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Conformal mirror descent with logarithmic divergences

Amanjit Singh Kainth1,3 · Ting-Kam Leonard Wong2 · Frank Rudzicz1,3

Abstract
The logarithmic divergence is an extension of the Bregman divergence motivated by
optimal transport and a generalized convex duality, and satisfies many remarkable
properties. Using the geometry induced by the logarithmic divergence, we introduce
a generalization of continuous time mirror descent that we term the conformal mirror
descent. We derive its dynamics under a generalized mirror map, and show that it is
a time change of a corresponding Hessian gradient flow. We also prove convergence
results in continuous time.We apply the conformal mirror descent to online estimation
of a generalized exponential family, and construct a family of gradient flows on the
unit simplex via the Dirichlet optimal transport problem.

Keywords Mirror descent · Gradient flow · Logarithmic divergence · Conformal
Hessian metric · λ-duality · λ-exponential family

1 Introduction

Information geometry provides not only powerful tools for studying spaces of prob-
ability distributions, but also a wide range of geometric structures that are useful for
various challenges in data science [1–3]. The Bregman divergence [4] plays a key role
in the theory and application of information geometry. It is the canonical divergence
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of the dually flat geometry [5] which arises naturally in exponential families [6], and
can serve as a loss function in statistical estimation and optimal control [7]. The Breg-
man divergence is especially tractable in applied settings, as it is closely connected to
convex duality and satisfies a generalized Pythagorean theorem that greatly simplifies
the analysis of Bregman projections. Among the many applications of Bregman diver-
gences, we mention clustering [6], exponential family principal component analysis
[8] as well as boosting and logistic regression [9, 10].

We present in this paper a generalization of mirror descent [11, 12], which is a
fundamental first-order iterative optimization algorithm. Mirror descent is a gradient
descent algorithm where a Bregman divergence serves as a proximal function. A suit-
able convex generating functionmay be chosen to exploit the geometry of the problem.
The update step (6) of mirror descent involves a change of coordinates using the so-
calledmirror mapwhich corresponds to the information-geometric dual parameter. In
the continuous time limit, mirror descent can be represented as a Riemannian gradient
flow with respect to the Hessian metric induced by the given Bregman divergence [13,
14]. The basic ideas are reviewed in Sects. 2.1 and 2.3.

Our generalization, termed the conformal mirror descent, is based on the theory of
logarithmic divergences [15–19]. In many senses, the logarithmic divergence may be
regarded as a canonical deformation of the Bregman divergence. Just as the Bregman
divergence captures the dually flat geometry, the logarithmic divergence is a canoni-
cal divergence for a dually projectively flat statistical manifold with constant nonzero
sectional curvature, and also satisfies a generalized Pythagorean theorem [17]. More-
over, the logarithmic divergence leads, under divisive normalization, to a deformed
exponential family, which is closely related to the q-exponential family in statistical
physics [20], while recovering natural analogues of information-geometric properties
of the exponential family in the deformed case [17, 19]. For example, the Kullback-
Leibler (KL) divergence (which is the Bregman divergence of the cumulant generating
function) becomes the Rényi divergence, and the dual variable can be interpreted as
an escort expectation. Another appealing property is that the logarithmic divergence
is associated with a generalized convex duality motivated by optimal transport [21,
22]. Following [19], we call it the λ-duality, where λ �= 0 is the curvature parameter.
It was recently shown [23] that the dualistic geometry in information geometry can
be naturally embedded in the pseudo-Riemannian geometry of optimal transport [24]
using the framework of c-divergence, under which divergences are induced by optimal
transport maps. Bregman and logarithmic divergences are special cases corresponding
to specific cost functions [16, 17]. In Sect. 2.4, we review properties of λ-duality and
logarithmic divergences that are needed in this paper. Further results about λ-duality
and its relation with convex duality can be found in [25].

In Sect. 3, we formulate the conformal mirror descent in continuous time as a
Riemannian gradient flow, where the underlying metric is induced by a logarithmic
divergence. We call it the conformal mirror descent because the metric can be shown
to be a conformal transformation of a Hessian metric. This implies that the conformal
mirror descent is, in continuous time, a time-changed mirror descent with respect to
an explicitly determined convex generator. We also derive explicit dynamics of the
gradient flow under the λ-mirror map corresponding to the logarithmic divergence
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and prove related convergence results. The λ-duality suggests many new generating
functions that are potentially useful in various applications.

We give two applications to demonstrate the utility of our conformalmirror descent.
In Sect. 4, we consider online estimation of the λ-exponential family introduced in
[19], and derive an elegant online natural gradient update which generalizes the one
for the exponential family [14]. Dirichlet optimal transport on the unit simplex [15,
16, 26] is one of the original motivations of the theory of logarithmic divergences (and
corresponds to the case λ = −1). Expressing the (−1)-mirror map in terms of the
Dirichlet optimal transport map, we derive in Sect. 5 an interesting family of gradient
flows on the unit simplex.

Finally, in Sect. 6 we discuss our contributions in the context of related literature,
and propose several directions for future research.

Notation: We use superscripts to denote components of vectors, e.g., θ =
(θ1, . . . , θd). In computations, we regard θ as a column vector and write θ =[
θ1 · · · θd

]�
, where � denotes transposition. The Euclidean gradient D f (θ) =

Dθ f (θ) of a real-valued function f is also regarded as a column vector. The Euclidean
Hessian is denoted by D2 f (θ). Due to the difficulty of unifying notations in different
settings, in this paper we do not adopt the Einstein summation convention.

2 From convex duality to �-duality

2.1 Convex duality and Bregman divergence

We begin by reviewing convex duality and Bregman divergence, which are at the core
of classical information geometry [1, 2] (also see [27] for a recent overview). Let φ

be a lower semicontinuous convex function onRd . Its convex conjugate is defined by
φ∗(y) = supx∈Rd {〈x, y〉 − φ(x)}, where 〈·, ·〉 denotes the Euclidean inner product.
Then φ∗ is also lower semi-continuous and convex, and we have φ∗∗ = (φ∗)∗ = φ.
For any x, y ∈ Rd we have

φ(x) + φ∗(y) − 〈x, y〉 ≥ 0, (1)

and equality holds if and only if y is a subgradient of φ at x .
Let � ⊂ Rd be an open convex set and let φ : � → R be a smooth convex

function whose Hessian D2φ(θ) is everywhere positive definite. We call such a φ a
Bregman generator. The Bregman divergence of φ, regarded as a generalized distance,
is defined for θ, θ ′ ∈ � by

Bφ[θ : θ ′] = (
φ(θ) − φ(θ ′)

)− 〈Dφ(θ ′), θ − θ ′〉. (2)

Under the stated conditions, Dφ is a diffeomorphism from � onto its range. We call θ
the primal variable and ζ = Dφ(θ) the dual variable.1 The inverse transformation is
given by θ = Dφ∗(ζ ). The Bregman divergence (2) can then be expressed in self-dual

1 We reserve the symbol η for the dual variable under the λ-duality; see (10).
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form by

Bφ[θ : θ ′] = Bφ∗ [ζ ′ : ζ ] = φ(θ) + φ∗(ζ ′) − 〈θ, ζ ′〉, (3)

which is closely related to the Fenchel-Young inequality (1).

2.2 c-duality

Conjugation, which characterizes convex duality, is defined in terms of the linear pair-
ing function c(x, y) = −〈x, y〉. It turns out that much of the above can be generalized.
For a general c, called a cost function in the context of optimal transport [21, 22], we
can define the c-conjugate of a function ϕ(x) by ϕ(c)(y) = supx {−c(x, y) − ϕ(x)}.
A function ϕ(x) is said to be c-convex if it is the c-conjugate of some function ψ(y),
i.e., ϕ = ψ(c) (c-convexity ofψ(y) is defined similarly). For a c-convex ϕ(x)we have
the following analogue of the Fenchel-Young inequality (1):

ϕ(x) + ϕ(c)(y) + c(x, y) ≥ 0. (4)

If equality holds, we call y a c-subgradient of ϕ at x . If this y is unique, we call it the
c-gradient and write y = D(c)ϕ(x). Under suitable conditions, a Monge-Kantorovich
optimal transport problem can be solved by an optimal transport map, which can
be expressed as the c-gradient of some c-convex potential ϕ. Analogous to (3), the
inequality (4) can be used to define a c-divergence on the graph of the optimal transport
map [23]. Theλ-duality [19] is the generalized convex duality based on the logarithmic
cost

cλ(x, y) = −1

λ
log(1 + λ〈x, y〉), (5)

where λ is a given nonzero constant.2 Since limλ→0 cλ(x, y) = −〈x, y〉, we recover
the usual convex duality when λ → 0. Relevant properties of the λ-duality will be
reviewed in Sect. 2.4.

2.3 Mirror descent

Consider the minimization problemminθ∈� f (θ)where f : � → R is assumed to be
differentiable. Let φ : � → R be a Bregman generator as in Sect. 2.1. It induces the
mirror map ζ = Dθφ(θ). For clarity, we use Dθ to indicate that the gradient is taken
with respect to θ . The mirror descent algorithm minimizes f by iterating the update

ζk+1 = ζk − δDθ f (θk), (6)

where δ = δk > 0 is the learning rate which may depend on k. We obtain θk+1
by applying the inverse mirror map, i.e., θk+1 = Dζ φ

∗(ζk+1). To implement the

2 In our applications x and y only vary in respective domains such that 1 + λ〈x, y〉 > 0, so the logarithm
in (5) is well defined.
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algorithm, we usually require that both Dφ and Dφ∗ are available in closed form.
Letting φ(θ) = 1

2 |θ |2 = 1
2 〈θ, θ〉 recovers Euclidean gradient descent since in this

case, ζ = Dθ
1
2 |θ |2 = θ . In general, (6) requires an extra projection step when the

right hand side is outside�. The (unconstrained) update (6) is equivalent to the update
of a Bregman proximal method, namely

θk+1 = argminθ∈�

{
f (θk) + 〈Dθ f (θk), θ − θk〉 + 1

δ
Bφ[θ : θk]

}
. (7)

It is easy to verify that the first order condition of (7) can be expressed as (6). Geo-
metrically, θk+1 minimizes a linear approximation of f over a Bregman ball based at
θk .

Further insights can be obtained by studying the continuous time limit as in [14,
28]. The Bregman divergence admits the quadratic approximation

Bφ[θ + �θ : θ ] = 1

2
(�θ)�G0(θ)(�θ) + O(|�θ |3), (8)

where G0(θ) = D2
θφ(θ) is a Hessian Riemannian metric (expressed under the pri-

mal θ -coordinates) and induces the Riemannian gradient gradG0
f = G−1

0 Dθ f (in
coordinates). See [29] for an in-depth geometric study of Hessian manifolds. Letting
δ → 0 in (6) or (7) and scaling time appropriately, one obtains a Hessian Riemannian
gradient flow [13]:

d

dt
θt = −gradG0

f (θt ), or equivalently
d

dt
ζt = −Dθ f (θt ). (9)

Naturally, one may consider other metrics to obtain generalizations of mirror descent
(see [28] for a discussion). In this paper, we use the Riemannian metric induced by
the logarithmic divergence, which is particularly tractable.

2.4 �-duality and logarithmic divergence

In this subsection we introduce the λ-duality which utilizes the logarithmic cost func-
tion cλ defined by (5). For more details we refer the reader to [17, 19] on which
this work is based. In general, c-convex functions and c-gradients are not analytically
tractable. Remarkably, for the logarithmic cost function cλ, it is possible to relate
cλ-convexity with usual convexity and express the cλ-gradient in terms of the usual
gradient. The following definition summarizes the generalized convexity notion and
the required regularity conditions needed for our applications. Throughout, we let
λ �= 0 be a fixed constant.

Definition 1 (Regular cλ-convex function and cλ-gradient) Let � ⊂ Rd be an open
convex set. A smooth function ϕ : � → R is said to be regular cλ-convex if �λ =
1
λ
(eλϕ − 1) is a Bregman generator and 1 − λ〈Dθϕ(θ), θ〉 > 0 on �. Given such a
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Table 1 Examples of regular
cλ-convex functions on the real
line and their corresponding
λ-mirror maps

λ range � ϕ(θ) η = D(cλ)ϕ(θ)

(−2, ∞) (0, ∞) − 1
2 log θ −1

2+λ
1
θ

(0, ∞)
(
−∞, 1

λ

)
θ 1

1−λθ

R\{0}
( −1√|λ| ,

1√|λ|
)

1
2 θ2 θ

1−λθ2

function ϕ, we define its cλ-gradient by

D(cλ)
θ ϕ(θ) = 1

1 − λ〈Dθϕ(θ), θ〉Dθϕ(θ). (10)

By (11) below, the right hand side of (10) is indeed the cλ-gradient of ϕ as a cλ-
convex function. We also call D(cλ)

θ ϕ the λ-mirror map. Under the stated conditions,

it can be shown that D(cλ)
θ ϕ is a diffeomorphism from � onto its range H ;3 we call

η = D(cλ)ϕ(θ) the dual variable in this context. In a nutshell, instead of convex
functions, we use functions ϕ such that �λ = 1

λ
(eλϕ − 1) are convex, and replace

the usual gradient by the λ-mirror map defined by (10). Some examples of regular
cλ-convex functions are given in Table 1.

Henceforth we let ϕ be a regular cλ-convex function on a given convex domain �.
Let ψ be the cλ-conjugate defined by

ψ(η) = sup
θ∈�

{−cλ(θ, η) − ϕ(θ)} .

Then, for θ ∈ � we have

ϕ(θ) = sup
η∈H

{−cλ(θ, η) − ψ(η)} .

Hence, ϕ is a cλ-convex function in the sense of Sect. 2.2. We have 1 + λ
〈
θ, η′〉 > 0

for any (θ, η′) ∈ � × H , and for η = D(cλ)ϕ(θ) we have

ϕ(θ) + ψ(η) + cλ(θ, η) = 0. (11)

Thus ϕ and ψ satisfy a generalized Legendre-like duality with respect to the cost
function cλ. The inverse λ-mirror map is given by θ = D(cλ)

η ψ(η).
We use ϕ to define a λ-logarithmic divergencewhich is different from the Bregman

divergence. For completeness, we explain how it is constructed. Recall that �λ =
1
λ
(eλϕ − 1) is (strictly) convex on �. For θ, θ ′ ∈ �, we have

�(θ ′) + 〈D�(θ ′), θ − θ ′〉 ≤ �(θ).

3 H is the uppercase of the Greek letter η.
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Fig. 1 The λ-logarithmic
divergence (14) is the error term
of a logarithmic first order
approximation; see (13). We
visualize it for ϕ(θ) = −1

2 log θ

which is regular cλ-convex on
(0, ∞) for λ > −2. The red
dashed curve shows the case
λ = 1

Expressing this inequality in terms of ϕ, we have, using the chain rule,

1

λ
eλϕ(θ ′) + eλϕ(θ ′)〈Dϕ(θ ′), θ − θ ′〉 ≤ 1

λ
eλϕ(θ)

⇒ 1

λ
(1 + λ〈Dϕ(θ ′), θ − θ ′〉) ≤ 1

λ
eλ(ϕ(θ)−ϕ(θ ′)).

(12)

Now there are two cases depending on the sign of λ, but the resulting expression is
the same. Here, we consider the case λ < 0 and the other case is similar. From (12),
we have

1 + λ〈Dϕ(θ ′), θ − θ ′〉 ≥ eλ(ϕ(θ)−ϕ(θ ′))

⇒ ϕ(θ ′) + 1

λ
log(1 + 〈λDϕ(θ ′), θ − θ ′〉) ≤ ϕ(θ).

(13)

Taking the difference yields the λ-logarithmic divergence. When ϕ is convex, letting
λ → 0 in (13) recovers the Bregman divergence (see Figure 1).

Definition 2 (λ-logarithmic divergence) Let ϕ be a regular cλ-convex function. We
define its λ-logarithmic divergence for θ, θ ′ ∈ � by

Lλ,ϕ[θ : θ ′] = ϕ(θ) − ϕ(θ ′) − 1

λ
log
(
1 + λ

〈
Dϕ(θ ′), θ − θ ′〉) . (14)

Analogous to (3), it also admits a self-dual representation:

Lλ,ϕ[θ : θ ′] = Lλ,ψ [η′ : η] = ϕ(θ) + ψ(η′) − 1

λ
log
(
1 + λ

〈
θ, η′〉) ≥ 0. (15)

This identity verifies that Lλ,ϕ is the c-divergence of the cost cλ (see [17, 23]). An
important application of the logarithmic divergence is to some generalized exponen-
tial families, where an appropriately defined potential function ϕ leads to the Rényi
divergence. In Sect. 4, we exploit this property in online parameter estimation.

Similar to (8), we may Taylor expand Lλ,ϕ[θ + �θ : θ ] to get

Lλ,ϕ[θ + �θ : θ ] = 1

2
(�θ)�Gλ(θ)(�θ) + O(|�θ |3),
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where Gλ(θ) is the matrix given by

Gλ(θ) = D2
θϕ(θ) + λ(Dθϕ(θ))(Dθϕ(θ))� = e−λϕ(θ)D2

θ�λ(θ). (16)

Note that the last equality follows from the identity �λ = 1
λ
(eλϕ − 1) and the chain

rule. From Definition 1, Gλ(θ) is positive definite.
Regard θ ∈ � and η = D(cλ)ϕ(θ) ∈ H as global coordinate systems of a manifold

M .4 On M , we define a divergence D(·||·) on M by

D(P||Q) = ϕ(θP ) + ψ(ηQ) + cλ(θP , ηQ), (17)

where θP and ηP are respectively the primal and dual coordinates of P (similar for
Q). The induced dualistic geometry (g,∇,∇∗) (constructed using Eguchi’s theory,
see e.g., [30]) has the following remarkable properties [16, 17, 19]:

• The Riemannian metric g is given in primal coordinates by

g

(
∂

∂θ i

∣∣∣∣
P

,
∂

∂θ j

∣∣∣∣
P

)
= (Gλ(θP ))i j . (18)

The first representation in (16) states thatGλ is a rank-one correction of theHessian
D2

θϕ. The second representation states that Gλ is a conformal transformation of
the Hessian metric G̃0 = D2

θ�λ. That is, g is a conformal Hessian metric (when
expressed in primal coordinates). Both expressions are useful in our conformal
mirror descent. Analogous expressions hold under the dual coordinate system.

• The primal and dual connections (∇,∇∗) are dually projectively flat. In particular,
any primal (resp. dual) geodesic is a time-reparameterized straight line under the
primal (resp. dual) coordinate system.

• When d ≥ 2, the sectional curvatures of∇ and∇∗ with respect to g are everywhere
constant and equal to λ.

• The generalized Pythagorean theorem extends to D.
• Given a dualistic structure which is dually projectively flat with constant (nonzero)
sectional curvature, one can define (locally) a λ-logarithmic divergence which
induces the given structure. Thus, the λ-logarithmic divergence can be regarded
as a canonical divergence.

Letting λ → 0 recovers well-known properties of the dually flat geometry induced
by a Bregman divergence.

Remark 1 The last expression in (16) may be realized via the identity

Lλ,ϕ[θ : θ ′] = 1

−λ
log
(
1 + (−λ)e−λϕ(θ)B�λ [θ : θ ′]

)
, (19)

which can be verified by a direct computation. It states that the λ-logarithmic diver-
gence is a monotone transformation of a left conformal Bregman divergence [31]. See
[32] for more discussion in this direction.

4 We may let M = � as sets.
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3 Conformal mirror descent

In this section, we present our first main contribution: a generalization of continuous
timemirror descent as the Riemannian gradient flowwith respect to themetric induced
by a λ-logarithmic divergence. In Sect. 3.1, we define the flow and interpret it in two
ways: (i) a mirror-like descent under the λ-mirror map (10), and (ii) a time change of
a Hessian gradient flow. It reduces to the continuous time mirror descent (9) in the
limit λ → 0. Convergence results are stated and proved in Sect. 3.2.

3.1 The flow and two representations

As described in Sect. 2.3, the usual (Bregman) mirror descent (6) can be understood as
(i) aBregmanproximalmethod (7); or (ii) a (discretizationof) theHessiangradient flow
(9). This suggests two ways to generalize the method. Formally, we may replace the
Bregman divergence in (7) by a λ-logarithmic divergence. This leads to the proximal
method

θk+1 = argminθ∈�

{
f (θk) + 〈Dθ f (θk), θ − θk〉 + 1

δ
Lλ,ϕ[θ : θk]

}
. (20)

Unfortunately, because of the logarithm, the first order condition of (20) cannot be
solved explicitly to yield a simple update as in mirror descent (see (6)). We study
instead the continuous time Riemannian gradient flow with respect to the metric g
given by (18), and it turns out that this is much more tractable. We fix λ �= 0 and let a
regular cλ-convex generator ϕ be given on the convex domain �.

Definition 3 (Conformal mirror descent in continuous time) Let f : � → R be a
differentiable function to be minimized. Given an initial value θ0 ∈ �, the continu-
ous time conformal mirror descent is the Riemannian gradient flow given in primal
coordinates by

d

dt
θt = −gradGλ

f (θt ), (21)

where gradGλ
f = G−1

λ Dθ f is the Riemannian gradient expressed in primal
coordinates and Gλ is given by (16).

While any Riemannianmetric can be used to define a gradient flow, implementation
of the flow in coordinates generally requires computation of the Riemannian gradient
G−1(θ)Dθ f , where G is the matrix of coefficients of the metric. In (9), the mirror
map Dφ eliminates the need to compute G−1

0 because G0 = D2φ is the Jacobian of
the mirror map. Here, we show that a similar property holds for the conformal mirror
descent under the λ-mirror map. We let Id denote the d × d identity matrix.
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Theorem 1 (Dynamics under the λ-mirror map) Consider the flow (21). Let ηt =
D(cλ)

θ ϕ(θt ) be the dual variable under the λ-mirror map (10). Then

d

dt
ηt = −�λ(θt )(Id + ληtθ

�
t )Dθ f (θt ), (22)

where �λ(θ) := 1 + λ
〈
θ,D(cλ)

θ ϕ(θ)
〉
= 1 + λ〈θ, η〉.

Proof Under the primal coordinate system, we have

(Gλ(θ))i j = − ∂2

∂θ i∂θ
′ j Lλ,ϕ[θ : θ ′]

∣∣∣
∣
θ=θ ′

= − ∂2

∂θ i∂θ
′ j

{
ϕ(θ) + ψ(η′) − 1

λ
log(1 + λ

〈
θ, η′〉)

}∣∣
∣∣
θ=θ ′

= ∂2

∂θ i∂θ
′ j

{
1

λ
log(1 + λ

〈
θ, η′〉)

}∣∣
∣∣
θ=θ ′

= 1

�λ(θ)

{
∂ηi

∂θ j
− λ

�λ(θ)
ηi

d∑

k=1

θk
∂ηk

∂θ j

}

,

where the first equality holds by construction (see e.g., [2, Section 6.2]) and the second
equality follows from the self-dual representation (17). In matrix form, we have

Gλ(θ) = 1

�λ(θ)

(
Id − λ

�λ(θ)
ηθ�

)
∂η

∂θ
(θ), (23)

where
(

∂η
∂θ

)

i j
= ∂ηi

∂θ j is the Jacobian of the transformation θ �→ η. Now we may invert

(23) using the Sherman-Morrison formula to get

G−1
λ (θ) = �λ(θ)

∂θ

∂η
(η)(Id + ληθ�).

By definition, the gradient flow (21) is given by

d

dt
θt = −G−1

λ (θt )Dθ f (θt ).

Expressing the flow in terms of the dual variable, we have, by the chain rule again,

d

dt
ηt = ∂η

∂θ
(θt )

d

dt
θt

= −∂η

∂θ
(θt )�λ(θt )

∂θ

∂η
(ηt )(Id + ληtθ

�
t )Dθ f (θt )

= −�λ(θt )(Id + λθtη
�
t )Dθ f (θt ).
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��
In other to implement (22), we require that the λ-mirror map and its inverse can

be computed. Next, by using the fact that g is a conformal Hessian metric, we show
that the conformal mirror descent gradient flow can be viewed as a time change of a
Hessian gradient flow.

Theorem 2 (Time-change of Hessian gradient flow) Let (θ̃s)s≥0 be the Hessian gra-
dient flow (9) with respect to the Bregman generator �λ = 1

λ
(eλϕ − 1). Consider

the time change s = st , where
d
dt st = exp(λϕ(θ̃st )). Then θt = θ̃st is the conformal

mirror descent (21) induced by ϕ. In particular, let ζt = D�λ(θt ) be the dual vari-
able with respect to the Bregman generator �λ. Then the flow can be expressed as
d
dt ζt = −eλϕ(θt )Dθ f (θt ).

Proof By (21) and (16), we have

d

dt
θt = −G−1

λ (θt )Dθ f (θt ) = −eλϕ(θt )G̃−1
0 (θt )Dθ f (θt ), (24)

where G̃0 = D2
θ�λ. Let θ̃ (s) be the Hessian gradient flow (9) induced by the metric

G̃0, and let s = st be the given time change. Applying the chain rule in (9), we have

d

dt
θ̃st = d

ds
θ̃st

d

dt
st = −G̃−1

0 (θ̃st )Dθ f (θ̃st )
d

dt
st

= −eλϕ(θ̃st )G̃−1
0 (θ̃st )Dθ f (θ̃st ).

Comparing this with (24), we see that θ̃st = θt . The proof of the last statement is
similar. ��

By Theorem 2, the trajectory of a conformal mirror descent gradient flow is the
same as that of a Hessian gradient flow: the conformal transformation of the metric
introduces a time-varying learning rate depending on the value ϕ(θt ). To imple-
ment conformal mirror descent in practice, the flow (21) must be discretized. From
Definition 3 and Theorems 1 and 2, we have the following three forward Euler
discretizations:

• Primal Euler discretization: θk+1 = θk − δG−1
λ (θk)Dθ f (θk).

• Dual Euler discretization: ηk+1 = ηk − δ�λ(θk)
(
Id + λθkη

�
k

)
Dθ f (θk).

• Mirror descent with adaptive learning rate: ζk+1 = ζk − δeλϕ(θk )Dθ f (θk), where
ζk = Dθ�λ(θk).

Even if the λ-mirror map D(cλ)ϕ and its inverse are available in closed form, the
mirror map D�λ (and its inverse) may be intractable (and vice versa). Thus, the two
points of view (λ-mirror vs time change) can be quite different in implementation.
In particular, our generalization offers a principled alternative to implement identical
gradient flows in practice when the Bregman mirror map (and its inverse) might not
be computationally tractable. Also, the conformal mirror descent dynamics and the
λ-duality suggest novel choices of the generator ϕ and dual coordinates that are more
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natural in certain problems. For example, in Sect. 4 we apply it to online natural
gradient learning for some generalized exponential families. A detailed analysis of
the above (and possibly other) discretization schemes is left for future research.

To close this section we give a concrete example of conformal mirror descent which
generalizes [16, Theorem 5.5]. For a given regular cλ-convex generator ϕ, consider
minimizing either f (θ) = Lλ,ϕ[θ∗ : θ ] or f (θ) = Lλ,ϕ[θ : θ∗] for some θ∗ ∈ �.
Note that f is typically not convex in θ (or η). We show that the conformal mirror
descent evolves along geodesics of the underlying dualistic structure. See [33] for a
detailed analysis of the dually flat case.

Proposition 3 (Primal and dual flows)

(i) The trajectory of the primal flow

d

dt
θt = −gradGλ

Lλ,ϕ[θ∗, ·](θt ) (25)

follows a time-changed primal geodesic, i.e., along the straight line from θ0 to θ∗
under the primal coordinate system.

(ii) The trajectory of the dual flow

d

dt
θt = −gradGλ

Lλ,ϕ[·, θ∗](θt ) (26)

follows a time-changed dual geodesic, i.e., along the straight line from η0 to η∗
under the dual coordinate system.

Proof We first consider the dual flow (26). Using the self-dual representation (15),

DθLλ,ϕ[· : θ∗] = Dθϕ(θ) − η∗

1 + λ〈θ, η∗〉 = η

1 + λ〈θ, η〉 − η∗

1 + λ〈θ, η∗〉 ,

where the last equality can be verified using the definition (10) of the λ-mirror map.
By Theorem 1 we have, after some simplification,

d

dt
ηt = − 1 + λ〈θt , ηt 〉

1 + λ〈θt , η∗〉 (ηt − η∗). (27)

Thus, the dual flow evolves along a time-changed dual geodesic.
Since Lλ,ϕ[θ∗ : θ ] = Lλ,ψ [η : η∗] and both Lλ,ϕ and Lλ,ψ induce the same

Riemannian metric, the primal flow (25) for Lλ,ϕ is equivalent to the dual flow for
Lλ,ψ . By the case proved above, we have that the trajectory follows a time-changed
straight line under the θ -coordinates. ��

3.2 Convergence results

In this subsection, we present continuous time convergence results for conformal
mirror descent that are analogous to those ofmirror descent. Ourmain tool is Lyapunov
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analysis following [34]. In what follows, we let (θt )t≥0 be the solution to the gradient
flow (21) for a given continuously differentiable and convex function f : � → R.
We also let θ∗ be a minimizer of f over �.

We first observe that the λ-logarithmic divergence is a Lyapunov function of the
gradient flow.

Lemma 3.1 The functional Et = Lλ,ϕ[θ∗ : θt ] is a Lyapunov function of the gradient
flow, i.e., d

dt Et ≤ 0.

Proof Using the self-dual representation (15), we have

d

dt
Et = d

dt

(
ϕ(θ∗) + ψ(ηt ) − 1

λ
log(1 + λ〈θ∗, ηt 〉)

)

=
〈
θt ,

d
dt ηt

〉

1 + λ〈θt , ηt 〉 −
〈
θ∗, d

dt ηt
〉

1 + λ〈θ∗, ηt 〉 .

Using (22) and simplifying, we have

d

dt
Et = 1 + λ〈θt , ηt 〉

1 + λ〈θ∗, ηt 〉
〈
Dθ f (θt ), θ

∗ − θt
〉 ≤ 1 + λ〈θt , ηt 〉

1 + λ〈θ∗, ηt 〉 ( f (θt ) − f (θ∗)) ≤ 0.

(28)

��
Theorem 4 Define τt = ∫ t

0 e
λϕ(θs )ds, so that τ̇t = d

dt τt = eλϕ(θt ). Let θ̂t =
1
τt

∫ t
0 θs τ̇sds, which is a weighted average of the trajectory up to time t. If θ∗ is a

minimizer of f over �, then

f (θ̂t ) − f (θ∗) ≤ B�λ [θ∗ : θ0]
τt

, (29)

where�λ = 1
λ
(eλϕ −1) is the Bregman generator. In particular, if f is strictly convex,

then f (θ̂t ) − f (θ∗) = O( 1t ) as t → ∞.

Proof This result can be derived using Theorem 2 and convergence results of Hessian
gradient flow (see e.g. [17, Section 2.1.3]). For completeness, we give a self-contained
proof. Using a similar argument as in the proof of Lemma 3.1, we have that

Et = 1

λ

(
1 − e−λLλ,ϕ [θ∗:θt ]

)
+
∫ t

0
eλ(ϕ(θs )−ϕ(θ∗))( f (θs) − f (θ∗))ds

satisfies

d

dt
Et = −e−λ(ϕ(θt )−ϕ(θ∗))B�λ [θ∗ : θt ] ≤ 0, (30)
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and hence is another Lyapunov function. Since Et is non-increasing, we have

e−ϕ(θ∗)τt

∫ t

0

τ̇s

τt
( f (θs) − f (θ∗))ds ≤ Et ≤ E0 = 1

λ
(1 − e−λLλ,ϕ [θ∗:θ0]). (31)

Note that by (19), the last expression in (31) is equal to e−ϕ(θ∗)B�λ [θ∗ : θ0]. Since
f (·) − f (θ∗) is convex, by Jensen’s inequality we have

f (θ̂t ) − f (θ∗) ≤
∫ t

0

τ̇s

τt
( f (θs) − f (θ∗))ds ≤ 1

τt
B�λ [θ∗ : θ0].

If f is strictly convex, from (28) we have that limt→∞ θt = θ∗. Since eλϕ(θt ) →
eλϕ(θ∗), the quantity τt = ∫ t

0 e
λϕ(θs )ds grows linearly as t → ∞. It follows from (29)

that f (θ̂t ) − f (θ∗) = O( 1t ) as t → ∞. ��

4 Online estimation of generalized exponential family

Mirror descent is often used to estimate parameters of stochastic models, both offline
and online. Using a duality between the exponential family and Bregman divergence
[6], the authors of [14] considered online parameter estimation for exponential fam-
ilies, and showed that the mirror descent step is equivalent to the natural gradient
step [35]. In this section, we generalize this result to obtain tractable online learning
algorithms for the λ-exponential family introduced in [19]. In particular, it includes
heavy-tailed distributions, such as the t-distribution, which cannot be expressed as
exponential families.

We begin with some preliminaries. Following [19], by a λ-exponential family we
mean a parameterized probability density (with respect to a reference measure ν) of
the form

pθ (x) = (1 + λ〈θ, F(x)〉)1/λ+ e−ϕ(θ), (32)

where x+ = max{x, 0} and F(x) = (F1(x), . . . , Fd(x)) is a vector of statistics.
For example, if ν is the Lebesgue measure on R, λ ∈ (−2, 0) and F(x) = (x, x2),
then we obtain from (32) the Student’s t distribution (as a location-scale family)
with −2

λ
− 1 > 0 degrees of freedom (see Example 1 below). The density (32) is a

generalized or deformed exponential family and is a reparameterized version of the q-
exponential family (where q = 1−λ) in statistical physics (see [19, Section 3] for the
precise relation).5 As λ → 0, we recover the usual exponential family. Under suitable
regularity conditions (including the restriction λ < 1 or equivalently q = 1− λ > 0),
it can be shown that the divisive normalization function ϕ in (32) is cλ-convex on the
parameter space� and hence defines a λ-logarithmic divergence. This divergence can
be interpreted probabilistically as Lλ,ϕ[θ : θ ′] = Hr

q(pθ ′ ||pθ ), where Hr
q is the Rényi

5 Note that parameterized densities similar to (32) were studied by other authors such as [36], but their
motivations were orthogonal to ours.
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divergence of order q. Consequently, the induced Riemannian metric is a constant
multiple of the Fisher information metric I [37]:

Gλ(θ) = (1 − λ)I (θ). (33)

Moreover, the dual variable η = D(cλ)
θ ϕ(θ) under the λ-mirror map can be interpreted

as a generalized expectation parameter known as the escort expectation:

η =
∫

F(x)
pθ (x)q∫
pqθ dν

dν(x).

In fact, the density (32) maximizes the Rényi entropy of order q subject to con-
straints on the escort expectation. These (and other) results nicely parallel those of the
exponential family (see e.g. [2, Chapter 2]).

We now consider the online estimation of (32) under i.i.d. sampling. By considering
the distribution of Y = F(X), we have a λ-exponential family on (a subset of) Rd of
the form

pθ (y) = (1 + λ〈θ, y〉)1/λ+ e−ϕ(θ). (34)

Supposewe observe data points yk , k = 1, 2, . . .. Let the current guess of the parameter
be θk . After observing yk , we update θk to θk+1 by a minimizing gradient step with
respect to the log-loss

fk(θ) = − log pθ (yk) = ϕ(θ) − 1

λ
log(1 + λ〈θ, yk〉). (35)

Note that the negative log-likelihood fk is typically not convex in θ . We do this by
discretizing the conformal mirror descent (22), where the generating function ϕ is the
potential function in (34). Since Gλ is a multiple of the Fisher metric, the forward
Euler step of (22) in dual coordinates leads to the (unconstrained) natural gradient
update

ηk+1 = ηk − δk�λ(θk)(Id + ληkθ
�
k )Dθ fk(θk), (36)

where δk > 0 is the learning rate. Simplifying (36), we obtain an explicit and clean
update that is not obvious from the time change perspective.

Theorem 5 (Online natural gradient step for λ-exponential family) The online natural
gradient update (36) is given by

ηk+1 = ηk + δ
1 + λ〈θk, ηk〉
1 + λ〈θk, yk〉 (yk − ηk). (37)

Proof Differentiating fk(θ) in (35), we have

Dθ fk(θ) = η

1 + λ〈θ, η〉 − yk
1 + λ〈θ, yk〉 ,
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which has the same form as in the dual gradient flow in Proposition 3(ii). (This is not
a coincidence in view of the duality between λ-exponential family and λ-logarithmic
divergence; see [19, Section VI].) Continuing the computation as in the proof of
Proposition 3, we obtain (37) which is the discrete analogue of (27). ��

Since (36) is a natural gradient update, by [35, Theorem 2] the algorithm (when
δk = 1

k ) is Fisher efficient as k → ∞. When λ → 0, we recover the linear update
for exponential families derived in [14]. In general, an extra projection step, which is
also necessary for the exponential family (λ = 0), is needed to constrain θk+1 ∈ � (or
ηk+1 ∈ H ). We use clipping and reflection across the boundary to enforce the domain
constraints in our experiments below.

Example 1 (Student’s t-distribution as a location-scale family) For a fixed ν > 0, the
Student’s t-distribution with ν degrees of freedom has density on R given by

p(x;μ, σ, ν) = �((ν + 1)/2)

�(ν/2)
√

νπσ

(
1 + 1

ν

(x − μ)2

σ 2

)−(ν+1)/2

, (38)

whereμ and σ are the location and scale parameters, respectively, and � is the gamma
function.6 In the following, we regard ν as known and consider online estimation of
(μ, σ ).

Let λ = −2
ν+1 ∈ (−2, 0) and F(x) = (x, x2)�. Then we can express (38) as a

λ-exponential family pθ (x) = (1+ λ〈θ, F(x)〉)1/λe−ϕ(θ). The natural parameter θ is
given by

θ = (θ1, θ2) =
(

2μ

−λμ2 + σ 2 (λ + 2)
,− 1

−λμ2 + σ 2 (λ + 2)

)
,

and takes values in the set

� =
{
θ = (θ1, θ2) ∈ R2 : θ2 < 0 and λ(θ1)2 − 4θ2 > 0

}
.

The potential function ϕ is given on � by

ϕ(θ) = log

⎛

⎝

√
λ(θ1)2−4θ2

λ+2

−2θ2

⎞

⎠− 1

λ
log

( −4θ2

λ(θ1)2 − 4θ2

)
+ C,

where C is a constant depending only on ν. By a straightforward computation, we
obtain explicit expressions of the λ-mirror map and its inverse:

η = D(cλ)
θ ϕλ(θ) =

(
−θ1

2θ2
,
λ(θ1)2 + (θ1)2 − 2θ2

2(λ + 2)θ22

)

,

6 Here the dominating measure is the Lebesgue measure on R and ν ∈ (0, ∞) denotes the degrees of
freedom.
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Fig. 2 Left: 10 trajectories of (37) for the Student t-distribution location scale family (38) with ν = 3
degrees of freedom, where the learning rate is δk = 1/k. We show the dynamics of (μk , σk ) over a sample
of 10000 data points. Red dot: initial guess (μ0, σ0). Blue square: true parameter (μ∗, σ∗). Right: Plot
of log dist(ηk , η

∗) against log10 k for the Dirichlet perturbation model (Example 2) over 30 trajectories
of (37), each with 10000 data points. Here dist(η, η′) = | log(η) − log(η′)| is used as a metric on the dual
domain H = (0, ∞)d . In this simulation, d = 50, λ = −0.3 and δk = 1/k. We observe that dist(ηk , η

∗)

decays like O(k−1/2), which is consistent with the asymptotic efficiency of online natural gradient learning

θ = D(cλ)
η ψ(η) =

( −2η1

2(λ + 1)(η1)2 − (λ + 2)η2
,

1

2(λ + 1)(η1)2 − (λ + 2)η2

)
.

In Figure 2(left), we show ten trajectories (in terms of (μk, σk)) of the algorithm
(37) with δk = 1/k, where the true parameter is (μ∗, σ ∗) and the initial guess is
(μ0, σ0). As expected, the iterates converge to (μ∗, σ ∗) as k → ∞. The preceding
computations can be generalized to themultivariate location-scale t-distributionwhere
the degrees of freedom is also assumed to be known.

Example 2 (Dirichlet perturbation on the unit simplex) The Dirichlet perturbation
model is a fundamental example of the λ-exponential family (see [19, Example 3.14])
and is closely related to theDirichlet optimal transport problem studied in [15, 16, 26];
see also Sect. 5 below, where we use the Dirichlet transport to define gradient flows
on the simplex. This model, which is also called the shifted Dirichlet distribution, has
been applied in compositional data analysis (see [38]).

Fix d ≥ 1 and consider the open unit simplex

�1+d =
{

p = (p0, p1, . . . , pd) ∈ (0, 1)1+d :
d∑

i=0

pi = 1

}

. (39)

Given p, q ∈ �1+d , define the perturbation operation by

p ⊕ q =
(

p0q0
∑d

j=0 p
jq j

, . . . ,
pdqd

∑d
j=0 p

jq j

)

. (40)
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This is the vector addition operation under the Aitchison geometry in compositional
data analysis [39]. Let σ > 0 and let λ = −σ < 0. Fix p ∈ �1+d , which we regard
as the unknown parameter, and let D = (D0, . . . , Dd) be a random vector whose
distribution is the Dirichlet distribution with parameters (σ−1/(1+d), . . . , σ−1/(1+
d)) ∈ (0,∞)1+d . As σ → 0, the distribution of D converges weakly to the point
mass at the barycenter (1/(1+ d), . . . , 1/(1+ d)). Thus, we may regard σ as a noise
parameter. The Dirichlet perturbation model is specified as

Q = p ⊕ D. (41)

It may be regarded as a multiplicative analogue of the Gaussian additive model Y =
X+ε, where ε ∼ N (0, σ 2 Id). Alternatively, wemay think of (41) as a natural additive
(but non-Gaussian) noise model under the Aitchison geometry.

By [19, Proposition 3.16], the distribution of Q can be expressed as a λ-exponential
family with λ = −σ < 0, if we let F(q) = (q1/q0, . . . , qd/q0) and θ =
(p0/λp1, . . . , p0/λpd) ∈ � = (−∞, 0)d . By [19, (III.30)], the potential function is
given by

ϕ(θ) = 1

λ(1 + d)

d∑

i=1

log(−θ i ).

Letting d = 1 and λ = −1 (and replacing θ by−θ ), recovers the first example in Table

1. The dual variable η is given by ηi = 1
λθ i

= pi

p0
. In Figure 2 (right), we illustrate

the O(k−1/2) convergence rate of the online estimation algorithm (37). In fact, it can
be verified that the update (37), when expressed in terms of pk (the current estimate
of p) and qk (the new data point) with values in �1+d , is independent of the value of
λ < 0. Thus, for online estimation of the Dirichlet perturbation model, we may treat
σ > 0 (or λ < 0) as unknown.

5 Gradient flows on the simplex via Dirichlet transport

By Brenier’s theorem [40], the mirror map ζ = Dφ(θ) in classical (Bregman) mirror
descent can be interpreted as an optimal transport map for the quadratic cost c(x, y) =
1
2 |x − y|2. Also, the Bregman divergence is the c-divergence of the quadratic cost.
This suggests an interpretation of mirror descent in terms of optimal transport. Our
conformal mirror descent generalizes this set-up to the logarithmic cost cλ(x, y) =
−1
λ
log(1+λ〈x, y〉) for λ �= 0. In this section, we specialize to the unit simplex and the

case λ = −1. Using theDirichlet optimal transport problem studied in [26], we define
a family of gradient flows on the unit simplex and compare them with the entropic
descent, which is an important and practical example of mirror descent.
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5.1 Dirichlet transport

Following [26],wedefine theDirichlet cost functionon�n×�n (wheren = 1+d ≥ 2)
by

c(p, q) = log

(
n−1∑

i=0

1

n

qi

pi

)

−
n−1∑

i=0

1

n
log

qi

pi
. (42)

It is closely related to the Dirichlet perturbation model in Example 2, because the
density of Q (with respect to a suitable reference measure) is proportional to ec(p,q)/λ

[26, Remark 6]. It is easy to verify that c(p, q) = L−1,ϕ[q : p], where ϕ(p) =
−∑n−1

i=0
1
n log pi is c−1-convex on �n . Up to a change of variables and addition of

linear terms (see [17, Remark 3]), the Dirichlet cost function is equivalent to the
logarithmic cost c−1. The (−1)-mirror map then corresponds to the optimal transport
map of the Dirichlet transport.We now adapt the logarithmic divergence and the (−1)-
mirror map to the simplex following the notations of [26]. The role of the c−1-convex
generator is now played by an exponentially concave function.

Definition 4 (Exponentially concave function) A smooth function ϕ : �n → R is
said to be exponentially concave if eϕ is concave. Given such a function, we define its
L-divergence by

Lϕ[q : p] = log(1 + 〈Dϕ(p), q − p〉) − (ϕ(q) − ϕ(p)). (43)

It is easy to see that if ϕ is exponentially concave, then −ϕ is c−1-convex and
Lϕ = L−1,−ϕ . In order that the inducedRiemannianmetric is well-defined, we assume
that D2eϕ is strictly negative definite when restricted to the tangent space of �n . The
(−1)-mirror map is now given in terms of the optimal transport map of the Dirichlet
transport. Directional derivatives of a differentiable function f on �n are defined by

D̃i f (p) = 〈D f (p), ei − p〉, 0 ≤ i ≤ n − 1,

where {ei }n−1
i=0 denotes the standard Euclidean basis. In conjunction with the pertur-

bation operator (40), the powering operator on �n is defined as

α ⊗ p =
(

(p0)α
∑n−1

j=0(p
j )α

, . . . ,
(pn−1)α

∑n−1
j=0(p

j )α

)

, p ∈ �n, α ∈ R.

Note that �n is an (n − 1)-dimensional real vector space under the operations ⊕ and
⊗. We define �p = (−1) ⊗ p to be the additive inverse of p.

Definition 5 (Portfolio and optimal transport maps) Given the exponentially concave
generator ϕ, we define the portfolio map πϕ : �n → �n by

(πϕ(p))i = pi
(
1 + D̃iϕ(p)

)
, 0 ≤ i ≤ n − 1. (44)
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The optimal transport map Tϕ : �n → �n is defined by

q = Tϕ(p) = p ⊕ πϕ(�p). (45)

That Tϕ is an optimal transport map for the Dirichlet cost function (42) is proved
in [26, Theorem 1], which is an analogue of Brenier’s theorem. The terminology
“portfolio map” for the mapping πϕ is motivated by its use in portfolio theory [15, 18,
41].

Example 3 (Examples of portfolio and transport maps)

(i) Let ϕ(p) = ∑n−1
i=0

1
n log pi . Then the associated portfolio map is the constant map

πϕ(p) = ( 1
n , . . . , 1

n

)
called the equal-weighted portfolio. From (45), the transport

map is the identity Tϕ(p) = p. This function corresponds to the self-dual quadratic
function 1

2 |x |2 whose Euclidean gradient is the identity.

(ii) Let ϕ(p) = 1
α
log
(∑n−1

j=0(p
i )α
)
where α ∈ (−∞, 1) is a fixed parameter. Then

πϕ(p) = α ⊗ p is called the diversity-weighted portfolio. The transport map is
Tϕ(p) = (1 − α) ⊗ p, and can be interpreted as a dilation under the Aitchison
geometry, with α → 0 recovering the identity transport.

Let f : �n → R be a differentiable function. Using the Riemannian metric g
induced by Lϕ , we can define the gradient flow

d

dt
pt = −gradg f (pt ), (46)

which is a special case of (21) (up to reparameterization) when λ = −1. The following
result is an explicit derivation of the dynamics under the dual variable qt = Tϕ(pt ),
defined in terms of the transport map. We omit the proof as it is a straightforward, but
tedious computation.

Theorem 6 (Conformal mirror descent on�d under Dirichlet transport) Consider the
gradient flow (46), and let qt = Tϕ(pt ). For 0 ≤ i ≤ n − 1,

d

dt
log qit = −pit

π i
ϕ(�pt )

⎡

⎣D̃i f (pt ) − qit

n−1∑

j=0

(
p j
t

pit

)2

D̃ j f (pt )

⎤

⎦ . (47)

Example 4 Consider the equal-weighted portfolio in (3). Then qt = Tϕ(pt ) = pt , and
corresponding gradient flow (47) is given by

d

dt
log

pit
p j
t

= −n
[
pit D̃i f (pt ) − p j

t D̃ j f (pt )
]
, 0 ≤ i, j ≤ n − 1.

This motivates the multiplicative discrete update:

pik+1 = pik exp
(−δk pikD̃i f (pt )

)

∑n−1
j=0 p

j
k exp

(
−δk p

j
k D̃ j f (pt )

) .
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This is reminiscent of the entropic descent (Bregman mirror descent on �n induced
by the negative Shannon entropy), whose update is given by

pik+1 = pik exp (−δkDi f (pt ))
∑n−1

j=0 p
j
k exp

(−δkD j f (pt )
) , (48)

where Di f is the i-th component of D f .

Example 5 Consider minimization of the function f (p) = c(p, p∗) where c is the
Dirichlet cost function defined by (42) and p∗ is fixed. In this experiment, we generate
p∗ randomly according to various distributions on �n . We implement (47) using the
forwardEuler discretization for the diversity-weighted portfolio (Example 3(ii)) where
α ∈ {0, . . . , 0.9}, and compare the performance with that of the entropic descent (48).
The results are shown in Figure 3 . Values of α closer to 1 perform better than the
entropic descent across all settings, and recover the minimizer p∗ considerably more
accurately.

6 Discussion and future directions

Convex duality and Bregman divergence underlie much of the theory and applications
of classical information geometry. In this paper, we use theλ-duality and the associated
logarithmic divergence to propose a tractable gradient flow called the conformalmirror
descent. We demonstrate its usefulness in online parameter estimation and gradient
flows on the simplex. Here, we discuss other related work and some directions for
future research.

In this paper, we generalize the Hessian gradient flow primarily from the
information-geometric point of view. Being a fundamental first-order optimization
method, mirror descent has been studied and generalized in many directions. For
instance, convergence of many discrete and continuous time descent algorithms was
studied using Lyapunov arguments in [34]. In [42], a family of accelerated mirror
descent algorithms with quadratic convergence was proposed. Likewise, [43] presents
a unifying analysis of accelerated descent using variational methods. A future avenue
is to explore accelerated variants of the conformal mirror flow, and to interpret these
using information-geometric frameworks; one such exploration is presented by [44].

Mirror descent provides a concrete framework to understand seemingly unrelated
optimization algorithms. For example, several recent works [45–47] have analyzed
and interpreted the popular Sinkhorn algorithm [48]—an iterative scheme used for
solving the entropic optimal transport problem [49]—as a form of mirror descent. Our
conformal mirror descent may be applied to develop new algorithms for regularized
optimal transport problems and analyzing their convergence properties.

Statistical inference and machine learning involving generalized exponential fam-
ilies is the subject of a recent line of work, for e.g. [50, 51]. We expect that λ-duality
and logarithmic divergences will be useful in this endeavor. Nevertheless, the current
framework (as in [19]) assumes that the curvature parameter λ is given and known
(except in special cases such as the Dirichlet perturbation model in Example 2). A
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natural direction is to develop data-driven methods to determine λ (and analogous
quantities for other generalized exponential families).

The λ-duality is a special case of the c-duality in optimal transport, where c = cλ is
the logarithmic cost given by (5).While the λ-duality is particularly tractable, efficient
algorithms related to general c-duality will likely open up many new applications.
For example, the recent paper [52] used c-convexity to define normalizing flows on
Riemannian manifolds. It is also natural to analyze similarly derived gradient flows
with respect to other cost functions. We hope our results will motivate and inspire
further work in applications of generalized c-convex duality.
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