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Abstract
The contingent valuation method (CVM) is a widely used experimental method to
measure themonetary value of goods.However, CVMestimates are sensitive to experi-
ment design. In this study,we formulated the optimal design problemas aminimization
problem of the Fisher information metric of a gradient vector field generated by using
the statistical model of the CVM. Furthermore, a necessary and sufficient condition
of the optimal design was proven.

Keywords Optimal design · Contingent valuation method · Binary response model ·
Efficiency bound

1 Introduction

The contingent valuation method (CVM) using discrete response valuation questions
is a widely used experimental method to measure the monetary value of nonmarket
environmental goods. In the experiment, an agent is asked if she will buy a certain
good at the price of x or not. She will accept the offered price if her willingness-to-pay
(WTP) ω to the good is higher than x . Let y = 0 if x is accepted and y = 1 if rejected,
that is,

y = I{ω ≤ x}. (1)

Let μ be the distribution of ω. The objective of the experiment is to estimate the value
of θ(μ), where θ is a given function ofμ. For example, if the mean value of theWTP is
to be determined, θ(μ) = ∫ ω dμ(ω) should be estimated. By observing independent
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414 H. Tanaka

copies of (x, y) obtained from (1), the value of θ(μ) could be consistently estimated
by standard statistical techniques such as probit, logit, or nonparametric maximum
likelihood [18].

The surveydesignproblemhas been amajor problemsince theCVMwas introduced
by Bishop and Heberlein [6] and Hanemann [13]. For a survey question, a statistician
should choose the bidding price distribution ν, from which x is randomly sampled.
WTP estimates derived using the CVM are sensitive to the choice of ν [9, 11, 17].
Optimal designs for ν are to ease the sensitivity problem by minimizing the variance
of these estimates. Cooper [10] proposed the optimal design using logit formulation
of μ, and Alberini [1] studied the design for the probit. Duffield and Patterson [11]
considered the optimal design for nonparametric μ. Kanninen [16] generalized the
results to the multinomial logit model, where y takes multiple discrete values. For
comprehensive surveys on the literature, please refer to [7, 8, 15].

This study investigated the optimal design problem from the perspective of infor-
mation geometry.We generalize the nonparametric approach of Duffield and Patterson
[11] by considering general response y = ρ(ω, x) and nonspecified target θ(μ). Under
the general settings, we formulated the optimal design problem as the minimization of
the Cramér–Rao lower bound of θ(μ) over a set of the bidding price distributions ν.
The problem was solved using general optimization techniques because it is the opti-
mization of a function over a finite-dimensional space. However, in such approaches,
the computation could be messy and a solution would be less intuitive. Instead, we
used the information geometrymethod to formulate the problem. Because theCramér–
Rao lower bound is equal to the squared Fisher norm of a tangent vector field on the
statistical manifold, the necessary and sufficient condition for the optimal design is
concisely stated through dual connections [2–4].

The remainder of this paper is organized as follows: Sect. 2 introduces the geom-
etry of finite measures. Section3 presents the results of this study, which includes a
necessary and sufficient condition for optimal design. According to this condition, a
design becomes optimal if and only if it generates a vector field that is orthogonal to its
own e-connection. In Sect. 4, the results are applied to the binary response experiment
presented in (1). Section5 presents the conclusion of the paper.

2 Geometry of finite measures

In this section, the geometry of finitemeasures is introduced. The terms and definitions
are based onChapter 2 of Ay et al. [4]. Let I = {1, . . . , n} be an arbitrary finite set. The
linear space of function f : I → R is denoted by F(I ). The space has the canonical
basis {ei ∈ F(I) : i ∈ I}, where

ei ( j) =
{
1 ( j = i)
0 ( j �= i).

Each f ∈ F(I) is expressed as follows: f =∑n
i=1 fi ei .

The dual space S(I) := F∗(I) is the set of signed measures μ : F(I) → R. The
dual basis {δ1, . . . , δn} is defined as follows:
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δi (e
j ) =

{
1 (i = j)
0 (i �= j).

Each μ ∈ S(I) is expressed as μ = ∑n
i=1 μiδi with coefficients {μ1, . . . , μn}, such

that

μ( f ) :=
∫

I
f dμ :=

n∑

i=1

μi fi ∈ R

and

f · μ :=
n∑

i=1

fiμ
iδi ∈ S(I).

On S(I), we introduce a coordination system by μ �→ (μ1, . . . , μn). Given point

μ ∈ S(I), the tangent space of S(I) is TμS(I) = Span
{

∂
∂μ1 , . . . ,

∂
∂μn

}
. The m-

representation of a tangent vector a ∈ TμS(I) is

a(μ) =
n∑

i=1

aiδi ∈ S(I),

which allow us to identify TμS(I)withS(I). In the following part, the tangent vectors
and spaces are always given in the form of their m-representations.

Let M+(I) = {
μ ∈ S(I) : μi > 0, i ∈ I}. As an open submanifold of S(I),

the tangent space ofM+(I) is identified with S(I). Given two tangent vectors a and
b in TμM+(I), the Radon–Nikodym derivatives with respect to μ are denoted by the
following expression:

da

dμ
=

n∑

i=1

ai

μi
ei and

db

dμ
=

n∑

i=1

bi

μi
ei .

The Fisher metric on TμM+(I) is now introduced by

gμ(a, b) := μ

(
da

dμ
· db
dμ

)

=
n∑

i=1

aibi

μi
, (2)

and the Fisher norm is ‖a‖μ := √gμ(a, a).
Let P+(I) := {

μ ∈ M+(I) : ∑n
i=1 μi = 1

}
, which is the set of positive proba-

bility measures on I. The tangent space TμP+(I) is identified with

S0(I) :=
{

μ ∈ S(I) :
n∑

i=1

μi = 0

}

.
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416 H. Tanaka

Let θ : P+(I) → R be a smooth functional. The differential of θ in μ is a linear form
(dθ)μ : TμP+(I) → R that is obtained by

(dθ)μa := ∂θ

∂a
(μ) := lim

t→0

θ(μ + ta) − θ(μ)

t
.

The Fisher metric allows the differential to be identified with the gradient (∂θ)μ:

(dθ)μa ≡ gμ(a, (∂θ)μ), a ∈ TμP+(I). (3)

The gradient vector field of θ is as follows:

∂θ : P+(I) → TP+(I), μ �→ (∂θ)μ.

Given two points μ and μ′ in P+(I), the m-parallel transport is determined by the
following expression:

Π
(m)

μ,μ′ : TμP+(I) = S0(I) → Tμ′P+(I) = S0(I), a �→ a.

The e-parallel transport Π
(e)
μ,μ′ : TμP+(I) → Tμ′P+(I) is the conjugate of the m-

transport and satisfies

gμ′
(
Π

(e)
μ,μ′a,Π

(m)

μ,μ′b
)

≡ gμ (a, b) .

For two smooth vector fields A : μ �→ aμ and B : μ �→ bμ on P+(I), the m-
connection ∇(m) and e-connection ∇(e) are defined by the following expression:

∇(m)
A B

∣
∣
∣
μ

:= lim
t→0

Π
(m)
μ+taμ,μbμ+taμ − bμ

t
= ∂b

∂aμ

(μ) (4)

and

∇(e)
A B

∣
∣
∣
μ

:= lim
t→0

Π
(e)
μ+taμ,μbμ+taμ − bμ

t

= ∂b

∂aμ

(μ) −
(
daμ

dμ
· dbμ

dμ
− gμ(aμ, bμ)

)

μ. (5)

See Appendix A.1 for the proof. According to the definitions,

∂

∂cμ

(g(A, B))μ = gμ

(
∇(m)
C A

∣
∣
∣
μ

, Bμ

)
+ gμ

(
Aμ, ∇(e)

C B
∣
∣
∣
μ

)
(6)

holds for three arbitrary vector fields A, B, and C , where g(A, B) denotes a function
μ �→ gμ(aμ, bμ).
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3 Main results

3.1 Model

Suppose that a mapping ρ : W × X �→ Y is provided, where W = {ω1, . . . , ωn},
X = {x1, . . . , xm}, and Y = {y1, . . . , y	} are arbitrary finite sets. Let σ ∈ S(W),
τ ∈ S(X × Y), and f ∈ F(W × X × Y). In the following, σ( f ) and τ( f ) denote
functions that are respectively determined by the following expression:

σ( f ) : X × Y → R, (x, y) �→
∫

f (ω, x, y) dσ(ω) =
n∑

i=1

f (ωi , x, y)σ
i

and

τ( f ) : W → R, ω �→
∫

f (ω, x, y) dτ(x, y) =
m∑

j=1

	∑

k=1

f (ω, x j , yk)τ
j,k .

Specifically, for a function Iρ : W × X × Y → {0, 1} such that Iρ(ω, x, y) =
I{ρ(ω, x) = y}, μ(Iρ)(x, y) = ∑n

i=1 I{ρ(ωi , x) = y}μi provides the conditional
distribution of y = ρ(ω, x) conditioned on x when ω is distributed according to
μ ∈ P+(W). This is because

P{y = yk |x = x j } = Eμ

[
I{y = yk} | x = x j

]

= Eμ

[
I{ρ(ω, x j ) = yk}

]

=
n∑

i=1

I{ρ(ωi , x j ) = yk}μi .

We denote the joint distribution of x and y, where μ ∈ P+(W) and ν ∈ P+(X ), as

ρ(μ, ν) := μ(Iρ) · ν, (7)

so that ρ(μ, ν)(x j , yk) =∑n
i=1 I{ρ(ωi , x j ) = yk}μiν j , in which ρ is considered as a

mappingP+(W)×P+(X ) → P+(X ×Y). For simplicity of subsequent description,
let

ρν(·) = ρ(·, ν)

and

ρμ(·) = ρ(μ, ·).

Given f ∈ F(X × Y), the expectations and conditional expectations of f (x, y)
are computed as follows:
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Eμ,ν[ f (x, y)] = ρ(μ, ν)( f )

=
m∑

j=1

	∑

k=1

f (xi , yk)
n∑

i=1

I{ρ(ωi , x j ) = yk}μiν j

=
n∑

i=1

m∑

j=1

f (x j , ρ(ωi , x j ))μ
iν j ,

Eμ[ f (x, y)|x] =
n∑

i=1

f (x, ρ(ωi , x))μ
i = μ( f (x, ρ(·, x))),

and

Eν[ f (x, y)|ω] =
m∑

j=1

f (x j , ρ(ω, x j ))ν
j = ν( f (·, ρ(ω, ·))).

For g ∈ F(W), the conditional expectation of g(ω) is expressed as follows:

Eμ[g(ω)|x, y] =
∑n

i=1 g(ωi )I{ρ(ωi , x) = y}μi
∑n

i=1 I{ρ(ωi , x) = y}μi
= μ(g · Iρ)(x, y)

μ(Iρ)(x, y)
.

Let E be an experiment introduced by ρ on X × Y:

E := R(ρ) := {ρ(μ, ν) : μ ∈ P+(W), ν ∈ P+(X )} , (8)

where R(·) denotes the range of the given mapping. Two subsets, Eν and Eμ, are also
provided by Eν := R(ρν) and Eμ := R(ρμ). In the following expression, we assume
that

(A1) ρ(μ, ν) > 0 for every μ ∈ P+(W) and ν ∈ P+(X ), and that
(A2) ρ(δ1, ν), . . . , ρ(δn, ν) are linearly independent, where {δ1, . . . , δn} is the basis of

S(W).

Under (A1), E becomes a submanifold ofP+(X ×Y), and Eν and Eμ are submanifolds
of E . Moreover, the following result is obtained:

Proposition 1 Assume (A1) and (A2). Let θ : P+(W) → R be an arbitrary mapping.
Given ν, a mapping κν : Eν → R exist such that

κν(ρν(μ)) ≡ θ(μ). (9)

Proof For arbitrary μ1 and μ2,

ρν(μ1) − ρν(μ2) = μ1(Iρ) · ν − μ2(Iρ) · ν =
n−1∑

i=1

(μi
1 − μi

2)(δi (Iρ) − δn(Iρ)) · ν,
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which becomes 0 when and only when μ1 = μ2. Therefore, under (A1) and (A2), ρν

becomes one to one. Let κν := θ ◦ (ρν)
−1, and the proposition is shown. 
�

Theproposition reveals that (A1) and (A2) are sufficient conditions for the statistical
identificationof θ(μ). In the experiment, independent realizations of (x, y),withwhich
ρν(μ) is estimated, were observed. The existence of a one-to-one correspondence
between ρν(μ) and θ(μ) implies that the value of θ(μ) is statistically estimated from
the observations.

Because ρν and ρμ are linear mappings, their differentials are obtained by (dρν)μ :
σ �→ ρν(σ ) = ρ(σ, ν) and (dρμ)ν : η �→ ρμ(η) = ρ(μ, η). Furthermore, as ρ(μ, ν)

is bilinear in (μ, ν), its differential at (μ, ν) is obtained by the following equation:

(dρ)μ,ν = (dρν)μ + (dρμ)ν, (σ, η) �→ ρ(σ, ν) + ρ(μ, η). (10)

The tangent spaces of Eν and Eμ at ρ(μ, ν) are Tρ(μ,ν)Eν = R((dρν)μ) and
Tρ(μ,ν)Eμ = R((dρμ)ν), which are orthogonal to one another because of the fol-
lowing:

gρ(μ,ν)

(
(dρν)μσ, (dρμ)νη

)

=
m∑

j=1

	∑

k=1

[∑n
i=1 I{ρ(ωi , x j ) = yk}σ iν j

] · [∑n
i=1 I{ρ(ωi , x j ) = yk}μiη j

]

∑n
i=1 I{ρ(ωi , x j ) = yk}μiν j

=
n∑

i=1

m∑

j=1

	∑

k=1

I{ρ(ωi , x j ) = yk}σ iη j

=
n∑

i=1

σ i
m∑

j=1

η j = 0

for every σ ∈ TμP+(W) = S0(W) and η ∈ TνP+(X ) = S0(X ). The tangent space
of E at ρ(μ, ν) is Tρ(μ,ν)E = Tρ(μ,ν)Eν ⊕ Tρ(μ,ν)Eμ.

The adjoint operator (dρν)
∗
μ is determined by the following expression:

(dρν)
∗
μ : Tρ(μ,ν)Eν → TμP+(W), τ �→ τ

(
Iρ

μ(Iρ)

)

· μ, (11)

where τ =∑m
j=1
∑	

k=1 τ j,kδ j,k , {δ j,k} is the basis of S(X × Y), and

[

τ

(
Iρ

μ(Iρ)

)

· μ

]

(ωi ) =
m∑

j=1

	∑

k=1

τ j,k I{ρ(ωi , x j ) = yk}∑n
h=1 I{ρ(ωh, x j ) = yk}μh

· μi . (12)
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The operator is the adjoint of (dρν)μ because

gμ(σ, (dρν)
∗
μτ) =

n∑

i=1

σ i · τ
(

Iρ

μ(Iρ)

)
(ωi )μ

i

μi

=
n∑

i=1

σ i
m∑

j=1

	∑

k=1

τ j,k I{ρ(ωi , x j ) = yk}∑n
h=1 I{ρ(ωh, x j ) = yk}μh

=
m∑

j=1

	∑

k=1

τ j,k

∑n
i=1 I{ρ(ωi , x j ) = yk}σ iν j

∑n
i=1 I{ρ(ωi , x j ) = yk}μiν j

=
m∑

j=1

	∑

k=1

((dρν)σ )(x j , yk) · τ(x j , yk)

ρ(μ, ν)(x j , yk)

= gρ(μ,ν)

(
(dρν)μσ, τ

)
.

Note that the definition (12) of (dρν)
∗
μ is independent of ν.

3.2 Optimal design

Suppose that the goal of the experiment is to estimate the value of θ : P+(W) → R

at a certain point μ. In the following, we assume that

(A3) (∂θ)μ ∈ R((dρν)
∗
μ)

for each (μ, ν) ∈ P+(W) × P+(X ). This is the differentiability condition in Ref.
[22], and a regular estimation of θ(μ) is possible only if the condition holds.

Proposition 2 Assume (A1)–(A3). The gradient (∂κν)ρν(μ) of κν = θ ◦ (ρν)
−1 : Eν →

R exist such that

(∂θ)μ = (dρν)
∗
μ(∂κν)ρν(μ), (∂κν)ρν(μ) ∈ Tρν(μ)Eν . (13)

Proof Because κν(ρν(μ)) ≡ θ(μ), the differential of κν is a linear mapping dκν such
that

(dκν)ρν(μ)(dρν)σ = (dθ)μσ = gμ

(
σ, (∂θ)μ

)

for every σ ∈ TμP+(W). See the following diagram:

P+(W)
ρν−−−−→ Eν

θ

⏐
⏐
�

⏐
⏐
�κν

R
id−−−−→ R

⇒
TμP+(W)

(dρν)μ−−−−→ Tρν(μ)Eν

(dθ)μ

⏐
⏐
�

⏐
⏐
�(dκν)ρν (μ)

R
id−−−−→ R
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Under (A3), there exists τ̂ ∈ Tρν(μ)Eν such that (∂θ)μ = (dρν)
∗
μτ̂ . Therefore,

(dκν)ρν(μ)(dρν)σ = gμ(σ, (dρν)
∗
μτ̂ ) = gρν(μ)((dρν)μσ, τ̂ ),

which implies (dκν)ρν(μ)τ = gρν(μ)(τ, τ̂ ) holds for every τ ∈ Tρν(μ)Eν . Because such
τ̂ is uniquely determined, (∂κν)ρν(μ) = τ̂ satisfies the requirements of the proposition.


�
Equation (13) is typically referred to as the score equation. The solution ∂κν to the

equation introduces a vector field ∂κ on E by

∂κ : ρ(μ, ν) �→ (∂κν)ρν(μ). (14)

The optimal design is defined as a minimizer of the Cramér-Rao lower bound
λ(θ |ν) for the estimation of θ = θ(μ). The lower bound can be found by computing
the inverse of the Fisher information matrix, which is the variance matrix of the score

(
∂

∂μ1 log ρν(μ)(x, y), . . . ,
∂

∂μn−1 log ρν(μ)(x, y)

)

,

where μ is parametrized by μ = ∑n−1
i=1 μiδi +

(
1 −∑n−1

i=1 μi
)

δn . The computation

involves complexmatrix calculations.Moreover, weminimized the value to determine
the optimal design.

An expression of the lower bound can be determined by characterizing the bound
as the supremum of the Cramér–Rao lower bound of one-dimensional submodels. Let
ε > 0 be sufficiently small. Consider a smooth path t ∈ (−ε, ε) �→ μt ∈ P+(W),
which passes through μ at t = 0 with a velocity

σ =
(
d

dt

)

t=0
μt ∈ S0(W).

Notably,

(
d

dt

)

t=0
ρν(μt ) =

n∑

i=1

I{ρ(ωi , x) = y}
[(

d

dt

)

t=0
μi
t

]

ν(x) = (dρν)μσ.

The Cramér–Rao lower bound of ‘true’ t = 0 is the inverse of the Fisher information
of the submodel at t = 0. Because

(
d

dt

)

t=0
log ρν(μt ) = d((dρν)μσ)

dρν(μ)
,

the Fisher information of the submodel is

Eμ,ν

((
d

dt

)

t=0
log ρν(μt )

)2

= gρ(μ,ν)

(
(dρν)μσ, (dρν)μσ

) = ‖(dρν)μσ‖2ρ(μ,ν).
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The lower bound of θ = θ(μ) along with the one-parameter submodel t �→ ρν(μt ) is
given by the following expression:

λ(σ) :=
(

∂θ

∂σ
(μ)

)2

‖(dρν)μσ‖−2
ρ(μ,ν).

Let t̂S be the efficient estimator of t = 0 attaining the lower bound, where S denotes
the sample size: that is,

√
S · t̂S d→ N (0, ‖(dρν)μσ‖−2

ρ(μ,ν)).

Given the submodel t �→ ρν(μt ), the efficient estimator of θ(μ) is given by θ̂S =
θ(μt̂S ). By the Delta method, we have the following expression:

√
S(θ̂S − θ)

d→ ∂θ

∂σ
(μ) · N (0, ‖(dρν)μσ‖−2

ρ(μ,ν)) = N (0, λ(σ ))

holds (see e.g. Theorem 1.12 of Shao [21]). Because ∂θ
∂σ

(μ) = gμ

(
(∂θ)μ, σ

)
,

λ(σ) = gμ

(

(∂θ)μ,
σ

‖(dρν)μσ‖ρ(μ,ν)

)2

= gρ(μ,ν)

(

(∂κν)ρ(μ,ν),
(dρν)μσ

‖(dρν)μσ‖ρ(μ,ν)

)2

by the score equation (13). The Cramér–Rao lower bound for the full model is equal
to the supremum of λ(σ) over the submodels t �→ ρν(μt ) [5, 22]. Since (∂κν)ρ(μ,ν) ∈
R((dρν)μ),

λ(θ |ν) = sup
σ∈TμP+(W)

λ(σ )

= gρ(μ,ν)

(

(∂κν)ρ(μ,ν),
(∂κν)ρ(μ,ν)

‖(∂κν)ρ(μ,ν)‖ρ(μ,ν)

)2

= ‖(∂κν)ρν(μ)‖2ρ(μ,ν).

The supremum of λ(σ) is attained by σ such that (∂κν)ρ(μ,ν) = (dρν)μσ . A submodel
having tangent vector σ at μ produces the largest variance to estimate θ(μ) among
other submodels. Such submodels with tangent vector σ are called the least favorable
or the hardest submodel [23].

Proposition 3 The Cramér–Rao lower bound of θ = θ(μ) under ν is as follows:

λ(θ |ν) = ‖(∂κν)ρν(μ)‖2ρ(μ,ν), (15)

where (∂κν)ρν(μ) is a solution to the score equation (13).
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Proposition 4 λ(θ |ν) is convex in ν.

Proof Let G(ν) := [gi,h(ν)] be an n × n matrix with the (i, h) element

gi,h(ν) := gρ(μ,ν) (ρ(δi , ν), ρ(δh, ν))

for 1 ≤ i ≤ n and 1 ≤ h ≤ n. The matrix is linear in ν and nonsingular according to
(A2). Because (∂κν)ρ(μ,ν) is in TμEν , there exists σ̂ν ∈ TμEν such that (∂κν)ρ(μ,ν) =
ρ(σ̂ν, ν). Moreover, for 1 ≤ i ≤ n, we have the following expression:

d((∂θ)μ)

dμ
(ωi ) = (∂κν)ρ(μ,ν)

(
Iρ

μ(Iρ)

)

(ωi )

=
∫

Iρ(ωi , x, y)

μ(Iρ)(x, y)
dρ(σ̂ν, ν)(x, y)

=
∫

dρ(δi , ν)

dρ(μ, ν)
· dρ(σ̂ν, ν)

dρ(μ, ν)
dρ(μ, ν)

= gρ(μ,ν)

(
ρ(δi , ν), ρ(σ̂ν, ν)

)

=
n∑

h=1

gi,h(ν)σ̂ h
ν . (16)

Let γ = (γ1, . . . , γn)
� be a vector of coefficients of d((∂θ)μ)/dμ, and let σ̂ ν =

(σ̂ 1
ν , . . . , σ̂ n

ν )�. Then, (16) implies that σ̂ ν = G(ν)−1γ . From Proposition 3,

λ(θ |ν) = σ̂
�
ν G(ν)σ̂ ν = γ �G(ν)−1γ .

Therefore, we have the following expression:

λ(θ | tν1 + (1 − t)ν2 ) = γ �G(tν1 + (1 − t)ν2)
−1γ

= γ �[tG(ν1) + (1 − t)G(ν2)
]−1

γ

≤ tλ(θ |ν1) + (1 − t)λ(θ |ν2)

for arbitrary ν1 and ν2 in P+(X ) and for any t ∈ (0, 1) because of the convexity of
the matrix inversion: for any positive definite matrices A and B,

(t A + (1 − t)B)−1 ≤ t A−1 + (1 − t)B−1 (17)

holds, where the inequality is in the sense of positive definite matrices [19, 20]. 
�
Definition 1 The optimal design for θ = θ(μ) is ν ∈ P+(X ) such that

λ(θ |ν) = inf
ν′∈P+(X )

λ(θ |ν′). (18)
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P+(X )
ν ν

Tρ(μ,ν )EνTρ(μ,ν)Eν

η

∂κν

∂κν

∇(e)
H ∂κν

λ(θ|ν) λ(θ|ν )

Fig. 1 The first order condition (19) of the optimal design

Theorem 1 ν is optimal for θ = θ(μ) if and only if

gρ(μ,ν)

(
(∂κν)ρ(μ,ν),∇(e)

H (∂κν)ρ(μ,ν)

)
= 0 (19)

holds for any H ∈ Tρ(μ,ν)Eμ (Fig.1).

Proof Because ν �→ λ(θ |ν) is convex, the lower bound is minimized at ν if and only
if the first order condition

(
∂

∂η

)

λ(θ |ν) = 0 (20)

holds for any η ∈ TνP+(X ). Because λ(θ |ν) = ‖(∂κν)ρ(μ,ν)‖2ρ(μ,ν), (20) is equivalent
to

g
(
∇(m)
H ∂κ, ∂κ

)∣∣
∣
ρ(μ,ν)

+ g
(
∂κ,∇(e)

H ∂κ
)∣∣
∣
ρ(μ,ν)

= 0

for H = (dρμ)νη ∈ Tρ(μ,ν)Eμ. From the definition of ∇(m),

∇(m)
H ∂κ

∣
∣
∣
ρ(μ,ν)

= lim
t→0

(∂κν+tη)ρ(μ,ν+tη) − (∂κν)ρ(μ,ν)

t
.

Because (dρν+tη)
∗
μ = (dρν)

∗
μ,

(dρν)
∗
μ

(

∇(m)
H ∂κ

∣
∣
∣
ρ(μ,ν)

)

= lim
t→0

(dρν+tη)
∗
μ(∂κν+tη)ρ(μ,ν+tη) − (dρν)

∗
μ(∂κν)ρ(μ,ν)

t

= lim
t→0

(∂θ)μ − (∂θ)μ

t
= 0.
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Therefore, we have the following expression:

g
(
∇(m)
H ∂κ, ∂κ

)∣∣
∣
ρ(μ,ν)

= gμ

(

(dρν)
∗
μ

(

∇(m)
H ∂κ

∣
∣
∣
ρ(μ,ν)

)

, σ̂ν

)

= 0, (21)

where (∂κ)ρ(μ,ν) = (∂κν)ρ(μ,ν) = (dρν)μσ̂ν . 
�
Corollary 1 ν is the optimal design for θ(μ) if and only if

Eμ

[(
d(∂κν)ρ(μ,ν)

dρ(μ, ν)
(x, y)

)2
∣
∣
∣
∣
∣
x

]

= Eμ,ν

[(
d(∂κν)ρ(μ,ν)

dρ(μ, ν)
(x, y)

)2
]

(22)

for all x ∈ X .

Proof From the definition of ∇(e), we have the following equation:

∇(e)
H ∂κ

∣
∣
∣
ρ(μ,ν)

= ∇(m)
H ∂κ

∣
∣
∣
ρ(μ,ν)

−
(
dη

dν
· d(∂κν)ρ(μ,ν)

dρ(μ, ν)

)

ρ(μ, ν).

Note that gρ(μ,ν)(ρ(μ, η), (∂κν)ρ(μ,ν)) = 0 because ρ(μ, η) ∈ Tρ(μ,ν)Eμ and
(∂κν)ρ(μ,ν) ∈ Tρ(μ,ν)Eν . Therefore, (19) is equivalent to

Eμ,ν

[
dη

dν
(x) · Eμ

[(
d(∂κν)ρ(μ,ν)

dρ(μ, ν)
(x, y)

)2
∣
∣
∣
∣
∣
x

]]

= 0,

which holds for an arbitrary η ∈ S0(X ) if and only if (22) is satisfied. 
�
The intuition behind this condition can be obtained from the following expression:

λ(θ | ν) =
∫

Eμ

[(
d(∂κν)ρ(μ,ν)

dρ(μ, ν)
(x, y)

)2
∣
∣
∣
∣
∣
x

]

dν(x). (23)

If the lower bound is minimized at ν, any small perturbations that are added to ν will
not significantly change the value of λ(θ | ν). This condition is possible if and only if
the integrand on the right-hand side is independent of x .

Example 1 To see how the theorem works, let us consider a trivial response function
ρ(ω, x) = ω + x , where W and X are subsets of R. In this case, the joint density of
(x, y) is given by ρ(μ, ν)(x, y) =∑n

i=1 I{ωi + x = y}μiν(x) = μ(y − x)ν(x). The
differential of ρν and its adjoint are as follows:(dρν)μσ(x, y) = σ(y − x)ν(x) and
(dρν)

∗
μτ(ω) =∑m

j=1 τ(x j , x j + ω) because

gρ(μ,ν)

(
(dρν)μσ, τ

) =
m∑

j=1

	∑

k=1

σ(yk − x j )ν(x j ) · τ(x j , yk)

μ(yk − x j )ν(x j )
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=
n∑

i=1

σ(ωi )
∑m

j=1 τ(x j , ωi + x j )

μ(ωi )

= gμ

(
σ,

m∑

j=1

τ(x j , · + x j )
)
.

The score equation (∂θ)μ(ω) = ∑m
j=1 ∂κν(x j , ω + x j ) is solved by ∂κν(x, y) =

(∂θ)μ(y − x)ν(x). For every η ∈ TνP+(X ) and H = ρ(μ, η),

∇(m)
H ∂κν(x, y) = (∂θ)μ(y − x)η(x)

and

∇(e)
H ∂κν(x, y) = ∇(m)

H ∂κν(x, y) − dη

dν
(x) · d∂κν

dρ(μ, ν)
(x, y) · ρ(μ, ν)(x, y)

= (∂θ)μ(y − x)η(x) − dη

dν
(x) · (∂θ)μ(y − x)ν(x)

= 0.

Therefore, the condition (19) is trivially satisfied at arbitrary ν. In this example, ω is
always observable because ρ is invertible as ω = y − x . The distribution of x does
not affect estimation efficiency. Thus, the choice of ν becomes significant only when
a model with information loss is estimated.

The optimality can be checked by applying the corollary, too. In this example,

d∂κν

dρ(μ, ν)
(x, y) = (∂θ)μ(y − x)ν(x)

μ(y − x)ν(x)
= (∂θ)μ(y − x)

μ(y − x)
,

which is independent of ν. Because

Eμ

[(
d∂κν

dρ(μ, ν)
(x, y)

)2
∣
∣
∣
∣
∣
x

]

=
n∑

i=1

(
(∂θ)μ(ωi )

μ(ωi )

)2

μ(ωi )

is independent of x , arbitrary ν becomes optimal when ρ(ω, x) = ω + x .

4 Binary response experiment

The optimal design to estimate the mean WTP Eω with the binary response (1)
and nonparametric μ was proposed by Duffield and Patterson [11]. They directly
minimized the asymptotic variance of the maximum likelihood estimator of Eω to
determine the optimal design. In this section, we apply Theorem 1 to replicate their
result.
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Let W = {ξ1, . . . , ξn}, X = {ξ1, . . . , ξn−1}, and Y = {0, 1}, where ξ1, . . . , ξn are
n real numbers such that 0 ≤ ξ1 < · · · < ξn . Because ω ≤ ξn holds with probability
one, the highest price ξn is not contained in the support of x .

In the experiment, the joint distribution of (x, y) is obtained by the following
expression:

ρ(μ, ν)(ξ j , y) = (yμ[0, ξ j ] + (1 − y)μ(ξ j ,∞)
)
ν j (24)

for j = 1, . . . , n − 1 and y = 0, 1, where μ[0, ξ j ] := ∑
i≤ j μ

i and μ(ξ j ,∞) :=
∑

i> j μ
i . The model satisfies the condition (A1) because μ(Iρ)(ξ j , y) ≥ yμ1 +

(1 − y)μn > 0 holds for any (ξ j , y) ∈ X × Y . Assume that, for c1, . . . , cn ∈ R,∑n
i=1 ciδi (Iρ)(ξ j , y) = 0 holds for any (ξ j , y) ∈ X × Y . Because

δi (Iρ)(ξ j , y) = yI{i ≤ j} + (1 − y)I{i > j},

y
∑

i≤ j ci + (1 − y)
∑

i> j c j = 0 holds for j = 1, . . . , n − 1, which implies that
c1 = · · · = cn = 0. Hence, condition (A2) is also satisfied.

The differential of ρν is obtained by the following:

((dρν)μσ)(ξ j , y) = (yσ [0, ξ j ] + (1 − y)σ (ξ j ,∞)
)
ν j

for every σ ∈ TμP+(W) = S0({ξ1, . . . , ξn}). The adjoint operator is determined by

((dρν)
∗
μτ)(ξi ) =

⎛

⎝
n−1∑

j=i

ν j σ [0, ξ j ]
μ[0, ξ j ] +

i−1∑

j=1

ν j σ(ξ j ,∞)

μ(ξ j ,∞)

⎞

⎠μi

for each τ = ρ(σ, ν) ∈ Tρ(μ,ν)Eν .
Let γ := d(∂θ)μ/dμ =∑n

i=1 γi ei with

γi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂θ

∂μi
(μ) −

n−1∑

h=1

μh ∂θ

∂μh
(μ) (1 ≤ i ≤ n − 1)

−
n−1∑

h=1

μh ∂θ

∂μh
(μ) (i = n)

(25)

The derivation of (25) is explained in Appendix A.2. Let (∂κν)ρ(μ,ν) = ρ(σ̂ν, ν),
where σ̂ν satisfies

γi =
n−1∑

j=i

ν j σ̂ν[0, ξ j ]
μ[0, ξ j ] +

i−1∑

j=1

ν j σ̂ν(ξ j ,∞)

μ(ξ j ,∞)
(26)
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for 1 ≤ i ≤ n. Note that condition σ̂ν ∈ S0(W) implies σ̂ν[0,∞) = σ̂ν[0, ξi ] +
σ̂ν(ξi ,∞) = 0 for 1 ≤ i ≤ n − 1. By the score equation (26),

γi+1 − γi = −νi
σ̂ν[0, ξi ]
μ[0, ξi ] + νi

σ̂ν(ξi ,∞)

μ(ξi ,∞)
= −νi

σ̂ν[0, ξi ]
μ[0, ξi ]μ(ξi ,∞)

,

which implies

σ̂ν[0, ξ j ] = −γ j+1 − γ j

ν j
μ[0, ξ j ]μ(ξ j ,∞)

for 1 ≤ j ≤ n − 1 and σ̂ν[0, ξn] = 0. Thus, we obtain the following expression:

d(∂κν)ρ(μ,ν)

dρ(μ, ν)
(ξ j , y) = −γ j+1 − γ j

ν j

(
yμ(ξ j ,∞) − (1 − y)μ[0, ξ j ]

)

and

λ(θ(μ) | ν) =
n−1∑

j=1

(
γ j+1 − γ j

)2

ν j
μ[0, ξ j ]μ(ξ j ,∞). (27)

The conditional expectation

Eμ

[(
d(∂κν)ρ(μ,ν)

dρ(μ, ν)
(x, y)

)2
∣
∣
∣
∣
∣
x = ξ j

]

=
(

γ j+1 − γ j

ν j

)2

μ[0, ξ j ]μ(ξ j ,∞)

becomes independent of ξ j if and only if

ν j =
∣
∣γ j+1 − γ j

∣
∣√μ[0, ξ j ]μ(ξ j ,∞)

∑n−1
h=1 |γh+1 − γh | √μ[0, ξh]μ(ξh,∞)

(28)

for j = 1, . . . , n−1. In particular, when θ(μ) = ∫ f dμwith f ∈ F(W), the optimal
design for θ(μ) is obtained by the following expression:

ν j =
∣
∣ f (ξ j+1) − f (ξ j )

∣
∣√μ[0, ξ j ]μ(ξ j ,∞)

∑n−1
h=1 | f (ξh+1) − f (ξh)| √μ[0, ξh]μ(ξh,∞)

(29)

because

∂θ

∂μ j
(μ) = ∂

∂μ j

[
n−1∑

i=1

μi f (ξi ) +
(

1 −
n−1∑

i=1

μi

)

f (ξn)

]

= f (ξ j ) − f (ξn).

Equation (29) is equivalent to equation (8) of Duffield and Patterson [11].
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However, this design is not feasible because it contains an unknown μ. A feasible
alternative is the min–max design that is defined as follows:

νmin–max := Arg min
ν∈P+(X )

[

sup
μ∈P+(W)

λ(θ(μ)|ν)

]

.

In the binary experiment, the maximal risk to estimate θ(μ) = ∫ f dμ is equal to the
following:

sup
μ∈P+(W)

λ(θ(μ) | ν) =
n−1∑

j=1

(
f (ξ j+1) − f (ξ j )

)2

4ν j
,

where the supremum is obtained by μ = δ1/2 + δn/2. The risk is minimized by the
following expression:

ν
j
min–max =

∣
∣ f (ξ j+1) − f (ξ j )

∣
∣

∑n−1
h=1

∣
∣ f (ξh+1) − f (ξh)

∣
∣
. (30)

In particular, when W is equally spaced so that ξ2 − ξ1 = · · · = ξn − ξn−1, the min-
max design for estimating Eμω becomes a uniform distribution on X . Therefore, the
uniform design should be theoretically justified for the binary response experiment to
estimate the mean.

5 Conclusions

In this study, the optimal design problem of the CVM experiment was described from
the perspective of information geometry. The problem is formulated as the minimiza-
tion of the Cramér–Rao lower bound, which is equal to the squared Fisher information
norm of the gradient vector of the parameter functional to be estimated, over a sta-
tistical manifold of finite probability measures. The problem is solved by using the
duality of the (e,m)-connections on the manifold. The necessary and sufficient con-
dition of the minimization is stated as the orthogonality between the gradient and its
e-connections. The result is applied to a classical binary experiment to confirm that it
replicates the results obtained in Ref. [11].

In this study, finite probability measures are considered to avoid the technical diffi-
culties of infinite dimensional spaces. To enhance the applicability of the result of the
paper, generalizing the model to an infinite dimensional manifold is critical. To find
more application examples is crucial. In the “double-bounded” CVM, for example,
each respondent is posed with a second question depending on the response to the first
question: if the first offer is accepted, then the second bid is set higher than the first
bid; whereas, if the first offer is rejected, the second bid is set smaller. Therefore, the
response function is provided by the following expression:

(y, y′) = (I{ω ≤ x}, I{ω ≤ x ′}) ∈ {0, 1} × {0, 1},
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where x is the first bid and x ′ is the second bid. The statistical efficiency of the
double-bounded CVM is considerably improved compared with the conventional
single-bounded CVM [14]. Asymptotic properties of the nonparametric estimation
of the model were extensively studied by Groeneboom and Jongbloed [12]. In the
future, the optimal distribution of the sequential bidding prices (x, x ′) can be deter-
mined by applying the result of this study.

Acknowledgements I thank the two anonymous referees for their insightful comments and suggestions,
which improved the manuscript. I also thank the participants of the 5th Conference on Geometric Science
of Information (GSI) held at Sorbonne University in 2021 and the International Conference on Informa-
tion Geometry for Data Science (IG4DS) held at Hamburg University of Technology in 2022 for helpful
discussions.

Data Availability Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.

Declarations

Conflict of interest The author states that there is no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A

A.1 The e-connection on themanifold of finite probability measures

Let A : μ �→ aμ, B : μ �→ bμ, and C : μ �→ cμ be smooth vector fields on P+(I).
By the definitions of Π(e), we have the following expression:

gμ

(
Π

(e)
μ+taμ,μbμ+taμ,Π

(m)
μ+taμ,μcμ+taμ

)
≡ gμ+taμ

(
bμ+taμ, cμ+taμ

)

for sufficiently small t . Therefore, we have

gμ

⎛

⎝lim
t→0

Π
(e)
μ+taμ,μbμ+taμ − bμ

t
, cμ

⎞

⎠

= lim
t→0

1

t

[
gμ+taμ

(
bμ+taμ, cμ+taμ

)− gμ

(
bμ, Π

(m)
μ+taμ,μc

)]

= lim
t→0

1

t

[
gμ+taμ

(
bμ+taμ, cμ+taμ

)− gμ

(
bμ, cμ

)]− gμ

⎛

⎝bμ, lim
t→0

Π
(m)
μ+taμ,μc − cμ

t

⎞

⎠
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=
(
d

dt

)

t=0

n∑

i=1

biμ+taμ
ciμ+taμ

μi + taiμ
− lim

t→0
gμ

(

bμ, ∇(m)
A C

∣
∣
∣
μ

)

=
n∑

i=1

1

μi

(
∂bi

∂aμ

(μ) − aiμ
μi

· b
i
μ

μi
· μi

)

ciμ

= gμ

(
∂b

∂aμ

(μ) − daμ

dμ
· dbμ

dμ
μ, cμ

)

,

which implies the existence of a constant ζ such that

∇(e)
A B

∣
∣
∣
μ

= lim
t→0

Π
(e)
μ+taμ,μbμ+taμ − bμ

t
= ∂b

∂aμ

(μ) − daμ

dμ
· dbμ

dμ
μ + ζμ

because cμ ∈ S0(I). Since ∇(e)
A B

∣
∣
∣
μ

∈ S0(I) is also required,

ζ =
n∑

i=1

ζμi = −
n∑

i=1

(
∂bi

∂aμ

(μ) − aiμ
μi

· b
i
μ

μi
μi

)

= gμ(aμ, bμ),

which proves (5).

A.2 Derivation of the gradient (25) of�(�)

Choose arbitrary σ ∈ S0(W). Let μt = μ + tσ , then

μt =
n−1∑

i=1

(μi + tσ i )δi +
(

1 −
n−1∑

i=1

(μi + tσ i )

)

δn .

For arbitrary constant γ0,

lim
t→0

θ(μt ) − θ(μ)

t
=

n−1∑

i=1

∂θ

∂μi
(μ)σ i

=
n−1∑

i=1

1

μi

(
∂θ

∂μi
(μ) − γ0

)

μiσ i + 1

μn
· (−γ0)μ

n · σ n

= gμ

(
(∂θ)μ, σ

)

holds, where μn = 1 −∑n−1
i=1 μi , σ n = −∑n−1

i=1 σ i , and

(∂θ)μ =
n−1∑

i=1

(
∂θ

∂μi
(μ) − γ0

)

μiδi + (−γ0)μ
nδn .
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Because (∂θ)μ ∈ TμP+(W) = S0(W) is required by the definition,

n−1∑

i=1

(
∂θ

∂μi
(μ) − γ0

)

μi + (−γ0)μ
n = 0,

which implies γ0 =∑n−1
h=1

∂θ
∂μh (μ)μh . Thus,

d(∂θ)μ

dμ
=

n−1∑

i=1

(
∂θ

∂μi
(μ) −

n−1∑

h=1

∂θ

∂μh
(μ)μh

)

ei +
(

−
n−1∑

h=1

∂θ

∂μh
(μ)μh

)

en

is obtained.
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