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Abstract
We analyze the information geometric structure of time reversibility for parametric
families of irreducible transition kernels of Markov chains. We define and character-
ize reversible exponential families of Markov kernels, and show that irreducible and
reversible Markov kernels form both a mixture family and, perhaps surprisingly, an
exponential family in the set of all stochastic kernels. We propose a parametrization of
the entire manifold of reversible kernels, and inspect reversible geodesics. We define
information projections onto the reversible manifold, and derive closed-form expres-
sions for the e-projection and m-projection, along with Pythagorean identities with
respect to information divergence, leading to some new notion of reversiblization of
Markov kernels. We show the family of edge measures pertaining to irreducible and
reversible kernels also forms an exponential family among distributions over pairs.
We further explore geometric properties of the reversible family, by comparing them
with other remarkable families of stochastic matrices. Finally, we show that reversible
kernels are, in a sense we define, the minimal exponential family generated by the
m-family of symmetric kernels, and the smallest mixture family that comprises the
e-family of memoryless kernels.
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1 Introduction

Time reversibility is a fundamental property ofmany statistical laws of nature. Inspired
by Schrödinger [1], Kolmogorovwas the first [2], in his celebratedwork [3,4], to inves-
tigate this notion in the context of Markov chains and diffusion processes. Reversible
chains also find numerous applications in computer science, for instance in queuing
networks [5] or Markov Chain Monte Carlo sampling algorithms [6]. For instance, a
random walk over a weighted network corresponds to a reversible Markov chains [7,
Section 3.2].

Reversible Markov operators enjoy a considerably richer mathematical structure
than their non-reversible counterparts, enabling a wide range of analytical tools and
techniques. Indeed, the significance of reversibility spans across surprisingly many
areas of mathematics, from spectral theory [8, Chapter 12] to abstract algebra [9].
For instance, the mixing time of a reversible Markov chain, i.e. the time to guarantee
closeness to stationarity, is controlled up to logarithmic factors by its absolute spectral
gap (the difference of its two largest eigenvalues in magnitude). The diversity of the
existing tools and analyses prompts our first question of whether reversibility can also
be treated from an information geometry perspective.

Through the lens of information geometry, the manifold of all irreducible Markov
kernels forms both an exponential family (e-family) and a mixture family (m-family).
Our natural second question is whether we can find subfamilies of irreducible kernels
that enjoy similar geometric properties, or in other words, can we find submanifolds
that are autoparallel with respect to affine connections of interest? For instance, the set
of doubly-stochastic matrices is known to form an m-family [10], while a tree model
is an e-family of Markov kernels, if and only if it is an FSMX model [11].

In this article, we will answer these two questions, see that reversible irreducible
Markov chains enjoy the structure of both exponential and mixture families, and
explore their geometric properties.

1.1 Related work

The concept of exponential tilting of stochastic matrices using Perron-Frobenius (PF)
theory can be traced back to the work of Miller [12]. The large deviation theory for
Markov chains, whose crown achievement is showing that the convex conjugate of the
log-PF root of the tilted kernel essentially controls the large deviation rate was further
developed by Donsker and Varadhan [13], Gärtner [14], Dembo and Zeitouni [15].
Csiszár et al. [16] seem to be the first to recognize the exponential structure of the
set of irreducible Markov kernels, in the context of information projections. Indepen-
dently, Ito and Amari [17] implicitly introduced the notion of asymptotic exponential
families, and exhibited irreducible Markov kernels as an example. Takeuchi and Bar-
ron [18] later formalized this definition (see also Takeuchi and Kawabata [19]), and
Takeuchi and Nagaoka [20] subsequently proved that exponential families and their
asymptotic counterparts are equivalent. Nakagawa and Kanaya [21] formally defined
the exponential family of irreducible Markov chains and Nagaoka [22] later gave a
full treatment in the language of information geometry, proving its dually flat struc-
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ture. A notable collection of works has also explored the implications of this geometric
structure for problems related to parameter estimation [10], hypothesis testing [21,23],
large deviation theory [24], and hidden Markov models [25,26].

We refer the reader to Levin et al. [8] and Amari and Nagaoka [27] for thorough
treatments of the theory of Markov chains and information geometry.

1.2 Outline andmain results

In Section 2, we begin with a primer on reversible Markov chains, define exponential
and mixture families, and briefly discuss the importance of affine structures for our
analysis of exponential families. In Section 3, we define a time-reversal operation on
parametric families, and show in Proposition 1 that both m-families and e-families are
closed under this transformation. In Section 4 we introduce the concept of a reversible
e-family, and provide a characterization (Theorem 2) of such family in terms of its
carrier kernel and set of generator functions. Adapting the Kolmogorov criterion, we
show that the necessary and sufficient conditions can be verified in a time that depends
polynomially on the number of states. In Section 5,weprove that the set of all reversible
and irreducible transition kernels is both an m-family, and an e-family (Theorem 3),
construct a basis (Theorem 4), and derive a parametrization (Theorem 5) of the entire
set of reversible kernels. In Section 6, we investigate information projections of an
irreducible Markov chain onto its reversible submanifold. We show that the projec-
tions verify Pythagorean identities, and obtain closed-form expressions (Theorem 7).
Additionally, we prove that the projections are always equidistant from an irreducible
Markov kernel and its time-reversal (bisection property, Proposition 2). In Section 7,
we show that reversible edgemeasures also form an e-family in distributions over pairs
(Theorem 8). In Section 8, we briefly compare the geometric properties of reversible
chains with several other natural families of Markov kernels. Finally, in Section 9, we
characterize the reversible family as both the smallest exponential family that com-
prises symmetric kernels (Theorem 9), and the smallest mixture family that contains
memoryless Markov kernels (Theorem 10).

2 Preliminaries

Form ∈ Nwewrite [m] = {1, 2, . . . ,m}. LetX be a set such that |X | = m < ∞, iden-
tifiedwith [m], where to avoid trivialities, we also assume thatm > 1.WedenoteP(X )

the probability simplex over X , and P+(X ) = {μ ∈ P(X ) : ∀x ∈ X , μ(x) > 0}. All
vectors will be written as row-vectors, unless otherwise stated. For some real matrices
A and B, ρ(A) is the spectral radius of A, f [A] for f : R → R is the entry-wise
application of f to A; A ◦ B is the Hadamard product of A and B, A > 0 (resp.
A ≥ 0) means that A is an entry-wise positive (resp. non-negative) matrix. We will
routinely identify a function f : X 2 → R with the linear operator f : R

X → R
X .
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2.1 Irreducible Markov chains

We let (X , E) be a strongly connected directed graph, where X is the set of vertices,
and E ⊂ X 2 the set of edges. Let F(X , E) be the set of all real functions over the set
E , identified with the totality of functions over X 2 that are null outside of E , and let
F+(X , E) ⊂ F(X , E) be the subset of positive functions over E . Similarly, we define
P(E) = P(X 2) ∩ F+(X , E), the set of distributions whose mass is concentrated on
the edge set E . We write W(X ) for the set of row-stochastic transition kernels over
the state space X , and W(X , E) for the subset of irreducible kernels whose support
is E , i.e.

W(X ) �
{
P ∈ R

X 2 : P ≥ 0,∀x ∈ X ,
∑
x ′∈X

P(x, x ′) = 1

}
,

W(X , E) � F+(X , E) ∩ W(X ),

and where P(x, x ′) corresponds to the transition probability from state x to state x ′ 1.
For P ∈ W(X , E), there exists a unique π ∈ P+(X ), such that π P = π [8, Corol-
lary 1.17], which we call the stationary distribution of P . When E = X 2 and if there is
no ambiguity about the space under consideration, we may write more simply F ,F+
instead of F(X ,X 2),F+(X ,X 2) (a similar notation will apply to all subsequently
defined spaces).

2.2 Reversibility

For an irreducible kernel P , we write Q = diag(π)P for the edge measure matrix,
[8, (7.5)], which corresponds to stationary pair-probabilities of P , i.e. Q(x, x ′) =
Pπ

(
Xt = x, Xt+1 = x ′), and denote the set of irreducible edge measures by

Q(X , E) � {diag(π)P : P ∈ W(X , E), π P = π} ⊂ P(E).

Note that this definition is equivalent to

Q(X , E) =
{
Q ∈ P(E) :

∑
x ′∈X

Q(x, x ′) =
∑
x ′∈X

Q(x ′, x)
}

. (1)

We further denote P� for the uniquely defined time-reversal of P , that verifies
P�(x, x ′) = π(x ′)P(x ′, x)/π(x), and write Q� = Qᵀ for its corresponding edge
measure, where ᵀ denotes matrix transposition. When Q is symmetric (i.e. Q� = Q),
the chain verifies the detailed balance equation,

π(x)P(x, x ′) = π(x ′)P(x ′, x),

1 We note that in information theory, P(x, x ′) is often denoted by P(x ′|x). Our choice follows the applied
probability literature (see e.g. Levin et al. [8]), and allows us to extend the notation seamlessly to general
functions over X 2.
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i.e. P� = P , and we say that the Markov chain is reversible. Observe that in this case,
for P irreducible over E , the edge set must also be symmetric (E = E�, where E� �{
(x, x ′) ∈ X 2 : (x ′, x) ∈ E}).WewriteWrev(X , E) for the set of all reversible kernels
that are irreducible over (X , E). For f , g ∈ R

X , 〈 f , g〉π �
∑

x∈X f (x)g(x)π(x)
defines an inner product. We call �2(π) the corresponding Hilbert space. The time-
reversal is the adjoint operator of P in �2(π), i.e. the unique linear operator that verifies
〈P f , g〉π = 〈 f , P�g〉π ,∀ f , g ∈ R

X (represented here as column vectors). As a
consequence, when P is reversible, it is also self-adjoint in �2(π), and the spectrum
of P is real.

2.3 Mixture family and exponential family

For later convenience we consider the following three equivalent definitions of a
mixture family.

Definition 1 (m-family of transition kernels)We say that a family of irreducible tran-
sition kernels Vm is a mixture family (m-family) of irreducible transition kernels on
(X , E) when one of the following (equivalent) statements (i), (i i), (i i i) holds.

(i) [28] There exist affinely independent Q0, Q1, . . . , Qd ∈ Q(X , E) such that

Vm =
{
Pξ ∈ W(X , E) : Qξ =

d∑
i=1

ξ i Qi + (1 −
d∑

i=1

ξ i )Q0, ξ ∈ Ξ

}
,

where Ξ = {
ξ ∈ R

d : Qξ (x, x ′) > 0,∀(x, x ′) ∈ E}, and Qξ is the edge measure
that pertains to Pξ .

(ii) [27, 2.35] There existsC, F1, . . . , Fd ∈ F(X , E), such thatC,C+F1, . . . ,C+Fd
are affinely independent,

∑
x,x ′

C(x, x ′) = 1,
∑
x,x ′

Fi (x, x
′) = 0,∀i ∈ [d],

and

Vm =
{
Pξ ∈ W(X , E) : Qξ = C +

d∑
i=1

ξ i Fi , ξ ∈ Ξ

}

where Ξ = {
ξ ∈ R

d : Qξ (x, x ′) > 0,∀(x, x ′) ∈ E}, and Qξ is the edge measure
that pertains to Pξ .

(iii) [10, Section 4.2] There exist k ∈ N, g1, . . . , gk ∈ F(X , E) and c1, . . . , ck ∈ R,
such that

Vm =
⎧⎨
⎩P ∈ W(X , E) :

∑
x,x ′

Q(x, x ′)gi (x, x ′) = ci ,∀i ∈ [k]
⎫⎬
⎭ .
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Note that Ξ is an open set, ξ is called the mixture parameter and d is the dimension
of the family Vm .

Definition 2 (e-family of transition kernels) Let Θ ⊂ R
d , be some connected param-

eter space that contains an open ball centered at 0. We say that the parametric family
of irreducible transition kernels

Ve =
{
Pθ : θ = (θ1, . . . , θd) ∈ Θ

}

is an exponential family (e-family) of transition kernels on (X , E)with natural param-
eter θ , whenever

(i) For all θ ∈ Θ , Pθ ∈ W(X , E) .
(ii) There exist functions

K : X × X → R,

R : Θ × X → R,

g1, . . . , gd : X × X → R,

ψ : Θ → R,

such that ∀(x, x ′, θ) ∈ X 2 × Θ ,

log Pθ (x, x
′) = K (x, x ′) +

d∑
i=1

θ i gi (x, x
′) + R(θ, x ′) − R(θ, x) − ψ(θ), (2)

when (x, x ′) ∈ E , and Pθ (x, x ′) = 0 otherwise.

When fixing some θ ∈ Θ , we may later write for convenience ψθ for ψ(θ) and Rθ for
R(θ, ·) ∈ R

X . The carrier kernel K , the collection of generator functions g1, . . . , gd
and the parameter range Θ define the family entirely. The remaining functions Rθ

and ψθ will be determined uniquely by PF theory, from the constraint of Pθ being
row-stochastic (see for example the proof of Proposition 1). In fact, we can define
the mapping s that constructs a proper irreducible stochastic matrix from any linear
operator defined by an irreducible matrix over (X , E).

s : F+(X , E) → W(X , E)

P̃(x, x ′) → P(x, x ′) = P̃(x, x ′)v(x ′)
ρ(P̃)v(x)

,
(3)

where ρ(P̃) and v are respectively the PF root and right PF eigenvector of P̃ .

Remark 1 In Feigin et al. [29], Küchler and Sørensen [30], Hudson [31], Stefanov
[32], Küchler and Sørensen [33], Sørensen [34], an exponential family of transition
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kernels has the form

log Pθ (x, x
′) = K (x, x ′) +

d∑
i=1

θ i gi (x, x
′) − φ(θ, x ′),

for some function φ : Θ × X → R. Our Definition 2 however follows the one
of Nagaoka [22], Hayashi and Watanabe [10], Watanabe and Hayashi [23], that is
endowed with a more compelling geometrical structure [10, Remark 3].

Following the information geometry philosophy [27], we view the e-families or
m-families that we defined, as d-dimensional submanifolds of W(X , E) with cor-
responding chart maps θ, ξ : W(X , E) → R

d . We can give more geometrical,
parametrization-free definitions of e-families and m-families of irreducible transi-
tion kernel over (X , E), as autoparallel submanifolds ofW(X , E) with respect to the
e-connection and m-connection [22, Section 6]. We will prefer, however, to mostly
cast our analysis in the language of linear algebra, and defer analysis of the relation-
ship with differential geometry concepts to Section 5.3. This choice is motivated by
the existence of a known correspondence between affine functions over E and the
manifold W(X , E) [22] that we now describe. Denote,

N (X , E) �
{
h ∈ F(X , E) : ∃(c, f ) ∈ (R, R

X ),

∀(x, x ′) ∈ E, h(x, x ′) = f (x ′) − f (x) + c

}
.

(4)

Then F(X , E) defines a |E |-dimension vector space, while N (X , E) is an |X |-
dimensional vector space [22, Section 3]. Introducing the mapping,

Δ : F(X , E) → W(X , E)

f → Δ( f ) = s(exp ◦ f ),
(5)

we see from the expression at (3) that Δ gives a diffeomorphism from the quotient
linear space

G(X , E) � F(X , E)/N (X , E)

to W(X , E) and a subset V of W(X , E) is an e-family if and only if there exists an
affine subspace A of the quotient space G(X , E) such that V = Δ(A) (we identify a
coset with a representative function in that coset). In this case, the correspondence is
one-to-one, and the dimension of the affine space and the submanifold coincide [22,
Theorem 2]. In particular, this entails that dimW(X , E) = |E | − |X | Nagaoka [22,
Corollary 1].

Remark 2 For Definition 2, unless stated otherwise, we will henceforth assume that
the gi form an independent family in G(X , E). This will ensure that the family is
well-behaved in the sense of Hayashi and Watanabe [10, Lemma 4.1].
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3 Time-reversal of parametric families

We begin by extending the definition of a time-reversal to families of Markov chains.

Definition 3 (Time-reversal family) We say that the family of irreducible transition
kernels V� is the time-reversal of the family of irreducible transition kernels V when
V� = {P� : P ∈ V}, where P� denotes the time-reversal of P .

We now state the fundamental fact that the quality of being an e-family or an
m-family of transition kernels is closed under this time-reversal operation.

Proposition 1 The following statements hold.
Time reversal of m-family: Let Vm be an m-family over (X , E), then V�

m is an m-family
over (X , E�). Furthermore, ifVm is them-family generated by Q1, . . . , Qd ∈ Q(X , E)

(following the notation at Definition 1-(i)), then the time-reversal m-family is given
by

V�
m =

{
Pξ ∈ W(X , E�) : Qξ =

d∑
i=1

ξ i Q�
i + (1 −

d∑
i=1

ξi )Q
�
0, ξ ∈ Ξ�

}
,

where Qξ pertains to Pξ and with

Ξ� =
{
ξ ∈ R

d : Qξ (x, x
′) > 0,∀(x, x ′) ∈ E�

}
= Ξ.

Time reversal of e-family: Let Ve be an e-family over (X , E), then V�
e is an e-family

over (X , E�). Furthermore, if Ve is the e-family generated by K and g1, . . . , gd
(following the notation at Definition 2), then the time-reversal e-family is given by
V� = {

P�
θ : θ ∈ Θ

}
such that

log P�
θ (x, x ′) = K (x ′, x) +

d∑
i=1

θ i gi (x
′, x) + Lθ (x

′) − Lθ (x) − ψθ,

when (x, x ′) ∈ E�, P�
θ (x, x ′) = 0 otherwise, and where Lθ is the left PF eigenvector

of the non-negative irreducible matrix

P̃�
θ (x, x ′) = exp

(
K (x ′, x) +

d∑
i=1

θ i gi (x
′, x)

)
.

Proof Since the edge measure Q�
ξ of the time-reversal P�

ξ is the transpose of Qξ

corresponding to Pξ , it is easy to obtain the expression of the time-reversal, and to
see that V�

m is a mixture family. It remains to show that this also holds true for e-
families. From the definition of an exponential family (2), and the requirement that
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Pθ be row-stochastic, it must be that for any x ∈ X ,

∑
x ′∈X

exp(K (x, x ′) +
d∑

i=1

θ i gi (x, x
′))eRθ (x ′) = eψθ eRθ (x),

ormore concisely,writing P̃θ (x, x ′) = exp(K (x, x ′)+∑d
i=1 θ i gi (x, x ′)) for x, x ′ ∈ E

and P̃θ (x, x ′) = 0 otherwise, P̃θ exp[Rθ ] = eψθ exp[Rθ ]. By positivity of the expo-
nential function, the vector exp[Rθ ] ∈ R

X is positive. Thus, from the PF theorem,
eψθ corresponds to the spectral radius of P̃θ , and exp[Rθ ] its (right) associated eigen-
vector. There must therefore also exist a left positive eigenvector, which we denote by
exp[Lθ ], such that

exp[Lθ ]P̃θ = eψθ exp[Lθ ].

Defining the positive normalized measure

πθ (x) � exp(Lθ (x) + Rθ (x))∑
x ′′∈X exp(Lθ (x ′′) + Rθ (x ′′))

, (6)

it is easily verified that πθ is the stationary distribution of Pθ . Notice that θ , K and
gi determine uniquely Lθ , Rθ , ψθ and πθ by the PF theorem. Recall that the adjoint
of a transition kernel P can be written P�(x, x ′) = π(x ′)P(x ′, x)/π(x), thus we can
compute the time-reversal as

Pθ (x
′, x)πθ (x ′)

πθ (x)
= exp

(
K (x ′, x) + Lθ (x

′) − Lθ (x) +
d∑

i=1

θ i gi (x
′, x) − ψθ

)
,

when (x ′, x) ∈ E , and 0 for (x ′, x) /∈ E . The requirements of Definition 2 for an
e-family are all fulfilled, which concludes the proof. ��
Remark 3 Recall that for a distribution μ ∈ P(X ), we can by exponential change of
measure – also known as exponential tilting – construct the natural exponential family
of μ:

μθ(x) = μ(x) exp(θx − A(θ)),

where A(θ) is a normalization function that ensures μθ ∈ P(X ) for all θ ∈ R.
The idea of exponential change of measure for distributions can be traced back to
Chernoff [35], and was later termed tilting [36,37]. Similarly, given some function
g : X 2 → R we can tilt an irreducible kernel P (e.g. Miller [12]), by first constructing
P̃θ (x, x ′) = P(x, x ′)eθg(x,x ′), and then rescaling thenewlyobtained irreduciblematrix
2 with the mapping s. When θ = 0, notice that we recover the original P . But while

2 Interestingly, the large deviation rate of g is given by the convex conjugate of the log-PF root of P̃θ [15,
Chapter 3].
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in our definition,

Pθ = s(P ◦ exp[θg]) = 1

ρ(P ◦ exp[θg]) diag v−1
θ (P ◦ exp[θg]) diag vθ

denotes the kernel tilted involving the right PF eigenvector vθ , we could alternatively
define the Markov kernel P ′

θ by tilting P with the left PF eigenvector uθ :

P ′
θ = 1

ρ(P ◦ exp[θg]) diag u
−1
θ (P ◦ exp[θg])ᵀ diag uθ .

Observe that the right and left tilted versions of P with identical θ share the same
stationary distribution πθ ∝ uθ ◦ vθ (6) and that they are in fact each other’s time-
reversal (P ′

θ = P�
θ ), i.e. they form a pair of adjoint linear operators over the space

�2(πθ ).

4 Reversible exponential families

The previous section extended the time-reversal operation to parametric families of
transition kernels. It seems then natural to investigate fixed points, i.e. parametric
families that remain invariant under this transformation. We say that an irreducible
e-family V(X , E) is reversible when P is reversible ∀P ∈ V(X , E). In this case, E
coincideswith E� andV�(X , E�)withV(X , E). Observe first that an e-family obtained
from tilting a reversible P is not generally reversible, making it clear that the reversible
nature of the family cannot be determined solely by the properties of the carrier kernel
K . It is however easy to see that an e-family is reversible when K and all the generator
functions g1, . . . , gd are symmetric. Moreover, for a state space X of size 2, any
exponential family would be reversible regardless of symmetry, showing that this
condition is not always necessary. In this section, we give a complete characterization
of this invariant set. Additionally, we explore the algorithmic cost of checking whether
this property is verified from the description of the carrier kernel and generators of a
given e-family. Before diving into the general theory of reversible e-families, let us
consider the following simple examples.

Example 1 (Lazy random walk on the m-cycle) For X = [m], and

Ecy =
{
(i, j) ∈ [m]2 : |i − j | mod m − 1 ∈ {0, 1}

}
,

let

Pθ (x, x
′) = exp

(
θ1

m∑
i=1

δi (x)δi (x
′)

+ θ2

m∑
i=1

(
δi (x)δi+1(x

′) − δi+1(x)δi (x
′)
) − ψ(θ)

)
,
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where ψ(θ) = log
(
eθ1 + eθ2 + e−θ2

)
and δm+1 = δ1. This e-family {Pθ }θ∈R2 corre-

sponds to the set of biased lazy random walks on the m-cycle given by

Pθ (x, x) = eθ1

eθ1 + eθ2 + e−θ2
,

Pθ (x, x + 1) = eθ2

eθ1 + eθ2 + e−θ2
,

Pθ (x + 1, x) = e−θ2

eθ1 + eθ2 + e−θ2
.

Observe that P�
(θ1,θ2)

= P(θ1,−θ2), and thus Pθ is not a reversible e-family. The subfam-
ily {Pθ : θ1 ∈ R, θ2 = 0}, however, i.e. unbiased lazy random walks on the m-cycle,
form a a reversible e-family.

Example 2 (Birth-and-death chains) For X = [m] and Ebd = {(i, j) : |i − j | ≤ 1}, a
Markov kernel having its support on Ebd is referred to as a birth-and-death chain. Since
every birth-and-death chain is reversible [8, Section 2.5], W(X , Ebd) is a reversible
e-family.

We first recall Kolmogorov’s characterization of reversibility, which will be instru-
mental in our argument. For E ⊂ X 2 such that (X , E) is a strongly connected directed
graph, we write Γ (X , E) for the set of finite directed closed paths in the graph (X , E).
Formally, we treat γ as a map [n] → E such that γ (t) = (xt , xt+1) with xn+1 = x1
and we write |γ | = n for the length of the path. For each γ ∈ Γ (X , E), we also intro-
duce the reverse closed path γ � ∈ Γ (X , E�) given by γ �(t) = (xt+1, xt ). Namely,
if γ ∈ Γ (X , E), we can write γ informally as a succession of edges such that the
starting and finishing states agree (i.e. as an element of En).

γ = ((x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1)), xi ∈ X ,∀i ∈ [n].

Note that γ is not necessarily a cycle, i.e. in our definition, multiple occurrences of
the same point of the space are allowed.

Theorem 1 (Kolmogorov’s criterion [3]) Let P irreducible over (X , E). P is
reversible if and only if for all γ ∈ Γ (X , E),

|γ |∏
t=1

P(γ (t)) =
|γ |∏
t=1

P(γ �(t)).

Example 3 When |X | = 2, all chains are reversible. For |X | = 3, only one equation
needs to be verified for P to be reversible:

P(1, 2)P(2, 3)P(3, 1) = P(1, 3)P(3, 2)P(2, 1).

We now extend the definition of reversibility to arbitrary irreducible functions
F+(X , E) (non-negative on X 2 and positive exactly on E) based on Kolmogorov’s
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criterion, and further introduce the concept of log-reversibility for F(X , E), that con-
siders sums instead of products.

Definition 4 (Reversible and log-reversible functions) Let E ⊂ X 2 such that E = E�.

reversible: A function h ∈ F+(X , E) is reversible whenever it satisfies that,

|γ |∏
t=1

h(γ (t)) =
|γ |∏
t=1

h(γ �(t)).

for all finite directed closed paths γ ∈ Γ (X , E).
log-reversible: A function h ∈ F(X , E) is log-reversible whenever it satisfies that,

|γ |∑
t=1

h(γ (t)) =
|γ |∑
t=1

h(γ �(t)).

for all finite directed closed paths γ ∈ Γ (X , E).

Remark These definitions do not rely on connectedness properties of E per se, but
we will assume irreducibility nonetheless. Observe that when h is represented by an
irreducible row-stochastic matrix, the definition of reversibility of h as a function
and as a Markov operator coincide by Kolmogorov’s criterion (Theorem 1). Clearly,
for h ∈ F(X , E), exp[h] being reversible is equivalent to h being log-reversible.
We could endow the set of positive reversible functions on E with a group structure
by considering the standard multiplicative operation on functions. We will choose
however (Lemma 4), to rather construct and focus on the vector space of log-reversible
functions.

Lemma 1 Let h ∈ F+(X , E) such that rank(h) = 1. Then h is a reversible function.

Proof Consider a closed path γ ∈ Γ (X , E). Writing h = uᵀ
h vh , we successively have

that

|γ |∏
t=1

h(γ (t)) =
|γ |∏
t=1

uh(xt )vh(xt+1) =
|γ |∏
t=1

uh(xt )
|γ |∏
t=1

vh(xt ) =
|γ |∏
t=1

h(γ �(t)).

��
Theorem 2 (Characterization of reversible e-family) Let V(X , E) be an irreducible e-
family ofMarkov chains, with natural parametrization θ , generated by K and (gi )i∈[d].
The following two statements are equivalent.

(i) V(X , E) is reversible.
(ii) E = E� and V(X , E) is such that the carrier kernel K and generator functions

gi ,∀i ∈ [d] are all log-reversible functions.
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Proof We apply Kolmogorov’s criterion to some arbitrary family member. Let γ be
some finite closed path in (X , E),

|γ |∏
t=1

Pθ (γ (t)) =
|γ |∏
t=1

Pθ (γ
�(t)).

Rewriting the left-hand side,

|γ |∏
t=1

Pθ (γ (t))

=
|γ |∏
t=1

exp

(
K (xt , xt+1) + R(θ, xt+1) − R(θ, xt ) +

d∑
i=1

θ i gi (xt , xt+1) − ψ(θ)

)

= exp(− |γ | ψ(θ)) exp

⎛
⎝ |γ |∑

t=1

[
K (xt , xt+1) +

d∑
i=1

θ i gi (xt , xt+1)

]⎞
⎠ .

Proceeding in a similar way with the right-hand side, we obtain

|γ |∑
t=1

K (xt , xt+1) +
d∑

i=1

θ i
|γ |∑
t=1

gi (xt , xt+1)

=
|γ |∑
t=1

K (xt+1, xt ) +
d∑

i=1

θ i
|γ |∑
t=1

gi (xt+1, xt ).

When K and the gi are log-reversible, this equality is verified for any closed path,
and every member of the family is therefore reversible. Taking θ = 0 yields the
reversibility requirement for K . Further taking θ i = δi ( j) for j ∈ [d] similarly yields
the requirement for g j . ��

This path checking approach, although mathematically convenient, is not algorith-
mically efficient. In order to determine whether a full-support kernel –or function– is
reversible, the number of distinct Kolmogorov equations that must be checked is

|X |∑
k=3

(|X |
k

)
(k − 1)!

2
, [38, Proposi tion 2.1]

which corresponds to themaximal number of cycles (i.e. closed paths such that the only
repeated vertices are the first and last one) in a complete graph over |X | nodes. Such
testing algorithm becomes rapidly intractable as |X | increases. However for Markov
kernels, we know that this is equivalent to verifying the detailed balance equation,
which canbe achieved in (atmost) polynomial timeO(|X |3), by solving a linear system
in order to find π . We show that this idea naturally extends to verifying reversibility
of functions, enabling us to design an algorithm of time complexity O(|X |3).

123



406 Information Geometry (2021) 4:393–433

Lemma 2 Let h ∈ F+(X , E) irreducible. h is reversible if and only if Πh ◦ hᵀ is
a symmetric matrix, with Πh = v

ᵀ
h uh the PF projection of h, where uh and vh are

respectively the left and right PF eigenvectors of h, normalized such that uhv
ᵀ
h = 1.

Proof Treat h as the linear operator h : R
X → R

X . Suppose first that h is reversible.
We apply PF theory, which guarantees that the following Cesàro averages converge
[39, Example 8.3.2] to some positive projection,

lim
n→∞

1

n

n∑
k=0

(
h

ρ(h)

)k

= Πh = v
ᵀ
h uh, (7)

Fix (x, x ′) ∈ X 2 such that h(x, x ′) �= 0. For k ∈ N, we write Γk(x, x ′) ⊂ Γ (X , E)

the set of all directed closed paths γ with (x1, x2, . . . , xk) ∈ X k such that

γ = ((x, x1), (x1, x2), . . . , (xk−1, xk), (xk, x
′), (x ′, x)).

For any such cycle, it holds (perhaps vacuously if Γk(x, x ′) = ∅) that

h(x, x1) · · · h(xk, x
′)h(x ′, x) = h(x, x ′)h(x ′, xk) · · · h(x1, x).

Summing this equality over all possible paths in Γk(x, x ′) (i.e. summing over all
(x1, . . . , xk) ∈ X k , with the assumption that h(x, x ′) = 0 whenever (x, x ′) /∈ E), we
obtain

hk(x, x ′)h(x ′, x) = h(x, x ′)hk(x ′, x).

In the case where h(x, x ′) = 0, the above equation holds by symmetry of E . For
n ∈ N, appropriately rescaling on both sides with the PF root, summing over all
k ∈ {0, . . . , n} and taking the limit at n → ∞, (7) yields detailed balance equations
with respect to the projection Πh ,

Πh(x, x
′)h(x ′, x) = h(x, x ′)Πh(x

′, x),

or in other words, reversibility of h implies symmetry of Πh ◦ hᵀ.
To prove necessity, we suppose now that this symmetry holds, with Πh the PF

projection of h. We know that rank(Πh) = rank(vᵀ
h uh) = 1, and that Πh is positive.

Consider some finite directed closed path γ . Rearranging products yields

|γ |∏
t=1

h(γ (t)) =
⎛
⎝ |γ |∏

t=1

Πh(γ (t))

Πh(γ �(t))

⎞
⎠ |γ |∏

t=1

h(γ �(t)),

but the first factor on the right-hand side vanishes, from the fact that rank one functions
are always reversible (Lemma 1). This concludes the proof of the lemma. ��
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Notice that we can define πh(x) � uh(x)/vh(x) the positive entry-wise ratio of
the PF eigenvectors. We can then restate Lemma 2 in terms of the familiar detailed
balance equation πh(x)h(x, x ′) = πh(x ′)h(x ′, x).

Corollary 1 Let h ∈ F(X , E) some irreducible function. h is log-reversible if and only
if there exists f ∈ R

X such that ∀x, x ′ ∈ X , h(x, x ′) = h(x ′, x) + f (x ′) − f (x).

Remark: when h is known to be reversible, one can computeπh inO(|X |), by adapting
the technique of [40]; unfortunately, it is not possible to check for reversibility using
this method. If the space becomes large, the reader can consider iterative (power)
methods to compute the PF projector, potentially further reducing the verification
time cost. We end this section with a technical lemma that will allow us in later
sections to swiftly compute expectations of functions under certain reversibility or
skew-symmetricity properties.

Lemma 3 Let P irreducible with associated edge measure matrix Q. For a function
g : X 2 → R, we write Q[g] = ∑

x,x ′∈X Q(x, x ′)g(x, x ′).

(i) If g is log-reversible, Q[g] = Q�[g].
(ii) If g is skew-symmetric and P is reversible, Q[g] = 0.
(iii) If there exists f ∈ R

X such that for all x, x ′ ∈ X , g(x, x ′) = f (x ′) − f (x),
Q[g] = 0 (regardless of P being reversible).

Proof Claim (i i i) follows by property of edge measure Q.

Q[g] =
∑

x,x ′∈X
Q(x, x ′)( f (x ′) − f (x))

=
∑
x ′∈X

f (x ′)
∑
x∈X

Q(x, x ′) −
∑
x∈X

f (x)
∑
x ′∈X

Q(x, x ′)

=
∑
x ′∈X

f (x ′)π(x ′) −
∑
x∈X

f (x)π(x) = 0.

From Corollary 1, claim (i i i), and re-indexing,

Q[g] = Q[gᵀ] +
∑

x,x ′∈X
Q(x, x ′)( f (x ′) − f (x)) = Q�[g],

which yields (i). To prove (i i), consider g such that g(x ′, x) = −g(x, x ′). Then by
re-indexing and symmetry of Q,

Q[g] =
∑

x ′,x∈X
Q(x ′, x)g(x ′, x) = −

∑
x ′,x∈X

Q(x, x ′)g(x, x ′) = −Q[g].

��
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5 The e-family of reversible Markov kernels

In Section 5.1, we begin by analyzing the affine structure of the space of log-reversible
functions, derive its dimension, construct a basis, and deduce that the manifold of all
irreducible reversible Markov kernels forms an exponential family. The dimension
of this family confirms the well-known fact that the number of free parameters for a
reversible kernel is only about half of what is required for the general case, hence that
reversible chains serve in a sense as a “natural intermediate” [41, Section 5] in terms of
model complexity. In Section 5.2, we proceed to derive a systematic parametrization
of the manifold W(X , E), similar in spirit to the one given in Ito and Amari [17],
and in Nagaoka [22, Example 1]. In Section 5.3, we connect our results to general
differential geometry, and point out that reversible kernelsWrev(X , E) form a doubly
autoparallel submanifold inW(X , E). Finally, we conclude with a brief discussion on
reversible geodesics (Section 5.4).

5.1 Affine structures

Identifying X with [m], we can endow the set with the natural order induced from
N. In this section, we will henceforth assume that E is symmetric, and consider the
following subsets of E ,

T−(E) �
{
(x, x ′) ∈ E : x ′ > x

}
,

T+(E) �
{
(x, x ′) ∈ E : x ′ < x

}
,

T0(E) �
{
(x, x ′) ∈ E : x ′ = x

}
,

and

T (E) �
{
(x, x ′) ∈ E : x ′ ≤ x, (x, x ′) �= (m, x�), x� = arg min

x∈X
{(m, x) ∈ E} }.

We immediately observe that the following cardinality relations hold

|T+(E)| = |T−(E)| ,
|T (E)| = |T+(E)| + |T0(E)| − 1 = |E | + |T0(E)|

2
− 1,

(8)

and that from irreducibility, x� �= m. The last expression in (8) highlights the fact that
|T (E)| is independent of any ordering of elements of X . Note also that the element
(m, x�) in the definition of T (E) plays no special role, and could be replaced with any
other element of T0(E) ∪ T+(E). We define the sets of symmetric and log-reversible
functions (Definition 4) over the graph (X , E), respectively by

Fsym(X , E) �
{
h ∈ F(X , E) : ∀x, x ′ ∈ X , h(x, x ′) = h(x ′, x)

}
,

Frev(X , E) � {h ∈ F(X , E) : h is log-reversible } .
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We note that Fsym(X , E) is isomorphic to the vector space of symmetric matrices
whose entries are null outside of E , thus dimFsym(X , E) = |T+(E)| + |T0(E)|. We
now show thatFrev(X , E) is also a vector space, and that it containsN (X , E) defined
at (4).

Lemma 4 The following vector subspace inclusions hold:

N (X , E)
(i)⊂ Frev(X , E)

(i i)⊂ F(X , E).

Proof To verify (i i), we argue that Frev(X , E) is closed by linear combinations from
properties of the sum.The fact that the null function is trivially reversible concludes this
claim. For (i), consider an element h ∈ N (X , E), such that h(x, x ′) = f (x ′)− f (x)+
c. Then h(x, x ′) = h(x ′, x)+2 f (x ′)−2 f (x), and from Corollary 1, h ∈ Frev(X , E),
thus the inclusion holds. The set is closed by linear combinations by properties of
sums again, and taking f = 0, c = 0 is allowed, whence claim (i). ��
Remark 4 In fact, defining

N0(X , E) �
{
h ∈ F(X , E) : ∃ f ∈ R

X ,

∀(x, x ′) ∈ E, h(x, x ′) = f (x ′) − f (x)

}
,

(9)

Corollary 1 implies that Frev(X , E) = Fsym(X , E) ⊕ N0(X , E).

It is then possible to further define the quotient space of reversible generator functions

Grev(X , E) � Frev(X , E)/N (X , E).

Theorem 3 The following statements hold.

(i) The set of reversible generators Grev(X , E) can be endowed with a |T (E)|-
dimensional vector space structure.

(ii) The set Wrev(X , E) of irreducible and reversible Markov kernels over (X , E)

forms an e-family of dimension dimWrev(X , E) = |T (E)|.
Proof Let g be a log-reversible function over (X , E). From Corollary 1, there exists
f ∈ R

X such that g(x, x ′) = g(x ′, x)+ f (x ′)− f (x), orwriting h(x, x ′) = g(x, x ′)+
f̃ (x) − f̃ (x ′) with f̃ = f /2 (i.e. h = (g + gᵀ)/2), it holds that h(x, x ′) = h(x ′, x),
i.e. h is symmetric. Grev(X , E) thus also corresponds to the alternative quotient space

Grev(X , E) ∼= Fsym(X , E)/R, (10)

and as a consequence dim Grev(X , E) = |T+(E)| + |T0(E)| − 1 = |T (E)|. This
concludes the proof of (i). Let g ∈ Grev(X , E), and recall the definition (5) of
the diffeomorphism Δ. By Theorem 2, Δ(Grev(X , E)) ⊂ Wrev(X , E). Conversely,
let P ∈ Wrev(X , E). Then by the Kolmogorov criterion (Theorem 1), log[P] ∈
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Frev(X , E), and there exist (g, f , c) ∈ Grev(X , E) × R
X × R such that for any

x, x ′ ∈ X , log P(x, x ′) = g(x, x ′) + f (x ′) − f (x) + c (where c is unique, f is
unique up to an additive constant, and both can be recovered from PF theory). In other
words, there exists g ∈ Grev(X , E), with P = s ◦ exp[g], hence P ∈ Δ(Grev(X , E)),
proving that

Δ(Grev(X , E)) = Wrev(X , E).

Claim (i i) then follows from Nagaoka [22, Theorem 2], as discussed at the end of
Section 2. ��
Corollary 2 For the set of positive Markov kernel, |T0(E)| = |X | and |E | = |X |2, thus
dimWrev(X ,X 2) = |X | (|X | + 1)/2 − 1. This is in line with the known number of
degrees of freedom of reversible Markov chains [9,41].

Theorem 4 The family of functions gi j = δ
ᵀ
i δ j + δ

ᵀ
j δi , for (i, j) ∈ T (E), forms a

basis of Grev(X , E).

Proof We begin by proving the independence of the family in the quotient space
Grev(X , E). Since gi j is symmetric in the sense that gi j = gᵀ

i j , it trivially verifies the
log-reversibility property, thus belongs toGrev(X , E). Let now g ∈ Grev(X , E) be such
that

g =
∑

(i, j)∈T (E)

αi j gi j ,

with αi j ∈ R, for any (i, j) ∈ T (E), and suppose that g = 0Grev(X ,E). Our first step is
to observe that necessarily g = 0F(X ,E), i.e. g must be the null vector in the ambient
space. Let us suppose for contradiction that there exist ( f , c) ∈ (RX , R) such that
g(x, x ′) = f (x ′) − f (x) + c and either c �= 0 or f is not constant over X . Since by
definition, (m, x�), (x�,m) /∈ T (E),

0 = g(m, x�) = f (m) − f (x�) + c,

0 = g(x�,m) = f (x�) − f (m) + c,

therefore summing the latter equalities yields c = 0, thus f cannot be constant. But
then, g is both symmetric and skew-symmetric, which leads to a contradiction, and
g = 0F(X ,E). Since the family

{
gi j : (i, j) ∈ T (E)

}
is independent in the ambient

space F(X , E), the coefficients αi j , (i, j) ∈ T (E) must be null, and as result, the
family is also linearly independent in Grev(X , E). Finally, since from Theorem 3,
|T (E)| = dim Grev(X , E), the family is maximally independent, hence constitutes a
basis of the quotient vector space. ��
Remark 5 An alternative way of showing the linear independence of the family{
gi j : (i, j) ∈ T (E)

}
in Theorem 4 consists in verifying that (i) the family is indepen-

dent in Fsym, (i i) R �⊂ span
{
gi j : (i, j) ∈ T (E)

}
, and then invoking (10).
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5.2 Parametrization of themanifold of reversible kernels

Recall that from [22, Example 1], in the complete graph case (E = X 2), we can find
an explicit parametrization forW(X ,X 2). Indeed, picking any x� ∈ X , we can easily
verify that for the two cases where x ′ = x� and x ′ �= x�,

log P(x, x ′) =
|X |∑
i=1

|X |∑
j=1
j �=x�

log
P(i, j)P( j, x�)

P(i, x�)P(x�, x�)
δi (x)δ j (x

′)

+ log P(x, x�) − log P(x ′, x�) + log P(x�, x�).

In the remainder of this section, we show how to derive a similar parametrization
for Wrev(X , E). We start by recalling the definition of the expectation parameter
of an exponential family of kernels. For an e-family Ve, following the notation of
Definition 2, we define

ηi (θ) � Qθ [gi ] =
∑

x,x ′∈X
Qθ (x, x

′)gi (x, x ′),

and call η = (η1, . . . , ηd) the expectation parameter of the family. We will first derive
η and later convert to the natural parameter θ using the following lemma.

Lemma 5 For a given exponential family, we can express the chart transition maps
between the expectation and natural parameters θ ◦ η−1 and η ◦ θ−1. Extending the
notation at Lemma 3,

(i)

ηi (θ) = Qθ [gi ] =
∑

x,x ′∈X
Qθ (x, x

′)gi (x, x ′).

(ii)

θ i (η) =
(

∂

∂ηi
Qη

) [
log Pη − K

]
=

∑
x,x ′∈X

(
∂

∂ηi
Qη(x, x

′)
) (

log Pη(x, x
′) − K (x, x ′)

)
.

In particular, when the carrier kernel verifies K = 0, we more simply have

θ i (η) =
(

∂

∂ηi
Qη

) [
log Pη

]
.

Proof It is well-known that ηi (θ) = ∂
∂θ i

ψθ = Qθ [gi ] [10, Lemma 5.1], [22, The-
orem 4], [21, (28)], therefore we only need to show (i i). Let g1, g2, . . . , gd be a
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collection of independent functions of G(X , E). Consider the exponential family as
in Definition 2. Recall that for two transition kernels P1, P2 respectively irreducible
over (X , E1) and (X , E2), and with stationary distributions π1 and π2, the information
divergence of P1 from P2 is given by

D (P1||P2) =
{∑

(x,x ′)∈E1 π1(x)P1(x, x ′) log P1(x,x ′)
P2(x,x ′) , when E1⊂E2,

∞ otherwise.
(11)

Writing P0 for Pθ when θ = 0,

D (Pθ ||P0)
=

∑
x,x ′∈X

Qθ (x, x
′) log Pθ (x, x ′)

P0(x, x ′)

=
∑

x,x ′∈X
Qθ (x, x

′)
[

d∑
i=1

θ i gi (x, x
′)+Rθ (x

′)−Rθ (x)−ψθ −R0(x
′)+R0(x)+ψ0

]

=
d∑

i=1

θ iηi − ψθ + ψ0,

where for the last equality we used (i) of the present lemma and Lemma 3-(i i i).
Moreover, by a direct computation,

Qθ

[− log P0
] = ψ0 − Qθ [K ].

Thus, the potential function is given by

ϕ(η) �
d∑

i=1

θ iηi − ψθ = Qθ

[
log Pθ

] − Qθ [K ] = Qη

[
log Pη

] − Qη[K ]. (12)

By taking the derivative, we recover ∂
∂ηi

ϕ(η) = θ i (η) [22, (17)]. Moreover, from (12),
we have that

∂

∂ηi
ϕ(η) = ∂

∂ηi

(
Qη

[
log Pη

] − Qη[K ])
=

(
∂

∂ηi
Qη

) [
log Pη − K

] + Qη

[
∂ log Pη

∂ηi

]
− Qη

[
∂K

∂ηi

]

=
(

∂

∂ηi
Qη

) [
log Pη − K

]
,
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where for the last equality, we used the fact that Qη[∂K/∂ηi ] = 0, and that from Pη

being stochastic,

∑
x,x ′∈X

Qη(x, x
′) ∂

∂ηi
log Pη(x, x

′) =
∑

x,x ′∈X
πη(x)

∂

∂ηi
Pη(x, x

′) = 0.

This finishes proving (i i) of the lemma. ��

Theorem 5 Let P ∈ Wrev(X , E), with stationary distribution π . Using the basis
gi j = δ

ᵀ
i δ j + δ

ᵀ
j δi , we can write Q, the edge measure matrix associated with P, as a

member of the m-family of reversible kernels,

Q = g�

2
+

∑
(i, j)∈T (E)

(gi j − g�)
Q(i, j)

1 + δi ( j)
,

where g� = δ
ᵀ
mδx� + δ

ᵀ
x�

δm, and we can write P as a member of the e-family,

log P(x, x ′) =
∑

(i, j)∈T (E)

1

2
log

P(i, j)P( j, i)

P(m, x�)P(x�,m)

(
gi j (x, x ′)
1 + δi ( j)

)

+ 1

2
logπ(x ′) − 1

2
logπ(x) + 1

2
log P(m, x�)P(x�,m),

when (x, x ′) ∈ E , P(x, x ′) = 0 otherwise, and where x� = arg minx∈X {(m, x) ∈ E}.

Proof Let us consider the basis

gi j = δ
ᵀ
i δ j + δ

ᵀ
j δi ,

and taking K = 0, we are looking for a parametrization of the type

P̃θ (x, x
′) = exp

⎛
⎝ ∑

(i, j)∈T (E)

θ i j gi j (x, x
′)

⎞
⎠ ,

Pθ (x, x
′) = s(P̃θ )(x, x

′) = P̃θ (x, x
′) exp

(
Rθ (x

′) − Rθ (x) − ψθ

)
,

where expψθ and exp[Rθ ] are respectively the PF root and right PF eigenvector of
P̃θ . We first derive a parametrization of the edge measure Qη as a member of an m-
family (following Definition 1-(i i) with respect to the expectation parameter η). For
(i, j) ∈ X 2, by Lemma 5-(i),

ηi j = Qη[gi j ] = Qη(i, j) + Qη( j, i) = 2Qη(i, j),
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and thus, from symmetry of Qη and since Qη ∈ P(X 2),

Qη(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 when (i, j) /∈ E
ηi j/2 when (i, j) ∈ T (E), i �= j

η j i/2 when ( j, i) ∈ T (E), i �= j

ηi i/2 when (i, i) ∈ T0(E)

1
2

(
1 − ∑

(i, j)∈T (E)

ηi j
1+δi ( j)

)
when (i, j) ∈ {(m, x�), (x�,m)} ,

and more compactly, for (x, x ′) ∈ X 2,

Qη = g�

2
+

∑
(i, j)∈T (E)

gi j − g�

2(1 + δi ( j))
ηi j ,

where g� is defined as in the statement of the theorem. We differentiate by ηi j for
(i, j) ∈ T (E), to obtain

∂Qη

∂ηi j
= gi j − g�

2(1 + δi ( j))
.

Invoking (i i) of Lemma 5, we convert the expectation parametrization to a natural
one,

θ i j (η) =
∑

(x,x ′)∈X

(
∂

∂ηi j
Qη(x, x

′)
)
log P(x, x ′),

so that

θ i j (η) = 1

1 + δi ( j)

∑
(x,x ′)∈X

(
gi j (x, x ′) − g�(x, x ′)

2

)
log P(x, x ′)

= 1

2(1 + δi ( j))
log

P(i, j)P( j, i)

P(m, x�)P(x�,m)
.

Notice that P̃θ = P̃ᵀ
θ , hence the right and left PF eigenvector are identical, i.e.

Rθ = Lθ and as is known (see (6)), the stationary distribution is given by πθ =
exp[2Rθ ]/∑

x∈X exp(2Rθ (x)). In fact, we can easily verify that the right PF eigen-
vector is given by exp[Rθ ] = √

π , and that the PF root is

expψθ = (P(m, x�)P(x�,m))−1/2.

Indeed, letting x ∈ X , from detailed balance of P , we have∑
x ′∈X

P̃θ (x, x
′)
√

π(x ′) =
∑
x ′∈X

√
P(x, x ′)P(x ′, x)
P(m, x�)P(x�,m)

=
√

π(x)√
P(m, x�)P(x�,m)

.

��
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5.3 The doubly autoparallel submanifold of reversible kernels

Recall that we can view W = W(X , E) as a smooth manifold of dimension d =
dimW = |E | − |X |. For each P ∈ W , we can then consider the tangent plane TP at
P , endowed with a d-dimensional vector space structure. Together with the manifold,
we define an information geometric structure consisting of aRiemannianmetric, called
the Fisher information metric g, and a pair of torsion-free affine connections ∇(e) and
∇(m) respectively called e-connection and m-connection, that are dual with respect to
g, i.e. for any vector fields X ,Y , Z ∈ Γ (TW),

Xg(Y , Z) = g(∇(e)
X Y , Z) + g(Y ,∇(m)

X Z),

where Γ (TW) is the set of all sections over the tangent bundle. We now review an
explicit construction for g,∇(m),∇(e).
Construction in the natural chart map.

Consider a parametric family V = {Pθ : θ ∈ Θ}withΘ open subset of R
d . For any

n ∈ N, we define the path measure Q(n)
θ ∈ P(X n) induced from the kernel Pθ .

Q(n)
θ (x1, x2, . . . , xn) = πθ (x1)

n−1∏
t=1

Pθ (xt , xt+1).

Nagaoka [22] defines the Fisher metric as

gi j (θ) �
∑

(x,x ′)∈E
Qθ (x, x

′)∂i log Pθ (x, x
′)∂ j log Pθ (x, x

′),

=
∑

(x,x ′)∈E
∂i log Pθ (x, x

′)∂ j Qθ (x, x
′),

= lim
n→∞

1

n
gni j (θ),

and the dual affine e/m-connections of {Pθ : θ ∈ Θ} by their Christoffel symbols,

Γ
(e)
i j,k(θ) �

∑
(x,x ′)∈E

∂i∂ j log Pθ (x, x
′)∂k Qθ (x, x

′) = lim
n→∞

1

n
Γ

(e),n
i j,k (θ),

Γ
(m)
i j,k (θ) �

∑
(x,x ′)∈E

∂i∂ j Qθ (x, x
′)∂k log Pθ (x, x

′) = lim
n→∞

1

n
Γ

(m),n
i j,k (θ),

where gni j (θ), Γ
(e),n
i j,k (θ), Γ

(m),n
i j,k (θ) are the Fisher metric, and Christoffel symbols of

the e/m-connections that pertain to the distribution family
{
Q(n)

θ

}
θ∈Θ

.

Autoparallelity.
Connections allow us to talk about covariant derivatives and parallelity of vectors

fields.
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Definition 5 A submanifold V is called autoparallel inW with respect to a connection
∇, when for any vector fields ∀X ,Y ∈ Γ (TV), it holds that

∇XY ∈ Γ (TV).

A submanifold V ofW is then an e-family (resp. m-family) if and only if it is autopar-
allel with respect to ∇(e) (resp. ∇(m)) [22, Theorem 6]. As the manifold of reversible
kernels is both an e-family and an m-family, it is called doubly autoparallel [42, Def-
inition 1].

Theorem 6 The manifold Wrev(X , E) of irreducible and reversible Markov chains
over (X , E) is a doubly autoparallel submanifold in W(X , E) with dimension

dimWrev(X , E) = |E | + |T0(E)|
2

− 1,

where T0(E) = {
(x, x ′) ∈ E : x = x ′}.

Proof The set of reversibleMarkov chains is an e-family (Theorem3), and anm-family
(Theorem 5). ��

5.4 Reversible geodesics

In this section, we let two irreducible reversible kernels P0 and P1 over (X , E), and
discuss the geodesics that connect them with respect to ∇(e) and ∇(m). Although
already guaranteed (see for example Ohara and Ishi [42, Proposition 1]), we offer
alternative elementary proofs that anykernel lying on either e/m-geodesic is irreducible
and reversible.
m-geodesics.

By irreducibility, there exist unique Q0, Q1,∈ Q(X , E) corresponding to P0, P1.
Moreover, by reversibility Q0 and Q1 are symmetric. We let

Gm(P0, P1) �
{
Pξ : Qξ = ξQ1 + (1 − ξ)Q0 : ξ ∈ [0, 1]} , (13)

be the m-geodesic (auto-parallel curve with respect to the m-connection) connecting
P0 and P1. Then Gm(P0, P1) forms an m-family of dimension 1. For any ξ ∈ [0, 1],
the matrix Qξ is symmetric as convex combination of two symmetric matrices. Qξ

takes value 0 exactly when Q0, Q1, i.e. P0, P1 take value 0. Furthermore, writing π0
(resp. π1) the unique stationary distribution of P0 (resp. P1),∑

x ′
Qξ (x, x

′) = ξπ1(x) + (1 − ξ)π0(x),

∑
x

Qξ (x, x
′) = ξπ1(x

′) + (1 − ξ)π0(x
′),

thus Qξ always defines a proper associated stochastic irreducible stochastic Pξ .
e-geodesics.
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We consider the auto-parallel curve with respect to the e-connection that connect
P0 and P1,

Ge(P0, P1) �
{
P0(x, x

′) exp
(

θ ln
P1(x, x ′)
P0(x, x ′)

+Rθ (x
′)−Rθ (x)−ψθ

)
: θ ∈ [0, 1]

}
.

(14)

The set Ge(P0, P1) forms an e-family of dimension 1. Indeed, from Theorem 2, and
since P0 and P1 are reversible by hypothesis, it suffices to verify that (x, x ′) →
P1(x, x ′)/P0(x, x ′) is a reversible function over (X , E). This follows from a simple
application of the Kolmogorov criterion (Theorem 1).

6 Reversible information projections

Reversible Markov kernels, as self-adjoint linear operators, enjoy a set of powerful yet
brittle spectral properties. The eigenvalues are real, the second largest in magnitude
controls the time to stationarity of the Markov process [8, Chapter 12], and all are sta-
ble under perturbation and estimation [43]. However, any deviation from reversibility
carries steep consequences, as the spectrum can suddenly become complex, and par-
tially loses control over the mixing time. Furthermore, eigenvalue perturbation results
that were dimensionless [44, Corollary 4.10 (Weyl’s inequality)] now come at a cost
possibly exponential in the dimension [44, Theorem 1.4 (Ostrowski-Elsner)]. For
some irreducible P with stationary distribution π , it is therefore interesting to find
the closest representative that is reversible, so as to enable Hilbert space techniques.
Computing the closest reversible transition kernel with respect to a norm induced
from an inner product was considered in Nielsen andWeber [45], who showed that the
problem reduces to solving a convex minimization problem with a unique solution.

In this section, we examine this problem under a different notion of distance.
We consider information projections onto the reversible family of transition kernels
Wrev(X , E), for some symmetric edge set E . We define the m-projection and the e-
projection of P onto the set of reversible transition kernels Wrev(X , E) respectively
as

Pm � arg min
P̄∈Wrev(X ,E)

D
(
P
∣∣∣∣P̄)

, Pe � arg min
P̄∈Wrev(X ,E)

D
(
P̄
∣∣∣∣P)

,

where D (·||·) is the informational divergence, that was defined at (11). These two
generally distinct projections (D is not symmetric in its arguments) correspond to the
closest reversible chains when considering information divergence as a measure of
distance. Under a careful choice of the connection graph of the reversible family, we
derive closed-form expressions for Pm and Pe, along with Pythagorean identities, as
illustrated in Figure 1.
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Pe

Pm

P

P

P̄

Wrev(X ,X 2)

P̄

D P̄ P

D P P̄

D Pm P̄

D P̄ Pe

D (Pe||P )

D (P ||Pm)

D (P ||Pm)
D (Pe||P )

Fig. 1 Information projections Pe and Pm of P onto Wrev(X ,X 2) in the full support case (E = X 2)
(Theorem 7), Pythagorean identities (Theorem 7), and the bisection property (Proposition 2)

Theorem 7 Let P be irreducible over (X , E).
m-projection.

The m-projection Pm of P onto Wrev(X , E ∪ E�) is given by

Pm = P + P�

2
.

Moreover, for any P̄ ∈ Wrev(X , E ∪ E�), Pm satisfies the following Pythagorean
identity.

D
(
P
∣∣∣∣P̄) = D (P||Pm) + D

(
Pm

∣∣∣∣P̄)
.

e-projection. When E ∩ E� is a strongly connected directed graph, the e-projection Pe
of P onto Wrev(X , E ∩ E�) is given by

Pe = s(P̃e), with P̃e(x, x
′) = √

P(x, x ′)P�(x, x ′),

and where s is the stochastic rescaling mapping defined at (3). Moreover, for any
P̄ ∈ Wrev(X , E ∩ E�), Pe satisfies the following Pythagorean identity.

D
(
P̄
∣∣∣∣P) = D

(
P̄
∣∣∣∣Pe) + D (Pe||P) .

Proof Our first order of business is to show that Pm and Pe belong respectively to
Wrev(X , E∪E�) andWrev(X , E∩E�). It is easy to see that Pm(x, x ′) > 0 exactlywhen
(x, x ′) or (x ′, x) belongs to E , hence Pm ∈ Wrev(X , E ∪ E�), and that Pe(x, x ′) > 0
whenever (x, x ′) belongs to both E and E�.Moreover, since the time-reversal operation
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preserves the stationary distribution of an irreducible chain, Pm has the same stationary
distribution πm = π , and a straightforward computation shows that Pm satisfies the
detailed balance equation. To prove reversibility of Pe, we rewrite

log Pe(x, x
′) = 1

2
log P(x, x ′)P(x ′, x) − log ρ(P̃e)

+ log
(√

π(x ′)ve(x ′)
)

− log
(√

π(x)ve(x)
)

.

From Corollary 1, log[Pe] ∈ Frev(X , E), thus Pe ∈ Wrev(X , E).
To prove optimality of Pm , it suffices to verify the following Pythagorean identity

D
(
P
∣∣∣∣P̄) = D (P||Pm) + D

(
Pm

∣∣∣∣P̄)
.

Writing Qm = diag(π)Pm , notice that Pm = (P + P�)/2 is equivalent to Qm =
(Q + Q�)/2. We then have

D (P||Pm) + D
(
Pm

∣∣∣∣P̄) − D
(
P
∣∣∣∣P̄)

=
∑

x,x ′∈X

(
Q(x, x ′) log P(x, x ′)

Pm(x, x ′)
+ Qm(x, x ′) log Pm(x, x ′)

P̄(x, x ′)

−Q(x, x ′) log P(x, x ′)
P̄(x, x ′)

)

=
∑

x,x ′∈X

(
Qm(x, x ′) − Q(x, x ′)

)
log

Pm(x, x ′)
P̄(x, x ′)

=
∑

x,x ′∈X

(
Q�(x, x ′) − Q(x, x ′)

2

)
log

Pm(x, x ′)
P̄(x, x ′)

= 1

2
Q�

[
log(Pm/P̄)

] − 1

2
Q

[
log(Pm/P̄)

] = 0,

where the last equality stems from (i) of Lemma 3 and reversibility of Pm and P̄ .
Similarly, to prove optimality of Pe, it suffices to verify that

D
(
P̄
∣∣∣∣P) = D

(
P̄
∣∣∣∣Pe) + D (Pe||P) .

By reorganizing terms

D
(
P̄
∣∣∣∣Pe) + D (Pe||P) − D

(
P̄
∣∣∣∣P) = Q̄

[
log(P/Pe)

] − Qe
[
log(P/Pe)

]
.

From the definition of Pe(x, x ′),

log
P(x, x ′)
Pe(x, x ′)

= 1

2
log

P(x, x ′)
P(x ′, x)

+ 1

2
log

π(x)

π(x ′)
+ log

ve(x)

ve(x ′)
+ log ρ(P̃e).
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The first three terms being skew-symmetric, reversibility of P̄ and (i i) of Lemma 3
yield that

Q̄
[
log(P/Pe)

] = log ρ(P̃e).

By a similar argument, Qe
[
log(P/Pe)

] = log ρ(P̃e), which concludes the proof. ��
In other words, the m-projection is given by the natural additive reversiblization

[46, (2.4)] of P , while the e-projection is achieved by some newly defined exponential
reversiblization of P .

The difference between the m-projection and the e-projection is illustrated in the
following example.

Example 4 Let us consider the family of biased lazy random walks Pθ = P(θ1,θ2),
given in Example 1. Note that E = E�. The m-projection Pm of Pθ onto Wrev(X , E)

is the unbiased lazy random walk given by Pm = P(θ ′,0) with θ ′ = θ1 − log cosh θ2,
i.e.

Pm(x, x) = eθ1

eθ1 + eθ2 + e−θ2
,

Pm(x, x + 1) = Pm(x + 1, x) = eθ2 + e−θ2

2(eθ1 + eθ2 + e−θ2)
.

On the other hand, the e-projection Pe of Pθ onto Wrev(X , E) is the unbiased lazy
random walk given by Pe = P(θ1,0), i.e.

Pe(x, x) = eθ1

eθ1 + 2
, Pe(x, x + 1) = Pe(x + 1, x) = 1

eθ1 + 2
.

Remark 6 We observe that, although the m-projection preserves the stationary distri-
bution, this is not true for Pe, which exhibits a stationary distribution πe generally
different from π . Furthermore, while the solution for the m-projection is always prop-
erly defined by taking union of the edge sets, our expression for the e-projection
requires additional constraints on the connection graph of P . Indeed, taking the inter-
section E ∩ E�, we always obtain a symmetric set, but can lose strong connectedness.
We note but do not pursue the fact that reversibility can be defined for the less well-
behaved set of reducible chains. In this case, π need not be unique, or could take null
values, and the kernel could have a complex spectrum.

Finally, we show that for any irreducible P , both its reversible projections Pm and
Pe are equidistant from P and its time-reversal P� (see also Fig. 1).

Proposition 2 (Bisection property) Let P irreducible, and let Pm (resp. Pe) the m-
projection (resp. e-projection) of P onto Wrev(X , E).

D (P||Pm) = D
(
P�

∣∣∣∣Pm)
, D (Pe||P) = D

(
Pe

∣∣∣∣P�
)
.
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Proof For P1 irreducible over (X , E1) and P2 irreducible over (X , E2), it is easy to
see that

E1 ⊂ E2 �⇒ D (P1||P2) = D
(
P�
1

∣∣∣∣P�
2

)
.

Then take P2 = Pm for the first equality, and P1 = Pe for the second. ��

7 The e-family of reversible edgemeasures

Recall that P(X 2), the set of all distributions over X 2, forms an e-family [27, Exam-
ple 2.8]. For some e-family of irreducible transition kernels Ve⊂W(X ,X 2), one may
wonder whether the corresponding family of edge measures also forms an e-family
of distributions in P(X 2). We begin by illustrating that this holds in particular for the
e-family obtained by tilting a memoryless Markov kernel.

Example 5 Consider the degenerate Markov kernel corresponding to an iid process
P(x, x ′) = π(x ′) for π ∈ P(X ). For a given function g : X → R, and θ ∈ R, con-
struct P̃θ (x, x ′) = P(x, x ′)eθg(x ′) = π(x ′)eθg(x ′). Then vθ = 1 is right eigenvector of
P̃θ with eigenvalue ρ(θ) = ∑

x ′∈X π(x ′)eθg(x ′). Letting πθ (x) = π(x)eθg(x)/ρ(θ),
we see that πθ is the left PF eigenvector of P̃θ , and the stationary distribution of the
rescaled Pθ . We can therefore write,

Qθ (x, x
′) = exp

(
logπ(x)π(x ′) + θ(g(x) + g(x ′)) − 2 log ρ(θ)

)
,

thus {Qθ }θ∈Θ forms an exponential family of distributions over X 2. This fact can
be further understood in the following manner. An e-family of distributions {πθ }θ
induces an e-family of memoryless Markov kernels {Pθ }θ with Pθ (x, x ′) = πθ (x ′)
(seeLemma7 for a proof of this fact for the set of allmemoryless kernels), and thuswith
edgemeasures Qθ (x, x ′) = πθ (x)πθ (x ′). Since the 2-iid extension

{
πθ (x)πθ (x ′)

}
θ
of

the e-family {πθ }θ is also an e-family, it follows that
{
Qθ (x, x ′)

}
θ
forms an e-family.

In the remainder of this section, we show that the subset of positive reversible
edge measuresQrev = Qrev(X ,X 2), induced from the e-family of reversible positive
kernels, forms a submanifold of P(X 2) that is autoparallel with respect to the e-
connection, i.e. Qrev is an e-family of distribution of over pairs. Our proof will rely
on the definition of a Markov map.

Definition 6 (e.g. Nagaoka [47]) We say that M : P(X ) → P(Y) is a Markov map,
when there exists a transition kernel PM fromX to Y (also called a channel) such that
for any μ ∈ P(X ),

M(μ) =
∑
x∈X

PM (x, ·)μ(x).

Let U and V be smooth submanifolds (statistical models) of P(X ) and P(Y) respec-
tively. When there exists a pair of Markov maps M : P(X ) → P(Y), N : P(Y) →
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P(X ) such that their restrictions M |U , N |V are bijections between U and V , and are
the inverse mappings of each other, we say that U and V are Markov equivalent, and
write U ∼= V .
Lemma 6 It holds that

Qrev(X ,X 2) ∼= P
([ |X | (|X | + 1)

2

])
.

Proof Identify X = [m], and consider Q ∈ Qrev such that

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

η11
η12
2

η13
2 . . .

η1m
2

η12
2 η22

η23
2 . . .

η2m
2

...
. . .

...
... η(m−1)(m−1)

η(m−1)m
2

η1m
2 . . .

η23
2 . . . ηmm,

⎞
⎟⎟⎟⎟⎟⎟⎠

and where ηmm = 1 − ∑
i≤ j,(i, j) �=(m,m) ηi j . We flatten the definition of Q.

Q =

⎛
⎜⎜⎝η11, η22, . . . , ηmm,

η12

2
,
η12

2
, . . . ,

ηi j

2
,
ηi j

2
,︸ ︷︷ ︸

(i, j) : i< j

. . . ,
η(m−1)m

2
,
η(m−1)m

2

⎞
⎟⎟⎠ .

Let the matrix E with m(m − 1)/2 columns and m(m − 1) rows be such that,

Eᵀ =

⎛
⎜⎜⎝
1 1 0 0 . . . 0 0 0 0
0 0 1 1 . . . 0 0 0 0
0 0 0 0 . . . 1 1 0 0
0 0 0 0 . . . 0 0 1 1

⎞
⎟⎟⎠ .

Block matrix multiplication yields

Q

(
Im 0
0 E

)
= (

η11, η22, . . . , ηmm, η12, . . . , ηi j , . . . , η(m−1)m
) ∈ P

([
m(m + 1)

2

])
,

and further observing that for F = 1
2 E

ᵀ, it holds that FE = Im(m−1)/2. Thus

the mappings defined by

(
Im 0
0 E

)
and

(
Im 0
0 1

2 E
ᵀ

)
are Markov maps and verify(

Im 0
0 1

2 E
ᵀ

)(
Im 0
0 E

)
= Im(m+1)/2. This finishes proving the claim. ��

Theorem 8 The setQrev forms an e-family and an m-family of P(X 2) with dimension
|X | (|X | + 1)/2 − 1. Moreover, Q does not form an e-family in P(X 2) (except when
|X | = 2).
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Proof Since Qrev⊂P(X 2), the claim stems from the equivalence between (i) and
(i i) of Nagaoka [47, Theorem 1], and application of Lemma 6, and the fact that

dimP
([ |X |(|X |+1)

2

])
= |X |(|X |+1)

2 − 1. In order to prove that Q is not an e-family

in P(X 2), we first construct the following family of edge measures over three states.

Q(3)
0 = 1

13

⎛
⎝1 1 2
2 1 2
1 3 1

⎞
⎠ , Q(3)

1 = 1

13

⎛
⎝1 3 1
2 1 2
2 1 1

⎞
⎠ .

Computing the point on the e-geodesic in P(X 2) at parameter value 1/2, yields

Q(3)
1/2 ∝

⎛
⎝ 1

√
3

√
2

2 1 2√
2

√
3 1

⎞
⎠ ,

which does not belong to Q. We can readily expand the above example to general
state space size, m > 3, by considering the one-padded versions of the above Q(m)

i ∝(
Q(3)

i 1ᵀ
3 1m−3

1ᵀ
m−313 1ᵀ

m−31m−3

)
, for i ∈ {0, 1}. ��

Remark 7 (i) Nagaoka [47, Theorem 1-(iv)], actually proves the stronger result that
Qrev forms an α-family in P(X 2), for any α ∈ R (see Amari and Nagaoka [27,
Section 2.6] for a definition of α-families).

(ii) We note but do not pursue here the fact that a more refined treatment over some
irreducible edge set E � X 2 is possible.

8 Comparison of remarkable families of Markov chains

We briefly compare the geometric properties of reversible kernels with that of several
other remarkable families of Markov chains, and compile a summary in Table 1.

Family of all kernels irreducible over (X , E):W(X , E).This family is known to form
both an e-family and an m-family of dimension |E | − |X | [22, Corollary 1].

Family of all reversible kernels irreducible over (X , E): Wrev(X , E). We show in
Theorem 3 and Theorem 6 that Wrev(X , E) is both an e-family and m-family or
dimension T (E), where

|T (E)| = |E | + |T0(E)|
2

− 1,

with T0(E) = {
(x, x ′) ∈ E : x = x ′}.

Family of positive memoryless (iid) kernels: Wiid(X ,X 2). This family comprises
degenerate irreducible kernels that correspond to iid processes, i.e. where all rows are
equal to the stationary distribution. Notice that for P ∈ Wiid, irreducibility forces P
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Table 1 Summary of geometric properties of submanifolds of irreducible Markov kernels (|X | ≥ 3)

Manifold m-family e-family Dimension Parametrization

W(X ,E) ✓ ✓ |E | − |X |
W(X ,X 2) ✓ ✓ |X | (|X | − 1) [22, Example 1]

Wrev(X ,E) ✓ ✓ |T (E)| Theorem 5

Wrev(X ,X 2) ✓ ✓ |X | (|X | + 1)/2 − 1 Theorem 5

Wbis(X ,X 2) ✓ ✗ (|X | − 1)2 [10, Example 4]

Wsym(X ,X 2) ✓ ✗ |X | (|X | − 1)/2 (16)

Wiid(X ,X 2) ✗ ✓ |X | − 1 (15)

Gm (P0, P1) ✓ ✗ 1 (13)

Ge(P0, P1) ✗ ✓ 1 (14)

We also include, for completeness, the one dimensional manifolds defined by the e-geodesic Ge(P0, P1)
and m-geodesic Gm (P0, P1) between two irreducible kernels P0 and P1, as defined in Section 5.4. Note
that for the binary case |X | = 2,Wsym = Wbis forms an e-family. Whenever available, the last column
offers a reference to some explicit parametrization of the family

to be positive. We show thatWiid is an e-family of dimension |X | − 1 (Lemma 7), but
not an m-family (Lemma 8).

Lemma 7 Wiid forms an e-family of dimension |X | − 1.

Proof For X = [m], let us consider the following parametrization proposed by Ito
and Amari [17]:

log P(x, x ′) =
m−1∑
i=1

log
P(m, i)P(i,m)

P(m,m)P(m,m)
δi (x

′)

+
m−1∑
i=1

m−1∑
j=1

log
P(i, j)P(m,m)

P(m, j)P(i,m)
δi (x)δ j (x

′)

+ log P(x,m) − log P(x ′,m) + log P(m,m).

This corresponds to the basis

gi = 1ᵀδi , i ∈ [m − 1],
gi j = δ

ᵀ
i δ j , i, j ∈ [m − 1],

with parameters

θ i = log
P(m, i)P(i,m)

P(m,m)P(m,m)
, θ i j = log

P(i, j)P(m,m)

P(m, j)P(i,m)
.

Let P irreducible with stationary distribution π . Suppose first that P is memoryless,
i.e. for all x, x ′ ∈ X , P(x, x ′) = π(x ′). In this case, for all i, j ∈ [m − 1], the
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coefficient θ i j vanishes, and for all i ∈ [m − 1], it holds that θ i = π(i)/π(m), so that
we can write more simply

log P(x, x ′) =
m−1∑
i=1

log
π(i)

π(m)
δi (x

′) + logπ(m). (15)

Conversely, now suppose that θ i j = 0 for any i, j ∈ [m − 1]. Then the matrix

P̃(x, x ′) = exp

(
m−1∑
i=1

log
P(m, i)P(i,m)

P(m,m)P(m,m)
δi (x

′)
)

has rank one, the right PF eigenvector is constant, and P is memoryless. As a result,
Wiid is an e-family of W such that θ i j = 0 for every i, j ∈ [m − 1]. ��
Lemma 8 Wiid does not form an m-family.

Proof We prove the case |X | = 2 and p �= 1/2,

P0 =
(
p 1 − p
p 1 − p

)
, P1 =

(
1 − p p
1 − p p

)
.

Computing the corresponding edge measures,

Q0 =
(

p2 p(1 − p)
p(1 − p) (1 − p)2

)
, Q1 =

(
(1 − p)2 p(1 − p)
p(1 − p) p2

)
.

But then if we let

Q1/2 = 1

2
Q0 + 1

2
Q1 =

( 1
2 (p

2 + (1 − p)2) p(1 − p)
p(1 − p) 1

2 (p
2 + (1 − p)2)

)
,

we see that the stationary distribution is π1/2 = 1/2, and

P1/2 =
(
p2 + (1 − p)2 2p(1 − p)
2p(1 − p) p2 + (1 − p)2

)
.

But for p �= 0, P1/2 does not belong to Wiid, hence the family is not an m-family.
The proof can be extended to the more general X = [m],m > 2 by considering
instead the two kernels defined by πp = (p, 1 − p, 1, . . . , 1)/(m − 1) and π1−p for
p ∈ (0, 1), p �= 1/2. ��

For simplicity, in the remainder of this section, we mostly consider the full support
case.

Family of positive doubly-stochastic kernel: Wbis(X ,X 2). Recall that a kernel P is
said to be doubly-stochastic, or bi-stochastic, when P and Pᵀ are both stochastic
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matrices. In this case, the stationary distribution is always uniform. It is known that
the set of doubly stochasticMarkov chains forms anm-family of dimension (|X |−1)2

[10, Example 4]. However, as a consequence of Lemma 10, it does not form an e-family
(except when |X | = 2).

Family of positive symmetric kernel: Wsym(X ,X 2). A Markov kernel is symmetric,
when P = Pᵀ, hence this family lies at the intersection between reversible and doubly-
stochastic families of Markov kernels, which are both m-families. This implies that
symmetric kernels also form an m-family. In fact, Lemma 9 shows that the dimension
of this family is |X | (|X | − 1)/2. Lemma 10, however, shows that Wsym only forms
an e-family for |X | = 2.

Lemma 9 Wsym forms an m-family of dimension |X | (|X | − 1)/2.

Proof To prove the claim, we will rely on Definition 1-(i i) of a mixture family. Con-
sider the functions s0 : X 2 → R and si j : X 2 → R for i, j ∈ X , i > j such that for
any x, x ′ ∈ X , s0(x, x ′) = δx (x ′)/ |X | and si j = δ

ᵀ
i δ j + δ

ᵀ
j δi − 2δᵀ

i δi . Let Q ∈ Q,
we verify that for any x, x ′ ∈ X ,

Q(x, x ′) = s0(x, x
′) +

∑
i, j∈X
i> j

si j (x, x
′)Q(i, j),

(16)

and moreover∑
x,x ′∈X

s0(x, x
′) = 1,

∑
x,x ′∈X

si j (x, x
′) = 0,∀i, j ∈ X , i > j .

It remains to show that the s0, s0 + si j , for i > j , are affinely independent, or equiv-
alently, that the si j , for i > j , are linearly independent. Let s = ∑

i> j αi j si j with
αi j ∈ R, for any i > j , be such that s = 0. For any i > j , taking x = i, x ′ = j yields
αi j = 0, thus the family is independent, hence constitutes a basis, and the dimension
is |{i, j ∈ X : i > j}| = |X | (|X | − 1)/2. ��
Lemma 10 For |X | ≥ 2,

(i) The set Wsym does not form an e-family, unless |X | = 2.
(ii) The set Wbis does not form an e-family, unless |X | = 2.

Proof We first treat the case |X | = 2 for (i) and (i i). Notice that

Pθ =
(

eθ

1+eθ
1

1+eθ

1
1+eθ

eθ

1+eθ

)

for θ ∈ R satisfies Pθ ∈ Wsym, and that the latter expression exhausts all irreducible
symmetric chains. We can therefore write

Wsym = {
Pθ : Pθ (x, x

′) = exp
(
δx (x

′)θ − log(eθ + 1)
)
, θ ∈ R

}
,
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which follows the defintion at (2) of an e-family with carrier kernel K = 0, generator
g(x, x ′) = δx (x ′), natural parameter θ , Rθ = 0 and potential function ψθ = log(eθ +
1). Furthermore, for |X | = 2, it is easy to see that symmetric and doubly-stochastic
families coincide, hence Wbis is also an e-family.

We now prove (i) for |X | = 3. We will consider two positive symmetric Markov
kernels P0 and P1, and look at the e-geodesic

Ge(P0, P1) �
{
s
(
P̃θ

) : P̃θ = P0(x, x
′)1−θ P1(x, x

′)θ , θ ∈ [0, 1]
}

,

where the map s, defined in (3), enforces stochasticity. The matrix Pθ (x, x ′) = s(P̃θ )

is symmetric, if and only if the right eigenvector of P̃θ is constant. This, in turn, is
equivalent to the rows of P̃θ being all equal. Consider the two symmetric kernels

P0 =
⎛
⎝ α 2/3 − α 1/3
2/3 − α α 1/3
1/3 1/3 1/3

⎞
⎠ , P1 = 1

3

⎛
⎝1 1 1
1 1 1
1 1 1

⎞
⎠ ,

with free parameter α �= 1/3, and let us inspect the curve at parameter θ = 1/2. For
P1/2 to be symmetric, it is necessary that

√
α + √

2/3 − α = 2
√
1/3,

whose unique solution is precisely α = 1/3. Invoking Nagaoka [22, Corollary 3]
finishes proving (i) for |X | = 3. We extend the proof to |X | ≥ 4 using the padding

argument of Theorem 8, considering 1
m

(
3Pi 1ᵀ1
1ᵀ1 1ᵀ1

)
. Suppose for contradiction that

(i i) is false, i.e. bi-stochastic matrices form an e-family. Take then any e-geodesic
between two arbitrary symmetric kernels. The latter operators being reversible, so
is the geodesic. But then this curve must also be composed entirely of symmetric
matrices, hence the geodesic is symmetric, which contradicts (i). ��
Remark 8 For |X | ≥ 3, the following hierarchies hold:

Wiid

e-family
� Wrev

e-family
� W,

Wsym
m-family

� Wrev
m-family

� W,

Wsym
m-family

� Wbis

m-family
� W.

9 Generation of the reversible family

In this final section, we consider the family of positive Markov kernels W =
W(X ,X 2) i.e. where the support E = X 2. We first show that Wrev is in a sense
the smallest exponential family that containsWsym, the family of symmetric Markov
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kernels. Our notion of minimality relies on the following definition of the exponential
hull of some submanifold of W .

Definition 7 (Exponential hull) Let V⊂W .

e-hull(V) =
{
s(P̃) : log[P̃] =

k∑
i=1

αi log[Pi ],

k ∈ N, α1, . . . , αk ∈ R,

k∑
i=1

αi = 1, P1, . . . Pk ∈ V
}
,

where s is defined in (3).

Remark: When U = 1
|X |1

ᵀ1 ∈ V , the constraint
∑k

i=1 αi = 1 is redundant.
Indeed, since U corresponds to the origin in e-coordinates, the linear hull and affine
hull coincide in this case.

By (10), the reversible family is generated by symmetric functions. Even though
not all symmetric functions correspond to symmetric kernels, the reversible family is
spanned by the symmetric kernels as follows.

Theorem 9 For |X | ≥ 3, it holds that

e-hull(Wsym) = Wrev.

Proof Webegin by proving the inclusion e-hull(Wsym)⊂Wrev. Let P ∈ e-hull(Wsym),
then there exist a positive P̃ ∈ F+, and k ∈ N, α1, . . . , αk ∈ R, P1, . . . , Pk ∈
Wsym such that log P̃(x, x ′) = ∑k

i=1 αi log Pi (x, x ′). Observe that the function∑k
i=1 αi log Pi (x, x ′) is symmetric in x and x ′, thus log P̃(x, x ′) is log-reversible,

and P is reversible.
We now prove the second inclusion Wrev⊂ e-hull(Wsym). We let

H = span
({
log[P] : P ∈ Wsym

} ∪ N )
.

Recall from Theorem 4 that the functions gi j = δ
ᵀ
i δ j + δ

ᵀ
j δi , for (i, j) ∈ T (X 2),

form a basis of the quotient space Grev = Frev/N . It suffices therefore to show that{
gi j : (i, j) ∈ T (X 2)

}⊂H. Introduce a free parameter t ∈ (0, 1), t �= 1/2, and let us
fix (i, j) ∈ T+(X ). Consider Pi j,t ∈ Wsym defined as follows

Pi j,t (x, x
′) �

⎧⎪⎨
⎪⎩
2(1 − t)/ |X | if (x, x ′) ∈ {(i, i), ( j, j)} ,

2t/ |X | if (x, x ′) ∈ {(i, j), ( j, i)} ,

1/ |X | otherwise,

and the functions ĥi j , h̃i j

ĥi j = log |X | + log
[
Pi j,t

] = a(δ
ᵀ
i δi + δ

ᵀ
j δ j ) + b(δᵀ

i δ j + δ
ᵀ
j δi ),

h̃i j = log |X | + log
[
Pi j,1−t

] = b(δᵀ
i δi + δ

ᵀ
j δ j ) + a(δ

ᵀ
i δ j + δ

ᵀ
j δi ),
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where for simplicity we wrote a = log 2(1− t) and b = log 2t �= a. Since the function
((x, x ′) → log |X |) ∈ N , we have ĥi j , h̃i j ∈ H. Notice that we can write

gi j = bĥi j − ah̃i j
b2 − a2

,

hence also gi j ∈ H. Introduce the function

hi j = aĥi j − bh̃i j
a2 − b2

= δ
ᵀ
i δi + δ

ᵀ
j δ j ∈ H,

and observe that we can rewrite the identity I = 1ᵀ1 − ∑
(i, j)∈T+(X 2) gi j with 1ᵀ1

being a constant function. It follows that I ∈ H, and for any j ∈ X , we can express

g j j = 2

|X | − 2

⎛
⎜⎜⎝∑

i∈X
i> j

hi j +
∑
i∈X
i< j

h ji − I

⎞
⎟⎟⎠ ∈ H.

As a result,
{
gi j : (i, j) ∈ T (X 2)

}⊂H, and the theorem follows. ��
Remark 9 Observe that in the above proof, it is crucial that |X | ≥ 3. For |X | = 2, we

can only have h21 =
(
1 0
0 1

)
, and cannot construct g11 =

(
1 0
0 0

)
nor g22 =

(
0 0
0 1

)
.

This is consistent with the observation that e-hull(Wsym) �= Wrev for |X | = 2.

Secondly, we show thatWrev is also the smallest mixture family that containsWiid,
the family of Markov kernels that correspond to iid processes. For this, we define
minimality in terms of a mixture hull.

Definition 8 (Mixture hull) Let V⊂W .

m-hull(V) =
{
P : Q ∈ Q, Q =

k∑
i=1

αi Qi ,

k ∈ N, α1, . . . , αk ∈ R, P1, . . . , Pk ∈ V
}
,

where Q (resp. Qi ) pertains to P (resp. Pi ).

Theorem 10 It holds that

m-hull(Wiid) = Wrev.

Proof Let P ∈ m-hull(Wiid), then the corresponding edge measure can be expressed
as a linear combination

∑k
i=1 αi Qi , with k ∈ N, α1, . . . , αk ∈ R, and where the

Qi pertain to some degenerate iid kernel Pi = 1ᵀπi . This implies that Qi (x, x ′) =
πi (x)πi (x ′), hence Qi is symmetric. In turn, Q is symmetric, i.e. P is reversible, and
m-hull(Wiid)⊂Wrev.
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For (i, j) ∈ X 2, i ≥ j , and ε ∈ [0, 1], consider the mixture distribution

πi j,ε = ε

|X |1 + (1 − ε)
δi + δ j

2
∈ P(X ).

A direct computation yields that the pair probabilities of the iid process can be written
as

Qi j,ε(x, x
′) = ε2

|X |2 + ε(1 − ε)

2 |X |
{
δi (x) + δ j (x) + δi (x

′) + δ j (x
′)
} + (1 − ε)2

4

× {
δi (x)δi (x

′) + δi (x)δ j (x
′) + δ j (x)δi (x

′) + δ j (x)δ j (x
′)
}
.

We first show that
{
Qi j,0 : i ≥ j

}
forms a basis of Fsym. Let

{
αi j ∈ R : i ≥ j

}
be

such that
∑

i≥ j αi j Qi j,0 = 0. Consider first x, x ′ ∈ X such that x > x ′.

∑
i≥ j

αi j Qi j,0(x, x
′) = 1

4

∑
i≥ j

αi jδi (x)δ j (x
′) = 1

4
αxx ′ = 0 and αxx ′ = 0.

By a similar argument for the case x < x ′, we obtain that αxx ′ = 0 for any x �= x ′.
Inspecting now the diagonal for x ∈ X ,

∑
i≥ j

αi j Qi j,0(x, x) =
∑
i∈X

αi i Qii,0(x, x) =
∑
i∈X

αi iδi (x) = αxx = 0.

This implies that the family
{
Qi j,0 : i ≥ j

}
is independent. Since dimFsym =

|X | (|X | + 1)/2 = ∣∣{Qi j,0 : i ≥ j
}∣∣, it is maximally so, thus forms a basis. How-

ever, the basis elements are not in Wiid. We therefore examine the case ε > 0, and
leverage the property that in normed vector spaces, finite linearly independent systems
are stable under small perturbations (see Lemma 11 reported below for convenience)
in order to show existence of a basis in Wiid.

Lemma 11 (Costara and Popa [48, p.9, Exercise 35]) Let n ∈ N, X is a normed
vector space and x1, . . . , xn are n linearly independent elements in X. Then there
exists η > 0 such that if y1, y2, . . . , yn are such that ‖yi‖ < η for i = 1, . . . , n, then
x1 + y1, x2 + y2, . . . , xn + yn are also n linearly independent elements in X.

Let us consider (Fsym, ‖·‖1,1), the space of real symmetric matrices equipped with
the entry-wise �1 norm. For any i ≥ j and for any ε ∈ (0, 1),

∥∥Qi j,ε − Qi j,0
∥∥
1,1 �

∑
x,x ′∈X

∣∣Qi j,ε(x, x
′) − Qi j,0(x, x

′)
∣∣

≤ |X |2
∣∣∣∣ ε2

|X |2
∣∣∣∣ +

∣∣∣∣ε(1 − ε)

2 |X |
∣∣∣∣∑
x,x ′

∣∣δi (x) + δ j (x) + δi (x
′) + δ j (x

′)
∣∣
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+
∣∣∣∣ε(2 − ε)

4

∣∣∣∣ ∑
x,x ′∈X

∣∣δi (x)δi (x ′) + δi (x)δ j (x
′) + δ j (x)δi (x

′) + δ j (x)δ j (x
′)
∣∣

≤ ε2 + 2ε |X | + 2ε |X |2 ,

thus ∥∥Qi j,ε − Qi j,0
∥∥
1,1 ≤ 5ε |X |2 .

Let η as defined in Lemma 11, with respect to the basis
{
Qi j,0 : i ≥ j

}
, and choose

0 < ε <
η

5|X |2 . Then
∥∥Qi j,ε − Qi j,0

∥∥
1,1 < η, thus the family

{
Qi j,ε : i≥ j

}
is a also

basis for Fsym that lies inWiid, whence the theorem. ��
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