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Abstract
Chentsov’s theorem, which characterises Markov invariant Riemannian metric and
affine connections of manifolds of probability distributions on finite sample spaces,
is undoubtedly a cornerstone of information geometry. This article aims at providing
a comprehensible survey of Chentsov’s theorem as well as its modest extensions to
generic tensor fields and to parametric models comprising continuous probability
densities on R

k .

Keywords Chentsov’s theorem · Markov invariance · Fisher metric · α-connections ·
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1 Introduction

For each natural number n satisfying n ≥ 2, let

Sn−1 :=
⎧
⎨

⎩
p : �n → R++

∣
∣
∣
∣
∣
∣

∑

ω∈�n

p(ω) = 1

⎫
⎬

⎭

be the manifold of probability distributions on a finite sample space �n =
{1, 2, . . . , n}, where R++ denotes the set of strictly positive real numbers. The
manifold Sn−1 is sometimes called the (n − 1)-dimensional probability simplex.
In what follows, we identify each point p ∈ Sn−1 with the numerical vector
(p(1), p(2), . . . , p(n)) ∈ R

n++.
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S80 A. Fujiwara

Fig. 1 A Markov embedding f : Sn−1 → S�−1 for n = 2 and � = 3, where C(1) = {1}, C(2) = {2, 3},
and Q(1) = (1, 0, 0), Q(2) = (0, Q2, Q3)

In his seminal book [6], Chentsov characterised Riemannian metric g and affine con-
nections ∇ on Sn−1 that fulfil certain invariance property, now usually referred to as
the Markov invariance. Given natural numbers n and � satisfying 2 ≤ n ≤ �, let

�� =
n⊔

i=1

C(i) (1)

be a direct sumdecomposition of the index set�� = {1, . . . , �} into nmutually disjoint
nonempty subsets C(1), . . . ,C(n). A map

f : Sn−1 −→ S�−1 : (x1, . . . , xn) �−→ (y1, . . . , y�)

is called aMarkov embedding 1 associated with the partition (1) if it takes the form

y j :=
n∑

i=1

xi Q j
(i) ( j = 1, . . . , �), (2)

where Q(i) = (Q1
(i), Q

2
(i), . . . , Q

�
(i)) is a probability distribution on�� whose support

isC(i) for each i (1 ≤ i ≤ n). In other words, the image f (Sn−1) is (the interior of) the
convex hull of n extreme points {Q(i)}1≤i≤n in S�−1. A simple example of a Markov
embedding is illustrated in Fig. 1, where n = 2 and � = 3.

Since the image f (Sn−1) of a Markov embedding f : Sn−1 → S�−1 is statisti-
cally isomorphic to the preimage Sn−1 (due to the existence of a sufficient statistic),
Chentsov claimed that the geometry of the submanifold f (Sn−1) of S�−1 must be
equivalent to the geometry of Sn−1.

Based on these observations, Chentsov introduced the notion of invariance/
equivariance, now usually referred to as the Markov invariance, as follows. A series

1 Chentsov called such an embedding a congruent embedding [6, Lemma 9.5].
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Hommage to Chentsov’s theorem S81

{g[n]}n∈N of Riemannian metrics, each on Sn−1, is said to be invariant [6, p. 157] if

g[n]
p (X ,Y ) = g[�]

f (p)( f∗X , f∗Y ) (3)

holds for all n, � ∈ N satisfying 2 ≤ n ≤ �, Markov embeddings f : Sn−1 → S�−1,
points p ∈ Sn−1, andvector fields X ,Y ∈ �(TSn−1),where f∗ denotes the differential
of f . Chentsov proved that, up to a constant factor, the only invariant metric satisfying
(3) is the Fisher metric [6, Theorem 11.1]. For an accessible proof, see [5] (cf., [8]).

On the other hand, a series {∇[n]}n∈N of affine connections, each on Sn−1, is said
to be equivariant [6, p. 62] if

f∗
(
∇[n]
X Y

)

p
=

(
∇[�]

f∗X f∗Y
)

f (p)
(4)

holds for all n, � ∈ N satisfying 2 ≤ n ≤ �, Markov embeddings f : Sn−1 → S�−1,
points p ∈ Sn−1, and vector fields X ,Y ∈ �(TSn−1). Chentsov proved that the only
equivariant affine connections satisfying (4) are the α-connections [6, Theorem 12.2].
For the reader’s convenience, we will give a proof, following the pattern of Chentsov’s
original argument, in Appendix. (An alternative proof based on a weaker condition
(5) below is found in [8].)

Chentsov’s theorem characterises all Markov invariant geometrical structures of
the probability simplex Sn−1, and thus is regarded as a cornerstone of information
geometry. Nevertheless, it is natural to seek characterisations of Markov invariant
tensor fields of generic-type and/or geometrical structures of probability spaces on
infinite sample spaces, both of which being beyond the scope of Chentsov’s theorem.

Motivated by these considerations, this article aims to give two variations of
Chentsov’s theorem. In Sect. 2, we extend the notion of Markov invariance to generic
(r , s)-type tensor fields, and characterise all Markov invariant tensor fields on Sn−1.
This section also serves as a brief overview of the paper [7]. In Sect. 3, following
Amari and Nagaoka’s idea sketched out in [2], we demonstrate that the Fisher metric
and the α-connections are the only natural Markov invariant geometrical structures
of parametric models comprising continuous probability densities on infinite sample
spaces R

k . Here, we employ only elementary calculus.

2 Markov invariant tensor fields of generic-types

Since the image f (Sn−1) of a Markov embedding f : Sn−1 → S�−1 is a submanifold
of S�−1, its geometrical structure is canonically induced from the geometrical struc-
ture (g[�],∇[�]) of the ambient manifold S�−1. Specifically, the metric of f (Sn−1)

is induced from the metric g[�] by restricting it to the subspace T f (p) f (Sn−1) (⊂
T f (p)S�−1), and the connection of f (Sn−1) is induced by projecting (∇[�]

f∗X f∗Y ) f (p)

onto the subspace T f (p) f (Sn−1) with respect to g[�]. Therefore, at first sight, the
equivariance requirement (4) for a connection seems too strong, and one may instead
define the Markov invariance for a connection in a weaker form as follows:
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S82 A. Fujiwara

g[n]
p (∇[n]

X Y , Z) = g[�]
f (p)(∇[�]

f∗X f∗Y , f∗Z). (5)

Nevertheless, it turns out that any sequence {∇[n]}n of affine connections satisfying
(5) enjoys the property ∇[�]

f∗X f∗Y ∈ T f (p) f (Sn−1), and thus the requirements (4) and
(5) are actually equivalent.

Since the sequence ∇[n]
of the Levi-Civita connections with respect to the Markov

invariant Fisher metrics g[n] automatically fulfils the requirement (5), the problem
of characterising the Markov invariant connections is reduced to characterising the
Markov invariant (0, 3)-type tensor fields

(X ,Y , Z) �−→ g
(
(∇XY − ∇XY ), Z

)
.

Now, in a quite similar way to the derivation of the Fisher metric:

gp(X ,Y ) := Ep[(X log p)(Y log p)],
where Ep[ · ] denotes the expectation with respect to p, one can prove that, up to a
constant factor, the only Markov invariant (0, 3)-type tensor field is given by

Sp(X ,Y , Z) := Ep[(X log p)(Y log p)(Z log p)], (6)

which is usually referred to as theAmari-Chentsov tensor. In thisway, theα-connection
∇(α) can also be defined by the formula

g(∇(α)
X Y , Z) := g(∇XY , Z) − α

2
S(X ,Y , Z) (α ∈ R).

Note that the above argument naturally leads to a characterisation of Markov
invariant (1, 2)-type tensor field F(X ,Y ) through the relation g(F(X ,Y ), Z) =
S(X ,Y , Z). One may naturally generalise this idea to characterising Markov invari-
ant (1, s)-type tensor fields in terms of Markov invariant (0, s + 1)-type tensor fields.
However, one cannot simply extend this argument to generic (r , s)-type tensor fields.
Now, a question naturally arises; howcan one characteriseMarkov invariant (r , s)-type
tensor fields? The purpose of this section is to answer this question.

Associated with each Markov embedding f : Sn−1 → S�−1 is a unique affine
map

ϕ f : S�−1 −→ Sn−1 : (y1, . . . , y�) �−→ (x1, . . . , xn)

that satisfies

ϕ f ◦ f = id.

In fact, it is explicitly given by the following relations

xi =
∑

j∈C(i)

y j (i = 1, . . . , n)

123



Hommage to Chentsov’s theorem S83

that allocate each event C(i) (⊂ ��) to the singleton {i} (⊂ �n). (For a proof, see [7].)
We shall call the map ϕ f the coarse-graining associated with a Markov embedding
f . Note that the coarse-graining ϕ f is determined only by the partition (1), and is

independent of the internal ratios {Q j
(i)}i, j that specifies f as (2).

For example, let us consider a Markov embedding

f : S1 −→ S3 : (p1, p2) �−→ (λp1, (1 − λ)p1, μp2, (1 − μ)p2), (0 < λ,μ < 1)

associated with the partition �4 = C(1) � C(2), where

C(1) = {1, 2}, C(2) = {3, 4}.

Then, the coarse-graining ϕ f : S3 → S1 associated with f is given by

ϕ f : (q1, q2, q3, q4) �−→ (q1 + q2, q3 + q4).

Now we introduce a generalised Markov invariance. A series {F [n]}n∈N of (r , s)-
type tensor fields, each on Sn−1, is said to be Markov invariant if

F [n]
p (ω1, . . . , ωr , X1, . . . , Xs) = F [�]

f (p)(ϕ
∗
f ω

1, . . . , ϕ∗
f ω

r , f∗X1, . . . , f∗Xs) (7)

holds for all n, � ∈ N satisfying 2 ≤ n ≤ �, Markov embeddings f : Sn−1 → S�−1,
points p ∈ Sn−1, cotangent vectors ω1, . . . , ωr ∈ T ∗

p Sn−1, and tangent vectors
X1, . . . , Xs ∈ Tp Sn−1.When no confusion arises, we simply use an abridged notation
F for F [n].

The main result of this section is the following.

Theorem 1 Markov invariant tensor fields are closed under the operations of raising
and lowering indices with respect to the Fisher metric g.

In order to prove Theorem1,we need some preliminary considerations. Supposewe
want to knowwhether the (1, 2)-type tensor field Fi

jk := gim Smjk isMarkov invariant
in the sense of (7), where S is the Markov invariant (0, 3)-type tensor field defined
by (6). Put differently, we want to investigate if, for some (then any) local coordinate

system (ξa) of Sn−1, the (1, 2)-type tensor field F defined by F

(

dξa,
∂

∂ξb
,

∂

∂ξ c

)

:=
gaeSebc exhibits

Fp

(

dξa,
∂

∂ξb
,

∂

∂ξ c

)

= Ff (p)

(

ϕ∗
f dξa, f∗

∂

∂ξb
, f∗

∂

∂ξ c

)

. (8)

In order to handle such a relation, it is useful to identify the Fisher metric g on the
manifold Sn−1 and its inverse g−1 with the following linear maps:

g : TSn−1 −→ T ∗Sn−1 : ∂

∂ξa
�−→ gab dξb,
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S84 A. Fujiwara

g−1 : T ∗Sn−1 −→ TSn−1 : dξa �−→ gab
∂

∂ξb
.

Note that these maps do not depend on the choice of a local coordinate system (ξa)

of Sn−1.
Now, observe that

the left-hand side of (8) = Sp ◦ (g−1
p ⊗ I ⊗ I )

(

dξa,
∂

∂ξb
,

∂

∂ξ c

)

= Sp

(

gaep
∂

∂ξ e
,

∂

∂ξb
,

∂

∂ξ c

)

and

the right-hand side of (8) = S f (p) ◦ (g−1
f (p) ⊗ I ⊗ I )

(

ϕ∗
f dξa, f∗

∂

∂ξb
, f∗

∂

∂ξ c

)

= S f (p)

(

g−1
f (p)(ϕ

∗
f dξa), f∗

∂

∂ξb
, f∗

∂

∂ξ c

)

.

Since the (0, 3)-type tensor field S is Markov invariant, the following Lemma estab-
lishes (8).

Lemma 2 For any Markov embedding f : Sn−1 → S�−1, it holds that

f∗
(

gaep
∂

∂ξ e

)

= g−1
f (p)(ϕ

∗
f dξa). (9)

In other words, the diagram

T ∗
pSn−1

ϕ∗
f−−−−→ T ∗

f (p)S�−1

g−1

⏐
⏐
� g−1

⏐
⏐
�

TpSn−1
f∗−−−−→ T f (p)S�−1

is commutative.

For the proof of Lemma 2, consult the original paper [7]. Lemma 2 has the follow-
ing implication: raising indices with respect to the Fisher metric preserves Markov
invariance. Note that this result is consistent with the observation in the opening para-
graphs of this section where the Markov invariance of a (1, 2)-type tensor field F was
connected with the Markov invariance of the (0, 3)-type tensor field S.

Let us proceed to the issue of lowering indices. Suppose that, given a Markov
invariant (3, 0)-type tensor field T , we want to know whether the (2, 1)-type tensor
field F defined by

F

(
∂

∂ξa
, dξb, dξ c

)

:= gaeT
ebc
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satisfies Markov invariance:

Fp

(
∂

∂ξa
, dξb, dξ c

)

= Ff (p)

(

f∗
∂

∂ξa
, ϕ∗

f dξb, ϕ∗
f dξ c

)

or equivalently

Tp

(
(gp)aedξ e, dξb, dξ c

)
= T f (p)

(

g f (p)

(

f∗
∂

∂ξa

)

, ϕ∗
f dξb, ϕ∗

f dξ c
)

.

This question is resolved affirmatively by the following

Lemma 3 For any Markov embedding f : Sn−1 → S�−1, it holds that

ϕ∗
f

(
(gp)ae dξ e

) = g f (p)

(

f∗
∂

∂ξa

)

. (10)

In other words, the diagram

T ∗
pSn−1

ϕ∗
f−−−−→ T ∗

f (p)S�−1

g
�
⏐
⏐ g

�
⏐
⏐

TpSn−1
f∗−−−−→ T f (p)S�−1

is commutative.

Proof Since g is an isomorphism, the identity (10) is an immediate consequence of
Lemma 2. In fact, it follows from (9) that

f∗
(

∂

∂ξ e

)

= g−1
f (p)

(
ϕ∗
f

(
(gp)ea dξa

))
,

and thus

g f (p)

(

f∗
∂

∂ξ e

)

= ϕ∗
f

(
(gp)ea dξa

)
,

proving the claim. �
Lemma 3 has the following implication: lowering indices with respect to the Fisher

metric preserves Markov invariance. Theorem 1 is now an immediate consequence of
Lemmas 2 and 3, as well as the line of arguments that precede those lemmas.

Theorem1has a remarkable consequence: every (r , s)-typeMarkov invariant tensor
field can be obtained by raising indices of some (0, r+s)-typeMarkov invariant tensor
field. For example, gi j is, up to scaling, the only (2, 0)-type Markov invariant tensor
field.

It may be worthwhile to mention that not every operation that is standard in tensor
calculus preserves Markov invariance. The following example is due to Amari [1].
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Example 4 With a∇(+1)-affine coordinate system θ = (θ1, . . . , θn−1) ofSn−1 defined
by

log p(ω) =
n−1∑

i=1

θ iδi (ω) − log

(

1 +
n−1∑

k=1

exp θk

)

(ω ∈ �n),

the Amari-Chentsov tensor field (6) has the following components:

Si jk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ηi (1 − ηi )(1 − 2ηi ) (i = j = k)
−ηi (1 − 2ηi )ηk (i = j �= k)
−η j (1 − 2η j )ηi ( j = k �= i)
−ηk(1 − 2ηk)η j (k = i �= j)
2ηiη jηk (i �= j �= k �= i)

.

Here, η = (η1, . . . , ηn−1) is a ∇(−1)-affine coordinate system of Sn−1 that is dual to
θ ; more succinctly, ηi = p(i). By using the formula

gi j = 1

ηn
+ δi j

ηi

(

ηn := 1 −
n−1∑

i=1

ηi

)

,

the (1, 2)-type tensor field T i
jk := gim Smjk is readily calculated as 2

T i
jk =

⎧
⎪⎪⎨

⎪⎪⎩

1 − 2ηi (i = j = k)
−ηk (i = j �= k)
−η j (i = k �= j)
0 (i �= j, i �= k)

. (11)

We know that T is Markov invariant (either from Theorem 1 or from the discussion in
the opening paragraphs of this section). However, the following contracted (0, 1)-type
tensor field

F̃k := T i
ik = 1 − nηk

is non-zero, and hence is notMarkov invariant.3 This demonstrates that the contraction,
which is a standard operation in tensor calculus, does not always preserve Markov
invariance.

2 Incidentally, the coefficients of α-connections in the coordinate system θ are related to Si jk and T i
jk as

follows:

�
(α)
i j ,k = 1 − α

2
Si jk and �

(α)k
i j = 1 − α

2
T k
i j .

3 Recall that the only Markov invariant (0, 1)-type tensor field on Sn−1 is zero.
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Chentsov’s idea of imposing the invariance of geometrical structures underMarkov
embeddings f : Sn−1 → S�−1 is based on the fact thatSn−1 is statistically isomorphic
to f (Sn−1). Put differently, the Markov invariance only involves direct comparison
between Sn−1 and its image f (Sn−1), and is nothing to do with the complement of
f (Sn−1) in the ambient space S�−1. On the other hand, the partial trace operation
T i

jk �→ T i
ik on S�−1 (more precisely, on T f (p)S�−1 ⊗ T ∗

f (p)S�−1) makes the output

T i
ik ‘contaminated’ with information from outside the submanifold f (Sn−1). It is thus

no wonder such an influx of extra information manifests itself as the non-preservation
of Markov invariance. In this respect, a distinctive characteristic of Lemmas 2 and 3
lies in the fact that raising and lowering indices preserve Markov invariance although
they are represented in the forms of contraction such as gi�Smjk �→ gim Smjk or
gi�Tmjk �→ gimTmjk .

Remark 5 A related intriguing instance arises in curvature tensors: the Ricci curvature
of the α-connection ∇(α) of Sn−1 is calculated to be

Ric∇(α) = (n − 2)
1 − α2

4
g.

Specifically, the manifold Sn−1 is Einstein for all α ∈ R. Moreover, for n ≥ 3, the
Ricci curvature divided by n − 2 is Markov invariant for all α ∈ R. Note that when
n = 2, the manifold Sn−1 is one-dimensional and thus is flat for all α.

3 Geometry of manifolds of continuous probability densities

In their celebrated book, Amari and Nagaoka stated that it is not so easy to extend
Chentsov’s theorem to the case when the underlying set X of outcomes is infinite [2,
p. 38]. There have been several attempts to deal with infinite outcome spaces and/or
general measure spaces such as [3, 4, 9], but they are all technically demanding. Amari
andNagaoka also suggested a completely different approach to comprehend the Fisher
metric and the α-connections of a parametric model M = {pθ (x) : θ ∈ � ⊂ R

d , x ∈
X } from the viewpoint of Chentsov’s theorem as follows 4 [2, p. 39]:

First, let us finitely partition X into the regions �1,�2, . . . ,�n . In other words,
each �i is a subset of X , �i ∩ � j = ∅ (i �= j), and

⋃n
i=1 �i = X . Now fix a

particular partition � = {�1,�2, . . . ,�n} and let

P�
θ (i) :=

∫

�i

pθ (x)dx .

Then M� := {P�
θ (i)} forms a model on �. Since � is a finite set, from Chentsov’s

theorem we know that the Fisher metric and the α-connections are introduced on M�

by the invariance requirement. Now we may consider M to be the limit of M� as �

becomes finer and finer. Hence, if we require that the desired metrics and connections

4 Notations are slightly changed according to the context of the present article.
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S88 A. Fujiwara

on models should be “continuous” with respect to such a limit, it is concluded that the
metric and the connections on M should be given by the limit of the Fisher metric and
the α-connections on M�, and under some regularity condition they coincide with the
Fisher metric and the α-connections on M .

It is crucial to notice that the coarse-graining pθ �→ P�
θ does not in general have

a sufficient statistic.5 This is in a striking contrast to the situation of the previous sec-
tions where we treated Markov embeddings that warranted the existence of sufficient
statistics. In order to realise the above programme, therefore, it is important to scruti-
nise the limiting procedure. However, the meaning of “the limit of M� as � becomes
finer and finer” is mathematically unclear, and to the best of the author’s knowledge,
this limiting procedure has not been treated explicitly in the literature. The purpose of
this section is to demonstrate Amari and Nagaoka’s programme when the underlying
sample space is X = R

k and the density function pθ (x) is continuous in x ∈ R
k , a

simple yet typical situation in statistics.
Let M = {pθ (x) : θ ∈ � ⊂ R

d , x ∈ R
k} be a d-dimensional parametric family of

probability density functions on R
k . We assume the following regularity conditions:

(i) the support of pθ does not depend on θ .
(ii) pθ (x) is differentiable in θ , and both pθ (x) and its derivative Xpθ (x) are contin-

uous in x for all θ ∈ � and X ∈ Tpθ M .
(iii) for all Jordan measurable 6 domains A ⊂ R

k , θ ∈ �, and X ∈ Tpθ M ,

X
∫

A
pθ (x)dx =

∫

A
Xpθ (x)dx .

(iv) for all θ ∈ � and X ∈ Tpθ M , the Amari-Chentsov tensor

Sθ (X , X , X) =
∫

Rk
pθ (x)

(
Xpθ (x)

pθ (x)

)3

dx

is absolutely convergent.

In condition (i), the support of pθ can be arbitrary; however, we assume in what
follows that the support is R

k for concreteness. Let � = {�1,�2, . . . ,�n} be a
Jordan measurable finite partition of R

k such that the interior of each �i is open and
connected. We denote the totality of such finite partitions of R

k by I. Note that I is

5 Amari and Nagaoka mentioned this fact in the original Japanese edition of [2].
6 A bounded set A (⊂ R

k ) is called Jordan measurable if the inner Jordan measure of A (the supremum
of volumes of nonoverlapping left-closed rectangles that belong to A) equals the outer Jordan measure of
A (the infimum of volumes of nonoverlapping left-closed rectangles that cover A). In the present article,
we further make an extended use of this terminology: a set A (⊂ R

k ), which can be unbounded, is called
Jordan measurable if A ∩ {x ∈ R

k : |x | ≤ R} is Jordan measurable for all R > 0.
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a directed system 7 endowed with partial ordering � ≺ �′ having the interpretation
that �′ is finer than �.

Associatedwith a finite partition� = {�1,�2, . . . ,�n} ∈ I is a parametricmodel
M� = {P�

θ }θ on the finite set �n = {1, 2, . . . , n} defined by

P�
θ (i) :=

∫

�i

pθ (x)dx (i ∈ �n).

We are interested in the relationship between the original model M = {pθ } and the
induced model M� = {P�

θ }. Specifically, we want to know if the nets of the Fisher
metrics {g�

θ }� and the Amari-Chentsov tensors {S�
θ }� on M� converge to the Fisher

metric gθ and the Amari-Chentsov tensor Sθ on M , respectively. The next theorem
gives an affirmative answer to this question.

Theorem 6 Under regularity conditions (i)–(iv),

lim
�∈I

g�
θ (X ,Y ) = gθ (X ,Y ) and lim

�∈I
S�
θ (X ,Y , Z) = Sθ (X ,Y , Z)

hold for all X ,Y , Z ∈ Tpθ M.

Theorem 6 could be paraphrased by saying that the Fisher metric and the α-
connections are the only naturalMarkov invariant geometrical structures of parametric
models comprising continuous probability densities on R

k .
Before proceeding to the proof, we introduce some notations that are used through-

out the proof. For R > 0, let BR denote the closed ball of radius R in R
k centred at

the origin, i.e.,

BR := {x ∈ R
k : |x | ≤ R}.

Given a finite partition � ∈ I, let

�R = {�R
j }n1+n2

j=1

denote a refinement of � in I such that {�R
j }n1j=1 and {�R

j }n1+n2
j=n1+1 are partitions of

BR and its complement R
k\BR , respectively. Note that n1 and n2 may depend both

on � and R.
Now we proceed to the proof of Theorem 6. By virtue of the standard polarisation

argument using the identity

g(X ,Y ) = 1

2
{g(X + Y , X + Y ) − g(X , X) − g(Y ,Y )}

7 A directed system is an index set I together with a partial ordering ≺ which satisfies the condition that if
α, β ∈ I, then there exists γ ∈ I so that α ≺ γ and β ≺ γ . A net {xα}α∈I in a topological space X (i.e.,
a mapping from a directed system I to X ) is said to converge to a point x ∈ X , written limα∈I xα = x , if
for any neighbourhood Nx of x , there exists a β ∈ I so that β ≺ α implies xα ∈ Nx . See [10] for more
information.
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and its analogue

S(X ,Y , Z) = 1

6
{S(X + Y + Z , X + Y + Z , X + Y + Z)

−S(X + Y , X + Y , X + Y ) − S(X + Z , X + Z , X + Z)

−S(Y + Z ,Y + Z ,Y + Z) + S(X , X , X) + S(Y ,Y ,Y )

+S(Z , Z , Z)} ,

which are valid for symmetric tensors g and S, we see that Theorem 6 is proved simply
by showing that

lim
�∈I

g�
θ (X , X) = gθ (X , X) (12)

and

lim
�∈I

S�
θ (X , X , X) = Sθ (X , X , X) (13)

for all X ∈ Tpθ M . Since the proof of (12) is almost the same as that of (13), we shall
present only the latter here.

The Amari–Chentsov tensor S�R

θ (X , X , X) of the induced model M�R = {P�R

θ }
is decomposed into two parts:

S�R

θ (X , X , X) =
n1∑

i=1

P�R

θ (i)

(
X P�R

θ (i)

P�R

θ (i)

)3

+
n1+n2∑

i=n1+1

P�R

θ (i)

(
X P�R

θ (i)

P�R

θ (i)

)3

.

(14)

Firstly, let us evaluate the first term of the right-hand side of (14).

Lemma 7

lim
�∈I

n1∑

i=1

P�R

θ (i)

(
X P�R

θ (i)

P�R

θ (i)

)3

=
∫

BR
pθ (x)

(
Xpθ (x)

pθ (x)

)3

dx .

Proof Due to the mean-value theorem, for each i = 1, . . . , n1, there is an xi ∈ �R
i

such that

P�R

θ (i) =
∫

�R
i

pθ (x)dx = pθ (xi ) μ(�R
i ),

where μ(�R
i ) is the Jordan measure of the region �R

i . Similarly, for each i =
1, . . . , n1, there is a ξi ∈ �R

i such that

X P�R

θ (i) =
∫

�R
i

Xpθ (x)dx = Xpθ (ξi ) μ(�R
i ).
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Thus,

n1∑

i=1

P�R

θ (i)

(
X P�R

θ (i)

P�R

θ (i)

)3

=
n1∑

i=1

pθ (xi )

(
Xpθ (ξi )

pθ (xi )

)3

μ(�R
i ),

and the next Lemma 8 proves the claim. �
Lemma 8 Let f and g be continuous functions ona Jordanmeasurable bounded closed
domain D (⊂ R

k). Given a Jordan measurable finite partition � = {�1, . . . , �n} of
D, take arbitrary points xi and ξi in �i for each i = 1, . . . , n. Then

lim
�

n∑

i=1

f (xi )g(ξi )μ(�i ) =
∫

D
f (x)g(x)dx,

where the limit is taken over all Jordan measurable finite partitions � of D.

Proof Since

n∑

i=1

f (xi )g(ξi )μ(�i ) =
n∑

i=1

f (xi )g(xi )μ(�i ) +
n∑

i=1

f (xi ){g(ξi ) − g(xi )}μ(�i ),

it suffices to prove that

lim
�

n∑

i=1

f (xi ){g(ξi ) − g(xi )}μ(�i ) = 0.

We see from the Cauchy-Schwarz inequality that

(
n∑

i=1

f (xi ){g(ξi ) − g(xi )}μ(�i )

)2

≤
(

n∑

i=1

f (xi )
2μ(�i )

)(
n∑

i=1

{g(ξi ) − g(xi )}2μ(�i )

)

.

For � = {�1, . . . ,�n}, let |�| := max1≤i≤n |�i |, where |�i | is the diameter of �i .
Since g is uniformly continuous on D, for any ε > 0, there exists δ > 0 so that |�| < δ

implies |g(ξi ) − g(xi )| < ε for all i = 1, . . . , n. As a consequence,

n∑

i=1

{g(ξi ) − g(xi )}2μ(�i ) < ε2μ(D).

Since

lim
�

n∑

i=1

f (xi )
2μ(�i ) =

∫

D
f (x)2dx < ∞,
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the claim is verified. �
We next evaluate the second term of the right-hand side of (14).

Lemma 9

lim
R→∞

n1+n2∑

i=n1+1

P�R

θ (i)

∣
∣
∣
∣
∣

X P�R

θ (i)

P�R

θ (i)

∣
∣
∣
∣
∣

3

= 0.

Proof Since pθ (x)/P�R

θ (i) is a probability density on the region �R
i , we apply

Jensen’s inequality to the convex function t �→ |t |3, to obtain

1

P�R

θ (i)

∫

�R
i

pθ (x)

∣
∣
∣
∣
Xpθ (x)

pθ (x)

∣
∣
∣
∣

3

dx ≥
∣
∣
∣
∣
∣

1

P�R

θ (i)

∫

�R
i

pθ (x)
Xpθ (x)

pθ (x)
dx

∣
∣
∣
∣
∣

3

=
∣
∣
∣
∣
∣

1

P�R

θ (i)

∫

�R
i

Xpθ (x)dx

∣
∣
∣
∣
∣

3

=
∣
∣
∣
∣
∣

X P�R

θ (i)

P�R

θ (i)

∣
∣
∣
∣
∣

3

.

Consequently,

∫

�R
i

pθ (x)

∣
∣
∣
∣
Xpθ (x)

pθ (x)

∣
∣
∣
∣

3

dx ≥ P�R

θ (i)

∣
∣
∣
∣
∣

X P�R

θ (i)

P�R

θ (i)

∣
∣
∣
∣
∣

3

.

Taking the sum over i = n1 + 1, . . . , n1 + n2, we have

∫

Rk\BR
pθ (x)

∣
∣
∣
∣
Xpθ (x)

pθ (x)

∣
∣
∣
∣

3

dx ≥
n1+n2∑

i=n1+1

P�R

θ (i)

∣
∣
∣
∣
∣

X P�R

θ (i)

P�R

θ (i)

∣
∣
∣
∣
∣

3

.

Since regularity condition (iv) implies

lim
R→∞

∫

Rk\BR
pθ (x)

∣
∣
∣
∣
Xpθ (x)

pθ (x)

∣
∣
∣
∣

3

dx = 0,

we have the claim. �
Applying Lemmas 7 and 9 to (14), we conclude that for any ε > 0, there exist

� ∈ I and R > 0 such that �R ≺ �′ implies

∣
∣
∣S�′

θ (X , X , X) − Sθ (X , X , X)

∣
∣
∣ < ε.

This completes the proof of (13).
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Remark 10 The continuity of the density pθ (x) and its derivative Xpθ (x) in regularity
condition (ii) is introduced solely for the sake of simplicity, and can be loosened
depending on the situation. For example, Theorem 6 is still valid even if pθ (x) and
Xpθ (x) have finitely many discontinuity points.

Appendix

A Chentsov’s argument characterising affine connections

Introduce a coordinate system θ = (θ i )1≤i≤n−1 of Sn−1 as in Example 4, that is,

log p(ω) =
n−1∑

i=1

θ iδi (ω) − log

(

1 +
n−1∑

k=1

exp θk

)

(ω ∈ �n).

Then, Chentsov’s theorem [6, Theorem 12.2] is restated as follows.

Theorem 11 The affine connections ∇ on Sn−1 satisfying the equivariance condition

f∗
(
∇[n]
X Y

)

p
=

(
∇[�]

f∗X f∗Y
)

f (p)
(15)

are all described by formulas

∇∂i ∂i = γ (1 − 2ηi )∂i (16)

∇∂i ∂ j = −γ (ηi∂ j + η j∂i ) (i �= j) (17)

where ∂i := ∂/∂θ i , ηi := p(i), and γ is a real parameter.

Note that (16) and (17) are rewritten as

� k
i j = γ T k

i j

where T k
i j are defined by (11). Thus, by setting γ = (1 − α)/2, we restore the

α-connections as demonstrated in the footnote of Example 4.

Proof of Theorem 11 We divide the proof into four steps.
Step 1. For i = 1, . . . , n − 1, let Xi := ∂/∂θ i be the vector fields associated with

the coordinate system θ = (θ i )1≤i≤n−1. In order to comprehend these vector fields in
terms of elementary geometry, let us represent the tangent vector (Xi )p at p ∈ Sn−1

by a numerical vector (
−→
X i )p ∈ R

n whose ωth entry (1 ≤ ω ≤ n) is given by

∂

∂θ i
p(ω) = p(ω)

∂

∂θ i
log p(ω) = p(ω) {δi (ω) − p(i)} = p(i) {δi (ω) − p(ω)} .

Note that the numerical vector {δi (ω) − p(ω)}1≤ω≤n corresponds to the arrow con-
necting the initial point p with the terminal point ei , the i th vertex of the probability
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simplex Sn−1. In this way, the tangent vector (Xi )p is interpreted as the geometrical
vector −→pei = −→ei − −→p multiplied by p(i). Further, following Chentsov, we introduce
another vector field Xn that has a geometrical vector interpretation −→pen = −→en − −→p
multiplied by p(n), i.e., whose numerical vector representation (

−→
X n)p has the form

p(n) {δn(ω) − p(ω)} (1 ≤ ω ≤ n).

In what follows, these representations are used interchangeably for tangent vectors
(Xi )p with i = 1, . . . , n. Note that the vector fields X1, . . . , Xn satisfy the identity:

n∑

i=1

Xi = 0. (18)

Similarly, we introduce a set of vector fields Y1, . . . ,Y� on S�−1. A crucial obser-
vation is that for a Markov embedding f : Sn−1 → S�−1 associated with the partition
(1), we have

f∗
(
(Xi )p

) =
∑

k∈C(i)

(Yk) f (p) (1 ≤ i ≤ n). (19)

In fact, due to (2),

f (−→ei ) =
∑

k∈C(i)

Qk
(i)

−→εk ,

where εk is the kth vertex of S�−1. As a consequence,

−→q := f (−→p ) =
∑

ω∈�n

p(ω) f (−→eω) =
∑

ω∈�n

∑

k∈C(ω)

p(ω)Qk
(ω)

−→εk =
∑

k∈��

q(k)−→εk ,

where q(k) := p(ω)Qk
(ω) with the index ω being the one satisfying k ∈ C(ω). By

using this equality, we have

f∗
(
(Xi )p

) = p(i) f∗(−→ei − −→p ) = p(i)

⎛

⎝
∑

k∈C(i)

Qk
(i)

−→εk − −→q
⎞

⎠

= p(i)
∑

k∈C(i)

Qk
(i)

(−→εk − −→q )

=
∑

k∈C(i)

q(k)
(−→εk − −→q ) =

∑

k∈C(i)

(Yk)q ,

proving (19).
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Step 2. Let us deal with the case when � = n. In this case, a Markov embedding f
is reduced to a permutation of indices of events. Consider the barycentre

p0 =
(
1

n
, . . . ,

1

n

)

of Sn−1. Due to the symmetry of Sn−1 over permutations of indices at the barycentre,
the tangent vector (∇[n]

Xi
Xi )p0 must be parallel to (Xi )p0 , so that there is a constant

λ[n] such that
(
∇[n]
Xi

Xi

)

p0
= λ[n](Xi )p0 .

Similarly, there is a constant μ[n] such that for any distinct pair (i, j) of indices,

(
∇[n]
Xi

X j

)

p0
= μ[n](Xi + X j )p0 .

Now, using (18), we have

(
∇[n]
Xi

Xi

)

p0
=

⎛

⎝−
∑

j �=i

∇[n]
X j

Xi

⎞

⎠

p0

= −μ[n] ∑

j �=i

(X j + Xi )p0 = −μ[n](n − 2)(Xi )p0 ,

which leads to

μ[n] = − λ[n]

n − 2
.

Step 3. Suppose that � = Nn for some N ∈ N, and consider theMarkov embedding

f (x1, . . . , xn) =

⎛

⎜
⎜
⎝
x1

N
, . . . ,

x1

N︸ ︷︷ ︸
N

, . . . . . . ,
xn

N
, . . . ,

xn

N︸ ︷︷ ︸
N

⎞

⎟
⎟
⎠ .

This map corresponds to the partition

C(i) := {N (i − 1) + 1, . . . , N (i − 1) + N } (1 ≤ i ≤ n).

Since f maps the barycentre p0 of Sn−1 to the barycentre of S�−1, it follows from the
equivariance condition (15) as well as (19) that

f∗
(
∇[n]
Xi

Xi

)

p0

=
(
∇[�]

f∗Xi
f∗Xi

)

f (p0)
=

∑

v∈C(i)

∑

w∈C(i)

(
∇[�]
Yv
Yw

)

f (p0)
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=
∑

v∈C(i)

(
∇[�]
Yv
Yv

)

f (p0)
+

∑

v,w∈C(i):v �=w

(
∇[�]
Yv
Yw

)

f (p0)

=
∑

v∈C(i)

λ[�](Yv) f (p0) +
∑

v,w∈C(i):v �=w

μ[�] (Yv + Yw) f (p0)

= λ[�] ∑

v∈C(i)

(Yv) f (p0) − λ[�]

� − 2

⎛

⎝(N − 1)
∑

v∈C(i)

Yv + (N − 1)
∑

w∈C(i)

Yw

⎞

⎠

f (p0)

= λ[�]
(

1 − 2(N − 1)

� − 2

)

f∗(Xi )p0 .

Since f∗ is injective, this leads to

λ[n] = λ[�]
(

1 − 2(N − 1)

� − 2

)

.

Since � = Nn, this is further equivalent to

n

n − 2
λ[n] = �

� − 2
λ[�].

Consequently, there exists a constant γ , independent of n, such that

n

n − 2
λ[n] = γ.

Step 4. Take a rational point p in Sn−1, and represent it by a common denominator
as

p =
(m1

�
, . . . ,

mn

�

)
, (�,m1, . . . ,mn ∈ N).

Further, let us consider the Markov embedding

f (x1, . . . , xn) =

⎛

⎜
⎜
⎜
⎝

x1

m1
, . . . ,

x1

m1︸ ︷︷ ︸
m1

, . . . . . . ,
xn

mn
, . . . ,

xn

mn︸ ︷︷ ︸
mn

⎞

⎟
⎟
⎟
⎠

.

This map corresponds to the partition

C(i) := {Mi + 1, . . . , Mi + mi } (1 ≤ i ≤ n),

where M1 = 0 and Mj+1 = Mj + m j for 1 ≤ j ≤ n − 1.
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Since the image f (p) is the barycentre of S�−1, it follows from the equivariance
condition (15) as well as (19) that for i �= j ,

f∗
(
∇[n]
Xi

X j

)

p
=

(
∇[�]

f∗Xi
f∗X j

)

f (p)
=

∑

v∈C(i)

∑

w∈C( j)

(
∇[�]
Yv
Yw

)

f (p)

=
∑

v∈C(i)

∑

w∈C( j)

(

− λ[�]

� − 2

)

(Yv + Yw) f (p)

= −γ

�

⎛

⎝m j

∑

v∈C(i)

Yv + mi

∑

w∈C( j)

Yw

⎞

⎠

f (p)

= −γ

⎛

⎝p( j)
∑

v∈C(i)

Yv + p(i)
∑

w∈C( j)

Yw

⎞

⎠

f (p)

= −γ
(
p( j) f∗ (Xi )p + p(i) f∗

(
X j

)

p

)
.

Since f∗ is injective, this leads to

(
∇[n]
Xi

X j

)

p
= −γ

(
p( j) (Xi )p + p(i)

(
X j

)

p

)
. (20)

Further, by using (18),

(
∇[n]
Xi

Xi

)

p
= −

∑

j �=i

(
∇[n]
X j

Xi

)

p
= γ

∑

j �=i

(
p(i)

(
X j

)

p + p( j) (Xi )p

)

= γ

⎛

⎝p(i)
∑

j �=i

(
X j

)

p + (1 − p(i)) (Xi )p

⎞

⎠

= γ (1 − 2p(i)) (Xi )p . (21)

Finally, the relations (20) and (21), which are valid for all rational points p ∈ Sn−1,
are uniquely extended to all p ∈ Sn−1 by continuity. This completes the proof. �
Acknowledgements The author would like to express his sincere gratitude to Professor Shun-ichi Amari
for all his encouragement and inspiring discussions. He is also grateful to Professor Hiroshi Nagaoka for
many insightful comments. The present study was supported by JSPS KAKENHI Grant no. JP17H02861.

Data availibility Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study.

Declarations

Conflict of interest The author states that there is no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123



S98 A. Fujiwara

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Amari, S.-I.: Private communication (2015)
2. Amari, S.-I., Nagaoka, H.: Methods of Information Geometry, Translations of Mathematical Mono-

graphs 191 (AMS and Oxford, Providence, 2000); Originally Published in Japanese. Iwanami Shoten,
Tokyo (1993)

3. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information geometry and sufficient statistics. Probab.
Theory Relat. Fields 162, 327–364 (2015)

4. Bauer, M., Bruveris, M., Michor, P.W.: Uniqueness of the Fisher–Rao metric on the space of smooth
densities. Bull. Lond. Math. Soc. 48, 499–506 (2016)
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