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Abstract
Gaussian distributions are plentiful in applications dealing in uncertainty quantifica-
tion and diffusivity. They furthermore stand as important special cases for frameworks
providing geometries for probability measures, as the resulting geometry on Gaus-
sians is often expressible in closed-form under the frameworks. In this work, we study
the Gaussian geometry under the entropy-regularized 2-Wasserstein distance, by pro-
viding closed-form solutions for the distance and interpolations between elements.
Furthermore, we provide a fixed-point characterization of a population barycenter
when restricted to the manifold of Gaussians, which allows computations through
the fixed-point iteration algorithm. As a consequence, the results yield closed-form
expressions for the 2-Sinkhorn divergence. As the geometries change by varying the
regularization magnitude, we study the limiting cases of vanishing and infinite mag-
nitudes, reconfirming well-known results on the limits of the Sinkhorn divergence.
Finally, we illustrate the resulting geometries with a numerical study.
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1 Introduction

Optimal transport (OT) [82] studies the geometry of probability measures through the
lifting of a cost function between samples. This is carried out by devising a coupling
between two probability measures via a transport plan, so that one measure is trans-
ported to another with minimal total cost. The resulting geometry offers a favorable
way of comparing probability measures one to another, which has lead to considerable
success in machine learning, especially in generative modelling [6,24,28,55], where
one aims at training a model distribution to sample from a given data distribution, and
computer vision, where OT provides intuitive metrics between images [71]. Notably,
OT can not only be used to derive divergences, but also metrics between probability
distributions, referred to as the p-Wasserstein metrics.

To ease the computational aspects of OT, entropic relaxation was introduced, which
transforms the constrained convex problem of transportation into an unconstrained
strictly convex problem [20]. This is carried out via considering the sum of the total
cost and the Kullbackk–Leibler (KL) divergence, between the transport plan and the
independent joint distribution, scaled by some regularization magnitude. In addition
to computational aspects, the entropic regularization also betters statistical properties
[76], specifically, the complexity of estimating the OT quantity between measures
through sampling [34,59,83]. Theoretical properties of the entropic regularization
have been studied in e.g. metric geometry, machine learning and statistics [30,35,36,
40,56,69,70]. It has also been applied in a variety of fields, including computer vision,
density functional theory in chemistry, and inverse problems (e.g. [36,38,52,67]).

The resulting problem has close relations to the Schrödinger problem [75], which
considers the most likely flow of a cloud of gas from an initial position to an observed
position after a certain amount of time under a prior assumption on the evolution
of the position, given by e.g. a Brownian motion. The resulting problem has found
applications in fields such as mathematical physics, economics, optimization and
probability [12,19,22,31,32,72,84]). Connections to OT have been considered in e.g.
[20,33,50,73,74].

OT is not the only instance of a geometric framework for probability measures.
Other popular choices include information geometric divergences [3,9] and integral
probability metrics [64]. In contrast to these methods, OT and entropic OT has the
advantage of metrizing the weak∗-convergence of probability measures, which results
in non-singular behavior when comparing measures of disjoint supports. On top of
this, being able to decide the lifted cost function is important in applications, as the cost
function can be used to incorporate modelling choices, determining which differences
in samples are deemed most important. For example, the standard Euclidean metric is
a poor choice for comparing images.

Gaussian distributions provide a meaningful testing ground for such frameworks
since, in many cases, they result in closed-form expressions. In addition, the study of
Gaussians under the OT framework result in useful divergences. In particular, diver-
gences between centered Gaussians result in divergences between their corresponding
covariance matrices. Both instances enjoy many applications in a plethora of fields,
such as medical imaging [27], computer vision [79–81], brain computer interfaces
[18], natural language processing [65], and assessing the quality of generative mod-
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els [43]. Notably, the 2-Wasserstein metric between Gaussians is known as the Bures
metric in quantum physics, where it is used to compare quantum states. Other pop-
ular divergences for Gaussians include the affine-invariant Riemannian metric [68],
corresponding to the Fisher–Rao distance between centeredGaussians, theAlpha Log-
Determinant divergences [14], corresponding to Rényi divergences between centered
Gaussians, and the log-Euclidean metric [8]. A survey of some of the most com-
mon divergences and their resulting geometry on Gaussians can be found in [29].
More recently, applications have driven research into allowing determining optimal
divergences for the task at hand, which has raised interest in studying interpolations
between different divergences [4,17,78]. Generalizations of these divergences to the
infinite-dimensional setting of Gaussian processes and covariance operators have also
been considered [49,54,57,60,61].

The Sinkhorn divergence has been proposed inOT, applying the entropic regulariza-
tion to define a parametric family of divergences, interpolating from the OT quantity
to a maximum mean discrepancy (MMD), whose kernel is determined by the cost.
In the present work, we provide a closed-form solution to the entropy-regularized
2-Wasserstein distance between multivariate Gaussians, which can then be applied
in the computation of the corresponding Sinkhorn divergence between Gaussians.
In addition, we study the task of interpolating between two Gaussians under the
entropy-regularized 2-Wasserstein distance, and confirm known limiting properties
of the divergences with respect to the regularization strength. Finally, we provide
fixed-point expressions for the barycenter of population of Gaussians restricted to the
Gaussian manifold, that can be employed in fixed-point iteration for computing the
barycenter. The one-dimensional setting has been studied in [4,37]. The Schrödinger
bridge between multivariate Gaussians has been considered in [15], including the
study of the limiting case of bringing the noise of the driving Brownian motion to 0,
resulting in the 2-Wasserstein case, in [16].

The paper is divided as follows: in Sect. 2, we briefly introduce the necessary back-
ground to develop the entropic OT theory of Gaussians, including the formulation of
OT, entropic OT, and the corresponding dual and dynamical formulations. In Sect. 3,
we compute explicit solutions to the entropy-relaxed 2-Wasserstein distance between
Gaussians, including the dynamical formulation that allows for interpolation. As a
consequence, we derive a closed-form solution for the corresponding Sinkhorn diver-
gence. In Sect. 4,we study thebarycenters of populations ofGaussians, restricted to the
Gaussian manifold. We derive fixed-point expressions for the entropic 2-Wasserstein
distance and the 2-Sinkhorn divergence. Finally, in Sect. 5, we illustrate the resulting
interpolative and barycentric schemes. Especially, we consider varying the regulariza-
tion magnitude, visualizing the interpolation between the OT and MMD problems in
the Sinkhorn case [30,36,69].
Related work Several papers—all independently—have formulated the closed form
solution of the Entropic regularized Optimal Transport for Gaussian measures [23,45]
in any dimensions, including the case of unbalanced transport [45]. These results have
been generalized for ϕ-exponential distributions [48], Gaussian measures on infinite-
dimensional Hilbert spaces, including in particular Reproducing Kernel Hilbert
Spaces, and Gaussian processes [62,63]. Both two and multi-marginal solution in
the one-dimensional case first appeared in [38].
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2 Background

In this section, we start by recalling the essential background for optimal transport
(OT) and its entropy-relaxed version. More in-depth exposition for OT can be found
in [82], and for computational aspects and entropic OT in [22].

2.1 Optimal transport

Let (X , d) be a metric space equipped with a lower semi-continuous cost function
c : X × X → R≥0. Then, the optimal transport problem between two probability
measures μ, ν ∈ P(X ) is given by

OT(μ, ν) = min
γ∈ADM(μ,ν)

Eγ [c], (1)

where ADM(μ, ν) is the set of joint probabilities with marginals μ and ν, and Eμ[ f ]
denotes the expected value of f under μ

Eμ[ f ] =
∫
X

f (x)dμ(x). (2)

Additionally, by E[μ] we denote the expectation of μ. A minimizer of (1) is denoted
by γopt and called a transport plan.

The OT problem admits the following Kantorovich (dual) formulation

OT(μ, ν) = max
ϕ,ψ∈ADM(c)

{
Eμ[ϕ] + Eν[ψ]} , (3)

where (ϕ, ψ) ∈ ADM(c) is required to satisfy

ϕ(x) + ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × X . (4)

Potentials ϕopt, ψopt achieving the maximum in (3) are called Kantorovich potentials.

2.2 Wasserstein distances

The p-Wasserstein distance Wp between μ and ν is defined as

Wp(μ, ν) = OTd p (μ, ν)
1
p , (5)

where d is a metric on X and p ≥ 1. The case p = 2 is particularly interesting, as the
resulting metric is then induced by a pseudo-Riemannian metric structure [5,53].
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2.3 2-Wasserstein distance between Gaussians

One of the rare cases where the 2-Wasserstein distance admits a closed form solution
is between two multivariate Gaussian distributions μi = N (mi , Ki ), i = 0, 1 with
d(x, y) = ‖x − y‖, which is given by [26,42,46,66]

W 2
2 (μ0, μ1) = ||m0 − m1||2 + Tr(K0) + Tr(K1) − 2Tr

(
K

1
2
1 K0K

1
2
1

) 1
2

. (6)

It can be shown that (6) is induced by a Riemannian metric in the space of n-
dimensional Gaussians N (Rn), with the metric gK : TKN (Rn) × TKN (Rn) → R

given by [77]

gK (U , V ) = Tr
[
v(K ,U )Kv(K ,V )

]
, ∀ K ∈ N (Rn), U , V ∈ TKN (Rn), (7)

where v(K ,V ) denotes the unique symmetric matrix solving the Sylvester equation

V = Kv(K ,V ) + v(K ,V )K . (8)

Moreover, givenN (m0, K0),N (m1, K1) ∈ N (Rn), the geodesics under themetric
(6) are given by N (mt , Kt ), with [58]

mt = (1 − t)m0 + tm1,

Kt =
(

(1 − t)I + t K
− 1

2
0

(
K

1
2
0 K1K

1
2
0

) 1
2

K
− 1

2
0

)
K0

×
(

(1 − t)I + t K
− 1

2
0

(
K

1
2
0 K1K

1
2
0

) 1
2

K
− 1

2
0

)

= (1 − t)2K0 + t2K1 + t(1 − t)[(K0K1)
1/2 + (K1K0)

1/2].

(9)

We remark that Eq. (6) is valid for all Gaussian distributions, including the case
when K0, K1 are positive semi-definite. This is in contrast to the affine-invariant Rie-
mannian distance || log(K −1/2

0 K1K −1/2
0 )||F , the Log-Euclidean distance || log(K0)−

log(K1)||F , and the Kullback–Leibler divergence (see below), which require that
K0, K1 be strictly positive definite.

Finally, the 2-Wasserstein barycenter μ̄ of a population of probability measures μi

with weights λi ≥ 0, i = 1, 2, . . . , N and
∑N

i=1 λi = 1, is defined as the minimizer

μ̄ := argmin
μ∈P(Rn)

N∑
i=1

λi W 2
2 (μ,μi ). (10)
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When the population consists of Gaussians μi = N (mi , Ki ), one can show that the
barycenter is Gaussian given by μ̄ = N (m̄, K̄ ), where m̄, K̄ satisfy [1, Thm. 6.1]

m̄ =
N∑

i=1

λi mi , K̄ =
N∑

i=1

λi

(
K

1
2 Ki K

1
2

) 1
2
. (11)

2.4 Entropic relaxation

Let μ, ν ∈ P(X) with densities pμ and pν . Then, we denote by

DKL(μ||ν) = −Eμ

[
log

pν

pμ

]
, (12)

the Kullback–Leibler divergence (KL-divergence) between μ and ν. The differential
entropy of μ is given by

H(μ) = −Eμ[log pμ]. (13)

For a product measure, we have the identity

DKL(γ ||μ0 ⊗ μ1) = H(μ0) + H(μ1) − H(γ ). (14)

A special case that will be used later in this work is the KL-divergence between
two non-degenerate multivariate Gaussian distributions μ0 = N (m0, K0) and μ1 =
N (m1, K1) when X = R

n , which is given by

DKL(μ||ν) =1

2

(
Tr
(

K −1
0 K1

)
+ (m1 − m0)

T K −1
0 (m1 − m0)

−n + ln

(
det K1

det K0

))
,

(15)

and for the entropy we have

H(μ0) = 1

2
log det (2πeK0) . (16)

Given ε > 0, we relax (1) with a KL-divergence term between the transport plan
and the independent joint distribution as, yielding the entropic OT problem [20]

OTε
c(μ, ν) = min

γ∈ADM(μ,ν)

{
Eγ [c] + εDKL(γ ||μ ⊗ ν)

}
, (17)

which yields a strictly convex problem with respect to γ . Moreover, this problem is
numerically more favorable to solve (1) compared, for instance, to the Hungarian and
the auction algorithm, due to the Sinkhorn–Knopp algorithm. As shown, for instance
in [12,19,25,40,72], the above problem has a unique minimizer given by

γ ε = αε(x)βε(y)k(x, y)μ(x)ν(y), (18)
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if and only if there exists functions αε and βε such that

αε(x)Eν

[
βεk(x, ·)] = 1,

βε(y)Eμ

[
αεk(·, y)

] = 1,
(19)

where k(x, y) = exp
(− 1

ε
c
)
denotes theGibbs kernel.We call γ ε an entropic transport

plan. Moreover, when ε → 0, γ ε converges to γopt, a solution of the OT problem (1)
[22,39,50]; while when ε → ∞, γ ε converges to the independent coupling γ ∞ =
μ ⊗ ν [36,69]. The latter property shows in particular that, for large ε, the entropy-
Regularized OT behaves like an inner product and not like a norm. In linear algebra,
the polarization formula is the usual way of defining a norm from a inner product.
That is the main idea of Sinkhorn divergence.

2.5 Sinkhorn divergence

The KL-divergence term in OTε
c acts as a bias, as discussed in [30]. This can be

removed by defining the p-Sinkhorn divergence as

Sε
p(μ, ν) = OTε

d p (μ, ν) − 1

2
(OTε

d p (μ,μ) + OTε
d p (ν, ν)). (20)

As shown in [30] if, for example, c = d p, p ≥ 1 the Sinkhorn divergences metrizes
the convergence in law in the space of probability measures.

2.6 Entropy-Kantorovich duality

In this subsection we summarize well-known results on the Entropy–Kantorich. For
further details and proofs, we refer the reader to [25].

Given a probability measure μ, the class of Entropy-Kantorovich potentials is
defined by the set of measurable functions ϕ on R

n satisfying

Lexp
ε (Rn, μ) =

{
ϕ : Rn → [−∞,∞[ : 0 < Eμ

[
exp

(
1

ε
ϕ

)]
< ∞

}
. (21)

Then, given c = d2, where d(x, y) = ‖x − y‖, ϕ ∈ Lexp
ε (Rn, μ0) and ψ ∈

Lexp
ε (Rn, μ1), the entropic Kantorovich (dual) formulation of OTε

d2(μ, ν) is given by
[25,30,36,41,50],

OTε
d2(μ0, μ1) = sup

ϕ,ψ

{
Eμ0 [ϕ] + Eμ1 [ψ]

−ε

(
Eμ0⊗μ1

[
exp

(
(ϕ ⊕ ψ) − d2

ε

)]
− 1

)}
,

(22)

where (ϕ ⊕ ψ) (x, y) = ϕ(x) + ψ(y), ϕ ∈ Lexp
ε (Rn, μ0), and ψ ∈ Lexp

ε (Rn, μ1).
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Finally, the theorem below illustrate the relationship between the Entropy-
Kantorovich potentials and the solution (19) of the Entropic regularized Optimal
Transport problem (17), assuming the cost c is bounded.

Theorem 1 [25] Let ε > 0 be a positive number, c is bounded cost, μ0, μ1 ∈ P(Rn)

be probability measures. Then, the supremum in (22) is attained for a unique couple
(ϕε, ψε) (up to the trivial transformation (ϕε, ψε) → (ϕε + α,ψε − α)). Moreover,
the following are equivalent:

(a) (Maximizers) ϕε and ψε are maximizing potentials for (22).
(b) (Schrödinger system) Let

γ ε = exp

(
1

ε

(
ϕε ⊕ ψε − d2

))
μ0 ⊗ μ1, (23)

then γ ε ∈ ADM(μ0, μ1). Furthermore, γ ε is the (unique) minimizer of the prob-
lem (17).

Elements of the pair (ϕε, ψε) reaching a maximum in (22) are called entropic
Kantorovich potentials. Finally, a relationship between αε, βε in (19), and the entropic
Kantorovich potentials ϕε, ψε above, is according to Theorem 1 given by

ϕε = ε logαε, ψε = ε logβε. (24)

Using the dual formulation, we can show the following.

Proposition 1 Let μ, ν ∈ P(Rn) and c be a bounded cost. Then, OTε
c(μ, ν) is strictly

convex in both arguments.

Proof Letμt = tμ0+(1−t)μ1 for t ∈ (0, 1), and (ϕ j , ψ j )be the entropicKantorovich
potentials associated with OTε

c(μ j , ν) for j = 0, 1, and (ϕ, ψ) for OTε
c(μt , ν). Then,

using the dual formulation (22), we have

OTε
c(μt , ν) = t

(
Eμ0 [ϕ] + Eν[ψ])+ (1 − t)

(
Eμ1 [ϕ] + Eν[ψ])

− εt

(
Eμ0⊗ν

[
exp

(
(ϕ ⊗ ψ) − c

ε

)]
− 1

)

− ε(1 − t)

(
Eμ1⊗ν

[
exp

(
(ϕ ⊗ ψ) − c

ε

)]
− 1

)

< t
(
Eμ0 [ϕ0] + Eν[ψ0]

)+ (1 − t)
(
Eμ1 [ϕ1] + Eν[ψ1]

)

− εt

(
Eμ0⊗ν

[
exp

(
(ϕ0 ⊗ ψ0) − c

ε

)]
− 1

)

− ε(1 − t)

(
Eμ1⊗ν

[
exp

(
(ϕ1 ⊗ ψ1) − c

ε

)]
− 1

)

= tOTε
c(μ0, ν) + (1 − t)OTε

c(μ1, ν),

(25)
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where the first equality results from linearity of expectations, and the inequality from
noticing that the pair (ϕ, ψ) is a competitor for (ϕ j , ψ j ), j = 0, 1, but due to unique-
ness of the entropic Kantorovich potentials (up to scalar additives, Theorem 1), (ϕ, ψ)

cannot be equal to (ϕ0, ψ0) and (ϕ1, ψ1) (unless μ0 = μ1), and will thus return lower
values. �

2.7 Dynamical formulation of entropy relaxed optimal transport

Analogously to unregularized OT theory, the entropic-regularization of OT with dis-
tance cost admits a dynamical (aka Benamou–Brenier) formulation.

In the following, we again consider the particular case when the cost function is
given by c(x, y) = ‖x − y‖2. Then, we can write (17) as [41,50]

OTε
d2(μ0, μ1) = min

(με
t ,vt )

∫ 1

0
Eμε

t

[
‖vt‖2

]
dt + H(μ0) + H(μ1), (26)

where t ∈ [0, 1], με
0 = μ0, με

1 = μ1, and

∂tμ
ε
t + ∇ · (vtμ

ε
t ) = ε

2
Δμε

t . (27)

where theminimummust be understood as taken among all couples (με
t , vt ) solving

the continuity equation in the distributional sense (see appendix A); moreover, the
minimum is attained if and only if (με

t , vt ) = (με
t ,∇φε

t ), for a potential φε
t : Rd → R,

which is defined in the following via the entropic potentials. The resultingμε
t is called

the entropic interpolation between μ0 and μ1.
The solution can be characterized by (while abusing the notation and writing μ(x)

for the density of μ, which will be done throughout this work)

γ ε(x, y) = αε(x)βε(y) exp

(
−1

ε
‖x − y‖2

)
μ0(x)μ1(y), (28)

in (19) of the static problem (17) in conjunctionwith the heat flow allows us to compute
the entropic interpolation from μ0 to μ1, which is given by [41,50,70]

με
t = Hμ0

tε (αε)Hμ1
(1−t)ε(β

ε),

Hμ
s [ f ] =

∫
Rn

1√
2πs

exp

(
−1

s
‖x − z‖2

)
f (z)μ(z)dz,

(29)

and αε,βε are the Entropy-Kantorovich potentials solving the system (19). In partic-
ular, we have that

αε(x)Hμ1
ε (βε)(x) = 1, βε(y)Hμ0

ε (αε)(y) = 1. (30)

In particular,whenwe send the regularization parameter ε → 0, the curves ofmeasures
με

t converge to the 2-Wasserstein between μ0 and μ1 [40,50]. Moreover, we can also
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write the entropic interpolation με
t and the dynamic entropic Kantorovich potentials

(ϕε
t , ψε

t ) via the relation ϕε
t + ψε

t = ε logμε
t .

Now, by defining φε
t = (ϕε

t −ψε
t )/2, it is easy to check that by imposing vε

t = ∇φε
t

we have that (με
t , v

ε
t ) solves the Fokker–Planck equation

∂tμ
ε
t + ∇ · (vε

t μ
ε
t ) = ε

2
Δμε

t . (31)

3 Entropy-regularized 2-Wasserstein distance between Gaussians

In this sectionwe consider the special case of (17) and (20)when c(x, y) = d2(x, y) =
|x − y|2 is the Euclidian distance in R

n and μ0 ∼ N (m0, K0), ν ∼ N (m1, K1) are
multivariate Gaussian distributions. We are interested in obtain explicity formulas for
the optimal coupling γ ε solving (17), the Entropy-Kantorovich maximizers (ϕε, ψε)

in (22) and the entropic displacement interpolation με
t in (29).

We start by showing that we can assume, without loss of generality, that μ0 and μ1
are centeredGaussian distributions. The general case is obtain just by a shift depending
on the L2-distance of the center of both Gaussians.

Proposition 2 Let c(x, y) = ‖x − y‖2, Xi ∼ μi ∈ P(Rn) for i = 0, 1 and mi =
E [μi ]. Denote by X̂i = Xi −mi ∼ μ̂i the corresponding centered distributions. Then

OTε
d2(μ0, μ1) = ‖m0 − m1‖2 + OTε

d2

(
μ̂0, μ̂1

)
. (32)

Proof Recall the definition given in (17)

OTε
c(μ0, μ1) = min

γ∈ADM(μ0,μ1)

{
Eγ [c] + εDKL(γ ||μ0 ⊗ μ1)

}
. (33)

Then, as c = d2, for the first term we can write

Eγ

[
d2
]

=
∫
Rn

‖x − y‖2dγ (x, y)

=
∫
Rn

(
‖(x − m0) − (y − m1)‖2 + ‖m0 − m1‖2

+2 ((x − m0) − (y − m1))
T (m0 − m1)

)
dγ (x, y)

= ‖m0 − m1‖2 +
∫
Rn

‖x − y‖2dγ (x + m0, y + m1).

(34)

We now verify that the requirement γ ∈ ADM(μ0, μ1) is equivalent with γ (·+m0, ·+
m1) ∈ ADM(μ̂0, μ̂1), which results from

∫
Rn

γ (x + m0, y + m1)dy = μ0(x + m0) = μ̂0(x), (35)
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and similarly for the othermargin. Finally, for the entropy term,weuse the identity (14).
Now, as the entropy of a distribution does not depend on the expected value, we have
H(μi ) = H(μ̂i ), and therefore

DKL(γ ||μ̂0 ⊗ μ̂1) = H(μ0) + H(μ1) − H(γ ). (36)

Putting everything together, we get

OTε
d2(μ0, μ1) = ‖m0 − m1‖2

+ min
γ∈ADM(μ̂0,μ̂1)

{
Eγ [d2] + εDDKL(γ ||μ̂0 ⊗ μ̂1)

}
,

= ‖m0 − m1‖2 + OTε
d2(μ̂0, μ̂1).

(37)

�

Proposition 3 Let μi = N (0, Ki ) ∈ N (Rn) for i = 0, 1. Then, the unique optimal
plan γ ε in OTε

d2(μ0, μ1) is a centered Gaussian distribution.

Proof Note that Eγ [d2] depends only on the mean and covariance of γ , and therefore
remains constant, if γ is replaced with a Gaussian with the corresponding mean and
covariance (which we can do, as the marginals are Gaussians). Then, for the other
term, using the identity (14)

DKL(γ ||μ0 ⊗ μ1) = H(μ) + H(ν) − H(γ ). (38)

It is readily seen that theγ with afixed covariancematrixminimizing this expression
is Gaussian, as Gaussians achieve maximal entropy over distributions sharing a fixed
covariance matrix. Therefore, we can deduce that γ ε is Gaussian. Finally, as both of
the marginals μ0 and μ1 are centered, so is γ ε . �

We now arrive at the main theorem of this work, detailing the entropic 2-
Wasserstein geometry betweenmultivariate Gaussians. The proof is based on studying
the Schrödinger system given in (19). We give an alternative proof for the statement a.
in Theorem 2 in Appendix B, by finding the minimizer of the OT problem. Recall, that
a noteworthy property of the entropic interpolant, is that even if we are interpolating
from μ to itself, the trajectory does not constantly stay at μ.

Theorem 2 Let μi = N (0, Ki ), for i = 0, 1, be two centered multivariate Gaus-

sian distributions in R
n, write N ε

i j =
(

I + 16
ε2

K
1
2

i K j K
1
2

i

) 1
2

and Mε = I +
(

I + 16
ε2

K0K1

) 1
2
. Then,
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(a) The density of the optimal entropy relaxed plan γ ε is given by

γ ε(x, y) = αε(x)βε(y) exp

(
−‖x − y‖2

ε

)
μ0(x)μ1(y), (39)

where αε(x) = exp
(
xT Ax + a

)
, βε(y) = exp

(
yT By + b

)
, and

A = 1

4
K

− 1
2

0

(
I + 4

ε
K0 − N ε

01

)
K

− 1
2

0

B = 1

4
K

− 1
2

1

(
I + 4

ε
K1 − N ε

10

)
K

− 1
2

1

exp(a + b) =
√

1

2n
det (Mε).

(40)

(b) The entropic optimal transport quantity is given by

OTε
d2(μ0, μ1) = Tr(K0) + Tr(K1)

− ε

2

(
Tr(Mε) − log det(Mε) + n log 2 − 2n

) (41)

(c) The entropic displacement interpolation με
t , t ∈ [0, 1], between μ0 and μ1 is given

by με
t = N (

0, K ε
t

)
, where

K ε
t = (1 − t)2ε2

16
K

− 1
2

1

(
−I +

(
4t

(1 − t)ε
K1 + N ε

10

)2
)

K
− 1

2
1

= t2ε2

16
K

− 1
2

0

(
−I +

(
4(1 − t)

tε
K0 + N ε

01

)2
)

K
− 1

2
0

= (1 − t)2K0 + t2K1 + t(1 − t)

[(
ε2

16
I + K0K1

)1/2

+
(

ε2

16
I + K1K0

)1/2
]

.

(42)

Proof Part a. Recall that αε, βε are the unique functions that give the density of the
optimal plan γ ε

γ ε(x, y) = αε(x)βε(y) exp

(
−‖x − y‖2

ε

)
μ0(x)μ1(y). (43)
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The optimal plan is required to have the right marginals (19), that is,

μ0(x) =
∫
Rn

γ ε(x, y)dy

= αε(x)

∫
Rn

βε(y) exp

(
−‖x − y‖2

ε

)
μ0(x)μ1(y)dy,

μ1(y) =
∫
Rn

γ ε(x, y)dx

= βε(y)

∫
Rn

αε(x) exp

(
−‖x − y‖2

ε

)
μ0(x)μ1(y)dx .

(44)

Assuming αε(x) = exp(xT Ax + a) and βε(y) = exp(yT By + b), substituting in
μ0 and μ1, and after some simplifications, the system reads

1 = exp(a + b)√
det(2π K1)

exp

(
xT
(

A − 1

ε
I

)
x

)

×
∫

X
exp

(
yT
(

B − 1

ε
I − 1

2
K −1
1

)
y + 2

ε
xT y

)
dy,

1 = exp(a + b)√
det(2π K0)

exp

(
yT
(

B − 1

ε
I

)
y

)

×
∫

Y
exp

(
xT
(

A − 1

ε
I − 1

2
K −1
0

)
x + 2

ε
yT x

)
dx .

(45)

Using the identity

∫
X
exp
(
−xT Cx + bT x

)
dx =

√
πn

det(C)
exp

(
1

4
bT C−1b

)
, (46)

the system (45) results in

A = 1

ε
I + 1

ε2

(
B − 1

ε
I − 1

2
K −1
1

)−1

,

B = 1

ε
I + 1

ε2

(
A − 1

ε
I − 1

2
K −1
0

)−1

,

exp(a + b) =
√
det(2K1) det

(
1

ε
I + 1

2
K −1
1 − B

)

exp(a + b) =
√
det(2K0) det

(
1

ε
I + 1

2
K −1
0 − A

)

(47)
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Let us solve for A and B first. From system (47), we get that A and B can be written
as

A = 1

ε
I + 1

ε2

(
1

ε2

(
A − 1

ε
I − 1

2
K −1
0

)−1

− 1

2
K −1
1

)−1

,

B = 1

ε
I + 1

ε2

(
1

ε2

(
B − 1

ε
I − 1

2
K −1
1

)−1

− 1

2
K −1
0

)−1

.

(48)

Then, one can show, that the A, B given in (40) solves this system. Plugging A, B in
the expressions for exp(a + b) in (47), we get

exp(a + b) =
√√√√ 1

2n
det

(
I +

(
I + 16

ε2
K0K1

) 1
2
)

, (49)

for which a possible solution is given by

a = b = 1

4

(
−n log 2 + log det

(
I +

(
I + 16

ε2
K0K1

) 1
2
))

. (50)

Now, we show that A solves the equation given in (48). Manipulating (48) we see
that it suffices to show the equality

(
A − 1

ε
I

)−1

=
(

A − 1

ε
I − 1

2
K −1
0

)−1

− 1

2
K −1
1 . (51)

Substituting in A given in (40), the left-hand side reads

(
A − 1

ε
I

)−1

= 4K
1
2
0

(
I −

(
I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

K
1
2
0 , (52)

whereas the right-hand side is given by

(
A − 1

ε
I − 1

2
K −1
0

)−1

− 1

2
K −1
1

= −4K
1
2
0

⎛
⎝ε2

8

(
K

1
2
0 K1K

1
2
0

)−1

+
(

I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

⎞
⎠ K

1
2
0 .

(53)
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Therefore, we need to show the equality

(
I +

(
I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

=
(

−I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

,

−
(

8

ε2
K

1
2
0 K1K

1
2
0

)−1
(54)

which can be derived as follows

−
(

8

ε2
K

1
2
0 K1K

1
2
0

)−1

+
(

−I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

= −2

(
I +

(
I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

+
(

−I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

×
(

−I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

=
⎛
⎝I − 2

(
I +

(
I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

⎞
⎠
(

−I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

=
(

I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2 − 2I

)(
I +

(
I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

×
(

−I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

=
(

I +
(

I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
)−1

,

(55)
where the first step results from writing

−
(

8

ε2
K

1
2
0 K1K

1
2
0

)−1

= −2

(
−I +

(
I + 16

ε2
K

1
2
0 K1K

1
2
0

))−1

, (56)

and using M − I = (M
1
2 + 1)(M

1
2 − 1) on the right-hand side.

Part b. Let ϕε(x) = ε logαε(x) and ψε(y) = ε logβε(y), and as previously,

Mε = I +
(

I + 16

ε2
K0K1

) 1
2

, (57)
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then plugging ϕε and ψε into (22) yields

OTε
d2(μ0, μ1) = Eμ0 [ϕε] + Eμ1 [ψε]

− ε

(
Eμ0⊗μ1

[
exp

(
1

ε

(
(ϕ ⊕ ψ) − d2

))]
− 1

)

= ε
(
Eμ0 [logαε] + Eμ1 [logβε]

)

− ε

(
Eμ0⊗μ1

[
αεβε exp

(
−1

ε
d2
)]

− 1

)

= ε
(
EX∼μ0

[
X T AX + a

]
+ EY∼μ1

[
Y T BY + b

])

= ε (Tr [K0A] + Tr [K1B] + a + b)

= ε

4
Tr

[
I + 4

ε
K0 −

(
I + 16

ε2
K

1
2
0 K1K

1
2
0

) 1
2
]

+ ε

4
Tr

[
I + 4

ε
K1 −

(
I + 16

ε2
K

1
2
1 K0K

1
2
1

) 1
2
]

+ ε(a + b)

= TrK0 + TrK1 − ε

2

(
TrMε − log det Mε + n log 2 − 2n

)
,

(58)

where we used the fact that C
1
2 DC

1
2 has same eigenvalues as C D, and so

Tr
[
(I + C

1
2 DC

1
2 )

1
2

]
= Tr

[
(I + C D)

1
2

]
for any square and positive-definite matri-

ces C and D.
Part c.Aswehave solved forαε andβε for the optimal plan, the entropic interpolant

με
t between μ0 and μ1 is given by (29), which we rewrite here

με
t (x) = (Hμ0

tε [αε](x)
) (Hμ1

(1−t)ε[βε](x)
)

. (59)

Then, we can compute

Hμ0
tε [αε ](x) = 1√

det((2π)2tεK0)

∫
Rn

exp

(
zT Az + a − 1

tε
‖x − z‖2 − 1

2
zT K −1

0 z

)
dz

= exp
(
a − 1

tε xT x
)

√
det(2π tεK0)

∫
Rn

exp

(
zT
(

A − 1

tε
I − 1

2
K −1
0

)
z + 2

tε
xT z

)
dz

= exp(a)√
det (2π tεK0) det

(
1
tε I + 1

2 K −1
0 − A

)

× exp

(
1

t2ε2
xT

((
1

tε
I + 1

2
K −1
0 − A

)−1

− I

)
x

)
,

(60)
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similar computation yields

Hμ1
(1−t)ε[βε](x)

= exp(b)√
det (2π(1 − t)εK1) det

(
1

(1−t)ε I + 1
2 K −1

1 − B
)

× exp

(
1

(1 − t)2ε2
xT

((
1

(1 − t)ε
I + 1

2
K −1
1 − B

)−1

− I

)
x

)
.

(61)

Putting these together, we get

με
t (x) = (Hμ0

tε [αε](x)
) (Hμ1

(1−t)ε[βε](x)
)

= N exp

(
xT

[
1

t2ε2

((
1

tε
I + 1

2
K −1
0 − A

)−1

− I

)

+ 1

(1 − t)2ε2

((
1

(1 − t)ε
I + 1

2
K −1
1 − B

)−1

− I

)]
x

)

:= N exp
(

xT (T0(A) + T1(B)) x
)

,

(62)

where N is a normalizing constant. We can simplify the matrix T0(A)+T1(B) in (62).
Write

N ε
10 =

(
I + 16

ε2
K

1
2
1 K0K

1
2
1

) 1
2

, (63)

and consider the first term

T0(A) = 1

t2ε2

((
1

tε
I + 1

2
K −1
0 − A

)−1

− I

)

= 1

t2ε2

⎛
⎝
(

(1 − t)

tε
I + 1

2
K −1
0 − 1

ε2

(
B − 1

ε
I − 1

2
K −1
1

)−1
)−1

− tε I

⎞
⎠

= 1

t2ε

((
(1 − t)

t
I − (I − εB)−1

)−1

− tε I

)

= 1

t2ε

((
t

(1 − t)
I − t2

(1 − t)2

(
t

(1 − t)
I + (I − εB)

)−1
)

− tε I

)

= 1

(1 − t)2ε2

(
I −

(
1

(1 − t)ε
I − B

)−1
)

= 4

(1 − t)2ε2
K

1
2
1

(
−I + 4t

ε(1 − t)
K1 + N ε

10

)−1

K
1
2
1 ,

(64)
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where second equality follows from (47), third from (48), fourth from the Woodbury
matrix inverse identity

(C + D)−1 = C−1 − C−1
(

C−1 + D−1
)−1

C−1, (65)

and the last one from substituting in B given in (40).
Likewise, we can substitute B in the second term T1(B), which yields

T1(B) = 1

(1 − t)2ε2

((
1

(1 − t)ε
I + 1

2
K −1
1 − B

)−1

− I

)

= 4

(1 − t)2ε2
K

1
2
1

(
I + 4t

ε(1 − t)
K1 + N ε

10

)−1

K
1
2
1 .

(66)

Putting the two terms together, we get

T0(A) + T1(B) = 4

(1 − t)2ε2
K

1
2
1

((
−I + 4t

ε(1 − t)
K1 + N ε

10

)−1

+
(

I + 4t

ε(1 − t)
K1 + N ε

10

)−1
)

K
1
2
1

= 8

(1 − t)2ε2
K

1
2
1

(
I −

(
4t

(1 − t)ε
K1 + N ε

10

)2
)−1

K
1
2
1 .

(67)

Note, that we can write (62) as a Gaussian with covariance matrix Kt

με
t (x) = N exp

(
xT (T0(A) + T1(B)) x

)

= N exp

(
−1

2
xT (K ε

t

)−1
x,

) (68)

and so

K ε
t = −1

2
(T0(A) + T1(B))−1

= (1 − t)2ε2

16
K

− 1
2

1

(
−I +

(
4t

(1 − t)ε
K1 + N ε

10

)2
)

K
− 1

2
1

= (1 − t)2K0+t2K1+t(1−t)

[(
ε2

16
I + K0K1

)1/2

+
(

ε2

16
I + K1K0

)1/2
]

.

(69)
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Where for the last step we use the formula

(
I + 16

ε2
K0K1

)1/2

= K 1/2
0

(
I + 16

ε2
K 1/2
0 K1K 1/2

0

)1/2

K −1/2
0 . (70)

�
Above we only considered centered Gaussians. Now we combine the results

obtained in Proposition 2 andTheorem2 to deduce the general case. As a consequence,
we also derive the corresponding formulas for the Sinkhorn divergence between two
Gaussians

Corollary 1 Let μi = N (mi , Ki ), for i = 0, 1, be two multivariate Gaussian distri-
butions in R

n. Then,

(a)
OTε

d2(μ0, μ1) = ‖m0 − m1‖2 + Tr(K0) + Tr(K1)

− ε

2

(
Tr(Mε) − log det(Mε) + n log 2 − 2n

) (71)

(b) The entropic interpolant between μ0 and μ1 is με
t = N (mt , Kt ), t ∈ [0, 1], where

mt = (t − 1)m0 − tm1, and Kt is given in (42).

(c) Write Mε
i j = I +

(
I + 16

ε2
Ki K j

) 1
2
, then

Sε
2(μ0, μ1) = ‖m0 − m1‖22 + ε

4

(
Tr
(
Mε

00 − 2Mε
01 + Mε

11

)

+ log

(
det2(Mε

01)

det(Mε
00) det(Mε

11)

))
.

(72)

We will now emphasize an identity that can be derived from the calculations of
Theorem 2, which we find useful.

Lemma 1 Let C, D be symmetric positive-definite matrices. Then,

4

ε
D

1
2

(
I +

(
I + 16

ε2
D

1
2 C D

1
2

) 1
2
)−1

D
1
2

= I − ε

4
C− 1

2

(
I + 4

ε
C −

(
I + 16

ε2
C

1
2 DC

1
2

) 1
2
)

C− 1
2 .

(73)

Proof Similarly to (40), let

A = 1

4
C− 1

2

(
I + 4

ε
C −

(
I + 16

ε2
C

1
2 DC

1
2

) 1
2
)

C− 1
2

B = 1

4
D− 1

2

(
I + 4

ε
D −

(
I + 16

ε2
D

1
2 C D

1
2

) 1
2
)

D− 1
2 .

(74)
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Then, substituting B into the first equation of (47) (while remembering to replace
K0 ← � C , K1 ← � D) results in

A = 1

ε
I + 1

ε2

(
B − 1

ε
I − 1

2
D−1

)−1

= 1

ε
I + 1

ε2

(
1

4
D− 1

2

(
I + 4

ε
D −

(
I + 16

ε2
D

1
2 C D

1
2

) 1
2
)

D− 1
2

−1

ε
I − 1

2
D−1

)−1

= 1

ε
I − 4

ε2
D

1
2

(
I +

(
I + 16

ε2
D

1
2 C D

1
2

) 1
2
)−1

D
1
2 ,

(75)

and so the result follows from substituting in A, multiplying both sides by −ε, and
moving −I from right-hand side to left-hand side. �

Next, we study the limiting cases of ε going to 0 and ∞, reconfirming that the
Sinkhorn divergence interpolates between 2-Wasserstein and M M D [30,36,69].

Proposition 4 Let μi = N (mi , Ki ), for i = 0, 1, be two multivariate Gaussian dis-
tributions in R

n. Then,

(a)
lim
ε→0

OTε
d2(μ0, μ1) = W 2

2 (μ0, μ1)

lim
ε→∞OTε

d2(μ0, μ1) = ‖m0 − m1‖2 + Tr(K0) + Tr(K1)
(76)

(b)
lim
ε→0

Sε
2(μ0, μ1) = W 2

2 (μ0, μ1)

lim
ε→∞ Sε

2(μ0, μ1) = ‖m0 − m1‖2
(77)

(c) For t ∈ [0, 1], denote by μt the 2-Wasserstein geodesic given in (9), and by με
t

the entropic 2-Wasserstein interpolant between μ0 and μ1 given in (42). Then,

lim
ε→0

με
t = μt . (78)
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Proof Part a. The ε → 0 case is a straight-forward computation

OTε
d2(μ0, μ1) = ‖m0 − m1‖2 + Tr(K0) + Tr(K1)

− ε

2

(
Tr(Mε) − log det(Mε) + n log 2 − 2n

)

= ‖m0 − m1‖2 + Tr(K0) + Tr(K1)

− 2Tr

⎛
⎝ε

4
I +

(
ε2

16
I + K0K1

) 1
2

⎞
⎠

+ ε

2
log

⎛
⎝det

⎛
⎝ε

4
I +

(
ε2

16
I + K0K1

) 1
2

⎞
⎠
⎞
⎠

+ εn

2
(log 2 − log ε + 2).

(79)

Therefore, since ε log ε → 0 when ε → 0,

lim
ε→0

OTε
d2(μ0, μ1) = ‖m0 − m1‖2 + Tr(K0) + Tr(K1) − 2Tr (K0K1)

1
2

= W 2
2 (μ0, μ1).

(80)

We now compute the limit when ε → ∞. It is enough to show that the term

ε

2

(
Tr(Mε) − log det

(
Mε
)+ n log 2 − 2n

)
, (81)

goes to 0 when ε → ∞. In fact, denote by {λi }n
i=1 the eigenvalues of K1K2. Then,

ε

2

(
Tr(Mε) − log det

(
Mε
)+ n log 2 − 2n

)

= ε

2

n∑
i=1

(
−1 +

(
1 + 16

ε2
λi

) 1
2 − log

(
1

2

(
1 +

(
1 + 16

ε2
λi

) 1
2
)))

.

(82)

So, first notice that for any λ > 0,

ε

(
−1 +

(
1 + 16

ε2
λ

) 1
2
)

= 16λ

ε + (ε + 16λ)
1
2

ε→∞= 0. (83)
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Second, we have

lim
ε→∞ ε log

(
1

2

(
1 +

(
1 + 16

ε2
λ

) 1
2
))

L′Hospital= lim
ε→∞

16λ

ε3
(
1 +

(
1 + 16

ε2
λ
) 1

2
)(

1 + 16
ε2

λ
) 1

2
log2

(
1
2

(
1 +

(
1 + 16

ε2
λ
) 1

2
))

= 0,
(84)

and so the result follows.
Part b. Straight-forward application of the above result to (72).
Part c. By a straight-forward computation on (42),

K ε
t = (1 − t)2K0 + t2K1 + t(1 − t)

[(
ε2

16
I + K0K1

)1/2

+
(

ε2

16
I + K1K0

)1/2
]

ε→0= (1 − t)2K0 + t2K1 + t(1 − t)[(K0K1)
1/2 + (K1K0)

1/2]
= Kt .

(85)

�

4 Entropic and Sinkhorn barycenters

In this section, we compute barycenters under the entropic regularization of the 2-
Wasserstein distance (e.g. [10,11,13,21,25,47,51]) and the 2-Sinkhorn divergence of
a population of multivariate Gaussians, restricted to the manifold of Gaussians.

4.1 Entropic 2-Wasserstein barycenter

Given N probability measures μi ∈ P(Rn), i = 1, 2, . . . , N , the entropic barycenter
μ̄ with weights λi ≥ 0 is defined in the vein of Karcher and Fréchet means, given as

μ̄ := argmin
μ∈P(Rn)

N∑
i=1

λiOT
ε
d2(μ,μi ),

N∑
i=1

λi = 1. (86)

Then, (86) is strictly convex, as OTε
c(μ, ν) is strictly convex in both μ and ν as stated

by Prop. 1.
Next, let us focus on theGaussian case.We lack the proof that such a barycenter will

indeed be a Gaussian, so do note, that the following statement requires the restriction
to Gaussians for the candidate barycenters.
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Theorem 3 (Entropic Barycenter of Gaussians) Let μi = N (mi , Ki ), i =
1, 2, . . . , N be a population of multivariate Gaussians. Then, their entropic barycen-
ter (86) with weights λi ≥ 0 such that

∑N
i=1 λi = 1, restricted to the manifold of

Gaussians N (Rn), is given by μ̄ = N (m̄, K̄ ), where

m̄ =
N∑

i=1

λi mi , K̄ = ε

4

N∑
i=1

λi

(
−I +

(
I + 16

ε2
K̄

1
2 Ki K̄

1
2

) 1
2
)

. (87)

Proof Proposition 2 allows us to split the geometry into the L2-geometry between the
means and the entropic 2-Wasserstein geometry between the centered Gaussians (or
their covariances). Then, it immediately follows that

m̄ =
N∑

i=1

λi mi . (88)

Therefore, we restrict our analysis to the case of centered distributions. Remark again,
that in general, theminimizer of (86) might not be Gaussian, even when the population
consists of Gaussians. However, here we will look for the barycenter on the manifold
of Gaussian measures.

We begin with a straight-forward computation of the gradient of the objective given
in (86)

∇K

N∑
i=1

λiOT
ε
d2 (N (0, K ),N (0, Ki ))

= ∇K

N∑
i=1

λi

(
TrK + TrKi − ε

2
Tr

(
I +

(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
)

+ ε

2
log det

(
I +

(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
)

−ε

2
(n log 2 − 2n)

)
,

=
N∑

i=1

λi

(
∇KTrK − ε

2
∇KTr

(
I +

(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
)

+ ε

2
∇K log det

(
I +

(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
))

.

(89)

where we used the closed-form solution obtained in the part b. of Theorem 2. Now,
recall that ∇KTrK = I . For the second term, it holds
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∇KTr

(
I +

(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
)

= 8

ε2
K

1
2

i

(
I + 16

ε2
K

1
2

i K K
1
2

i

)− 1
2

K
1
2

i .

(90)

Finally, for the third term, we have

∇K log det

(
I +

(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
)

= ∇KTr

(
Log

(
I +

(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
))

= 8

ε2
K

1
2

i

((
I + 16

ε2
K

1
2

i K K
1
2

i

)
+
(

I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
)−1

K
1
2

i ,

(91)

where Log(M) denotes the matrix square-root, and we use the results

log det(M) = Tr (Log(M)) , ∇MTr f (M) = f ′(M), (92)

when f is a matrix function given by a Taylor series, such as the matrix square-root
or the matrix logarithm.

Using the Woodbury matrix identity (65), one gets

(I + A)−1 = −A−1 + (A2 + A)−1, (93)

for an invertible A. Substituting (90) and (91) in (89), and using (93) with A =(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2

, we get

∇K

N∑
i=1

λiOT
ε
d2 (N (0, K ),N (0, Ki ))

=
N∑

i=1

λi

⎛
⎝I − 4

ε
K

1
2

i

(
I +

(
I + 16

ε2
K

1
2

i K K
1
2

i

) 1
2
)−1

K
1
2

i

⎞
⎠

= ε

4

N∑
i=1

λi K − 1
2

(
I + 4

ε
K −

(
I + 16

ε2
K

1
2 Ki K

1
2

) 1
2
)

K − 1
2 .

(94)

The last equality follows from Lemma 1 with the substitutions C ← � K and D ← � Ki .
Finally, setting (94) to zero, we get that the optimal K̄ satisfies the expression given
in (87). �
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4.2 Sinkhorn barycenter

Now, we compute the barycenter of a population of Gaussians under the Sinkhorn
divergence, defined by

μ̄ := argmin
μ∈P(Rn)

N∑
i=1

λi Sε
2(μ,μi ), λi ≥ 0 and

N∑
i=1

λi = 1. (95)

Note that as S2
ε (μ, ν) is convex in both μ and ν [30, Thm. 1], and so (95) is convex

in μ. Now, similarly to the entropic barycenter case, we look for the barycenter of a
population of Gaussians in the space of Gaussians N (Rn).

Theorem 4 (Sinkhorn Barycenter of Gaussians) Let μi = N (mi , Ki ), i =
1, 2, . . . , N be a population of multivariate Gaussians. Then, their Sinkhorn barycen-
ter (95) with weights λi ≥ 0 such that

∑N
i=1 λi = 1, restricted to the manifold of

Gaussians N (Rn), is given by μ̄ = N (m̄, K̄ ), where

m̄ =
N∑

i=1

λi mi , K̄ = ε

4

⎛
⎝−I +

(
N∑

i=1

λi

(
I + 16

ε2
K̄

1
2 Ki K̄

1
2

) 1
2
)2⎞
⎠

1
2

. (96)

Proof As in the entropic 2-Wasserstein case, we take μ = N (0, K ) to be of Gaussian
form. Then, we can compute the gradient

∇K

N∑
i=1

λi Sε
2 (N (0, K ),N (0, Ki ))

= ∇K

N∑
i=1

λi

(
OTε

d2 (N (0, K ),N (0, Ki ))

− 1

2
OTε

d2 (N (0, K ),N (0, K ))

− 1

2
OTε

d2 (N (0, Ki ),N (0, Ki ))
)
,

(97)

where the last term disappears. Then, we can use the gradient of the first term, which
we computed in (94). A very similar computation yields

∇KOT
ε
d2 (K , K ) = ε

2
K − 1

2

(
I + 4

ε
K −

(
I + 16

ε2
K 2
) 1

2
)

K − 1
2 . (98)
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Fig. 1 Entropic interpolantsμε
t between two one-dimensional Gaussians given byμ0 = N (−2, 0.1) (blue)

and μ1 = N (2, 0.5) (red), with varying regularization strengths ε, accompanied by the 2-Wasserstein
interpolant in the top-left corner (corresponding to ε = 0)

Substituting (94) and (98) into (97) yields

∇K

N∑
i=1

λi Sε
2 (N (0, K ),N (0, Ki ))

= ε

4

N∑
i=1

λi K − 1
2

((
I + 16

ε2
K 2
) 1

2 −
(

I + 16

ε2
K

1
2 Ki K

1
2

) 1
2
)

K − 1
2 .

(99)

When (99) is set to zero, we find, that the optimal K̄ satisfies the relation given in (96).
�
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Fig. 2 Interpolants between two three-dimensional Gaussians with varying regularization strengths ε,
accompanied by the 2-Wasserstein interpolant, given by the first row (parallel to the time axis). The following
rows visualize the interpolation for ε ∈ {0.01, 1, 2, 5, 20} in increasing order

4.3 Existence and uniqueness of solution

Theorems 3 and 4 derive the fixed point equations, namely Eqs. (87) and (96), respec-
tively, that the corresponding barycenter must satisfy, under the assumption that it is
strictly positive. For the Sinkhorn barycenter in Theorem 4, existence and unique-
ness of solution was shown in [45] via the Brouwer Fixed Point Theorem, under the
assumption that all Ki ’s are strictly positive. For the entropic barycenter in Theorem
3, a non-trivial solution exists, in which case it is unique, only when ε is sufficiently
small, otherwise it is the Dirac δ-measure. This was shown in one-dimension by [44]
and for any finite dimension by [62]. The more general setting, where the barycenter
can be singular, is treated in [62].

4.4 Fixed-point iteration

The fixed-point iteration algorithm is defined by

xk+1 = F(xk), (100)

where the initial case x0 is handpicked by the user. The Banach fixed-point theorem
is a well-known result stating that such an iteration converges to a fixed-point, i.e. an
element x satisfying x = F(x), if F is a contraction mapping.

In the case of the 2-Wasserstein barycenter given in (11), thefixed-point iteration can
be shown to converge [2] to the unique barycenter. In the entropic 2-Wasserstein and
the 2-Sinkhorn cases we leave such a proof as future work. However, while computing
the numerical results in Sect. 5, the fixed-point iteration always succeeded to converge.

5 Numerical illustrations

We will now illustrate the resulting entropic 2-Wasserstein distance and 2-Sinkhorn
divergence for Gaussians by employing the closed-form solutions to visualize entropic
interpolations between end point Gaussians. Furthermore, we employ the fixed-point
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Fig. 3 Barycentric spans of the four corner tensors under the entropic 2-Wasserstein metric and the 2-
Sinkhorn divergence for varying ε

iteration (100) in conjunction with the fixed-point expressions of the barycenters for
their visualization.

First, we consider the interpolant between one-dimensional Gaussians given in
Fig. 1, where the densities of the interpolants are plotted. As one can see, increasing
ε causes the middle of the interpolation to flatten out. This results from the Fokker–
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Planck equation (31), which governs the diffusion of the evolution of processes that
are objected to Brownian noise. In the limit ε → ∞, we would witness a heat death
of the distribution.

The same can be seen in the three-dimensional case, depicted in Fig. 2, visualized
using the code accompanying [29]. Here, the ellipsoids are determined by the eigen-
vectors and -values of the covariance matrix of the corresponding Gaussian, and the
colors visualize the level sets of the ellipsoids. Note that a large ellipsoid corresponds
to high variance in each direction, and does not actually increase the mass of the dis-
tribution. Such visualizations are common in diffusion tensor imaging (DTI), where
the tensors (covariance matrices) define Gaussian diffusion of water at voxels images
produced by magnetic resonance imaging (MRI) [7].

Finally, we consider the entropic 2-Wasserstein and Sinkhorn barycenters in Fig. 3.
We consider four different Gaussians, placed in the corners of the square fields in the
figure, and plot the barycenters for varying weights, resulting in the barycentric span
of the four Gaussians. As the results show, the barycenters are very similar under the
two frameworks with small ε. However, as ε is increased, the Sinkhorn barycenter
seems to be more resiliant against the fattening of the barycenters, which can be seen
in the 2-Wasserstein case.
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Appendix A: Distributional solutions of Fokker–Planck equation

We just recall the definition of distributional solution of the Fokker-Planck equation.

Definition 1 We say that a family of pairs measures/vector fields (ηt , vt ) with vt ∈
L1(ηt ;Rn) and

∫ 1
0 ‖vt‖L1(ηt )

dt = ∫ 1
0

∫
Rn |vt |dηt dt solves the continuity equation

on ]0, T [ in the distributional sense if for any bounded and Lipschitz test function
f ∈ C1

c (]0, T [×R
n)

∫ 1

0

∫
Rn

(∂t f )dηt dt +
∫ 1

0

∫
Rn

(
∇ f · vt − ε

2
Δ f
)

dηt dt = 0.
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Appendix B: Alternative Proof of Theorem 2b

Recall, that byPropositions 2 and3,we can restrict to plans that are centeredGaussians,
that is,

γ = N (0, Γ ), Γ =
[

K1 CT

C K2

]
. (101)

Substituting (101) into (17) yields

OTε
d2(μ1, μ2) = min

C∈Rn×n
F(C)

:= min
C∈Rn×n

{
Tr(K1) + Tr(K2)

− 2 Tr(C) + ε

2
log

(
det(K1K2)

det(Γ )

)}
.

(102)

The covariance matrix Γ should be a symmetric positive-definite matrix, which is
equivalent to its Schur complement S(C) being positive definite, that is,

S(C) := K1 − CT K −1
2 C � 0. (103)

If S(C) fails to be strictly positive definite, F(C) explodes to infinity, and so it suffices
to consider C so that

S(C) � 0. (104)

Now recall the Schur block matrix determinant formula

det(Γ ) = det(S(C)) det(K2). (105)

Then, following the argumentation in the proof of [42, Prop. 7], when the value of
S(C) = S is fixed, we can write

max
C : S(C)=S

Tr(C) = Tr

(
K

1
2
2 (K1 − S)K

1
2
2

) 1
2

, (106)

and so applying (105) and (106) to (102), we get

min
C : S(C)=S

F(C) = Tr(K1) + Tr(K2) − 2Tr

(
K

1
2
2 (K1 − S)K

1
2
2

) 1
2

+ ε

2
(log det(K1) − log det(S)) ,

(107)

leaving us with the task of minimizing (107) with respect to S. Note that we could
maximize (106) independently with respect to C , as det(Γ ) is constant over the fiber
{C : S(C) = S}.
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As F is strictly convex with respect to S, a solution to (102) can be found when the
gradient of the expression with respect to S is zero, leading to

∇S F(S) = K
1
2
2

(
K

1
2
2 (K1 − S) K

1
2
2

)− 1
2

K
1
2
2 − ε

2
S−1 = 0. (108)

Moving the second term to RHS, multiplying (108) by (K1−S)
1
2 from right, multiply-

ing each side by their corresponding transposes, and some elementary manipulations
of the equation, we arrive at a continuous algebraic Riccati equation (CARE)

ε2K1 − ε2S − 4SK2S = 0. (109)

In general, CAREs do not admit an analytical solution. However, we are in luck, as
one can check that (109) is solved by

Ŝ = ε

8
K

− 1
2

2

(
−ε I +

(
ε2 I + 16K

1
2
2 K1K

1
2
2

) 1
2
)

K
− 1

2
2 . (110)

Finally, it is straight-forward to check that the solution Ŝ is indeed symmetric
and positive-definite, and therefore satisfies (104). Plugging Ŝ in (107), noticing that

K
1
2
2 K1K

1
2
2 has same eigenvalues as K1K2, and some simplifications concludes the

proof.
Now, we compute the OT quantity given Ŝ. We first compute the trace term (107),

which gives

Tr

(
K

1
2
2 (K1 − Ŝ)K

1
2
2

) 1
2 = Tr

(
K1K2 − ε

8

(
−ε I +

(
ε2 I + 16K1K2

) 1
2
)) 1

2

= Tr

(
ε2

16
I + K1K2 + ε2

16
I − ε2

8

(
I + 16

ε2
K1K2

) 1
2
) 1

2

= ε

4
Tr

⎛
⎝
(

−I +
(

I + 16

ε2
K1K2

) 1
2
)2
⎞
⎠

1
2

= ε

4
Tr

(
−I +

(
I + 16

ε2
K1K2

) 1
2
)

= ε

4
(Tr (Mε) − 2n)

(111)
For the other term, write {λi }n

i=1 for the eigenvalues of K1K2 and mi = 1 + 16
ε2

λi

log det(K1) − log det(Ŝ) = log det(K1K2)
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− log det

(
ε2

8

(
−I +

(
I + 16

ε2
K1K2

) 1
2
))

=
n∑

i=1

log

(
ε2(mi − 1)

16

)
−

n∑
i=1

log

(
ε2

8
(m

1
2
i − 1)

)

=
n∑

i=1

log

(
1

2
(1 + m

1
2
i )

)

=
n∑

i=1

log

(
1 +

(
1 + 16

ε2
λi

) 1
2
)

− n log 2

= log det(Mε) − n log 2. (112)
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