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Abstract
We construct a new family of non-parametric statistical manifolds by means of a two-
parameter class of deformed exponential functions, that includes functionswith power-
law, linear and sublinear rates of growth. The manifolds are modelled on weighted,
mixed-norm Sobolev spaces that are especially suited to this purpose, in the sense that
an important class of nonlinear superposition operators (those used in the construction
of divergences and tensors) act continuously on them. We analyse variants of these
operators, that map into “subordinate” Sobolev spaces, and evaluate the associated
gain in regularity. With appropriate choice of parameter values, the manifolds support
a large variety of the statistical divergences and entropies appearing in the literature,
as well as their associated tensors, eg. the Fisher-Rao metric. Manifolds of finite
measures and probabilitymeasures are constructed; the latter are shown to be smoothly
embedded submanifolds of the former.

Keywords Banach manifold · Fisher-Rao metric · Information Theory · Log-Sobolev
inequality · Non-parametric statistics · Sobolev spaces

Mathematics Subject Classification 46N30 · 60D05 · 60H15 · 62B10 · 93E11

1 Introduction

Great progress has been made during the last five decades on the theory of information
geometry, and its application in many scientific fields. The fundamental parametric
theory is well developed, and is treated pedagogically in a number of texts (See, for
example, [1, 3, 5, 9, 12]). The non-parametric theory, on the other hand, is largely

Communicated by Jürgen Jost.

B Nigel J. Newton
nigeljnewton@gmail.com

1 University of Essex, Colchester CO4 3SQ, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41884-022-00079-5&domain=pdf
http://orcid.org/0000-0001-5977-4594


S172 N. J. Newton

to be found in a series of research papers. A notable exception is the text [2], which
treats parametric and non-parametric theories in a unified way. The step from the
parametric to the non-parametric setting is not an easy one, since it introduces the
infinite-dimensional spaces of Functional Analysis.

The parametric exponential model is arguably the nucleus of the subject. Its exten-
sion to the non-parametric setting was accomplished by G. Pistone and his co-workers
in the fundamental series of papers [4, 7, 18, 19]. The manifolds there constructed are
“maximally inclusive” in a precise sense, and various statistical divergences, including
the Amari α-divergences, for α in the interval [−1, 1], are smooth on them. As with
parametric exponentialmanifolds, the log of the density is used as a chart. This requires
a model space with a particularly strong topology: the exponential Orlicz space, which
has a number of disadvantages. Since its publication, several variations of the expo-
nential Orlicz manifold have been developed. In [11], the exponential function was
replaced by the Tsallis q-deformed exponential, which has an important interpretation
in statistical mechanics. (See [20], and Chapter 7 in [13].) The model space used is
L∞, which significantly restricts membership of the manifold consructed. A large
class of deformed exponential functions (the “ϕ-functions”) was used in [21, 22] to
construct inclusive manifolds of probability measures, in which the model spaces are
Musielak-Orlicz spaces.

The constructions in these references begin with the tangent space at a generic
point, P , of a set of measures. A representation of tangent vectors, derived from the
(deformed) logarithm, is then used to construct a local chart, which naturally maps
to a model space defined in terms of P . However, the model spaces required in this
approach can be difficult to use in practice. A different approach was taken in [14, 15],
where aglobal chartwasusedwith the specificdeformed logarithm logd = y−1+log y
to construct an inclusive manifold modelled on Lebesgue L p spaces (including the
Hilbert space L2). The corresponding deformed exponential has bounded derivatives
of all orders; a property that has a number of advantages. Both the probability density
and its (non-deformed) log (objects of central importance to information geometry)
belong to the model space and, considered as superposition operators mapping into
this space, are continuous.

The sample space in all these manifolds is an abstract probability space: a set
of “outcomes”, a class of measurable subsets of these outcomes, and a probability
measure attaching a number between 0 and 1 to each subset. This has the advantage
of generality: the sample space could be R

d , or the path space of a stochastic pro-
cess,…However, topologies, metrics and linear structures on the sample space play
important roles in most applications, including the theory of partial differential equa-
tions. A natural direction for research in the non-parametric theory is to specialise
the manifolds outlined above to such problems by incorporating the topology of the
sample space in the manifolds. One way of achieving this is to use model spaces of
Sobolev type. This was carried out in the context of the exponential Orlicz manifold
in [10], where it was applied to the spatially homogeneous Boltzmann equation. It
was carried out in the context of the L p manifolds in [17]. The resulting fusion of
information and sample space topologies is mutually beneficial. For example, it was
shown in [17] that log-Sobolev embedding strengthens the topology of the raw L p

manifolds in a useful way.
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This paper takes the approach of [14, 15, 17] further, by constructing a new class of
non-parametric manifolds based on a two-parameter deformed exponential, dubbed
the η-exponential. The paper has two primary aims: (i) to provide manifolds on which
a wider class of divergences and entropy functions can be accommodated; (ii) to refine
the Sobolev space methods of [17] in order to increase the degree of smoothness they
confer on these quantities. Regarding the first aim, there is a vast literature on the
importance of different divergences and entropies to particular branches of science,
a full review of which is beyond the scope of this article. Let us mention, however,
the special volume (13) of Entropy on applications of the Tsallis q-divergences and
entropies. The review article by Tsallis [20], in particular, cites many applications in
which the q parameter should be strictly greater than or strictly less than the value
q = 1 of the Boltzmann-Gibbs theory. In the context of Amari’s α-divergences, this
translates to values of α both greater than and less than 1. The author was motivated,
in particular, by the study of multi-objective measures of error in nonlinear filtering
that lead naturally to divergences with α < −1, [16].

The two-parameter η-exponential we use corresponds to a deformed exponential
introduced in [8], but is reparametrised into the Amari setting. The manifolds accom-
modate α-divergences and entropies over a range of α values, but are especially suited
to those for which α ∈ [η−, η+], for the chosen parameters −∞ < η− < 1 ≤ η+ <

∞. The parameter values ±1 yield the linear-growth deformed exponential of [14,
15, 17]; values of η− other than −1 yield deformed exponentials with power law or
sublinear growth. For a more detailed account of deformed exponentials, and their use
in Statistical Mechanics, the reader is referred to [13].

The paper is structured as follows. Section 2 introduces the model Sobolev spaces,
expanding considerably on thematerial in [17]. It also introduces a new class of “subor-
dinate” Sobolev spaces, which are later used in the analysis of superposition operators
derived from Amari’s α-embedding maps. (The latter can be used in the analsis of
divergences and entropies.) Section 3 introduces the two-parameter deformed expo-
nential and uses it to construct manifolds of finite measures. Section 4 then shows that
the subsets of probability measures are smoothly embedded submanifolds of those of
Sect. 3.

2 The Sobolev spaces

The manifolds are modelled on mixed-norm, weighted Sobolev spaces generalising
those defined in [17]. The spaces are based on a reference probability measure μ on
the sample space Rd . This takes the form

μ(dx) = r(x)dx = exp(lr (x))dx, (1)

where lr : Rd → R is a continuous function such that μ(Rd) = 1. Stronger results
can be obtained with the following additional hypothesis on lr .

(E) The log-density lr is constructed as follows. Let θ : [0,∞) → [0,∞) be a strictly
increasing, convex function that is twice continuously differentiable on (0,∞), is
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such that limz↓0 θ ′(z) < ∞, −√
θ is convex and, for some t ∈ (1, 2],

θ(z) =
{
0 if z = 0
c + zt if z ≥ z0

}
, where z0 ≥ 0, and c ∈ R. (2)

lr then takes the special form

lr (x) := ∑
i (C − θ(|xi |)), (3)

where C ∈ R is such that μ(Rd) = 1. (Some examples are given in [17] including
the Gaussian case, in which c = z0 = 0 and t = 2.)

The model spaces used in the construction of the manifolds comprise measurable
functions defined on R

d having weak derivatives of various orders, that belong to
the Lebesgue spaces Lλ = Lλ(μ) for various exponents λ. ( f ∈ Lλ if and only if
Eμ| f |λ := ∫ | f (x)|λμ(dx) < ∞.) Under (E), μ is a product measure and the model
spaces admit a log-Sobolev embedding result.

LetC∞(Rd ;R) be the space of continuous functionswith continuous partial deriva-
tives of all orders, and let C∞

0 (Rd ;R) be the subspace of those functions having
compact support. For any λ ∈ [2,∞), and any 0 ≤ k ≤ λ, the space Wk,λ is the
mixed-norm Sobolev space comprising measurable functions a ∈ Lλ that have weak
partial derivatives up to order k, those of order i belonging to the Lebesgue space
Lλ/i . We shall also use the “subordinate” spaces Wk,λ;l , for certain integer values of
l. Let λ◦ be the following Lebesgue exponent: if (E) holds and k ≥ 1 then λ◦ = λ,
otherwise λ◦ = λ− ε for some 0 < ε << 1. For 1 ≤ l ≤ �λ◦�, the spaceWk,λ;l com-
prises measurable functions a ∈ Lλ◦/l that have weak partial derivatives up to order
kl := min{k, �λ◦� − l}, those of order i belonging to the Lebesgue space Lλ◦/(l+i).
(For convenience Wk,λ;0 := Wk,λ.)

Model spaces with more general derivative structures were developed in [17],
including fixed-norm spaces; however, the Lebesgue exponents inWk,λ and its subor-
dinates are especially suited to the deformed logarithms used here. Weak derivatives
are defined in the usual way: for any ϕ ∈ C∞

0 (Rd;R),

∫
(∂i a) ϕ dx = −

∫
a (∂iϕ) dx where ∂i a is shorthand for

∂a

∂xi
. (4)

In order to express higher-order weak derivatives in an efficient way, we use the
following standard “multi-index” notation. Let S := {0, . . . , k}d be the set of d-tuples
of integers in the range 0 ≤ si ≤ k. For s ∈ S, we define |s| = ∑

i si , and denote by
Si := {s ∈ S : 1 ≤ |s| ≤ i} the set of d-tuples of weight at most i . For appropriate a,
we define the following

Dsa = ∂
s1
1 · · · ∂sdd a

‖a‖λ
Wk,λ = ‖a‖λ

Lλ +
∑
s∈Sk

‖Dsa‖λ
Lλ/(|s|)
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‖a‖λ
Wk,λ;l = ‖a‖λ

Lλ◦/l +
∑
s∈Skl

‖Dsa‖λ
Lλ◦/(l+|s|) , 1 ≤ l ≤ �λ◦�. (5)

Theorem 1 (i) For any 1 ≤ l ≤ �λ◦�, Wk,λ;l and Wk,λ are Banach spaces with
respect to the norms in (5);

(ii) For any 1 ≤ l ≤ �λ◦�, C∞
0 (Rd;R) is dense in Wk,λ;l and Wk,λ.

Proof Both parts are proved in Theorem 1 and Lemmas 1 and 2 in [17]. (The only
property required of the log density, lr , is its continuity.) Part (ii) is a consequence of
the non-increasing nature of the Lebesgue exponents in Wk,λ and Wk,λ;l . ��

The spaces admit the following continuous embeddings:

Wk,λ;0 := Wk,λ ≺ Wk,λ;l ≺ Wk,λ;l̃ , where 1 ≤ l < l̃ ≤ �λ◦�. (6)

The spacesWk,λ will be used as model spaces for manfolds of finite measures in Sect.
3, and centred versions of them, asmodel spaces formanifolds of probability measures
in Sect. 4. The following theorem derives some properties of particular types of map
acting on them. It will be used in the sequel.

Theorem 2 (i) For any ψ ∈ C∞(R;R) having bounded derivatives of all orders,
the nonlinear superposition operator 
 : Wk,λ → Wk,λ, defined by 
(a)(x) =
ψ(a(x)), is continuous. Its spatial derivatives are given by the Faà di Bruno
formula

Ds
(a) = Fs(a) :=
∑

π∈�(s)

ψ(|π |)(a)
∏
σ∈π

Dσa, (7)

where π = {σ1, . . . , σ|π | ∈ S|s|; 1 ≤ |σ j | ≤ |s|,∑ j σ j = s} is a partition of s,
|π | is the cardinal of π , and �(s) is the set of all such partitions.

(ii) For appropriate Banach spaces of functions on R
d , A, B and C, let �A,B :

A × B → C be defined by �A,B(a, b)(x) = a(x)b(x). �A,B is a well defined,
continuous, bilinear map in the following instances:

A = B = C = L∞ ∩ Wk,λ normed by ‖ · ‖L∞ + ‖ · ‖Wk,λ;
A = L∞ ∩ Wk,λ, B = Wk,λ, C = Wk,λ;1;
A = L∞ ∩ Wk,λ, B = C = Wk,λ;l 1 ≤ l ≤ �λ◦�;
A = Wk,λ;l , B = Wk,λ;l̃ , C = Wk,λ;l+l̃ 1 ≤ l, l̃; l + l̃ ≤ �λ◦�. (8)

The spatial derivatives of �A,B are given by the Leibniz formula

Ds�A,B(a, b) = Hs(a, b) :=
∑
σ≤s

s!
σ !(s − σ)!D

σaDs−σb, (9)

where s! := s1! · · · sd !, and σ ≤ s if and only if σi ≤ si for 1 ≤ i ≤ d.
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(iii) For ψ as in part (i), and any 0 ≤ l ≤ �λ◦�, the superposition operator 
l :
Wk,λ → Wk,λ;l , defined by 
l(a)(x) = ψ(a(x)), is of class Cl . Its derivatives
are as follows:



(i)
l (u1, . . . , ui )(x) = ψ(i)(a(x))u1(x) · · · ui (x), for 1 ≤ i ≤ l. (10)

The proof makes use of the following Lemma.

Lemma 1 Let a ∈ Wk,λ, let (an �= a) and (bn) be sequences converging to a in the
sense of Wk,λ, and let B be the unit ball of Wk,λ. For any continuous, bounded function
f : R → R,

‖an − a‖−1
Wk,λ‖( f (bn) − f (a))(an − a)‖Lλ◦ → 0 (11)

and supu∈B ‖( f (an) − f (a))u‖Lλ◦ → 0. (12)

Proof We use the generalised Hölder inequality,

‖( f (bn) − f (a))(an − a)‖Lλ◦ ≤ ‖ f (bn) − f (a)‖A‖|an − a|λ‖1/λE , (13)

where A and E are the following Banach spaces. If (E) does not hold or k = 0, then
A = Lλλ◦/ε and E = L1; (13) is then the classical Hölder inequality on dual Lebesgue
spaces. If (E) holds and k ≥ 1 then A = exp L1/β(μ) and E = L1 logβ L(μ), where
β = (t − 1)t ; these are Orlicz spaces based on the complementary Young functions:

Gβ(z) =
∫ z

0

(
exp(y1/β) − 1

)
dy and Fβ(z) =

∫ z

0
logβ(y + 1) dy. (14)

It follows from a log-Sobolev embedding theorem (see, for example, Theorem 7.12
in [6]), and the following representation for first-order weak derivatives

∂i |an − a|λ = λ|an − a|λ−1sgn(an − a)∂i (an − a) ∈ L1, 1 ≤ i ≤ d,

that ‖|an − a|λ‖E ≤ K‖an − a‖λ
Wk,λ , for some K < ∞. (See the proof of Lemma

4 in [17] for fuller details.) Now f (bn) − f (a) is bounded and converges to zero in
probability, and so it converges to zero in the sense of A (with either definition of A),
and (11) follows. A similar argument establishes (12). ��
Proof of Theorem 2 A proof of part(i) is given in Proposition 2 of [17]. It involves a
sequence fn ∈ C∞(Rd;R) converging to a in the sense of Wk,λ. Ds
( fn) is defined
in the classical sense, and is equal to Fs( fn). It is then shown that Fs( fn) converges to
Fs(a) in the sense of Lλ/|s|. Fs(a) is then shown tobe theweakderivative of
(a)by the
standard procedure of integrating DsFs( fn)ϕ by parts for a ϕ ∈ C∞

0 (Rd;R). Finally,
continuity is established by repeating the argument for a sequence Wk,λ � an → a.

The proof of part (ii) is similar. Let fn, gn ∈ C∞(Rd ;R) be sequences converging
to a (respectively b) in the sense of Wk,λ;l (respectively Wk,λ;l̃ ). Clearly fnb → ab

123



A two-parameter family of non-parametric... S177

in the sense of Lλ◦/(l+l̃). Furthermore, for any s ∈ Skl+l̃
,

Hs( fn, gn) − Hs(a, gn) =
∑
σ≤s

s!
σ !(s − σ)! (D

σ fn − Dσa)Ds−σ gn,

and so it follows from Hölder’s inequality that

‖Hs( fn, gn) − Hs(a, gn)‖Lλ◦/(|s|+l+l̃) → 0.

A similar argument can be applied to Hs(a, gn) − Hs(a, b), and so Ds( fngn) →
Hs(a, b) in Lλ◦/(|s|+l+l̃). Once again, an argument involving integration by parts
establishes that Hs(a, b) = Ds�(a, b), and an argument involving sequences
Wk,λ;l � an → a, and Wk,λ;l̃ � bn → b establishes continuity. Similar arguments
can be used with the other cases.

The case l = 0 of part (iii) is established in part (i). Let (an �= a) be a sequence
converging to a in the sense of Wk,λ, and let

�n := ψ(an) − ψ(a) − ψ(1)(a)(an − a). (15)

Then, according to the mean-value theorem, �n = δn(an − a), where

δn = ψ(1)((1 − βn)a + βnan) − ψ(1)(a) for some 0 ≤ βn(x) ≤ 1.

Lemma 1 shows that ‖an − a‖−1
Wk,λ‖�n‖Lλ◦ → 0, and so 
1 : Wk,λ → Lλ◦

is
differentiable, with derivative as in (10) with i = 1. That this derivative is continuous
follows from (12).

For 0 ≤ i ≤ l − 1, let Fs,i (a) be as in (7), but with ψ replaced by ψ(i); then

Fs(an) − Fs(a) − Fs,1(a)(an − a) −
∑

π∈�(s)

ψ(|π |)(a)
∑
j

�π, j D
σ j (an − a)

=
∑

π∈�(s)

(
�π,0δπ (an − a) +

∑
j

(�π, jζπ + �π, j )D
σ j (an − a))

)
,

where {σ1, . . . , σ j , . . . σ|π |} is an enumeration of π ,

�π,0 =
∏
σ∈π

Dσa, �π, j =
∏
m �= j

Dσma,

δπ = ψ(|π |+1)(βnan + (1 − βn)a) − ψ(|π |+1)(a),

ζπ = ψ(|π |)(an) − ψ(|π |)(a),

�π, j = ψ(|π |)(an)
( ∏

m< j

Dσman −
∏
m< j

Dσma

) ∏
m> j

Dσma.
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Hölder’s inequality now shows that

R1 := ‖�π,0δπ (an − a)‖Lγ0 ≤ ‖�π,0‖Lλ◦/|s|‖δπ (an − a)‖Lλ◦

R2 := ‖�π, jζπ D
σ j (an − a)‖Lγ0 ≤ ‖�π, jζπ‖Lγ j ‖Dσ j (an − a)‖

Lλ/|σ j |

R3 := ‖�π, j D
σ j (an − a)‖Lγ0 ≤ ‖�π, j‖Lγ j ‖Dσ j (an − a)‖

Lλ/|σ j |

where γ0 = λ◦/(|s| + 1) and γ j = λ◦/(|s| − |σ j | + 1). We now claim that

‖an − a‖−1
Wk,λ Ri → 0 for i = 1, 2, 3.

That this is true of R1 follows from Lemma 1. Regarding R2, ζπ is bounded and
converges to zero in probability and so, according to the dominated convergence
theorem, �π, jζπ → 0 in the sense of Lγ j . Finally, the bracketed term in �π, j can
be expanded as a telescopic sum of products each containing one of the differences
Dσm (an − a). Hölder’s inequality then shows that �π, j → 0 in the sense of Lγ j .

We have thus shown that Ds
1 : Wk,λ → Lλ◦/(|s|+1) is differentiable, and

(Ds
1)
(1)u = Fs,1(a)u +

∑
π∈�(s)

ψ(|π |)(a)
∑
j

�π, j D
σ j u.

We can now apply the Leibniz and Faà di Bruno formulae to Ds(ψ(1)(a)u) to show
that it is equal to (Ds
1)

(1)u, and is continuous in (a, u). This proves (10) for the
case l = 1.

We now proceed by induction on l. Suppose that (10) is correct for l; then, since
Wk,λ;l ≺ Wk,λ;l+1, 
l+1 is of class Cl , with derivatives as in (10). Setting �l,n =
ψ(l)(an) − ψ(l)(a) − ψ(l+1)(a)(an − a), we can apply the arguments used above on
�n of (15), and the fact that

sup
ui∈B

‖�(�l,n, u1 · · · ul)‖Wk,λ;l+1 ≤ K‖�l,n‖Wk,λ;1 , for some K < ∞,

where B is the unit ball of Wk,λ, to show that 
(l)
l+1 is of class C

1. ��

3 Themanifolds of finite measures

The charts of the statistical manifolds developed here are based on a two-parameter
family of η-deformed logarithms. These are defined in terms of Amari’s α-logarithms,
�α : (0,∞) → R:

�α(y) =
{ 2

1−α

(
y(1−α)/2 − 1

)
if α �= 1

log y if α = 1
(16)

The η-logarithm is defined for η = (η−, η+), (−∞ < η− < 1 ≤ η+ < ∞) as:

logη(y) = �η−(y) + �η+(y) (17)
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The deformed logarithm log(−1,+1) is that used to construct a family of highly inclusive
statisticalmanifolds in [14, 15, 17]. Setting κ = (η+−η−)/4 and r = (2−η−−η+)/4,
logη is essentially the two-parameter (κ, r)-logarithm defined in [8]. The different
weightings for the two components of the deformed logarithm used here have no
effect on the membership or properties of the manifolds, but are more convenient in
the context of information geometry.

Now inf y logη y = −∞, supy logη y = +∞, and logη ∈ C∞((0,∞);R) with
strictly positive first derivative y−(1+η−)/2+y−(1+η+)/2 and so, according to the inverse
function theorem, logη is a diffeomorphism from (0,∞)ontoR. Let expη be its inverse.
This can be thought of as a deformed exponential function. Using f (n) to denote the
n-th derivative of a function f , we have

exp(1)
η = 1

1 + expδ/2
η

exp[1+η+]/2
η = expδ/2

η

1 + expδ/2
η

exp[1+η−]/2
η , (18)

where δ := η+ − η−. So expη satisfies the differential inequality

exp(1)
η < exp[1+η−]/2

η (19)

and, since expη(0) = 1, there exists a Kη < ∞ such that

expη(z) ≤ Kη(1 + z2/(1−η−)) for all z ≥ 0. (20)

If η− = −1 (as is the case in [14, 15, 17]) then the exponent is 1, and expη has linear
growth; otherwise it has sublinear or power law growth. The exponent itself grows
without limit as η− approaches 1 from below.

For any α ∈ R, the Amari embedding map ξα : R → R is as follows:

ξα(z) = �α ◦ expη(z). (21)

These maps can be used in the analysis of a large class of divergences, and their
associated tensors. The maps ξ−1 and ξ+1 are especially important since they will
represent the density of a measure and its log, respectively. The following lemma
establishes some of their properties in the context of the η-log.

Lemma 2 (i) For any α ∈ R, ξα ∈ C∞(R;R); its derivatives are

ξ (i)
α = fα,i (expη)(

1 + expδ/2
η

)(2i−1)
for 1 ≤ i < ∞, (22)

where fα,1(y) = y(η+−α)/2 and

fα,i+1(y) = (yδ/2 + yδ)y(η−+1)/2 f (1)
α,i (y) − (i − 1/2)δyδ y(η−−1)/2 fα,i (y)

= (1 + yδ/2)y(η++1)/2 f (1)
α,i (y) − (i − 1/2)δy(2η+−η−−1)/2 fα,i (y).

(23)
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(ii) For any 1 ≤ i < ∞, and any α ∈ R,

lim sup
z→∞

z−βi |ξ (i)
α (z)| < ∞, where βi := 1 − α

1 − η−
− i . (24)

(iii) For any 1 ≤ i < ∞, and any α ≤ η+,

lim sup
z→−∞

|ξ (i)
α (z)| < ∞. (25)

(iv) If α ∈ [η−, η+], then ξ
(i)
α is bounded for all 1 ≤ i < ∞.

Proof Part (i) is straightforward.
The power of y in fα,1(y) is (η+ −α)/2 = δ/2+ (η− −α)/2, and so ξ

(1)
α (z) grows

as expη(z)
(η−−α)/2 for large z. It now follows from (20) that (24) is correct for i = 1.

That it is also correct for i ≥ 2 follows from an induction argument based on the first
representation of fα,i+1 in (23).

If α ≤ η+ then the power of y in fα,1(y) is greater than or equal to 0, and so
(25) is correct for i = 1. That it is also correct for i ≥ 2 follows from an induction
argument based on the second representation of fα,i+1 in (23). Part (iv) is an immediate
consequence of parts (ii) and (iii). ��

Let θ0 := (1− η−)λ/2. We assume that θ0 > 1; it then follows from (20) and (24)
that, for any 0 ≤ i < λ/θ0 and any a ∈ Lλ,

exp(i)
η (a) ∈ Lθ0λ/(λ−iθ0). (26)

(If i ≥ λ/θ0 then exp
(i)
η is bounded.) We can now construct the manifold M (= Mk,λ

η ).
This is the set of finite measures on R

d satisfying the following:

(M1) P is mutually absolutely continuous with respect to Lebesgue measure;
(M2) logη p ∈ G (= Gk,λ := Wk,λ).

Here, p denotes the density of P with respect to the reference probability measure
μ. Its density with respect to Lebesgue measure is pr , where r is as in (1). The chart
φ : M → G is defined by:

φ(P) = logη p. (27)

Proposition 1 φ is a bijection onto G. Its inverse is

φ−1(a) = P(dx) = expη(a(x))μ(dx). (28)

Proof It follows from (M2) that, for any P ∈ M , φ(P) ∈ G. Suppose, conversely,
that a ∈ G; since expη(a) ∈ L1, we can define the finite measure P(dx) =
expη(a(x))μ(dx). Since expη is strictly positive, P satisfies (M1). That it also satis-
fies (M2) follows from the fact that logη expη(a) = a ∈ G. We have thus shown that
P ∈ M , and clearly φ(P) = a. ��
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Remark 1 This proposition shows that M is, in one sense, nothing more than a (whole)
Banach space. Manifold theory enters the picture with the introduction of base-point
dependent tensors such as the Fisher-Rao metric and Amari-Chentsov tensor on the
tangent bundle.

The tangent space at basepoint P , TPM , is the linear space of signedmeasures,U ,
that are absolutely continuous with respect to Lebesgue measure and take the form

U (dx) = exp(1)
η (a(x))u(x)μ(dx), for some u ∈ G, (29)

where a = φ(P). U is well defined because of (26). The representation in (29) is
obtained from the tangent map of the chart; u is then the natural representation of
the tangent vector, U , in the model space. The tangent bundle is the disjoint union
T M := ∪P∈M (P, TPM), and is globally trivialised by the chart � : T M → G × G,
where

�(P,U ) = (a, u), and a and u are as in (29). (30)

We now investigate some of the smoothness properties of Amari’s embeddingmaps
(21) in the context of the manifold M . These, in turn, can be used to analyse the
smoothness properties of divergences and tensors.

Proposition 2 (i) For any α ∈ [η−, η+], any 0 ≤ l ≤ �λ◦� and any a ∈ G, ξα(a) ∈
Wk,λ;l . The superposition operator �α,l : G → Wk,λ;l , defined by �α,l(a)(x) =
ξα(a(x)), is of class Cl , with derivatives:

�
(i)
α,l(a)(u1, . . . , ui )(x) = ξ (i)

α (a(x))u1(x) · · · ui (x). (31)

(ii) For any 1 ≤ θ < θ0 (as defined before (26)), the superposition operator
Expη,θ : G → Lθ , defined by Expη,θ (a)(x) = expη(a(x)) is of class C�λ�−1,
with derivatives:

Exp(i)
η,θ (u1, . . . , ui )(x) = exp(i)

η (a(x))u1(x) · · · ui (x). (32)

Proof Part (i) is a special case of Theorem2(iii). Part (ii) can be proved in a similarway;
the essential differences are that the derivatives of expη are not necessarily bounded,
and the range space of the superposition operator has a weaker topology. Let (an ∈
G \ {a}) be a sequence converging to a in the sense of G. For any 1 ≤ i ≤ �λ�− 1 let

�n := exp(i−1)
η (an) − exp(i−1)

η (a) − exp(i)
η (a)(an − a)

�n := exp(i)
η (an) − exp(i)

η (a). (33)

According to the mean-value theorem �n = δn(an − a), where

δn = exp(i)
η (βnan + (1 − βn)a) − exp(i)

η (a) for some 0 ≤ βn(x) ≤ 1.
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It follows from (26) and Hölder’s inequality that, for any u1, . . . , ui in the unit ball of
G,

‖�nu1 · · · ui−1‖Lθ ≤ ‖�n‖Lγ and ‖�nu1 · · · ui‖Lθ ≤ ‖�nui‖Lγ ,

where γ := λθ/(λ − iθ). In order to prove part (ii), it thus suffices to show that

‖an − a‖−1
G ‖�n‖Lγ → 0 and sup

‖u‖G=1
‖�nu‖Lγ → 0. (34)

According to (26) and the de la Vallée-Poussin theorem, exp(i)
η (an)γ is uniformly

integrable. Now δn and �n both converge to zero in measure, and so (34) follows from
the Lebesgue-Vitaly theorem. ��
Remark 2 (i) There is a vast choice of range spaces for superposition operators of this

type, each of which results in operators with different properties. Proposition 2 is
not intended to be exhaustive, but to cover some of the more interesting and useful
cases.

(ii) The case l = 0 is worth special mention since the domain and range spaces of
the superposition operators are then both G. If, for example, η− ≤ −1 then the
density p (= ξ−1(a) + 1) belongs to the model space and varies continuously on
the manifold, as does the log of the density.

The superposition operators �α,l can be used in the analysis of divergences and
entropies. This analysis was carried out for the α-divergences, α ∈ [−1, 1], in [15],
where it was shown that they are of class Cl(M × M), for values of l dependent
on λ. Although we do not pursue these issues here, it is clear that similar methods
can be used with the manifolds of this paper for any α ∈ [η−, η+]. We would also
expect the (κ, r) divergences of [8] to exhibit an equivalent degree of smoothness.
Divergences can be used to define various tensor fields on M , which depend naturally
on the superposition operators, �α,l . In particular, the Fisher-Rao metric on M can be
expressed in terms of the maps (ξα, α ∈ [η−, η+]) in two different ways, according
to the value of η−:

〈U , V 〉P =
{
Eμξ

(1)
0 (a) ξ

(1)
0 (a)uv if η− ≤ 0

Eμexpη(a)η−ξ
(1)
η− (a) ξ

(1)
η− (a)uv if η− > 0,

(35)

where (a, u) = �(P,U ) and (a, v) = �(P, V ).

Corollary 1 The Fisher-Rao metric is if class Cl on M, where

l =
{ �λ◦� − 2 if η− ≤ 0

�λ◦ − 2η−/(1 − η−)� − 2 if η− > 0.
(36)

Proof The case η− ≤ 1 follows from a repeated application of Lemma 1, starting with
ψ = (ξ

(1)
0 )2. A similar technique can be applied if η− > 0; the essential difference is
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that, at each stage, we must use Hölder’s inequality and Proposition 2(ii) with θ = η−
to remove the term in expη. ��

The Fisher-Rao metric is positive definite and dominated by the chart-induced
norm on TPM . However the norms are not equivalent, and so the metric is a weak
Riemannian metric. The Fisher-Rao metric and higher-order tensor fields, such as the
Amari-Chentsov tensor, become smoother with increasing values of λ. As Corollary 1
shows, log-Sobolev embedding plays a role in these results for certain integer values
of λ.

Of course, the use of Sobolev model spaces enables the analysis of quantities
that depend on the weak derivatives of probability densities, such as the Hyvärinen
divergence, and this is one of the motivations for extending the results of [14, 15].
The manifolds may also be useful in the theory of partial differential equations, as
discussed in the final section of [17]. These aspects will be pursued elsewhere.

4 Themanifolds of probability measures

Let M0 ⊂ M be the subset of the manifold of Sect. 3, whose members are proba-
bility measures, and let Lλ

0 (respectively G0) be the co-dimension 1 subspaces of Lλ

(respectively G) whose members have zero μ-mean. Let φ0 : M0 → G0 be defined
by

φ0(P) = φ(P) − Eμφ(P) = logη p − Eμ logη p. (37)

Proposition 3 (i) φ0 is a bijection onto G0.
(ii) (M0,G0) is a C�λ�−1-embedded submanifold of (M,G). The inclusion map ρ :

G0 → G takes the form ρ(a) = a + Z(a), where Z : G0 → R is an (implicitly
defined), additive normalisation constant.

(iii) ρ and all its derivatives are bounded on bounded sets. The first (and if λ > 2,
second) derivatives of ρ are as follows:

ρ(1)
a u = u − EPau

ρ(2)
a (u, v) = −Eμexp

(2)
η (ρ(a))(u − EPau)(v − EPav)

Eμexp
(1)
η (ρ(a))

, (38)

where Pa(dx) := exp(1)
η (ρ(a(x)))μ(dx)/Eμexp

(1)
η (ρ(a)), is the escort probability

[13].

Proof Let ϒ : G0 × R → (0,∞) be defined by

ϒ(a, z) = Eμexpη(a + z) = EμExpη(a + z), (39)
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where Expη is as defined in Proposition 2 with θ = 1. It follows from Proposition 2,
that ϒ is of class C�λ�−1 and that, for any u ∈ G0,

ϒ(1,0)
a,z u = Eμexp

(1)
η (a + z)u and ϒ(0,1)

a,z = Eμexp
(1)
η (a + z) > 0. (40)

Since expη is monotone increasing,

ϒ(a, z) ≥ Eμ1[−1,∞)(a)expη(a + z) ≥ μ(a ≥ −1)expη(z − 1),

and so limz↑∞ ϒ(a, z) = ∞. Furthermore, the monotone convergence theorem shows
that

lim
z↓−∞ ϒ(a, z) = Eμ lim

z↓−∞ ψ(a + z) = 0.

So ϒ(a, · ) is a bijection with strictly positive derivative, and the inverse function
theorem shows that it is a C�λ�−1-isomorphism. The implicit mapping theorem shows
that Z : G0 → R, defined by Z(a) = ϒ(a, · )−1(1), is of class C�λ�−1. For some
a ∈ G0, let P be the probability measure with density p = expη(a + Z(a)); then
φ0(P) = a and P ∈ M0, which proves part (i).

The argument above shows that the inclusion map, ρ, is of class C�λ�−1. Let c :
G → G0 be the (linear) superposition operator defined by c(a)(x) = a(x) − Eμa;

then c is continuous, and has derivative c(1)
a u = u − Eμu. Now c ◦ ρ is the identity

map of G0, which shows that ρ is homeomorphic onto its image, ρ(G0), endowed
with the relative topology. Furthermore, for any u ∈ G0,

u = (c ◦ ρ)(1)a u = c(1)
ρ(a)ρ

(1)
a u,

and so ρ
(1)
a is a toplinear isomorphism, and its image, ρ

(1)
a G0, is a closed linear

subspace of G. Let Ea be the one dimensional subspace of G defined by Ea =
{yexp(1)

η (ρ(a)) : y ∈ R}. If u ∈ Ea and v ∈ ρ
(1)
a G0 then there exist y ∈ R and

w ∈ G0 such that

Eμuv = yEμexp
(1)
η (ρ(a))(w − EPaw) = 0.

So Ea ∩ ρ
(1)
a G0 = {0}, and ρ

(1)
a splits G into the direct sum Ea ⊕ ρ

(1)
a G0. We have

thus shown that ρ is a C�λ�−1-immersion, and this completes the proof of part (ii).
Jensen’s inequality shows that there exists a Kη < ∞ such that

−logEμexp
(1)
η (ρ(a)) ≤ −Eμlogexp

(1)
η (ρ(a)) ≤ KηEμ| log p| ≤ Kη‖a‖.

So, for bounded B, inf P∈B Eμ exp(1)
η (ρ(a)) > 0. ��
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For any P ∈ M0, the tangent space TPM0 is a subspace of TPM of co-dimension
1; in fact, as shown in the proof of Proposition 3(ii),

TPM = TPM0 ⊕ {yÛ , y ∈ R}, where Ûφ = ψ(1)(φ(P)). (41)

Let �0 : T M0 → G0 × G0 be defined as follows:

�0(P,U ) = �(P,U ) − Eμ�(P,U ). (42)

Then � ◦ �−1
0 (a, u) = (ρ(a), ρ

(1)
a u). For any (P,U ) ∈ T M0, Uφ = ρ

(1)
a u =

u − EPau, and so tangent vectors in TPM0 are distinguished from those merely in
TPM by the fact that their total mass is zero.

Any regularity possessed by divergences, entropies and tensors on M involving
fewer than �λ� derivatives is also enjoyed by their restrictions to M0.

5 Concluding remarks

This paper has developed a family of non-parametric statistical manifolds that use the
two-parameter deformed logarithm of (17), and a variety of model spaces of Sobolev
type. It has shown that the mixed-norm spaceWk,λ is especially suited to this applica-
tion. The Amari embedding maps, ξα , which are central to the analysis of divergences,
entropies and associated tensors, “lift” to continuous nonlinear superposition oper-
ators acting on the Sobolev model spaces. (A rare property in the theory of such
operators.) Variants of the superposition operators having Sobolev range spaces with
weaker topologies enjoy greater regularity; they were shown to admit multiple deriva-
tives on the manifolds, according to the values of the parameters k, λ and η. Of course,
this paper takes only the first step in a fuller analysis of the information geometry of
the manifolds constructed. However, for reasons of space, we shall go no further here.
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