a−b)2/(a+b) ≤ (a−b) ln a/b for a, b > 0.
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Wasserstein Geometry Information GeometryRiemannian Geometry

Fokker-Planck Equation

Quadratic  
Dissipation function

-Wasserstein 
distance

L2

Non-quadratic  
Dissipation function

-Wasserstein 
distance

Lp

Fig. 4 A relationship between Wasserstein geometry and information geometry. The formal Riemannian
geometric structure appears at their intersection. It should be noted that, while the regions of L p-Wasserstein
distance for p �= 2 and nonquadratic dissipation function are not overlapping in this figure, this does not
mean that they are unrelated. There may be undiscovered relations between these two regions

5.4 Explicit forms of thermodynamic and dissipation functions for FPE

For FPE, the dualistic representation of the density p(r) and its logarithm y(r) =
ln p(r) is also relevant. This duality is induced formally by the following thermody-
namic functions66:

�[p] =
∫
[ln p(r)− 1]p(r)dr, �∗[y] =

∫
ey(r)dr, (84)

the Legendre transformations of which are

y(r) = δ�[p]
δ p

= ln p(r), p(r) = δ�∗[y]
δy

= ey(r). (85)

The Bregman divergence becomes the KL divergenceDX [p‖p′] =
∫
dr p(r) ln p(r)

p′(r) .
In physics, the flux and force for FPE are defined conventionally as

jFP[p(r)] = D0 p(r) {F(r)/D0 −∇ ln p(r)} , (86)

f FP[p(r)] = D−1
0 F(r)−∇ ln p(r). (87)

The dissipation functions associated with the force-flux relation above are

�
FP,∗
ω[p] [ f ] =

1

2

∫
f (p(r))T M∗

p(r) f (p(r))dr,

�FP
ω[p][ j ] =

1

2

∫
j(p(r))T Mp(r) j(p(r))dr, (88)

where M∗
p(r) := diag[ω[p(r)]], Mp(r) := (M∗

p(r))
−1, and ωi [p(r)] = D0 p(r). Thus,

the dissipation functions are formally quadratic and positive definite. If F(r) is a
gradient ofU (r) as F(r) = D0∇U (r), f FP[p(r)] = −∇ ln p(r)

p̃(r) holdswhere p̃(r) :=
exp[U (r)]. Then, the dissipation functions, the bilinear pairing 〈 jFP, f FP〉, the EPR
�̇FP in Eq.81, and the pEPR �̇

p
FP in Eq.82 formally consolidate into the same quantity:

66 The base measure is omitted because this is just a formal one.
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Equilibrium subspace

Stoichiometric subspace

Iso-force subspace

Iso-velocity subspace

Fig. 5 Diagrammatic representation of the four subspaces and their relationship with the chain and cochain
complexes of H

2�FP,∗
ω[p] [ f FP] = 2�FP

ω[p][ jFP] = 〈 jFP, f FP〉 = �̇FP = �̇
p
FP

= D0

∫
p(r)

(
∇r ln

p(r)
p̃(r)

)2

dr. (89)

The last quantity without D0 is known as relative Fisher information [66, 143] and
Hyvärinen divergence [120, 144] between p and p̃. For U ( f ) = 0, it reduces to the
Fisher information number IF [p] in Eq.1. This consolidation is a source of confusion,
because the same quantity for FPE or linear diffusion processes has different names
in different contexts and in different disciplines. However, they actually have different
definitions, roles, and meanings, which become explicit in the information-geometric
formulation.

6 Orthogonal subspaces, dual foliations, and Pythagorean relation

To investigate the behaviors and properties of the equilibrium (Eq.58) and nonequilib-
rium (Eq.61) flow, especially its topological and algebraic constraints from the graph
or hypergraph structure, information geometry provides the ideal tools. In particu-
lar, the four affine subspaces associated with the cycle and cocycle subspaces of the
chain and cochain complexes (Fig. 5) form dual foliations via the Legendre transfor-
mation, whose geometric properties are captured by information geometry [1, 145].
It should be noted that the results of this section do not assume the specific forms of
the thermodynamic and dissipation functions introduced in Sect. 5.

6.1 Four affine subspaces

Two families of orthogonally complement affine subspaces are naturally introduced
onX and Y , respectively, from the topological structure of graph and hypergraph, i.e.,
B and S.
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Definition 26 (Stoichiometric subspaces in X ) The stoichiometric subspaces are
defined as67

Psc(x0) := {x ∈ X |x − x0 ∈ ImS}, x0 ∈ X (90)

where x0 is a parameter to specify the position of the subspace (Fig. 5, lower left)68.

Definition 27 (Equilibrium subspaces in Y) The equilibrium subspaces (Fig. 5, upper
left) are defined as

Peq( ỹ) :=
{
y ∈ Y| y − ỹ ∈ KerST

}
, ỹ ∈ Y . (91)

Psc(x0) andPeq( ỹ) are of orthogonal complement to each other: 〈x−x0, y′− ỹ〉 = 0
for x ∈ Psc(x0) and y′ ∈ Peq( ỹ).69 Because S and ST are the discrete differentials,
δ1 and δ0, Psc(x0) and Peq( ỹ) are associated with the 0-cycle and 0-cocycle spaces,
respectively.

Two other families of orthogonal-complement subspaces are introduced on Jx and
Fx .

Definition 28 (Iso-velocity subspaces inJx) The iso-velocity subspaces (Fig. 5, lower
right) are defined as

Pvl( ĵ) =
{
j ∈ Jx | j − ĵ ∈ KerS

}
, ĵ ∈ Jx . (92)

Definition 29 (Iso-force subspaces inFx) The iso-external-force subspaces, iso-force
subspaces in short, (Fig. 5, upper right) are defined as

P f r ( f ′) :=
{
f ∈ Fx | f − f ′ ∈ ImST

}
, f ′ ∈ Fx . (93)

Again, from the correspondence of δ1 = S and δ0 = ST , Pvl( ĵ) and P f r ( f ′) are
associated with the 1-cycle and 1-cocycle spaces, respectively. We specifically call
Pvl(0) and P f r (0) zero-velocity subspace and equilibrium force subspace, respec-
tively.

6.2 Meaning of the subspaces

All four subspaces are natural constituents in the theory of algebraic graph theory and
homological algebra. Here, we provide their meaning in terms of the dynamics on
graphs and hypergraphs.

67 In CRN theory, a stoichiometric subspace is called stoichiometric compatibility class [8].
68 Because Psc(x0) is restricted within the positive orthant X , Psc(x0) is a polyhedron. If bounded, it is
called a polytope in discrete geometry and also in combinatorial optimization [146]. However, we abuse
the word (affine) subspace forPsc(x0), and use polyhedron or polytope when we care about the boundary.
69 In this work, orthogonality always means the orthogonal complement in dual vector spaces except
otherwise stated.

123



Information geometry of dynamics on graphs and hypergraphs

The stoichiometric and iso-velocity subspaces, Psc(x0) and Pvl( ĵ), are related by
the continuity equation (Eq.10). From the continuity equation, Pvl( ĵ) is the set of
fluxes that induce the same velocity as a reference ĵ does: j ∈ Pvl( ĵ) ⇐⇒ ẋ =
−S ĵ = −S j . Thereby, Pvl( ĵ) is parametrized as follows:

Pvl(ẋ) = { j ∈ Jx | − S j = ẋ}, ẋ ∈ Im[S] = Ker[U], (94)

This subspace is crucial to characterize fluxes that can realize the same dynamics as
the reference one.

The stoichiometric subspace Psc(x0) determines the subspace in which the
dynamics are algebraically constrained via the topology of the underlying graph or
hypergraph.Because ẋ = −S j(x(t)), for an initial state x(0) = x0, x(t)−x0 ∈ Im[S]
should hold, meaning that x(t) ∈ Psc(x0). Thus,Psc(x0) is the subspace in which the
dynamics are restricted by the initial condition x0. Psc(x0) can also be represented
parametrically by the quantities which are conserved by the dynamics. For any vector
u ∈ KerST , η(t) := uT x(t) is constant over time:

η̇(t) = duT x(t)

dt
= uT

dx(t)

dt
= −uTS j(x) = 0. (95)

In Sect. 3.1, we defined a matrix U by a complete basis of KerST so that ImUT =
KerST . UsingU, the conserved quantities for a given initial condition x0 are obtained
as η = Ux0 = Ux(t). Because ImU is isomorphic to C−1(H), the stoichiometric sub-
space is explicitly parametrized by the conserved quantities (an element of C−1(H)):

Psc(η) = {x ∈ X |Ux = η}, η ∈ C−1(H). (96)

For rMJP, the conserved quantity is reduced to the conservation of probability
1T p(t) = 1 and Psc( p0) becomes the probability simplex. Because KerBT deter-
mines the connected components of the graph G and we conventionally assume that
the underlying graph is connected in rMJP, we only have the one-dimensional cokernel
space and one conserved quantity, which is η = 1. Thus, the conservation of proba-
bility or, equivalently, the restriction of p in the probability simplex is automatically
guaranteed from the topological constraint of the dynamics if we start from an initial
state satisfying 1T p0 = 1.

The iso-force subspace P f r ( f ′) and the equilibrium subspace Peq( ỹ) are related
to the equilibrium and nonequilibrium force equations, Eq. 57 and Eq.60. The equi-
librium force defined in Eq.57 satisfies f (x) ∈ ImST = P f r (0). Thus, the
equilibrium-force subspaceP f r (0) is literally the set of equilibrium forces.P f r ( f ′) is
its shift by f ′ ∈ Fx . Using V defined in Sect. 3.1, we can representP f r parametrically
as

P f r (ζ ) = { f ∈ Fx |VT f = ζ }, ζ ∈ C2(H) (97)

because Fx/ImST ∼= Fx/KerVT ∼= ImVT ∼= C2(H). Thus, ζ characterizes the type
of nonequilibrium forces quotient by the equilibrium forces.
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Dual foliation in

Dual foliation in

Dual foliation in

Dual foliation in

0

0

0

Fig. 6 Diagrammatic representation of the dual foliations in X , Y , Jx , and Fx spaces

Finally, the equilibrium subspacePeq( ỹ) can also be regarded as the set of potentials
y that generate the same equilibrium force because any y ∈ Peq( ỹ) satisfies f ′ =
ST y = ST ỹ ∈ P f r (0). Due to this, the equilibrium subspace Peq is parameterized
as

Peq( f ′) = { y ∈ Y|ST y = f ′}, f ′ ∈ Im[ST ]. (98)

The parametric forms of the subspaces are summarized as follows:

Pvl(ẋ) = { j ∈ Jx | − S j = ẋ}, ẋ ∈ Im[S] = Ker[U], (99)

Psc(η) = {x ∈ X |Ux = η}, η ∈ Im[U] = C−1(H), (100)

P f r (ζ ) = { f ∈ Fx |VT f = ζ }, ζ ∈ Im[VT ] = C2(H), (101)

Peq( f ′) = { y ∈ Y|ST y = f ′}, f ′ ∈ Im[ST ] = Ker[VT ]. (102)

From these subspaces, we can obtain dual foliations on the vertex and edge spaces.

6.3 Dual manifolds, dual foliations, and Pythagorean relation in vertex spaces

For the subspaces Psc and Peq in the density and potential spaces, we introduce their
Legendre transformation via the thermodynamic functions, �(x) and �∗( y), which
form the dual foliation with the subspaces of orthogonal complement (Fig. 6, left).
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Definition 30 (Stoichiometric manifold in Y and equilibrium manifold in X ) The
stoichiometric and equilibrium manifolds (Fig. 6, left) are defined respectively as

Msc( y0) := ∂�[Psc(x0)] ⊂ Y, y0 = ∂�(x0), (103)

Meq(x̃) := ∂�∗[Peq( ỹ)] ⊂ X , x̃ = ∂�∗( ỹ). (104)

Lemma 1 (Dual foliations in density and potential spaces [48]) Psc and Meq are
foliations of X , and Msc and Peq are foliations of Y . For each pair of (x0, x̃), the
intersection of Psc(x0) and Meq(x̃) is unique and transversal. The same applies
to Msc( y0) and Peq( ỹ). Then, (Psc,Meq) and (Msc,Peq) form dual foliations
(nonlinear coordinate systems) in X and Y spaces, respectively.

Proof The polyhedron Psc(x0) and the affine subspace Peq( ỹ) can cover the whole
X and Y by changing x0 and ỹ, respectively. Similarly, Meq(x̃) and Msc( y0) can
cover the whole X and Y because Legendre transformations by the thermodynamic
functions are one-to-one between X and Y . Consider the intersection of Psc(x0) and
Meq(x̃) in X space. The condition that Psc(x0) ∩ Meq(x̃) �= ∅ is related to the
existence of x† defined by the following convex optimization problem:

x† := arg min
x∈Psc(x0)

DX
� [x‖x̃]. (105)

Because of the properties of �(x),DX
� [x‖x̃] and its restriction to Psc(x0) are strictly

convex with respect to x. Thus, x† is unique and either satisfies the stationarity con-
dition x† ∈ Psc(x0) ∩ Meq(x̃) if x† ∈ Psc(x0) or locates on the boundary ∂X
if x† /∈ Psc(x0), where we used ST ∂DX [x‖x̃]

∂x = 0 ⇔ ST ( y − ỹ) = 0 ⇔ y ∈
Peq( ỹ) ⇔ x ∈ Meq(x̃). Let xbd ∈ ∂X and xin ∈ X be arbitrary points on the
boundary and interior of X . From the condition Eq.25 of the thermodynamic func-
tion, for xλ := λxin + (1− λ)xbd where λ ∈ [0, 1],

lim
λ→+0

dDX [xλ‖x̃]
dλ

= lim
λ→+0

[
d�(xλ)

dλ
−

〈
ỹ,

dxλ

dλ

〉]
= −∞. (106)

Thus, x† /∈ X is excluded, and the intersection exists, i.e., x† ∈ Psc(x0) ∩Meq(x̃).
The intersection x† is unique and transversal because 〈xsc− x†, yeq − y†〉 = 0 holds
for any xsc ∈ Psc(x0) and xeq ∈Meq(x̃) and the dimensions ofPsc(x0) andMeq(x̃)

are complementary because Psc(x0) and Peq( ỹ) are of orthogonal complement (see
also the proof in [83]). As a result, x† ∈ Psc(x0) ∩ Meq(x̃) always exists, and
(Psc,Meq) forms a dual foliation in X . Also (Msc,Peq) does in Y because they are
bijective Legendre duals of (Psc,Meq). ��
This result is reduced to Birch’s theorem [48, 100] and the seminal result by Horn and
Jackson [41] when the thermodynamic function is the generalized KL divergence.

With the dual foliation, we can consider the generalized Pythagorean relations
and orthogonal decomposition. For any three points satisfying x ∈ Psc(x0), xq ∈

123



T. J. Kobayashi et al.

Meq(x̃), and x† = Psc(x0) ∩Meq(x̃)70, we have the generalized Pythagorean rela-
tion:

DX [x‖xq ] = DX [x‖x†] +DX [x†‖xq ]. (107)

In Y space, we also have the dual version of the relations as

DY [ yq‖ y] = DY [ yq‖ y†] +DY [ y†‖ y]. (108)

These relations are used to characterize the steady state of equilibrium and nonequi-
librium flow geometrically and also variationally.

Remark 9 (Interpretation in terms of statistical inference) The meaning of the equilib-
rium manifold in statistics can be clarified more explicitly by considering the specific
form of thermodynamic function (Eq.65). For this thermodynamic function, the equi-
librium manifold Meq( p̃) is represented as

Meq( p̃) =
{
p ∈ X | ln p− ln p̃ ∈ KerST

}

=
{
p ∈ X | p = p̃ ◦ exp

[
UT η∗

]
, η∗ ∈ C−1(H)

}
(109)

where we use the fact STUT = 0. Thus,Meq( p̃) is an exponential family with alge-
braic constraints via UT . In contrast, Psc(η) can be regarded as the data manifold,
which constrains p by η = U p, because U p can be interpreted as expectation of
observables {u�}�∈[1,Nl]. Thus, the intersection p† = Psc(η) ∩Meq( p̃) is the max-
imum likelihood estimator. The exponential family with linear algebraic constraints
as in Eq.109 appears in algebraic statistics where U is sometimes called the design
matrix [48].71

6.4 Dual manifolds, dual foliations in edge spaces and information-geometric
extension of Helmholtz-Hodge-Kodaira decomposition

For the edge spaces, we similarly introduce the iso-velocity and iso-force manifolds,
which are the duals of P f r ( f ′) and Pvl( ĵ), respectively, via the Legendre transfor-
mations by the dissipation functions, �x( j) and �∗

x( f ) (Fig. 6, right):

Definition 31 (Iso-velocity manifold in Fx and iso-force manifold in Jx) The iso-
velocity and iso-force manifolds (Fig. 6, right) are defined as follows:

Mvl
x ( f̂ ) := ∂�x[Pvl( ĵ)] ⊂ Fx, f̂ = ∂�x( ĵ), (110)

M f r
x ( j ′) := ∂�∗

x [P f r ( f ′)] ⊂ Jx, j ′ = ∂�∗
x( f

′). (111)

70 We abuse the notation x† = Psc(x0) ∩Meq (x̃) because the intersection Psc(x0) ∩Meq (x̃) is a
unique point.
71 In algebraic statistics, U is explicitly given as constraints of a statistical model. In the dynamics on
graphs and hypergraphs, S is explicitly given, and U is implicitly defined as a complete basis of KerST .
As a result, their connection is not apparently obvious.
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It should be noted thatMvl
x ( f̂ ) andM f r

x ( j ′) are dependent on x via the x dependence
of the dissipation functions. We obtain the intersections in Jx and Fx :

j† := Pvl( ĵ) ∩M f r
x ( j ′), f † :=Mvl

x ( f̂ ) ∩ P f r ( f ′), (112)

which are also unique and transversal for each x ∈ X because Jx and Fx are whole
vector spaces and the Legendre transformations are one-to-one. Thus, similarly to the
case of vertex space, we have the dual foliation:

Lemma 2 (Dual foliations in edge spaces [83]) For each x ∈ X, (Pvl ,M f r
x ) and

(Mvl
x ,P f r ) form dual foliations in Jx and Fx spaces, respectively.

For ĵ and f ′, and their intersections j† and f † defined in Eq.112, 〈 ĵ − j†, f † −
f ′〉 = 0 holds. Thus, we have the generalized Pythagorean relations:

DJ
x [ ĵ‖ j ′] = DJ

x [ ĵ‖ j†] +DJ
x [ j†‖ j ′],

DF
x [ f ′‖ f̂ ] = DF

x [ f ′‖ f †] +DF
x [ f †‖ f̂ ]. (113)

In contrast to the thermodynamic functions (�,�∗), the dissipation functions have
symmetry, which makes the origins 0 in Jx and Fx special and leads to an extension
of Helmholtz-Hodge-Kodaira decomposition.

Theorem 1 (Information-geometric extension of Helmholtz-Hodge-Kodaira (HHK)
decomposition [83]) For a given flux-force Legendre pair ( j , f ) ∈ (Jx,Fx), we have
their unique x-dependent decompositions:

j = j eq(x)+ ( j − j eq(x)), f = f st (x)+ ( f − f st (x)), (114)

such that f eq(x) ∈ P f r (0), j − j eq(x) ∈ Pvl(0), f − f st (x),∈ P f r (0), and
j st (x) ∈ Pvl(0) hold. In addition, j eq(x) and f st (x) are characterized geometrically
as

j eq(x) := Pvl( j) ∩M f r
x (0), f st (x) :=Mvl

x (0) ∩ P f r ( f ). (115)

Furthermore, j eq and f st are also characterized variationally as the minimizers of
dissipation functions:

jeq(x) = arg min
j ′∈Pvl ( j)

�x( j ′), f st (x) = arg min
f ′′∈P f r ( f )

�∗
x( f

′′). (116)

Proof The uniqueness of jeq(x) and f st (x) as intersections in Eq.115 follows imme-
diately from the property of the dual foliations. Because, for any j ′ ∈ Pvl( j) and
f ′′ ∈ P f r ( f ), 〈 j ′ − jeq , f eq〉 = 0 and 〈 j st , f ′′ − f st 〉 = 0 hold, the generalized
Pythagorean relations lead to

DJ
x [ j ′‖0] = DJ

x [ j ′‖ j eq ] +DJ
x [ jeq‖0], DF

x [ f ′′‖0] = DF
x [ f ′′‖ f st ] +DF

x [ f st‖0].
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Because DJ
x [ j ′‖0] = �x( j ′) and DF

x [ f ′′‖0] = �∗
x( f

′′) hold, the relations are
reduced to

�x( j ′) = DJ
x [ j ′‖ j eq ] +�x( j eq), �∗

x( f
′′) = DF

x [ f ′′‖ f st ] +�∗
x( f st ). (117)

Then Eq.116 follows. ��
The decomposed flux jeq and force f st play a particularly important role in dynamics.
From the definition, jeq is the equilibrium flux, which induces the same instantaneous
velocity ẋ as j does, i.e., ẋ = −divS j = −divS j eq . Thus, j eq is the equilibrium
flux mimicking the instantaneous dynamics induced by the nonequilibrium flux j .
This equilibrium flux is uniquely determined owing to the information-geometric
orthogonality of Pvl( j) andM f r

x (0). Moreover, the decomposition j = jeq + ( j −
jeq) can be regarded as an information-geometric extension of the Helmholtz-Hodge-
Kodaira decomposition in vector calculus and differential form, because ( j − jeq) is
divergence free, i.e., divS( j − j eq) = 0, and f eq is a curl-free equilibrium force, i.e.,
f eq ∈ P f r (0) = Im[ST ] = Ker[VT ].
On the contrary, by definition, j st ∈ Pv(0) is the flux that makes the state x a steady

state, i.e., ẋ = 0, and is also induced by the force in the same quotient set of force
P f r ( f ) as f . The decomposition f = f st + ( f − f st ) is also a HHK decomposition
because j st ∈ Pvl(0) is divergence free, i.e., divS j st = 0, and f − f st is a curl-
free equilibrium force, i.e., f − f st ∈ P f r (0) = Im[ST ] = Ker[VT ]. 72 These
decompositions are used in the subsequent sections (Sect. 8 and Sect. 9).

7 Central affinemanifold and Hilbert orthogonality

The dual foliation is an essential geometric object in information geometry. While
less common than the dual foliation, the central affine manifold defined by a convex
function also plays an integral role in information geometry [145].

Definition 32 (Central affine manifolds in Jx andFx) The central affine manifolds in
Jx and Fx are defined as the level sets of �x( j) and �∗

x( f ), respectively
73:

C�
x (c) := { j |�x( j) = c} ⊂ Jx, C�∗

x (c) := { f |�∗
x( f ) = c} ⊂ Fx, (118)

where c ∈ R≥0. For a given j ′ ∈ Jx or f ′ ∈ Fx , the manifolds are also denoted as

C�
x ( j ′) := { j |�x( j) = �x( j ′)}, C�∗

x ( f ′) := { f |�∗
x( f ) = �∗

x( f
′)}. (119)

72 It should be noted that, in general, j st �= j− jeq , f eq �= f − f st , j �= jeq + j st , and f �= f eq + f st
hold due to the nonlinearity of Legendre transformation, except when the dissipation functions are quadratic
under which the Legendre dual relation is reduced to the linear inner-product relation.
73 While we introduce the central affine manifolds only on the edge space, they can be defined on the vertex
space as well. The central affine manifolds on the vertex space of CRN become fundamental when we work
on the isobaric processes in which the volume changes in conjunction with the reactions [85]. In this case,
the volume is a global variable affecting all the reactions simultaneously.
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Their Legendre transformations are also called (dual) central affine manifolds:

M�
x (c) := ∂�x[C�

x (c)] ⊂ Fx, M�∗
x (c) := ∂�∗

x [C�∗
x (c)] ⊂ Jx . (120)

7.1 Pseudo-Hilbert-isosceles orthogonality and decomposition

By employing the central affinemanifold,we can introduce another type of generalized
orthogonality:

Definition 33 (Pseudo-Hilbert-isosceles orthogonality [78, 79, 81]) Pseudo-Hilbert-
isosceles orthogonality between j S, j A ∈ Jx and between f S, f A ∈ Fx are defined
as follows:

j S ⊥H j A ⇐⇒ �x( j S + j A) = �x( j S − j A) (121)

f S ⊥H f A ⇐⇒ �∗
x( f S + f A) = �∗

x( f S − f A). (122)

This orthogonality is motivated by the relation ‖ j S+ j A‖2 = ‖ j S− j A‖2 satisfied
by an orthogonal pair j S ⊥ j A under a usual inner product structure and its induced
norm ‖ · ‖2.74 By employing this orthogonality, we obtain pseudo-Hilbert isosceles
decompositions of j and f as follows:

Lemma 3 (Positive decompositions of the bilinear pairing via pseudo-Hilbert-
isosceles orthogonality [78, 79, 81, 83]) For a given j ∈ Jx and any j ′ on the same
central affine manifold as j , i.e., j ′ ∈ C�

x ( j), we obtain the pseudo-Hilbert-isosceles
orthogonal decomposition j = j S + j A:

j S :=
1

2
( j + j ′), j A :=

1

2
( j − j ′), (123)

where j S ⊥H j A and j ′ = j S − j A hold. In addition, this decomposition induces a
positive decomposition of the bilinear product 〈 j , f 〉 = 〈 j S, f 〉 + 〈 j A, f 〉 where

〈 j S, f 〉 = 1

2
DJ ,F

x [ j ′; − f ] ≥ 0, 〈 j A, f 〉 = 1

2
DJ ,F

x [ j ′; f ] ≥ 0, (124)

hold. Similarly, for f ∈ Fx and f ′′ ∈ C�∗
x ( f ), a positive orthogonal decomposition

f = f S+ f A is obtained by f S := 1
2 ( f + f ′′) and f A := 1

2 ( f − f ′′), which satisfy
the associated relations:

〈 j , f S〉 =
1

2
DJ ,F

x [ j;− f ′′] ≥ 0, 〈 j , f A〉 =
1

2
DJ ,F

x [ j; f ′′] ≥ 0. (125)

74 If ‖ · ‖2 is a squared norm that is not necessarily induced by an inner product, the orthogonality is called
isosceles or James orthogonality [147]. Here, ‖ · ‖2 is further replaced with the dissipation function, which
does not satisfy some conditions required to be a norm.
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These decompositions were introduced in [78] for rMJP and extended to CRN in [79,
81], whereas we pointed out its information-geometric aspect in [83]. The decompo-
sition plays a role of characterizing the gradient-flow-like property of non-gradient
flows.

8 Information-geometric properties of Equilibrium flow

In this section, we describe several properties of the equilibrium flow (Eq.58) from
the viewpoint of information geometry by employing the objects introduced in the
previous sections. Such properties include the existence and uniqueness of the steady
state (static property), convergence to the state (kinetic property), and the balance
between information-geometric quantities associated with the steady state and con-
vergence along the trajectory (the connection between static and kinetic properties).
These properties are consistent with those that thermodynamic equilibrium systems
should have. In addition, several results are extensions of the results obtained for
FPE in the context of functional analysis, partial differential equations, and optimal
transport.

8.1 Properties of equilibrium flow

The following property of the equilibrium state characterizes the static aspect of the
equilibrium flow and is fundamentally ascribed to the dually flat structure of density
and potential spaces75:

Proposition 6 (Equilibrium state and its geometric and variational characterizations)
The steady state of the equilibriumflow xt (Eq.58) starting from x(0) = x0 is called the
equilibrium state xeq . For each x0, the equilibrium state is identical to the intersection
x† = Psc(x0) ∩Meq(x̃), i.e., xeq = x†, and thus uniquely exists for a given pair of
the initial state x0 and the parameter of equilibrium flow x̃. The equilibrium state xeq
is also characterized variationally as

xeq = arg min
x∈Psc(x0)

DX
� [x‖x̃] = arg min

xq∈Meq (x̃)
DX

� [x0‖xq ]. (126)

Moreover, Meq(x̃) =MDB holds.

Proof From Prop.3, xeq ∈ MDB, from which f (xeq) = 0 follows. For the equi-
librium force (Eq.57), MDB = {x| f (x) = 0} = {x|ST (∂�[x] − ∂�[x̃]) = 0} =
Meq(x̃) holds. Thus, xeq ∈ Meq(x̃). Because the initial state is x0, xeq ∈ Psc(x0).
Thus, xeq = x† ∈ Psc(x0) ∩Meq(x̃). The first equality of Eq.126 is obvious from
the proof of the dual foliation (Lemma1). The second equality is from the generalized
Pythagorean relation (Eq.107). ��

The second property of the equilibrium flow is kinetic in nature and characterizes
the Bregman divergence as the generalized driving potential, which ensures the con-

75 Actually, this result is independent of the detail of the dissipation functions.
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vergence of xt to the equilibrium state. This property is attributed to the dually flat
structure on the edge spaces.

Proposition 7 (Bregman divergence and Gibbs’ H-Theorem) For the trajectory of the
equilibrium flow xt (Eq.58) starting from x(0) = x0, the thermodynamic function
DX

� [xt‖x̃] decreases, that is, dDX
� [xt‖x̃]/dt < 0 except at xt ∈ Meq(x̃) where

dDX
� [xt‖x̃]/dt = 0 holds. Thus, the equilibrium state xeq ∈ Psc(x0) ∩Meq(x̃) is

locally and asymptotically stable.

Proof By replacing F(x) in Prop. 3 with DX
� [x‖x̃], we obtain dDX

� [xt‖x̃]/dt =− [
�∗

xt ( f (xt ))+�xt ( j(xt ))
] ≤ 0 and the equality holds if and only if f (xt ) =

0(⇔ xt ∈Meq(x̃)). ��
BecauseDX

� [x‖x̃] can be identified with the difference of total entropy between x and
x̃ for thermodynamic systems such as CRN [85], dDX

� [xt‖x̃eq ]/dt ≤ 0 corresponds
to the nondecreasing property of thermodynamic entropy, which is also referred as
Gibbs’ H-theorem.76

The third property provides a connection between the thermodynamic function
and the dissipation function, which is immediately obtained from the De Giorgi’s
formulation of the generalized gradient flow (Eq.52):

Proposition 8 (Balancing of thermodynamic function and dissipation function) For
the trajectory of the equilibriumflow xt (Eq.58) starting from x(0) = x0, the following
relation holds for the thermodynamic function and the dissipation function:

DX
� [x0‖x̃] −DX

� [xt‖x̃] =
∫ t

t ′=0

[
�∗

xt ′ ( f (xt ′))+�xt ′ ( j(xt ′))
]
dt ′ =

∫ t

t ′=0
�̇t ′dt

′,

(127)

In physics and chemistry, this relation means that the difference in the thermodynamic
(potential) function between xt and x0 (the left-hand side), i.e., the change in total
entropy, is equal to the integral of dissipation along xt (the right-hand side), i.e., the
entropy production, for equilibrium systems.

All these results indicate that the equilibrium flow and its properties mathematically
abstract the properties of physical equilibrium systems. The equilibrium state xeq is
characterized algebraically by the unique intersection ofPsc(x0) andMeq(x̃) and also
variationally by Eq.126. The convergence to xeq is guaranteed by dDX

� [xt‖x̃]/dt ≤
0. Furthermore, the entropy-dissipation balance relation (Eq.127) itself defines the
equilibrium system abstractly as the De Giorgi’s formulation (Eq.52) does.

8.2 Induced dually flat structure on tangent–cotangent spaces

The equilibrium state is characterized geometrically and variationally via the
information-geometric structure on the vertex spaces (X , Y) as in Prop. 6. Similarly,

76 We have multiple types of H-theorems. The most famous one is Boltzmann’s H theorem, in which the
H function is derived from the microscopic dynamics of a system. In Gibbs’ H-theorem, H function is
obtained by coarse-graining the microscopic system [44]
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Induced structure on 
tangent-cotangent spaces

y

Fig. 7 The induced dually flat structure on the restricted tangent and cotangent spaces from the dissipation
functions on the edge spaces (gray region). The relationship is compared with the Riemannian metric on
tangent and cotangent spaces via Fisher information matrices induced by the thermodynamic functions
(dotted box)

the flux (kinetic law) of equilibrium systems (gradient systems) can be obtained vari-
ationally as the flux minimizing the dissipation function under the restriction of the
continuity equation.

Lemma 4 (Equilibrium force as the minimizer of primal dissipation function) For a
given trajectory {xt }, we define the trajectory of the flux { j†t } minimizing the primal
dissipation:

{ j†t } := argmin{ j t }

∫ t

0
�xt ′ [ j t ′ ]dt ′, s.t. ẋt ′ + divS j t ′ = 0 for all t ′ ∈ [0, t]. (128)

Then, j†t is generated by the equilibrium force, f †t = ∂�x[ j†t ] ∈ P f r (0). Thus, the
minimum primal dissipation flux that generates the given {xt } is the equilibrium flux.

Proof Because the minimization of Eq.128 can be conducted pointwise-manner for
each t ′ ∈ [0, t] and ẋt ′ + divS j t ′ = 0⇐⇒ j t ′ ∈ Pvl(ẋt ′), we have

j†t ′ = j†(xt ′ , ẋt ′) = arg min
j∈Pvl (ẋt ′ )

�xt ′ [ j ] = Pvl(ẋt ′) ∩M f r
xt ′ (0), (129)

where we used Eq.115 and Eq.116. Thus, from j†t ′ ∈ M f r
xt ′ (0) ⇐⇒ f †t ′ ∈ P f r (0),

the minimum dissipation flux { j†t } is generated by the equilibrium force, { f †t } =
{ f †(xt ′, ẋt ′)} ∈ P f r (0) where f †(x, ẋ) := ∂�x[ j†(x, ẋ)]. ��

By exploiting this unique pairing between ẋt ′ and j†t ′ or ẋt ′ and f †t ′ , we can obtain
an induced dually flat structure on the restricted tangent and cotangent spaces of X
and Y (Fig. 7), which can be regarded as an information-geometric extension of the
Otto structure.
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Theorem 2 (Induced dually flat structure on tangent and cotangent spaces)Let T̃xX :=
ImS ∼= Psc(0) ⊂ TxX and T̃ ∗

x X := T ∗
x X /KerST be tangent and cotangent spaces

on X restricted by S. On T̃xX and T̃ ∗
x X , we have the Legendre conjugate dissipation

functions �̃x : T̃xX → R and �̃∗
x : T̃ ∗

x X → R induced by the dissipation functions
on the edge spaces (Fig.7).

Proof By employing Eq.129, for each v ∈ T̃xX , we can uniquely determine j†(x, v),
f †(x, v) ∈ P f r (0), and u†(x, v) ∈ T̃ ∗

x X 77. They satisfy

v = −S j†(x, v), j†(x, v) = ∂�∗
x [ f †(x, v)],

f †(x, v) = −ST u†(x, v). (130)

Conversely, for a given u ∈ T̃ ∗
x X , we have f ‡(u), j‡(x, u), and v‡(x, u) as follows:

v‡(x, u) = −S j‡(x, u), j‡(x, u) = ∂�∗
x[ f ‡(u)], f ‡(u) = −ST u. (131)

Thus, for a pair of (v, u)x satisfying u = u†(x, v), we have v = v‡(x, u), j†(x, v) =
j‡(x, u), and f †(x, v) = f ‡(x, u). This pairing establishes a bijection between T̃xX
and T̃ ∗

x X . Moreover, this bijection is realized by the Legendre transformations of the
following induced dissipation functions on T̃xX and T̃ ∗

x X :

�̃x(v) := �x( j†(x, v)), �̃∗
x(u) := �∗

x( f
‡(u)). (132)

These functions are Legendre conjugate as follows:

max
u′∈T̃ ∗

x X

[
〈v, u′〉 − �̃∗

x(u
′)
]

= max
u′∈T̃ ∗

x X
j∈Pvl (v)

[
〈−S j , u′〉 − �̃∗

x(u
′)
]
= max

u′∈T̃ ∗
x X

j∈Pvl (v)

[
〈 j ,−ST u′〉 −�∗

x(−ST u′)
]

= max
f ′∈P f r (0)
j∈Pvl (v)

[〈 j , f ′〉 −�∗
x( f

′)
]

= max
f ′∈P f r (0)
j∈Pvl (v)

[
〈 j†(x, v), f ′〉 −�∗

x( f
′)+ 〈( j − j†(x, v)), f ′〉

]

= max
f ′∈P f r (0)

[
〈 j†(x, v), f ′〉 −�∗

x( f
′)
]
= �x( j†(x, v)) = �̃x(v),

where we used 〈 j − j†(x, v), f ′〉 = 0 because f ′ ∈ P f r (0) = ImST and ( j −
j†(x, v)) ∈ KerS. The inverse is also shown:

max
v′∈T̃xX

[
〈v′, u〉 − �̃x(v

′)
]
= max

v′∈T̃xX

[
〈−S j†(x, v′), u〉 −�x( j†(x, v′))

]

77 Because f †(x, v) ∈ P f r (0) = Im[ST ] and T̃ ∗
x X := Y/KerST , u†(x, v) is uniquely determined.
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= max
j†∈M f r

x (0)

[
〈 j†,−ST u〉 −�x( j†)

]
= max

j†∈M f r
x (0)

[
〈 j†, f ‡(u)〉 −�x( j†)

]

= �∗
x( f

‡(u)) = �̃∗
x(u),

where we used the fact that { j†(x, v′)}
v′∈T̃xX =M f r

x (0) in the second line. The pair
(v, u)x is Legendre dual of these functions:

∂v�̃x(v) =
[

∂ j†(x, v)

∂v

]T
∂�x( j)

∂ j

∣∣∣∣
j= j†(x,v)

=
[

∂ j†(x, v)

∂v

]T

f †(x, v) (133)

= −
[

∂ j†(x, v)

∂v

]T

ST u†(x, v) = u, (134)

∂u�̃
∗
x(u) =

[
∂ f ‡(u)

∂u

]T
∂�∗

x( f )
∂ f

∣∣∣∣
f= f ‡(u)

=
[

∂ f ‡(u)

∂u

]T

j‡(x, u) (135)

= −S j‡(x, u) = v, (136)

where we used
[

∂ j†(x,v)
∂v

]T
ST = −I from ∂

∂v
[v + S j†(x, v)] = I + S ∂ j†(x,v)

∂v
= 0

and ∂ f ‡(u)
∂u = −ST . They are dissipation functions; strict convexity and 1-coercivity

follow from those of the original dissipation functions. Also, we have

Symmetry : �̃x(−v) = �x( j†(x,−v)) = �x(− j†(x, v)) = �̃x(v) (137)

Bounded by 0 at 0 : �̃x(v = 0) = �x( j†(x, 0)) = �x(0) = 0. (138)

��

Using the induced dissipation functions, we define the Bregman divergence on
(T̃xX , T̃ ∗

x X ), which is associated with the Bregman divergence on (Jx,Fx):

DX ,Y
�̃x

[v‖u′] := �̃x(v)+ �̃∗
x(u

′)− 〈v, u′〉 (139)

= �x( j†)+�∗
x( f

′‡)− 〈 j†, f ′‡〉 = DJ ,F
x [ j†‖ f ′‡], (140)

where j† = j†(x, v) and f ′‡ = f ‡(x, u′). Therefore, we have the induced dually
flat structure on (T̃xX , T̃ ∗

x X ). This induced structure can be regarded as an extension
to discrete manifolds of the Otto structure [65, 66]: the formal Riemannian structure
induced by the L2 -Wasserstein distance. This is also related to Pistone’s infinite-
dimensional information geometry [72, 121].
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8.3 Fisher information, natural gradient, mirror descent, evolutionary
computation, and optimal transport

In information geometry, it is conventional to use the Fisher information matrices,
i.e., the Hessian matrices Gx and G∗

y (Eq. 31) as the metric tensor (Fisher–Rao met-
ric) on (TxX , T ∗

x X ) or equivalently on (T yY, T ∗
y Y) (Fig. 7). Gradient systems have

been defined information-geometrically [25] as a Riemannian gradient flow using the
Bregman divergence and the Fisher information matrix of �(x) as the gradient func-
tion and the metric tensor, respectively: ẋ = −G−1

x ∂DX
� [x‖x̃]. Because both Gx

and DX
� are derived from �(x), this gradient flow becomes a geodesic in Y space:

ẏ = −( y − ỹ). In natural gradient descent [67, 69, 148], the Fisher information
matrix is used to find the steepest descent gradient of a function F(θ) on a parameter
space � as θ̇ = −G−1

θ ∂F(θ), where Gθ is determined independently of F(θ) by
considering the underlying model parameter space. In optimization, the natural gradi-
ent is fundamental in information-geometric optimization algorithms, which contain
various evolutionary optimization schemes [70]. In relation to machine learning, the
mirror descent is identified with the natural gradient descent by a naive continuous
limit [69, 149]. Furthermore, optimal transport has recently been employed to replace
or integrate the Fisher-Rao metric with the Wasserstein metric [150, 151]. Because
the Wasserstein metric can take the information of the base manifold into account,
their integration may provide more amenable ways to accommodate various prior and
structural information.

The doubly dual flat structure introduced in this work actually provides a solution
to generalize those results and the associated problems. The base space X with the
dually flat structure and the associated Fisher information matrix accommodates the
conventional natural gradient. The graph or hypergraph structure endows the addi-
tional topological relation to the base space of X . The dissipation functions on the
edge spaces or their induced versions bestow a more flexible way than the Fisher-Rao
metric to represent the loss of the potential function, i.e., the dissipation, at each point
in the state space. Upon necessity, we may combine both of them (Fig. 7), for exam-
ple, as ẋ = −G−1

x ∂F (1)(x)− divS∂�∗
x [gradS∂F (2)(x)] where F (1)(x) and F (2)(x)

could be different. This flexibility may contribute to the design of new algorithms for
machine learning. Actually, this integrated representation is quite relevant to the filter-
ing equations [152] in sequential inference where the first term, i.e., −G−1

x ∂F (1)(x),
can usually be associated with the update of posterior probability by observation and
the second term,−divS∂�∗

x[gradS∂F (2)(x)] can represent the prediction by the prior
information on the dynamics. Our framework may provide a unified information-
geometric perspective to various information-geometric analyses and extensions of
filtering, e.g., projection-filters [153], information-geometric nonlinear filtering [154],
and information geometric optimization [70]. Furthermore, the generalized gradient
flow can be regarded as a continuous time limit of the mirror descent where the non-
linear Legendre duality between primal and dual spaces is preserved at the limit. This
fact may be employed to design new gradient-based algorithms via the doubly dual
flat structure.
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9 Information-geometric properties of generalized nonequilibrium
flow

In this section, we consider the nonequilibrium flow defined by Eq.61, i.e.,

ẋ = −divS∂�∗
x

[[
gradS∂DX

� [x‖x̃]
]
+ f NE

]
, (141)

with f NE /∈ ImST , and show how information geometry can be employed to analyze
such dynamics. While we can obtain several properties of equilibrium flow indepen-
dently of the detail of the thermodynamic function and the dissipation function, these
functions should be related so as to obtain nice properties for the nonequilibrium flow.
Wewill observe that the thermodynamic function and the dissipation function of LMA
kinetics actually have such a relation.

9.1 Gradient-flow-like property and Lyapunov function of nonequilibrium flow

For the equilibrium flow (Eq.58), the Bregman divergence DX
� [x‖x̃] is a Lyapunov

function. The Bregman divergence can still be a Lyapunov function even for the
nonequilibrium flow (Eq.141) under the following conditions:

Lemma 5 Suppose that, for all x ∈ X , the force f (x) = gradS∂DX
� [x‖x̃] +

f NE is orthogonally decomposed as f (x) = f S(x) + f A(x) where f S(x) :=
gradS∂xDX

� [x‖x̃CB] and f A(x) ∈ Fx satisfy the pseudo-Hilbert-isosceles orthog-
onality f S(x) ⊥H f A(x). Then d

dtDX
� [xt‖x̃CB] ≤ 0 holds. In addition, xCB =

Psc(x0) ∩Meq(x̃CB) is the unique steady state of Eq.141 with the initial state x0
that attains d

dtDX
� [xt‖x̃CB] = 0. Thus, xCB is locally and asymptotically stable.78

Proof We can directly verify d
dtDX

� [xt‖x̃CB] ≤ 0 as follows:

d

dt
DX

� [xt‖x̃CB] = 〈ẋ, ∂xDX
� [xt‖x̃CB]〉 = −〈divS j(x), ∂xDX

� [xt‖x̃CB]〉 (142)

= −〈 j(x), gradS∂xDX
� [xt‖x̃CB]〉

= −〈 j(x), f S(x)〉 = −1

2
DJ ,F

x [ j(x)‖ − f ′′(x)] ≤ 0 (143)

where we used Eq.125 and f ′′(x) := f S(x)− f A(x). The equality holds if and only
if f (x) = − f ′′(x), which means that

f (x) = − f ′′(x) ⇐⇒ f S(x) = 0⇐⇒ gradS∂xDX
� [x‖x̃CB] = 0

⇐⇒ x ∈Meq(x̃CB). (144)

Because xt ∈ Psc(x0), xCB = Psc(x0) ∩Meq(x̃CB) holds. ��
Thus, if the pseudo-Hilbert-isosceles orthogonal decomposition exists, then the
nonequilibrium flow behaves like the equilibrium flow.

78 To have global stability, we have to consider the boundary of X .
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9.2 Complex-balanced state and pseudo-Hilbert-isosceles orthogonality

General conditions or situations under which the orthogonal decomposition in
Lemma5 exists are still an open problem. However, for CRN with LMA kinetics,
the decomposition holds if a complex-balanced steady state exists.

Proposition 9 (Complex-balanced steady state and orthogonal decomposition for
CRNwithLMAkinetics [78, 79, 81, 83]) Suppose that a complex balanced steady state
exists, i.e., MCB �= ∅ for CRN with LMA kinetics (Eq.12). Using any x̃CB ∈ MCB,
consider a decomposition of the force f MA(x) as f MA(x) = f S(x) + f A where
f S(x) = gradS∂xDX

� [x‖x̃CB], f A = ln K + ST ln x̃CB, and �(x) is as in Eq.62.
Then, for the dissipation functions in Eq.68, the pseudo-Hilbert isosceles orthogonal-
ity f S(x) ⊥H f A holds for all x ∈ X . In addition, Meq(x̃CB) =MCB holds.

Proof We can prove the orthogonality by direct computation. The orthogonality con-
dition is

�∗
x [ f S(x)+ f A] = �∗

x [ f S(x)− f A] (145)

⇔
〈
j+MA(x),

(
x

x̃CB

)−ST

− 1

〉

+
〈
j−MA(x),

(
x

x̃CB

)ST

−1

〉
=0. (146)

Consider the following equality:

〈
j±MA(x),

(
x

x̃CB

)∓ST

− 1

〉
=

Ne∑
e=1

k±e x̃
γ±e
CB

[(
x

x̃CB

)γ∓e
−

(
x

x̃CB

)γ±e
]

, (147)

where γ±e :=
L
b±e . By using this, we have the following:

Eq. 146 =
Ne∑
e=1

(
k+e x̃

γ+e
CB − k−e x̃

γ−e
CB

)[(
x

x̃CB

)γ−e
−

(
x

x̃CB

)γ+e
]

(148)

=
〈
( j+MA(x̃CB)− j−MA(x̃CB)),

[(
x

x̃CB

)(
L
B−)T

−
(

x
x̃CB

)(
L
B+)T

]〉
(149)

=
〈
jMA(x̃CB),BT−

(
x

x̃CB

)LT

− BT+
(

x
x̃CB

)LT 〉

=
〈
B jMA(x̃CB),

(
x

x̃CB

)LT 〉
. (150)
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Thus, Eq.145 holds for any x ∈ X if B jMA(x̃CB) = 0 holds.79 Meq(x̃CB) =MCB

can be proved by obtaining the parametric representation of MCB as MCB = {x ∈
X | ln x−ln x̃CB ∈ KerST } via solving jMA(x) = 0.80 This representation is identical
to that of Meq(x̃CB) (Eq. 104). ��
Remark 10 (Algebraic structure of detailed balanced and complex balanced mani-
folds) We here mention about the underlying algebraic source of why Meq(x̃CB) =
MCB holds. First, we already showed that MDB = Meq(x̃) holds generally if
MDB �= ∅. Under LMA kinetics (Eq.12), the DB condition jMA(x) = 0 is nothing
but the binomial equations because j±MA(x) are vectors of monominals of x. Owing to
this,MDB becomes a toric variety.81 In contrast, theCB conditionB jMA(xCB) = 0 is
a set of polynomial equations for LMA kinetics. Nonetheless, it was shown thatMCB

is binomially generated and has the same structural matrix ST as the equilibrium
manifold [100]. Because of that, they become equivalent as manifolds.

Because rLDG (Eq.3) is a subclass of CRN where
L = I and thus S = B holds,

the complex-balanced condition is always satisfied for rLDG.

Corollary 1 (rLDG is unconditionally complex-balanced [8]) All the steady states of
rLDG are complex-balanced states, i.e., MST = MCB independently of the param-
eter values k± of the flux (Eq.3).82 Thus, KL divergence (Eq.64) always works as a
Lyapunov function of rLDG.83

The properties described in this corollary are well-known for rMJP and are usually
obtained by using the Perron-Frobenius theorem for linear operators. The framework
of the generalized flow enables us to extend them to the nonlinear regime.

9.3 Effective flux of the nonequilibrium flow by the primal information-geometric
projection

In general, the nonequilibrium force or flux has redundant degrees of freedom in
terms of generating a specific vector field or trajectory {xt } on the density space. By
using the extended HHK projective decomposition (Theorem1), we can carve out the
effective part of the flux for the trajectory {xt }. In addition, we can obtain an effective
time-dependent equilibrium flux that mimics the trajectory {xt }:
Lemma 6 (Effective time-dependent equilibrium flux) Suppose that j(x) is the flux
of a generalized flow (Eq.45), and define the corresponding effective equilibrium flux
by j eq(x) = ∂�∗

x [ST ueq(x)] where ueq(x) := ∂�̃x[−S j(x)]. Then, jeq(x) induces
the same velocity as j(x) does.84 Furthermore, for a given trajectory {xt } of j(x), we

79 The transformation of Eq.146 here is strongly dependent on the specific functional form of jMA(x).
80 We skip the derivation because it is involved. See the original derivation [100] or our rephrased version
[84]
81 The real variety generated by a toric ideal, i.e., a binomial and prime ideal [100].
82 Such a situation is called unconditionally complex balanced.
83 If Rank[S] = Rank[B], CRN is unconditionally complex-balanced. This condition is called the defi-
ciency zero condition [8].
84 jeq (x) may not be equilibrium flux because ueq (x) is not necessarily represented by the gradient of a
certain function F(x) as ueq (x) = ∂xF(x).
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can construct a time-dependent equilibrium flux j eq(t, x) that can generate the same
{xt } as follows

jeq(t, x) := ∂�∗
x

[
gradS∂DX

� [x‖x̃t ]
]
, x̃t := ∂�∗[∂�(xt )+ ueq(xt )]. (151)

Proof From Theorem1, j(x) can be decomposed as j(x) = jeq(x) + ( j(x) −
jeq(x)). Because f eq(x) = ∂�∗

x[ j eq(x)] ∈ P f r (0), there exists ueq(x) satis-
fying −ST ueq(x) = f eq(x). By employing the duality introduced in Theorem2,

ueq(x) can be represented as ueq(x) = ∂�̃x[v(x)] where v(x) = −S j(x). Because
−S j eq(x) = v(x), jeq(x) generates the same dynamics or vector field as j(x) does.
By solving −ueq(xt ) = ∂�(xt )− ∂�(x̃t ), we have Eq.151. ��
The effective time-dependent equilibrium flux is obtained more explicitly for CRN
with LMA kinetics:

Corollary 2 (Effective equilibrium force and flux of LMA kinetics) Consider the fol-
lowing quantities of CRN with LMA kinetics:

Flux defined in Eq. 12 : jMA(x; k±) (152)

Force defined in Eq. 70 : fMA(x; K ) (153)

Thermodynamic function defined in Eq. 62 : �(x) (154)

Dissipation functions defined in Eq. 68with Eq. 70 : �∗
x,κ [ f ] = �∗

ωMA(x;κ)[ f ],
(155)

where k± = κ◦K±1/2 holds. For a trajectory {xt }generated by jMA(x; k±), the effec-
tive time-dependent equilibrium force f eq(t, x) can be described as f MA(x; K eq(t))
where K eq(t) is determined by

K eq(t) := exp
[
−ST (

ueq(xt ; κ)+ ∂�(xt )
)]

,

ueq(xt ; κ) := ∂�̃xt ,κ [−S jMA(xt )] (156)

Thus, the effective time-dependent equilibrium flux jeq(t, x) is represented as

j eq(t, x) = jMA(x; k±eq(t)) where k±eq(t) = κ ◦ K±1/2
eq (t).

This corollary means that the effective time-dependent flux of LMA kinetics is always
obtained by a time-dependent modulation of the kinetic parameters k±. More specifi-
cally, the modulation of force part K eq(t) is sufficient while the activity part κ is kept
constant.85

Example 3 (Simplified Brusselator CRN [8, 104] (continued)) By using the Brus-
selator CRN (Ex.1), we numerically obtained a nonequilibrium trajectory {xt }
85 While this result may sound not so significant mathematically, for physics and chemistry, the result
means that the effective flux is physically realizable and testable.
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(a) (d)

(b)

(c)

Fig. 8 A nonequilibrium trajectory of the Brusselator CRN (Ex. 1) and the associated time-dependent
effective equilibrium flux jeq (t, x) = jMA(x; k±eq (t)). (a) A nonequilibrium trajectory {xt } of the Brus-
selator CRN for a set of the kinetic parameters, k+1 = 1.0, k−1 = 1.0, k+2 = 3.0, k−2 = 0.1, k+3 = 1.0,

k−3 = 0.1, and the initial state (x1(0), x2(0)) = (1.0, 4.0). (b,c) The time-dependent kinetic parameter

set k±eq (t), which generates the time-dependent equilibrium flux jeq (t, x). (d) The top left panel shows
the nonequilibrium trajectory {xt } (black curve) and the vector field v(x) = −S j(x) (arrows). The other
panels show the time-dependent vector field veq (t, x) induced by jeq (t, x): veq (t, x) = −S jeq (t, x).
The nonequilibrium trajectory {xt } is also depicted as a reference (the black curve). The color indicates the
value ofDX

� [x‖x̃t ]. In each panel, the white circle on the trajectory is xt at which jeq (t, x) is computed,

and the black circle with a white border corresponds to x̃t at which DX
� [x‖x̃t ] is 0

(Fig. 8a, d top left panel). By using Cor. 2, we also computed the corresponding
time-dependent kinetic parameter set k±eq(t) that generates the time-dependent equilib-
rium flux jeq(t, x) = jMA(t, x; k±eq(t)) (Fig. 8b, c). Figure8d shows the vector field
veq(t, x) = −S j eq(t, x) induced by the time-dependent equilibrium flux j eq(t, x)

and the contours of DX
� [x‖x̃t ] where x̃t follows from Eq.151. From Fig. 8, we can

see that the trajectory {xt } originally generated by the nonequilibrium flux j(x) can
be traced by the time-dependent equilibrium flux jeq(t, x) and also that j eq(t, x) can
be physically realized by the modulation of the kinetic parameters k±eq(t).

9.4 Characterization of the nonequilibrium flow by the dual information
geometric projection

The nonequilibrium flow is redundant in terms of generating a specific vector field or
trajectory {xt }. Such redundancy is crucial to characterize the extent of nonequilibrium.
One approach for the characterization is to investigate the cycle force or flux, which
has been employed in the linear theory of dynamics on graphs and also in graph-
theoretic approaches to nonequilibrium phenomena [89, 155–158]. To extract such
cyclic components, we can use VT = curlV, its adjoint V = curl∗V, the associated
cycle subspaces C2(H) and C2(H), and also the generalized HKK decomposition
(Theorem1).
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Induced structure on tangent-cotangent spaces Induced structure on cycle spaces

Fig. 9 The induced dually flat structure on the cycle spaces (right gray region) in comparison with the
induced structure on the restricted tangent and cotangent spaces (left gray region)

Definition 34 (Cycle spaces) The cycle spaces at x ∈ X are defined asZx = C2(H) =
Ker[V] and Zx = C2(H) = Im[VT ].
For a given nonequilibrium force f (x), we can obtain its cycle component ζ =
curlV f (x) = VT f (x) ∈ Zx . ζ contains the information to categorize the force because
P f r ( f ) = P f r (ζ ) is the quotient space of force by the equilibrium force. For each
ζ ∈ Zx , we obtain the representative force f♦(x, ζ ) via the following variational
problem:

Lemma 7 (Steady (zero-velocity) force as the minimizer of the dual dissipation func-
tion) For a given ζ ∈ Zx , we define the force f♦(x, ζ )minimizing the dual dissipation
function:

f ♦(x, ζ ) := argmin
f

�∗
x [ f ], s.t. curlV f = ζ . (157)

Then, f♦(x, ζ ) is the steady (zero-velocity) force, i.e., j♦ = ∂�∗
x [ f ♦] ∈ Pvl(0).

Proof From Eq.115 in Theorem 1, f ♦(x, ζ ) ∈ P f r (ζ ) ∩ Mvl(0). Thus, j♦ ∈
Pvl(0). ��
Among various forces f that has the same cyclic component ζ , the force f ♦(x, ζ ) is
the one that induces no dynamics of x. Because any dynamics of x can be represented
by the effective equilibrium flux as in Lemma6, f ♦(x, ζ ) can be regarded as the force
being purely relevant to the cycle.

Using f♦(x, ζ ), we can establish the induced duality between Zx and Zx spaces:

Theorem 3 (Induced dually flat structure on cycle spaces) On the cycle spaces, Zx
and Zx , we have the Legendre conjugate dissipation functions �̂x : Zx → R and
�̂∗

x : Zx → R induced by the dissipation functions on the edge spaces (Fig.9).

Proof For each ζ ∈ Zx , we can uniquely determine f♦(x, ζ ) ∈ Fx and j♦(x, ζ ) ∈
Jx as

f ♦(x, ζ ) := P f r (ζ ) ∩Mvl
x (0) = arg min

f∈P f r (ζ )
�∗

x [ f ], (158)
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j♦(x, ζ ) := ∂�∗
x[ f♦(x, ζ )] ∈ Pvl(0). (159)

In addition, z♦(x, ζ ) ∈ Zx satisfying Vz♦(x, ζ ) = j♦(x, ζ ) is also uniquely deter-
mined because V : Zx → Jx , j♦(x, ζ ) ∈ Pvl(0) = Im[V] and KerV = {0}. For
these quantities,

ζ = VT f ♦(x, ζ ), f ♦(x, ζ ) = ∂�x[ j♦(x, ζ )], j♦(x, ζ ) = Vz♦(x, ζ ), (160)

hold. Conversely, for a given z ∈ Zx , we have j�(z), f �(x, z), and ζ�(x, z) as
follows:

ζ�(x, z) = VT f �(x, z), f�(x, z) = ∂�x[ j�(z)], j�(z) = Vz. (161)

For a pair of (z, ζ )x that satisfies z = z♦(x, ζ ), then ζ = ζ�(x, z), f♦(x, ζ ) =
f�(x, z), and j♦(x, ζ ) = j�(z) hold. This pairing establishes a bijection between
Zx and Zx . This bijection is realized by the Legendre transformations of the following
induced dissipation functions on Zx and Zx :

�̂x(z) := �x( j�(z)), �̂∗
x(ζ ) := �∗

x( f
♦(x, ζ )). (162)

These functions are Legendre conjugate as follows:

max
z′∈Zx

[
〈z′, ζ 〉 − �̂x(z′)

]
= max

z′∈Zx
f∈P f r (ζ )

[
〈z′,VT f 〉 − �̂x(z′)

]

= max
z′∈Zx

f∈P f r (ζ )

[〈Vz′, f 〉 −�x(Vz′)
]

= max
j ′∈Pvl (0)
f∈P f r (ζ )

[〈 j ′, f 〉 −�x( j ′)
]

= max
j ′∈Pvl (0)
f∈P f r (ζ )

[
〈 j ′, f ♦(x, ζ )〉 −�x( j ′)+ 〈 j ′, ( f − f ♦(x, ζ ))〉

]

= max
j ′∈Pvl (0)

[
〈 j ′, f ♦(x, ζ )〉 −�x( j ′)

]
= �∗

x( f
♦(x, ζ ))

= �̂∗
x(ζ ),

where we used 〈 j ′, ( f − f ♦(x, ζ ))〉 = 0 because j ′ ∈ Pvl(0) = ImV and f −
f♦(x, ζ ) ∈ P f r (0) = KerVT . The inverse is also shown:

max
ζ ′∈Zx

[
〈z, ζ ′〉 − �̂∗

x(ζ
′)
]
= max

ζ ′∈Zx

[
〈z,VT f ♦(x, ζ ′)〉 −�∗

x( f
♦(x, ζ ′))

]

= max
f♦∈Mvl

x (0)

[
〈Vz, f♦〉 −�∗

x( f
♦)

]
= max

f♦∈Mvl
x (0)

[
〈 j�(z), f ♦〉 −�∗

x( f
♦)

]
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= �x( j�(z)) = �̂x(z)

The pair (z, ζ )x is Legendre dual with respect to these functions:

∂ζ �̂∗
x(ζ ) =

[
∂ f ♦(x, ζ )

∂ζ

]T
∂�∗

x( f )
∂ f

∣∣∣∣
f= f♦(x,ζ )

=
[

∂ f ♦(x, ζ )

∂ζ

]T

j♦(x, ζ ) (163)

=
[

∂ f ♦(x, ζ )

∂ζ

]T

Vz♦(x, ζ ) = z, (164)

∂z�̂x(z) =
[

∂ j�(z)
∂ z

]T
∂�x( j)

∂ j

∣∣∣∣
j= j�(z)

=
[

∂ j�(z)
∂ z

]T

f �(x, z)

= VT f �(x, z) = ζ , (165)

where we used
[

∂ f♦(x,ζ )
∂ζ

]T
V = I from ∂

∂ζ
[ζ −VT f ♦(x, ζ )] = I −VT ∂ f♦(x,ζ )

∂ζ
= 0

and ∂ j�(x,z)
∂ z = V. They are dissipation functions: strict convexity and 1-coercivity

follow from those of the original dissipation functions. Also, we have

Symmetry:�̂x(−z) = �x( j�(−z)) = �x(− j�(z)) = �̂x(z) (166)

Bounded by 0 at 0 : �̂x(z = 0) = �x( j�(0)) = �x(0) = 0. (167)

��
For a given force f (x) of the generalized flow (Eq.45), f st (x) = f ♦(x,VT f (x))

works as the effective cycle force for each x ∈ X . Similarly to Cor. 2, we obtain the
effective cycle force and the flux for LMA kinetics by parametric modulation:

Corollary 3 (Effective cycle force and flux for LMA kinetics) Consider CRN with LMA
kinetics as in Cor.2. For each x ∈ X , the effective cycle force f st (x) associated
with jMA(x; k±) can be described as f st (x) = f MA(x; K st (x)) where K st (x) is
determined by

K st (x) := exp
[
f ♦(x;VT f MA(x; K ))− ST ∂�(x)

]
. (168)

Thus, the effective cycle flux j st (x) is represented as j st (x) = jMA(x; k±st (x))

where k±st (x) = κ ◦ K±1/2
st (x). For a given trajectory {xt }, which is generated

by a generalized flow, we have the effective time-dependent cycle flux j st (t, x) as
j st (t, x) = jMA(x; k±st (xt )). From the construction, this time-dependent cycle flux
makes xt a steady state for each t, i.e., S j st (t, xt ) = 0 holds for any t.
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(a)

(b)

(c)

(d)

Fig. 10 Anonequilibrium trajectory of theBrusselator CRN (Ex.1) and the associated time-dependent cycle
flux j st (t, x) = jMA(x; k±st (t)). aA nonequilibrium trajectory {xt } of the Brusselator CRN obtained with
the same parameter values in Fig. 8a. b, c The time-dependent kinetic parameter set k±st (t), which generates
the time-dependent cycle flux j st (t, x). d The top left panel shows the nonequilibrium trajectory {xt } (the
black curve) and vector field v(x) = −S j(x) (arrows). The other panels show the time-dependent vector
field vst (t, x) induced by j st (t, x): vst (t, x) = −S j st (t, x). The nonequilibrium trajectory {xt } is also
depicted for a reference (the black curve). In each panel, the white circle on the trajectory is xt at which
j st (t, x) is computed

Example 4 (Simplified Brusselator CRN [8, 104] (continued)) For the nonequilibrium
trajectory of the Brusselator CRN in Fig. 10a, we numerically obtained the effective
cycle flux j st (t, x) and the corresponding time-dependent kinetic parameter set k±st (t)
(Fig. 10b, c). Figure10d shows the vector field vst (t, x) = −S j st (t, x) induced by the
effective cycle flux j st (t, x). From Fig. 10, we can see that any point on the trajectory
{xt } originally generated by the nonequilibrium flux j(xt ) can be kept steady with the
time-dependent cycle flux j st (t, x) realized by themodulation of the kinetic parameter
k±st (t).

In modern nonequilibrium thermodynamics, it has been a great challenge to estab-
lish thermodynamic characterizations for nonequilibrium phenomena. To this end,
the dissection of dynamics and the corresponding flux and force has been attempted
[104, 159–162]. For a given trajectory {xt }, the effective time-dependent equilibrium
flux jeq(t, x) generates exactly the same trajectory, which dissects and mimics the
dynamic aspect of the trajectory. On the other hand, the effective time-dependent cycle
flux j st (t, x) makes each point on the trajectory steady, which can be recognized as
the nonequilibrium aspect of the trajectory. Moreover, these two types of fluxes can be
realized by appropriately modulating the kinetic parameter set k±, which makes the
dissected fluxes physically meaningful and accessible. More specifically, the modu-
lation of the force part K of the kinetic parameter is sufficient for realization (Eq. 156
and Eq.168), while the activity part κ is kept constant. In the case of CRN, the former
is linked to the free energy difference between reactants and products of each reaction,
and the latter is associated with the height of the energy barrier between them. This
clear separation of different physical parameters in our framework is advantageous to
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further investigate physical aspects of dynamics on graphs and hypergraphs. Thus, the
dually flat structure on the edge space and the HHK decomposition provides a new
and promising way to characterize the nonequilibrium flow.86

10 Summary and discussion

In this work, we have shown that the doubly dual flat structure of the vertex and
edge spaces on graphs and hypergraphs provides the information-geometric basis
for the dynamics on graphs and hypergraphs. Two notions of orthogonality, pseudo-
Hilbert isosceles orthogonality and information-geometric orthogonality, have been
introduced and shown to dissect the equilibrium and nonequilibrium aspects of the
dynamics into the induced structures on the tangent and cotangent spaces and the
cycle spaces. The doubly dual flat structure naturally connects the topological infor-
mation of underlying discrete manifolds, i.e., graphs and hypergraphs, with the
dynamics on them and thus endows more flexibility and representation power to
the information-geometric modeling of dynamics. Furthermore, the generalized equi-
librium and nonequilibrium flows, as well as the generalized flow, accommodate a
sufficientlywide range ofmodels,which include the reversibleMarkov jumpprocesses
on finite graphs and CRN with LMA kinetics (a class of PDS). These results could
substantially extend the applicability of information geometry to dynamical problems.

10.1 Extension of other relations involving informationmeasures

While we demonstrated that the generalized flow and the doubly dual flat structure can
extend several results known for FPE and diffusion processes, we still have potentially
relevant results and problems that could be explained and extended in our framework.
For example, for FPE and diffusion processes, the Fisher information number IF was
extended to the relative Fisher information (also known as Hyvärinen divergence [120,
144]). The relative Fisher information of two trajectories p(1)

t (r) and p(2)
t (r) is known

to satisfy information–theoretic relations such as the De Brujin identity [54] and its
extensions [56, 62]. In addition, the logarithmic Sobolev inequality also constitutes
a relationship between the Fisher information number and the KL divergence (or
Shannon information) [63, 64]. It would be an important future problem to associate
these results with the doubly dual flat structure.

Moreover, several relations potentially being related to De Giorgi’s formulation
(Eq.52) have been known for mutual information in filtering and control theories.
For example, Guo, Shamai, and Verdu found a relation between mutual information
and the minimum mean square error (MMSE) in Gaussian channels [163]. Relations
similar to these have also been reported by Mayer-Wolf and Zakai [164, 165]. Our
framework may offer a unified perspective behind these different types of relations
involving information measures.

86 It should be noted that various definitions of housekeeping and excess EPRs have been proposed in the
research field of nonequilibrium thermodynamics. The definition here is just one of them. It is an open
problem how to define the notion of effective entropy for nonequilibrium dynamics.
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10.2 Extensions of the doubly dual flat structure

There is also room for extensions of the doubly dual flat structure. While we consider
only strictly convex thermodynamic functions and dissipation functions, the strict
convexity is not necessarily required, at least for defining the generalized flow and
the equilibrium and nonequilibrium flows87. Actually, in terms of thermodynamics,
the thermodynamic function can be non-strictly convex when a phase transition of
the system occurs [117]. The loss of bijectivity via the loss of the strict convexity
can happen in complicated and degenerate statistical models [166]. Techniques from
algebraic geometry could be employed to address such situations [167].

Moreover, the structure introduced for rLDG and CRN may be extended to irre-
versible cases, where some edges have only either forward or reverse jumps or
reactions. For this purpose, we may take advantage of several results about the CB
states obtained in CRN theory [8] where the reversibility is not necessarily assumed
and those in stochastic thermodynamics for absolute irreversible processes [168].

While the nonequilibrium flow is general enough to cover at least all reversible
CRN with LMA kinetics, the classes of nonlinear dynamics other than CRN are much
wider in general. To further extend the range of models that can be covered, GENERIC
(General Equation for Non-Equilibrium Reversible–Irreversible Coupling) would be
a good candidate [169]. GENERIC is a theoretical framework to integrate dissipative
dynamics (gradient flow dynamics) and conservative dynamics (Hamiltonian dynam-
ics). The extension of the generalized flow to GENERIC has already been attempted
but is still ongoing [77, 79]. One might also consider Hamiltonian-type dynamics,
which differs from the GENERIC structure mentioned above. In the doubly dual flat
structure, dual spaces are statically coupled by the Legendre duality. However, we
could consider the coupling of two dynamics, each of which is defined on the primal
and the dual spaces. Such coupling has been investigated in relation to accelerations of
gradient flows [170], optimal control problems [171], and also mean field game prob-
lems [172]. It would be an interesting problem to formulate this dynamic coupling in
relation to our results and also the results of GENERIC. The information geometry
could offer new insights and techniques to achieve these missions.

10.3 Homological algebra and differential geometric formulations

From the viewpoint of the standard homological algebra, the doubly dual flat struc-
ture that we introduced is an extension of chain and cochain complexes with inner
product structure. Because the homological algebra used here is an abstraction of the
differential form, the doubly dual flat structure can also be viewed as an extension of
the differential form and might be called dually flat form. It would be an interesting
mission to characterize this stricture under a more rigorous mathematical formulation
and to investigate if the Legendre duality can be consistently introduced for chains

87 The strict convexity of the dissipation functions is assumed to work on the projections in the edge spaces
where the bijection betweenJx andFx are important. In addition,Y = RNv is assumed tomake the induced
dually flat structure well-defined for all given v. Only to define the generalized flow and equilibrium and
nonequilibrium flow, injectivity of ∂�∗

x and ∂� is sufficient and Y = RNv is not required.
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and cochains higher than those of the edge space. From the viewpoint of differential
geometry, the dual flat structure can be defined independently of the specific coor-
dinate by the Hessian geometry [145]. While we stick to the standard basis of the
graph or hypergraph on which the convex thermodynamic function is defined, we can
formulate it more generally. It would be an important future work to clarify how the
doubly dual flat structure can be formulated from a differential geometric perspective.

10.4 Consistency and Persistence

Finally, we would like to mention the problem of consistency and persistence. In this
work, we presume that the flux j(x) is consistent with H and that the trajectory is
persistent. The explicit conditions when these are satisfied are still elusive. Actually,
the condition for consistency is intricate, even for the separable cases. For an illustrative
example, suppose that the i th molecule is involved as a reactant in the eth reaction of
a CRN with LMA kinetics. For xi → 0, j+e (x) → 0 holds. However, their Legendre
dual diverges as yi → −∞ and fe(x) → −∞. The flux je(x) stays finite because
ωe(x) → 0 holds. This example suggests that we have to consider a certain limit of
relevant quantities to appropriately address the consistency condition.

The persistence of the nonequilibrium flowwould be amuch harder problem.While
persistence has been approached for CB CRN with LMA kinetics using techniques
from algebraic geometry [112], its connection to information geometry has yet to be
clarified. Moreover, from an information-geometric viewpoint, the loss of persistence
means a change in the support of probability or positive density, which effectively
results in a change in the topology of the underlying graph or hypergraph. To resolve
the problem, we may need a deeper understanding of the interrelationship among
dynamics, information-geometric structure, and the underlying topology.
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A Symbols, Notations, and Abbreviations

Table 1 List of symbols and notations related to graph, hypergraph, and homological algebra

G, Gk± Finite graph and edge-weighted finite graph Def. 1

v, e Vertex and edges of graphG Def. 1

B Incidence matrix Def. 1

H, Hk± Reversible CRN hypergraph and edge-weighted
hypergraph

Def. 4

X, v̂, e Vertex, hypervertex, and hyperedges of CRN
hypergraph H

Def. 4

S Hypergraph incidence matrix Def. 4
L

Hypervertex matrix Def. 4

Cp(G), C p(G) p-chain and p-cochain of graph with field R Sect. 3.1

Cp(H), C p(H) p-chain and p-cochain of hypergraph with field R Def. 9

δp , δ p p-discrete differentials Sect. 3.1, Def. 9

gradS := δ0 = ST Discrete gradient Def. 10

divS = grad∗S := δ1 = S Discrete divergence (adjoint of discrete gradient) Def. 10

curlV := δ1 = VT Discrete curl Def. 10

curl∗V := δ2 = V Adjoint of discrete curl Def. 10

Table 2 List of symbols and notations related to the dynamics on graphs and hypergraphs

X , Y Primal and dual vertex spaces (density and potential spaces) Def. 11, Def. 13

x The density defined on vertices of graph or hypergraph Def. 2, Def. 4

y The potential field defined on vertices of graph or hypergraph Def. 13

Jx , Fx Primal and dual edge spaces Def. 17

j+, j− The forward and reverse oneway fluxes of graph or hypergraph Def. 2

j The total flux on edges of graph or hypergraph Def. 2

f The force on edges of graph or hyergraph Eq.36

j±MA, j
±
eMA Oneway fluxes of the normal and extended LMA kinetics Eq.12, Eq.13

jFP Flux of the FPE Eq.18

f NE Nonequilibrium force Eq.60

fMA(x; K ), ωMA(x; κ) Force and frenetic activity of LMA kinetics Eq.70

MST Steady state manifold Eq.47

MCB Complex-balanced manifold Eq.47

MDB Detailed-balanced manifold Eq.47

Lθ Weighted asymmetric graph Laplacian Def. 3
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Table 3 List of symbols and notations related to the information-geometric structure

�, �∗ Primal and dual thermodynamic functions Def. 12, Def. 13

DX
� [x‖x′], DY

�∗ [ y′‖ y] Bregman divergences on vertex spaces Def. 14

TxX , T ∗
x X Tangent and cotangent spaces of X Def. 15

T yY , T ∗
y Y Tangent and cotangent spaces of Y Def. 15

Gx , G∗y Hessian matrices on vertex spaces Def. 15

�x , �∗
x Primal and dual dissipation functions Def. 18

DJ ,F
x [ j; f ′] Bregman divergence on the edge space Eq.41

Gx, j , G
∗
x, f Hessian matrices on the edge space Eq.42

�
q,∗
x ( f ) Quadratic dissipation function Eq.43

Psc(x0) Stoichiometric subspace Def. 26

Peq ( ỹ) Equilibrium subspace Def. 27

Pvl ( ĵ) Iso-velocity subspace Def. 28

P f r ( f ′) Iso-force subspace Def. 29

Msc( y0), Meq (x̃) Stoichiometric and equilibrium manifolds Def. 30

Mvl
x ( f̂ ), M f r

x ( j ′) Iso-velocity and Iso-force manifolds Def. 31

C�
x (c), C�∗

x (c) Primal central affine manifolds Def. 32

M�
x (c), M�∗

x (c) Dual central affine manifolds Def. 120

⊥H Pseudo-Hilbert-isosceles orthogonality Def. 33

T̃xX , T̃ ∗
x X Induced tangent and cotangent spaces of X Theorem 2

�̃x(v), �̃∗
x(u) Induced dissipation functions on tangent and cotangent spaces Eq.132

Zx , Zx Cycle spaces Def. 34

�̂x(z), �̂∗
x(ζ ) Induced dissipation functions on cycle spaces Eq.162

Table 4 List of abbreviations
CRN Chemical reaction network

LMA Law of mass action

(r)MJP (Reversible) Markov jump process

(r)LDG (Reversible) linear dynamics on graph

PDS Polynomial dynamical systems

FPE Fokker Planck Equation

CB complex-balanced

DB detail-balanced

LDB local detailed balance

EPR entropy production rate

HHK Helmholtz-Hodge-Kodaira

MCMC Markov chain Monte Carlo
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