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Abstract
Parametric statistical problems involving both large amounts of data and models with
many parameters raise issues that are explicitly or implicitly differential geometric.
When the number of nuisance parameters is comparable to the sample size, alternative
approaches to inference on interest parameters treat the nuisance parameters either as
random variables or as arbitrary constants. The two approaches are compared in the
context of parametric survival analysis, with emphasis on the effects of misspecifica-
tion of the random effects distribution. Notably, we derive a detailed expression for
the precision of the maximum likelihood estimator of an interest parameter when the
assumed random effects model is erroneous, recovering simply derived results based
on the Fisher information in the correctly specified situation but otherwise illustrat-
ing complex dependence on other aspects. Methods of assessing model adequacy are
given. The results are both directly applicable and illustrate general principles of infer-
ence when there is a high-dimensional nuisance parameter. Open problems with an
information geometrical bearing are outlined.

Keywords Conditional likelihood · Exponential distribution · Marginal likelihood ·
Matched pairs · Model comparison · Poisson process · Random effects · Model
misspecification

1 Introduction

Statistical analysis when the number of unknown parameters is comparable with
the number of independent observations may demand modification of maximum-
likelihood-based methods [7]. There are comparable difficulties with Bayesian
analyses based on high dimensional “flat” priors. For an extreme example from a
different perspective, see Stein [19].
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Yates [22,23] has discussed these issues in depth both for factorial experiments and
also for variety trials in connection with balanced and partially balanced incomplete
block designs. His development, powerful and almost explanation free, hinges, espe-
cially for incomplete block designs, on the geometry of least squares and the distinction
between error-estimating and effect-estimating subspaces. Qualitatively similar forms
of argument implicitly underlie the present paper.

Later discussion of these issues has mostly been either in general terms [6, chapter
2], or has approached them from a more decision-oriented perspective (e.g. [20]). In
the present paper we show the considerations involved in the context of parametric
analysis of matched pair survival data. Matched pair designs leading to a large number
of nuisance parameters have been considered in various contexts, in particular by Cox
[8], Anderson [4], Lindsay [15], Kumon and Amari [14] and Kartsonaki and Cox
[12]. A key aspect is the way the potentially large number of nuisance parameters
are represented. One is by a probability distribution parametrically specified. The
second is as a set of unknown constants and the third is as independent and identically
distributed random variables with totally unknown distribution. The consequences of
the last two are essentially identical; note that the second would be converted into
the third by reordering the data at random. By contrast, if appropriate, the stronger
assumptions involved in the parametric random effects formulation lead to formally
more precise conclusions. We illustrate the considerations involved with a theoretical
and empirical analysis of the effect ofmisspecification.Assessment ofmodel adequacy
is also discussed. The results aim both to be directly applicable and to illustrate general
principles.

2 Issues of formulation

Consider the comparison of two treatments in amatched pair design. For each of n pairs
of individuals, one of the pair is a control and the other receives a treatment, leading
to observations of survival times for the i th pair represented by random variables
Ci , Ti .We study analyses based on underlying exponential distributions, that is that the
observations are in effect the first point events in individual Poisson processes. Study
of the systematic variation between treatment and control is in general complicated
by variation between pairs.

There are a number of ways to represent this simple situation. We specify them in
terms of the rate parameter of the underlying Poisson processes, that is the reciprocal
of the exponential means. The two key components specify the relation between Ci

and Ti and the form of the inter-pair variation.
For a given pair, the Poisson rate under the treatment may be a constant multiple

of that under the control. Alternatively the two rates may have a constant difference.
There are other possibilities such as that the two mean survival times differ by a
constant. The first two representations at least have a clear underlying interpretation
in terms of a potential generating process and we largely concentrate on those.

In the formulation in terms of ratios, the rate parameters of Ci and Ti are written
γi/ψ and γiψ , and in the additive formulation are written ρi −� and ρi +�. Thus γi
and ρi are responsible for the inter-pair variation whereasψ and� are key parameters
of interest for understanding the effect of the treatment. There is a clear constraint on
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the parameter space in the second model and the two representations are in a formal
sense rather similar to logistic and additive models for binary data.

To represent in general terms arbitrary systematic variation between pairs of indi-
viduals we either treat γi or ρi as constants, unknown parameters specific to each pair,
or as realizations of random variables. The conceptual differences are considerable
although the numerical implications are often minor when the sample is large.

An approach sometimes used in observational studies for which there is no natural
pairing involves matching individuals based on the combination of a large number
of background variables into a one-dimensional propensity score [18]. If background
variables are available and not too numerous we favour using them directly for detailed
interpretation. By contrast, the present paper focusses on situations in which compo-
nent variables are not separately observed.

3 Exponential matched pairs with proportional rates

3.1 Nuisance parameters as arbitrary constants

For the representation involving ratios of rates let Zi = Ti/Ci , removing dependence
on γi . The density function at z is

ψ2/(1 + ψ2z)2. (1)

Standard maximum likelihood theory based on the marginal distribution of the Zi

applies. In particular, themaximum likelihood estimator ofψ based on (1) is consistent
and asymptotically normally distributedwith variance givenby the inverse of theFisher
information. The Fisher information per observation is

(2 + 2 + 8/3)ψ−2 = (4/3)ψ−2. (2)

By eliminating the nuisance parameters in this way bymarginalization, some informa-
tion on the interest parameter is in general lost, because (Z1, . . . , Zn) = S, say, is not
sufficient forψ . Further discussion of these issues is given in Sect. 7.2. A smaller vari-
ance is achievable at the expense of stronger modelling assumptions, as demonstrated
in Sect. 3.2.

3.2 Nuisance parameters as random variables

Instead of regarding the pair effects as constants we now suppose that they are random
variables independently gamma distributed of shape parameter α and rate β. Then the
joint density function of Ti and Ci at (t, c) is

βα

�(α)

∫ ∞

0
γ α+1 exp{−γ (ψ t + c/ψ + β)}dγ = �(α + 2)

�(α)

βα

(ψ t + c/ψ + β)α+2 .

(3)
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The Fisher information matrix per observation can be shown (see Appendix A.2) to
be block diagonal with the relevant entry for inference about ψ equal to

2(α + 2)

(α + 3)ψ2 . (4)

The two limits of this as α → ∞ and α → 0 are 2ψ−2 and (4/3)ψ−2, the latter
being (2), the Fisher information per observation obtained by treating the nuisance
parameters as arbitrary constants. The variance depends on the relative dispersion of
the nuisance parameters through α.

See Sect. 7.1 for a formulation in terms of unobserved covariates involving a log
normal distribution over the γi .

Equation (4) shows that the gamma random effects formulation is more efficient
than the one in which nuisance parameters are treated as arbitrary constants, provided
that the random effects specification is reasonable. The modelling assumption is more
severe, but the following analysis of the misspecified situation shows that, provided
ψ is bounded away from zero, the corresponding maximum likelihood estimator ψ̂

obtained by assuming the gamma random effects model of Sect. 3.2, converges almost
surely to ψ as n → ∞. Thus ψ̂ remains consistent in spite of an arbitrary degree of
misspecification in the assumed random effects distribution.

Let γi (i = 1, . . . , n) be independent random variables with an arbitrary density
function f (γ ). The associated joint distribution of Ti and Ci satisfies (see Appendix
A.3)

E

{
Ti

(Tiψ + Ci/ψ + β) j

}
= 1

ψ2 E

{
Ci

(Tiψ + Ci/ψ + β) j

}
( j = 1, 2, 3, . . .).

(5)

In view of the expressions for the cross partial derivatives of the log likelihood func-
tion (Eq. (28) in Appendix A.2), Eq. (5) establishes orthogonality of ψ to α and β

whatever the random effects distribution. The interpretation of the notional parameters
α and β under model misspecification is discussed below. The orthogonality justifies
consideration of the marginal maximum likelihood estimating equation for ψ , i.e.

0 = 1

n

n∑
i=1

	i,ψ (ψ̂) = 1

n

n∑
i=1

Ci

ψ̂2(Ti ψ̂ + Ci/ψ̂ + β)
− 1

n

n∑
i=1

Ti

Ti ψ̂ + Ci/ψ̂ + β
.(6)

For any κ > 0 bounded away from zero, consider

1

n

n∑
i=1

Ci

κ2(Tiκ + Ci/κ + β)
− 1

n

n∑
i=1

Ti
Tiκ + Ci/κ + β

. (7)

Under the random effects formulation, the summands are independent and identically
distributed and a law of large numbers implies convergence of the averages to their
expectations. The limiting value of the maximum likelihood estimator, as n → ∞,

123



Information Geometry (2020) 3:119–148 123

is the value of κ that equalizes the two expectations. Appendix A.4 shows that the
expectations exist and the value of κ that equalizes them is ψ . Thus ψ̂ is consistent
despite the misspecification.

An analysis of efficiency is harder. Let gθ∗ denote the density function of the true
joint distribution of (Ti ,Ci ), where θ∗ = (λ, ψ) and λ could be a finite or infinite
dimensional nuisance parameter, but the proportional ratesmodel of Sect. 2 is assumed
so thatψ captures the treatment effect. This joint density is determined by themarginal
density function of the random effects distribution f (γ ) as

gθ∗(t, c) =
∫ ∞

0
γ 2 f (γ ) exp{−γ (tψ + c/ψ)}dγ. (8)

Thus if f is not parameterized, λ is f itself. Let 
 denote the parameter space for
the erroneous gamma random effects model and let fθ (x, y) denote the misspecified
joint density function of each (Ti ,Ci ) at (x, y), given by Eq. (3). Thus we may define
θ̂ = (α̂, β̂, ψ̂) by argmaxv∈


∑n
i=1 log fv(Ti ,Ci ), which converges almost surely

(Appendix A.1) to

θ = (θ1, θ2, θ3) = argmin
v∈


∫ ∞

0

∫ ∞

0
log

gθ∗(x, y)

fv(x, y)
gθ∗(x, y)dxdy, (9)

where, from the previous derivations, θ3 = ψ , the true treatment effect. Thus α = θ1
and β = θ2 are the values that minimize the Kullback–Leibler divergence between
the assumed (erroneous) model and the true model.

By the orthogonality established in (5), a discussion of efficiency requires con-
sideration of the likelihood derivatives only with respect to ψ . In particular, by the
established consistency, a mean value expansion and standard arguments, it can be
shown that the asymptotic distribution of n1/2(ψ̂ − ψ) is Gaussian of zero mean and
variance [E{	i,ψψ(θ)}]−2E{	2i,ψ (θ)}, leading to a variance of R/(R − Q)2, where R
and Q depend in a rather complicated way on the density function f (γ ) of the true
random effects distribution. Specifically

R = 1

ψ2

{
1

3
− 2β

3
E(γi ) − β2

3
E(γ 2

i )

−β2
∫ ∞

0
γ 2 f (γ )eγβEi(−γβ)dγ − β3

3

∫ ∞

0
γ 3 f (γ )eγβEi(−γβ)dγ

}
,

Q = 1

ψ2

{
1 + β2

∫ ∞

0
γ 2 f (γ )eγβEi(−γβ)dγ − βE(γi )

}
. (10)

Here Ei(x) is the exponential integral [17, equation 3.07] thus, in Eq. (10),

Ei(−γβ) = −
∫ ∞

γβ

z−1e−zdz, γβ > 0,

and because the γi are treated as totally random, E(γ κ
i ) = ∫ ∞

0 γ κ f (γ )dγ .
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In a correctly specified situation, {E(	i,ψψ)}−2E(	2
i,ψ ) is the inverse Fisher infor-

mation. When the random effects are gamma distributed of parameter α and rate β, as
assumed, Q = 2(α+2)−1ψ−2 and R = 2(α+3)−1(α+2)−1ψ−2 so that R/(R−Q)2

is 2−1(α + 2)−1(α + 3)ψ2, i.e. the reciprocal of Eq. (4). While formula (10) does not
seem amenable to detailed interpretation under misspecification, it serves to illustrate
complicated dependence on key aspects of the formulation.

Table 4 of Sect. 6.2 shows that the loss of efficiency in the gamma model for
random effects can be severe when the sample size is not large and when the random
effects distribution is misspecified. Thus, while the random effects formulation is in
principle always feasible for nuisance parameter problems, the adequacy of the choice
of random effects distribution, often made on the basis of mathematical convenience,
needs consideration. A discussion in the context of the present example is in Sect. 5.

4 Exponential matched pairs with additive rates

When the nuisance parameters ρi of the additive treatment effects model (see Sect. 2)
are treated as arbitrary constants, the inference is based on conditioning on the suf-
ficient statistic for the nuisance parameter in each pair [12]. We extend their results
slightly by giving explicit expressions for the conditional and unconditional variances
of the estimator. The likelihood contribution from the i th pair is

(ρ2
i − �2) exp{−ρi (ti + ci )} exp{−�(ti − ci )}. (11)

Thus Ti + Ci is sufficient for ρi and this leads to inference based on the difference
Ti − Ci , or equivalently Ti given the pairwise totals Ti + Ci = Si , say. The density
function of Si at s is

(ρ2
i − �2){e−(ρi−�)s − e−(ρi+�)s}/(2�). (12)

Some algebra shows that the conditional density function of Ti at t given Si = si is,
for � > 0,

2�e−2�t

1 − e−2�si
. (13)

Let �̂ denote the maximum likelihood estimator of � based on the conditional
density function (13). The Fisher information of �̂, conditional on Si = si is

n

�2 − 4
n∑

i=1

s2i e
−2�si

(1 − e−2�si )2
= n

�2 −
n∑

i=1

s2i sinh
−2(�si ), (14)

where s sinh−1(�s) < �−1 for all s > 0 and lims→0{s sinh−1(�s)} = �−1 so that
the conditional Fisher information is non-negative. For planning, the unconditional
Fisher information is relevant. This is used for determining the sample size required
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to achieve a pre-specified conditional efficiency with high probability, and is obtained
by replacing the i th summand by

(ρ2
i − �2)

2�

∫ ∞

0

s2(e�s − e−�s) exp(−ρi s)

sinh2(�s)
ds

= (ρ2
i − �2)

�

∫ ∞

0

s2 exp(−ρi s)

sinh(�s)
ds = (ρ2

i − �2)

4�4

∫ ∞

0

t2e−qt

1 − e−t
dt, (15)

where q = (ρi + �)/(2�) and in the last line we have changed variables to t = 2�s.
The integral and summation representations of Riemann’s generalized zeta function
are [21, p265–66]

ζ(z, q) = 1

�(z)

∫ ∞

0

t z−1e−qt

1 − e−t
dt =

∞∑
m=0

1

(q + m)z
,

and the unconditional Fisher information is, from (15),

n

�2 − 1

2�4

n∑
i=1

(ρ2
i − �2)ζ {3, (ρi + �)/(2�)}. (16)

Section 6.1 confirms the above calculations by simulation.
Among other possibilities, the pair effects might be assumed to have a gamma

distribution of parameter α and rate β starting at �, leading to a joint density function
of Ti and Ci at (t, c) given by

αβα exp(−2�t)

(t + c + β)α+1

{
α + 1

t + c + β
+ 2�

}
. (17)

Standard maximum likelihood theory applies when the random effects distribution is
correctly specified. An analysis of misspecification of this model is complicated by
the fact that the parameters α and β are not orthogonal to � under arbitrary misspec-
ification. Thus a full theoretical analysis of the kind developed in Sect. 3.2 will not
be explored for the maximum likelihood estimator �̃ based on Eq. (17). However
Table 5 of Sect. 6.2 provides numerical evidence that severe loss of efficiency can
result, relative to the version that treats the nuisance parameters as arbitrary constants.
Consistency of �̃ is also suspect. A referee asked whether there is any mathematically
convenient distribution for the nuisance parameters that results in orthogonality of the
nuisance parameters to the interest parameter � in the additive rates model in spite of
possible misspecification. In principle, if the true distribution of Ti and Ci is known
and given in terms of parameters (�, α, β), say, a reparameterization to (�, λ, η),
say, can always be found such that λ and η are orthogonal to �. This entails solving
the pair of differential equations

i∗αα

∂α(�, λ, η)

∂�
+ i∗βα

∂β(�, λ, η)

∂�
= −i∗�α
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i∗αβ

∂α(�, λ, η)

∂�
+ i∗ββ

∂β(�, λ, η)

∂�
= −i∗�β,

initially to determine the dependence of α and β on � and ultimately choosing λ and
η as detailed by Cox and Reid [9]. However, in the above display i∗αβ , i

∗
�β , etc. are

the expectations of the second cross partial derivatives of the assumed log likelihood
function, taken with respect to the true model. These expressions differ depending on
the form of misspecification. An extension of the ideas of Cox and Reid [9] to accom-
modate arbitrary misspecification is an important question which demands further
study, ideally in full generality.

5 Assessment of model adequacy

In the above two models, exact tests of model adequacy are available. Sufficiency
represents a separation of the information in the data into that relevant for estimating
the parameters of a given model and that relevant for assessing the adequacy of the
model [6, p.29]. Suppose that the proportional treatment effect model of Sect. 3 holds.
The likelihood contribution from the i th pair is

γ 2
i exp(−γi ci/ψ) exp(−γiψ ti ). (18)

From this, for any given ψ , Ci/ψ + Tiψ = Si (ψ), say, is sufficient for γi and has
density function

fSi (ψ)(s) = γ 2
i s exp(−γi s), (19)

i.e., Si (ψ) is gamma distributed with shape parameter 2 and rate parameter γi .
The model and an arbitrarily specified parameter valueψ = ψ0 are jointly compat-

ible with the data if the realization of Ti , say, is not extreme relative to the conditional
density function of Ti given Si (ψ) = si (ψ), assuming ψ = ψ0. The conditional
density of Ti at ti , given Si (ψ) = si (ψ), is

γ 2
i exp{−γi si (ψ)}

γ 2
i si (ψ) exp{−γi si (ψ)} = 1

si (ψ)
, (20)

showing that Ti | {Si (ψ) = si (ψ)} is uniformly distributed between 0 and si (ψ).
For any hypothesized value ψ0 of ψ , compatibility of the proportional treatment

effects model and ψ0 with the data corresponds to compatibility of the realizations of
Ti/si (ψ0) = Ui (ψ0), say, with a uniform distribution on (0,1) for all i = 1, . . . , n.
This is a basis for checking consistencywith the proportionalmodel.More specifically,
an α-level confidence set using Fisher’s [11, section 21.1] test is

C(α) �
(

ψ0 ∈ � : min

[
F

{
−2

n∑
i=1

logUi (ψ0)

}
, 1 − F

{
−2

n∑
i=1

logUi (ψ0)

}]
< α

)
,

(21)

123



Information Geometry (2020) 3:119–148 127

where F is the distribution function of a χ2 random variable with 2n degrees of
freedom. If the confidence set is non-empty at a specified level, there are at least some
values of ψ0 for which the proportional treatment effects model is compatible with
the data at this level.

For sufficiently large sample size, one might treat ψ̂ as fixed and equal to ψ under
the null hypothesis that the model is true. The adequacy of this assumption can then be
assessed by checking the compatibility of the realizations of Ti/si (ψ̂) for i = 1, . . . , n
with a uniform distribution on (0, 1).

The same ideas allow the adequacy of the a random effects model to be checked.
In particular, for any given ψ , the collection of weighted sums Si (ψ) for i = 1, . . . , n
is sufficient for the nuisance parameters α and β, as can be seen from Eq. (3). One
could condition as above.

For sufficiently many pairs, however, a simpler option is available due to the small
number of nuisance parameters in the random effects model. The distribution function
at s of Si = Ti + Ci under the gamma random effects model is given by

1 − βα

ψ2 − 1

{
ψ2

(β + s/ψ)α
− 1

(β + sψ)α

}
. (22)

Since the maximum likelihood estimators α̃, β̃ and ψ̃ are consistent and completely
specify the model, for sufficiently many individuals it may often be a reasonable
approach to consider these as fixed and equal to the true values α, β and ψ under the
null hypothesis that the gamma random effects model is correctly specified. Making
this replacement in Eq. (22) and evaluating the distribution function at the points Si
for i, . . . , n leads to approximately standard uniformly distributed points under the
null hypothesis, and Fisher’s [11, section 21.1] test is applicable.

Similar arguments apply to the additive effects model. Section 4 shows that Si =
Ti +Ci is sufficient for the nuisance parameter ρi , so that the conditional density of Ti
given Si = si is free of ρi and is given by Eq. (13). In Sect. 4, this justified estimation of
the treatment effect� bymaximization of the conditional likelihood based on (13). To
assess model adequacy it is necessary to condition on the jointly sufficient statistic for
all unknown parameters. Thus, as in the proportional rates formulation, one must fix
� at hypothesized values leading to a joint assessment of the adequacy of the additive
effects model at an arbitrary but given value �0 of the interest parameter. The model
and a value �0 are compatible with the data at a particular level if T1, . . . , Tn are
not extreme relative to what would be expected under their joint conditional density
assuming � = �0, i.e.,

n∏
i=1

fTi |Si=si (zi ;�0) =
n∏

i=1

2�0e−2�0zi

1 − e−2�0si
.

As in the proportional rates model, For sufficiently large sample size, one might
reasonably treat �̂ as fixed and equal to � under the null hypothesis that the additive
rates model is true and proceed as above using �̂ in place of �0 to assess the model.
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There are situations where exact tests of model adequacy based on these principles
do not seem feasible. One example in the spirit of this work would be an exponential
matched pair problem inwhich Ti andCi have a stable difference inmeans. In Sect. 7.2,
we explain in more general terms how the structure of the inference problem dictates
the appropriate strategy.

6 Empirical validation and numerical extensions

6.1 Fixed nuisance parameters

Throughout the following numerical work ψ = � = 2. For several different values
of n we generate (γi )

n
i=1 from a gamma distribution of shape α = 1 and rate β = 1,

and we define ρi = � + γi so that ρi − � > 0. The nuisance parameters (γi )
n
i=1 and

(ρi )
n
i=1 are then fixed over Monte Carlo replications.

In each of R = 1000 Monte Carlo replications, T (PR)
i and C (PR)

i (i = 1, . . . , n)
are generated independently from exponential distributions of rates γiψ and γi/ψ

respectively, and T (AR)
i and C (AR)

i are generated from exponential distributions of
rates ρi +� and ρi −�. The parameterψ in the proportional rates model is estimated
by maximum likelihood based on the density function of T (PR)

i /C (PR)
i of Eq. (1). Let

ψ̂n denote this estimator.
The sample variance of ψ̂n over the 1000 Monte Carlo replications is reported in

the second row of Table 1, with an estimate of its theoretical standard error in the third
row. This is based on the χ2 distribution with R− 1 degrees of freedom of the sample
variance. The theoretical variance of ψ̂n is asymptotically (as n → ∞) the inverse of
the Fisher information. Its theoretical value obtained from Eq. (2) is reported below
the row of standard errors. The values in the second and the fourth rows agree for large
n.

We also report the results fromfitting a gamma randomeffectsmodel to T (PR)
i ,C (PR)

i
for i = 1, . . . , n. Let ψ̃n denote the corresponding maximum likelihood estimator of
ψ . This model is misspecified but the efficiency of ψ̃n is high. However the model is
not severely misspecified because the (γi )

n
i=1 are generated from a gamma distribution

before being fixed across Monte Carlo replications. In Sect. 6.2, we consider the effect
of more severe misspecification of the random effects distribution.

The parameter � from the additive rates model is estimated using maximum like-
lihood based on the conditional density function of T (AR)

i given the realization of

T (AR)
i + C (AR)

i . This is Eq. (13). Let �̂n denote this maximum likelihood estimator.
The Monte Carlo variance of �̂n is reported in the second row of Table 2, with its
estimated theoretical standard error in the third row. The unconditional variance based
on Eq. (16) is reported in the fourth row together with the Monte Carlo average of the
conditional variances based on (14) in the fifth row. The two agree to a close approx-
imation and they also agree with the Monte Carlo sample variances for sufficiently
large n.
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6.2 Randomly generated nuisance parameters

The simulation studies are the same as in Sect. 6.1 except that (γi )ni=1 and the (ρi )
n
i=1

are generated anew in each Monte Carlo replication. Thus the models in which these
nuisance parameters are treated as arbitrary constants are misspecified. In particular,
dependence between both versions of Ti and Ci is induced by the generating mecha-
nism for γi and ρi .

Table 3 contains analogous information to the top three rows of Table 1 for the
misspecified case. The theoretically true variances have not been calculated and so are
not reported.However, the sample variances are very close to the theoretical asymptotic
variances that would obtain if the nuisance parameters were arbitrary constants (cf.
fourth row of Table 1). We also report the Monte Carlo variance of ψ̃n , now under
a correctly specified model, and its theoretical asymptotic variance based on Eq. (4).
Comparing the fifth and last rows of Table 3, these agree for sufficiently large n.

To assess the efficiency of ψ̃n under fairly extreme misspecification of the random
effects distribution, we conduct the same experiment but with the (γi )

n
i=1 drawn from

a log normal distribution with scale parameter τ = 10. For comparison, the Monte
Carlo variances of ψ̂n are also reported in Table 4. The conclusion from this analysis is
that while ψ̂n , justified under the assumption that the nuisance parameters are arbitrary
constants, has a stable variance when the nuisance parameters are drawn from a rather
extreme random effects distribution, the variance of ψ̃n is appreciably larger when the
random effects distribution is misspecified in this way.

We now consider the effect of misspecification of the random effects distribution
in the additive rates model by comparing the estimator �̂ of Sect. 4 to the maximum
likelihood estimator �̃obtainedby erroneously assuming that the joint density function
of Ti and Ci is given by Eq. (17). Rather than being a gamma distribution starting at
�, the true distribution of the ρi is a log normal distribution of scale parameter τ = 10
starting at�. Although the theoretical variance of �̂ has not been calculated under the
random effects formulation, the ones based on Eqs. (16) and (14) are reported in the
fourth and fifth rows of Table 5. As before, the estimated standard errors in the third
and eighth rows are based on a χ2 distribution with R − 1 degrees of freedom for the
sample variance, where R is the number of Monte Carlo replications.

6.3 Assessment of model adequacy in the proportional rates model

To illustrate the ideas in Sect. 5 we consider the data generating process corresponding
to Table 1 with ψ = 1. This is the value of ψ that equalises the distributions of
responses for treated individuals and controls. In each of 1000MonteCarlo replications
we calculate Ti/si (ψ0) = Ui (ψ0) for all ψ0 between zero and three in increments of
0.01 and for i = 1, . . . , nwith the values of n reported inTable 6.Weuse the composite
of these values to produce a confidence set for ψ as in Eq. (21). Table 6 reports the
simulated coverage probabilities of the α-level confidence sets for α ∈ {0.01, 0.05}.
While the confidence sets need not be intervals in general, they turned out to be
intervals in all our Monte Carlo replications, thus we report the mean lower and upper
boundaries of these confidence intervals, averaged over Monte Carlo replications.
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The interpretation of the numbers in Table 6 is that the proportional rates model
with fixed nuisance parameters is compatible with the data at level α for any value of
ψ0 taking values in C(α) defined by Eq. (21).

7 Discussion and open problems

7.1 A synthesis with earlier literature

The choice of random effects distribution in Sect. 3.2 was primarily one of mathemat-
ical convenience. It coincides with typical usage in applications and raises conceptual
issues: (i) To what extent is the random effects formulation a plausible representation
of the data generating mechanism? (ii) Are there statistical advantages of assuming
a parametric random effects model even if the formulation is physically implausi-
ble? (iii) Are there statistical advantages of treating nuisance parameters as arbitrary
constants when there is a probabilistic generating mechanism for them?

Our analysis has shown the need to be wary of assumptions made for mathematical
convenience with no substantive basis. The following example shows how a different
distribution for the random effects may be more plausible, leading to the situation
considered in Table 4. The comparison to Table 1 shows that the approach in which
nuisance parameters are treated as arbitrary constants is noticeably preferable to the
approach in which the incorrect parametric random effects distribution is used.

Suppose, in the notation of Sect. 3, that one models the nuisance parameters as
γi = exp(xTi θ), where the xi are covariates that one could have, but did not, measure.
If individuals are sampled completely at random from a larger population, it is not
unreasonable to treat the covariates as realizations of random variables Xi , assumed
to be i.i.d. copies of X , a p-dimensional normally distributed random vector of mean
zero and covariance matrix � = Q�QT , where Q is a matrix whose columns are
the unit-length eigenvectors of �. To derive the induced distribution over the γi , write
W � θT X = θT Q�1/2V , where V is a standard normally distributed random vector.
We have W = ‖θT Q�1/2‖2‖V ‖2R, where R is the cosine of the angle between V
and �1/2QT θ , whose density function is given by (Fisher, 1915)

fR(r) = �(p/2)√
π�{(p − 1)/2} (1 − r2)(p−3)/2, −1 < r < 1,

and ‖V ‖22 is a Chi squared random variable with p degrees of freedom, so that D �
‖V ‖2 has density function

fD(δ) = δ p−1 exp(−δ2/2)

2(p/2)−1�(p/2)
, δ ≥ 0.

The characteristic function of W is

φW (t) = ER{φD(‖θT Q�1/2‖2t R)} = ED{φR(‖θT Q�1/2‖2t D)},
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where for any random variable Y , φY (t) = EY (eitY ). Let s = ‖θT Q�1/2‖2t . Direct
calculation gives

φW (t) = K−1
∫ ∞

0

∫ 1

−1
exp{−δ2/2 + isδr}δ p−1(1 − r2)(p−3)/2drdδ

	 K−1
∫ ∞

0
exp{−δ2/2}δ p−1

∫ 1

−1
exp{isδr − (p/2)r2}drdδ, p → ∞

where K = √
π2(p/2)−1�{(p − 1)/2}. Since ∫ 1

−1 exp{−(p/2)r} sin(sδr)dr = 0,

∫ 1

−1
exp{isδr − (p/2)r2}dr =

∫ 1

−1
exp{−(p/2)r2} cos(sδr)dr

= exp{−(sδ)2/2p}√2π

p1/2
−

(∫ −1

−∞
+

∫ ∞

1

)
exp{−(p/2)r2} cos(sδr)dr ,

and the remainder terms are ignored for p → ∞, leading to

φW (t) 	 {1 + (s2/p)}−p/2�(p/2)
√
2

�{(p − 1)/2}p1/2 , p → ∞

Using Stirling’s formula in the form �(k + a)/�(k) 	 ka for large k,

φW (t) 	 (1 + s2/p)−p/2 	 e−s2/2 (p → ∞),

where e−s2/2 = e−(‖�1/2QT θ‖22/2)t2 is the characteristic function of a centred normal
random variable with standard deviation τ � ‖�1/2QT θ‖2. Under this generating
mechanism for the covariates, γi are thus log-normally distributed, with density func-
tion

(τγ )−1φ(log γ /τ), (23)

where φ(·) is the standard normal density.
While this formulation is to some extent physically justifiable, the integral (8) does

not appear to have an analytic solution when f (γ ) is given by (23). This illustrates
that random effects models are likely to be driven by mathematical convenience,
highlighting the importance of studies of misspecification.

After completing this paper, we were made aware of a related contribution by
Lindsay [16]. The work showed that straight maximum likelihood estimation (with-
out preliminary manoeuvres based on the factorizability of the likelihood function)
is consistent in a particular class of incidental parameter models. Specifically, those
models for which there is a complete sufficient statistic Si (ψ) for the nuisance param-
eter λi , with ψ treated as fixed. This situation covers the exponential matched pairs
problems with multiplicative treatment effect on the rates (Sect. 3.1) and with additive
treatment effect on the rates (Sect. 4) but not the exponential matched pairs problem
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with additive treatment effect on the means. Despite consistency of the maximum
likelihood estimator, the standard estimator of the variance of the maximum likeli-
hood estimator is seriously distorted in these settings, the true variance typically being
appreciably larger than that based on the supposed inverse Fisher information.

Lindsay considered estimation of the interest parameter by parametric random
effects models and showed that the efficiency achievable by the resulting estimator is
higher than straight maximum likelihood provided that a reasonable choice of para-
metric model for the random effects is used, even if this random effects distribution
is misspecified. The appropriate conditions are essentially that the parameters of the
parametric random effects distribution be orthogonal in the sense of Cox and Reid
[9]. Parameter orthogonality arose in our derivations in Sect. 3.2 via Eq. (5) and its
derivation in Appendix A.3. Lindsay [16] does not discuss the potential for appre-
ciable loss of efficiency over conditional or marginal likelihood, as opposed to full
maximum likelihood, by erroneously assuming a parametric random effects model.
This potential loss of efficiency is illustrated by our Eq. (10). The synthesis of Lind-
say’s analysis and ours is that, while a random effects formulation can lead to increased
precision over straight maximum likelihood even when the random effects distribu-
tion is misspecified, provided that the parameters of the random effects distribution
are orthogonal to the interest parameters, there is potential for appreciable loss of effi-
ciency overmarginal and conditional likelihoodwhen the corresponding factorizations
of the likelihood function are available.

7.2 Open problems

Issues connected with an appreciable number of nuisance parameters are likely to arise
whenever a relatively complicated model is needed. In principle, analyses similar to
those of Sects. 3–5 could be performed for other distributions. See Cox [8] for a
binary responses formulation that parallels the proportional rates model of Sect. 3.
Our existing work does not, however, generalize readily and the detailed calculation
required for other distributional assumptions is likely to be considerable. Nevertheless,
some general principles can be extracted from the previous discussion. Let ψ be an
interest parameter and λ be a nuisance parameter. Either or both may be vectors. One
starts from an arbitrary pair of observations (T ,C), or more generally an arbitrary
partition, and makes a bijective transformation (T ,C) → (S, R) such that one of
factorizations (i)–(v) holds, where:

(i) fS,R(s, r;ψ, λ) = fR|S(r |s; λ) fS(s;ψ),
(ii) fS,R(s, r;ψ, λ) = fR|S(r |s;ψ) fS(s; λ),
(iii) fS,R(s, r;ψ, λ) = fR(r; λ) fS(s;ψ),
(iv) fS,R(s, r;ψ, λ) = fR|S(r |s; λ,ψ) fS(s;ψ),
(v) fS,R(s, r;ψ, λ) = fR|S(r |s;ψ) fS(s;ψ, λ).

Factorization (i) requires marginalization with S sufficient for ψ , (ii) requires con-
ditioning on S, which is now the sufficient statistic for λ. In (iii) the jointly
sufficient statistic is two independent sufficient statistics so that conditioning reduces
to marginalization. Marginalization is applicable in (iv), in which R|S is sufficient for
λ, and conditioning in (v), in which S is sufficient for λ, but information on ψ is lost
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in either case. The exponential proportional rates model and the exponential additive
rates model are examples of factorizations (iv) and (v) respectively.

Our suggestion of Sect. 5 provides a unified approach to assessing the joint compat-
ibility of a model and its parameter values with the data, and is justified in any situation
for which one of factorizations (i)–(v) holds exactly. An important open question is the
construction of appropriate factorizations, exact or approximate, in greater generality.
We conclude by an outline of the considerations involved.

For an arbitrary pair (t, c) of jointly sufficient statistics, write the transformation
equations as s = s(t, c), and r = r(t, c). The transformation is assumed to be bijective
so that t = t(s, r) and c = c(s, r). For factorizations (i), (iii) or (iv) to be true, we
require that fS(s;ψ, λ) = fS(s;ψ), and similarly for (ii) and (v).

The general form of a solution to fS(s;ψ, λ) = fS(s;ψ) is to express the unknown
density of S in terms of the known joint density of T and C . For instance,

fS(s;ψ, λ) = 1

2π i

∫ τ+i∞

τ−i∞
exp{zs(t, c)}Tλ(z)dz,

where τ is anywhere in the strip of convergence of the moment generating function
of S and

Tλ(z) =
∫ ∞

−∞

∫ ∞

−∞
exp{−zs(x, y)} fT ,C (x, y;ψ, λ)dxdy, z ∈ C.

The only contribution of λ comes from Tλ, so it is sufficient to choose the function
s(t, c) to make Tλ independent of λ, identically in z, ψ and λ. It would be enough
that independence be achieved only at points z of singularity, but this is more difficult.
There results the following integral equation, to be solved for s(t, c), identically in z,
ψ , and λ:

∫ ∞

−∞

∫ ∞

−∞
exp{−zs(t, c)}

{
∂

∂λ
fT ,C (t, c;ψ, λ)

}
dtdc = 0. (24)

In the exponential matched pair problem with proportional rates (Sect. 3), Eq. (24)
becomes

0 =
∫ ∞

0

∫ ∞

0
exp{−zs(t, c)}

{
2λ − λ2(ψ t + c/ψ)

}
exp(−λψ t) exp(−λc/ψ)dtdc.

(25)

While it is simple to show that s(t, c) = t/c verifies Eq. (25), recovering the strategy
of Sect. 3.1, a general theory relies on a solution to the integral Eq. (24) when s(t, c)
is not known a priori.

An alternative general formulation to that based onLaplace transforms uses the joint
density function of S and R. Specifically, for factorization (i), (iii) or (iv) consider

fS(s;ψ, λ) =
∫
R

fS,R(s, r;ψ, λ)dr
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=
∫
R

fT ,C {t(s, r), c(s, r);ψ, λ} |det{J(T ,C)→(S,R)}|dr ,

where J(T ,C)→(S,R) is the Jacobian of the transformation (T ,C) → (S, R). Thus, for
the marginal density to be independent of λ, we require the solution in t(s, r) and
c(s, r) of the set of partial integro-differential equations:

∫
R

(
∂t(s, r)

∂s

∂c(s, r)

∂r
− ∂t(s, r)

∂r

∂c(s, r)

∂s

)
∂

∂λ
fT ,C {t(s, r), c(s, r);ψ, λ} dr = 0,

∫
R

(
∂t(s, r)

∂r

∂c(s, r)

∂s
− ∂t(s, r)

∂s

∂c(s, r)

∂r

)
∂

∂λ
fT ,C {t(s, r), c(s, r);ψ, λ} dr = 0,

(26)

identically in λ and ψ .
In connection with these ideas there are a number of open problems with a differ-

ential geometrical bearing:

1. When there are nuisance parameters two approaches are to transform the data
and marginalize or condition based on factorizations (i)–(v) above, or to find an
interest-respecting orthogonal transformation as in Cox and Reid [9]. It is natural to
expect there to be a connection between the two, and for this to be characterizable
geometrically.

2. Is there a geometric representation of conditioning to evade nuisance parameters,
and if so, how is this different geometrically to conditioning to ensure relevance
[1]?

3. Differential geometric treatments of asymptotic inference (e.g. [1–3,5,13]) hinge
on looking locally in the parameter space of fixed number of dimensions as the
amount of information becomes so large that interest is focused on a small region.
As such it does not seem directly applicable when the dimension of the parameter
space is itself very large which is the situation considered in the present paper. Is
there an extension of these ideas suitable for the incidental parameter problems of
the present paper?

The analysis of Sect. 3.2 also hints at amore general analysis ofmodelmisspecification.
There are important open questions. For instance: when is inference on an interest
parameter relatively unaffected by misspecification of the nuisance part of the model?
What type of misspecification is the inference robust to and how does this depend on
the structure of the model and the loss function used for estimation? In what sense is
the inference robust? For instance consistency may be achievable but efficiency lost.
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ADerivations of key results

A.1 Derivation of Eq. (9)

The argmax is unchanged by rescaling and subtraction of constants. Dividing by n
and subtracting n−1 ∑n

i=1 log gθ∗(Ti ,Ci ) shows that

θ̂ = argmax
v∈


1

n

n∑
i=1

log
fv(Ti ,Ci )

gθ∗(Ti ,Ci )
.

The summands are identically distributed and of finite expectations, therefore θ̂ con-
verges almost surely to

θ = (θ1, θ2, θ3) = argmin
v∈


∫ ∞

0

∫ ∞

0
log

gθ∗(x, y)

fv(x, y)
gθ∗(x, y)dxdy.

A.2 Derivation of Eq. (4)

The second derivative of the log likelihood for the i th pair with respect to ψ is

	i,ψψ = −(α + 2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2CiTi
ψ2(ψTi + Ci/ψ + β)2︸ ︷︷ ︸

I1

− C2
i

ψ4(ψTi + Ci/ψ + β)2︸ ︷︷ ︸
I2

+ 2Ci

ψ3(ψTi + Ci/ψ + β)︸ ︷︷ ︸
I3

− T 2
i

(ψTi + Ci/ψ + β)2︸ ︷︷ ︸
I4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (27)

and the two cross-partial derivatives with respect to ψ are

	i,ψα = Ti − Ci/ψ
2

(Tiψ + Ci/ψ + β)
, 	i,ψβ = − (α + 2)(Ti − Ci/ψ

2)

(Tiψ + Ci/ψ + β)2
.

(28)
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The expectations of both terms in (28) are zero because, for any κ ,

∫ ∞

0
t

{∫ ∞

0
(tψ + c/ψ + β)−κdc

}
dt = ψ

(κ − 1)

∫ ∞

0
t(tψ + β)−(κ−1)dt, (29)

ψ−2
∫ ∞

0
c

{∫ ∞

0
(tψ + c/ψ + β)−κdt

}
dc = 1

ψ3(κ − 1)

∫ ∞

0
c(c/ψ + β)−(κ−1)dc.

(30)

Changing variables to z = tψ and z = c/ψ in (29) and (30) shows that both integrals
are equal to

1

ψ(κ − 1)

∫ ∞

0
z(z + β)−(κ−1)dz,

so that terms cancel when taking expectations in (28). It follows that the Fisher infor-
mation matrix per observation is block diagonal with the relevant block equal to the
negative expectation of (27), specifically

(α + 2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

(α + 2)(α + 3)ψ2︸ ︷︷ ︸
E(I1)

− 2

(α + 2)(α + 3)ψ2︸ ︷︷ ︸
E(I2)

+ 2

(α + 2)ψ2︸ ︷︷ ︸
E(I3)

− 2

(α + 2)(α + 3)ψ2︸ ︷︷ ︸
E(I4)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 2(α + 2)

(α + 3)ψ2 .

This is (4).

A.3 Derivation of Eq. (5)

Consider j = 1 and let K be the normalizing constant for the joint density of Ti and
Ci . Then

E1 � E

(
Ti

Tiψ + Ci/ψ + β

)

= 1

K

∫ ∞

0
γ 2 f (γ )

{∫ ∞

0
e−γ c/ψ

(∫ ∞

0

te−γ tψdt

tψ + c/ψ + β

)
dc

}
dγ.

Direct calculation shows that the inner integral is

ψ−2[γ −1 + eγ c/ψeγβ(c/ψ + β)Ei{−γ (c/ψ + β)}],

so that, changing variables to z = γ (c/ψ + β) gives

E1 = 1

ψ2K

∫ ∞

0
γ 2 f (γ )

{
γ −1

∫ ∞

0
e−γ c/ψdc + eγβψγ −2

∫ ∞

γβ

zEi(−z)dz

}
dγ
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= 1

ψK

∫ ∞

0
f (γ )

{
1 + eγβ

∫ ∞

γβ

zEi(−z)dz

}
dγ.

Now consider

E2 � 1

ψ2 E

(
Ci

Tiψ + Ci/ψ + β

)

= 1

ψ2K

∫ ∞

0
γ 2 f (γ )

{∫ ∞

0
e−γ tψ

(∫ ∞

0

ce−γ c/ψdc

tψ + c/ψ + β

)
dt

}
dγ.

The inner integral is

ψ2[γ −1 + eγ tψeγβ(tψ + β)Ei{−γ (tψ + β)}].

Integrating with respect to t and changing variables to z = γ (tψ + β) in the second
term gives

E2 = 1

K

∫ ∞

0
γ 2 f (γ )

{
γ −1

∫ ∞

0
e−γ tψdt + eγβψ−1γ −2

∫ ∞

γβ

zEi(−z)dz

}
dγ

= 1

ψK

∫ ∞

0
f (γ )

{
1 + eγβ

∫ ∞

γβ

zEi(−z)dz

}
dγ = E1.

The demonstration is analogous for other j ∈ N, the integrals being identical up to
the ψ2 term that arises from the same changes of variables used above.

A.4 Proof of consistency of themaximum likelihood estimator

By the argument following Eq. (7), it is required to show that the κ that equalizes the
expectation of Ci/{κ2(Tiκ +Ci/κ + β} and Ti/{Tiκ +Ci/κ + β} is κ = ψ , and that
these expectations exist for any κ and ψ bounded away from zero.

Consider

IT � E

(
Ti

κTi + Ci/κ + β

)

= 1

K

∫ ∞

0
γ 2 f (γ )

∫ ∞

0
e−γ c/ψ

(∫ ∞

0

te−γ tψdt

tκ + c/κ + β

)
dcdγ,

where, as before, K is the normalizing constant for the joint density function of Ti
and Ci . Direct calculation shows that the innermost integral is

eγ (c/κ+β)ψ/κ

κ2

[
e−γ (c/κ+β)ψ/κ

γψ/κ
+ (c/κ + β)Ei{−γ (c/κ + β)ψ/κ}

]
. (31)
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Similarly,

IC � 1

κ2 E

(
Ci

Tiκ + Ci/κ + β

)

= 1

κ2K

∫ ∞

0
γ 2 f (γ )

∫ ∞

0
e−γ tψ

(∫ ∞

0

ce−γ c/ψdc

tκ + c/κ + β

)
dtdγ,

and the innermost integral is

κ2eγ (κt+β)κ/ψ

[
e−γ (κt+β)κ/ψ

γ κ/ψ
+ (κt + β)Ei{−γ (κt + β)κ/ψ}

]
. (32)

Changing variables to z = (c/κ + β) in (31) and s = (κt + β) in (32) shows that

IT = 1

κK

∫ ∞
0

γ 2 f (γ )eγβκ/ψ

∫ ∞
β

e−γ zκ/ψeγ zψ/κ

[
e−γ zψ/κ

γψ/κ
+ zEi(−γ zψ/κ)

]
dzdγ

IC = 1

κK

∫ ∞
0

γ 2 f (γ )eγβψ/κ

∫ ∞
β

e−γ sψ/κeγ sκ/ψ

[
e−γ sκ/ψ

γ κ/ψ
+ sEi(−γ sκ/ψ)

]
dsdγ.

If both these integrals exist, the limit of ψ̂ is the unique value of κ that sets IT = IC ,
i.e. κ = ψ . Since the exponential integral Ei(−x) is negative for x > 0, IT and IC
are both upper bounded by (κK )−1

∫ ∞
0 f (γ )dγ = (κK )−1 < ∞ for all κ bounded

away from zero. This justifies the previous use of the a strong law of large numbers.
Thus ψ̂ converges almost surely to ψ .

A.5 Derivation of Eq. (10)

The squared derivative with respect to ψ of the likelihood contribution from the i th
pair is

	2
i,ψ = (α + 2)2(t − c/ψ2)2

(tψ + c/ψ + β)2
.

Taking expectations, E(	2
i,ψ ) = T1 + T2 − T3, where

T1 = (α + 2)2
∫ ∞

0
γ 2 f (γ )

∫ ∞

0
t2e−γ tψ

∫ ∞

0

e−γ c/ψdc

(tψ + c/ψ + β)2
dtdγ,

T2 = (α + 2)2

ψ4

∫ ∞

0
γ 2 f (γ )

∫ ∞

0
c2e−γ c/ψ

∫ ∞

0

e−γ tψdt

(tψ + c/ψ + β)2
dcdγ,

T3 = 2(α + 2)2

ψ2

∫ ∞

0
γ 2 f (γ )

∫ ∞

0
te−γ tψ

∫ ∞

0

ce−γ c/ψdc

(tψ + c/ψ + β)2
dtdγ.
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Consider T1. A change of variables to z = (tψ + c/ψ + β) leads to

∫ ∞

0

e−γ c/ψdc

(tψ + c/ψ + β)2
= ψeγβeγ tψ

[
e−γ (tψ+β)

tψ + β
+ γEi{−γ (tψ + β)}

]
.

The term eγ tψ cancels with e−γ tψ so that the relevant integrals with respect to t are

∫ ∞

0

t2e−γ (tψ+β)

tψ + β
dt = ψ−3[{γ −2 − (β/γ )}e−γβ − β2Ei(−γβ)]

γ

∫ ∞

0
t2Ei{−γ (tψ + β)} = ψ−3

[
γ −2

∫ ∞

γβ

z2Ei(−z)dz

−β2
∫ ∞

γβ

Ei(−z)dz − 2βγ −1
∫ ∞

γβ

zEi(−z)dz

]
.

Integration by parts shows that
∫
zb−1Ei(−z)dz = b−1{zbEi(−z)+�(b, z)} and there

is the recursive formula �(b + 1, z) = b�(b, z) + zbe−z so that �(1, γβ) = e−γβ

and
∫ ∞

γβ

z2Ei(−z)dz = −1

3
[(γβ)3Ei(−γβ) + {(γβ)2 + 2(γβ) + 2}e−γβ ]

∫ ∞

γβ

zEi(−z)dz = −1

2
[(γβ)2Ei(−γβ) + (γβ + 1)e−γβ ]

∫ ∞

γβ

Ei(−z)dz = −{γβEi(−γβ) + e−γβ}.

We thus obtain

T1 = (α + 2)2

ψ2

[
1

3
− 2β

3
E(γi ) − β2

3
E(γ 2

i )

−β2
∫ ∞

0
γ 2 f (γ )eγβEi(−γβ)dγ − β3

3

∫ ∞

0
γ 3 f (γ )eγβEi(−γβ)dγ

]

and an analogous calculation shows that T2 = T1.
Consider T3. The inner integrals are

∫ ∞

0

ce−γ c/ψ

(tψ + c/ψ + β)2
dc = −ψ2eγ tψeγβ

[
Ei{−γ (tψ + β)}

+e−γ (tψ+β) + γ (tψ + β)Ei{−γ (tψ + β)}
]
,

and

∫ ∞

0
te−γ tψ

∫ ∞

0

ce−γ c/ψdc

(tψ + c/ψ + β)2
dt
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= −eγβ

[
γ −2

∫ ∞

γβ

zEi(−z)dz − βγ −1
∫ ∞

γβ

Ei(−z)dz

+ γ −2e−γβ + γ −2
∫ ∞

γβ

z2Ei(−z)dz − γ −1β

∫ ∞

γβ

zEi(−z)dz

]

Using the previous expression for the integrals of the Ei(z) functions, we obtain

T3 = (α + 2)2

ψ2

[
1

3
− 2β

3
E(γi ) − β2

3
E(γ 2

i )

− β2
∫ ∞

0
γ 2 f (γ )eγβEi(−γβ)dγ − β3

3

∫ ∞

0
γ 3 f (γ )eγβEi(−γβ)dγ

]
.

Thus T1 = T2 = T3 and E{	2i,ψ } = T1. In the correctly specified case this is the

Fisher information. On replacing f (γ ) by βαγ α−1e−γβ/�(α) in the expression for
T1 we obtain the result from Sect. 3.2, namely 2(α + 2)/ψ2(α + 3).

For the calculation of E(	i,ψψ), it is required to calculate the expectations of the
terms I1 − I4 in Eq. (27), under misspecification. It is clear from their expressions that
these expectations are related to the above calculations in the following way: E(I4) =
(α + 2)−2T1, E(I2) = (α + 2)−2T2 and E(I1) = (α + 2)−2T3, but T1 = T2 = T3 so
that

E(	i,ψψ) = −(α + 2)(E(I1) − E(I2) + E(I3) − E(I4))

= (α + 2)−1T1 − (α + 2)E(I3).

The missing expectation is

Q � E(I3) = 2

ψ2

{
1 +

∫ ∞

0
f (γ )eγβ

∫ ∞

γβ

zEi(−z)dzdγ

}

= 1

ψ2

{
1 + β2

∫ ∞

0
γ 2 f (γ )eγβEi(−γβ)dγ − βE(γi )

}
.

On writing R = (α + 2)−2T1, it follows that

{E(	i,ψψ)}−2E(	2i,ψ ) = T1

(α + 2)2{T1(α + 2)−2 − Q}2 = R

(R − Q)2
.

Under the correct specification of the gamma random effects model we also obtain

E(	i,ψψ) = (α + 2)−1T1 − (α + 2)Q = 2ψ−2{(α + 3)−1 − 1} = − 2(α + 2)

ψ2(α + 3)
,

as expected.
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A.6 Derivation of Eq. (12)

The Laplace transform of the density of Si at z is

E(e−zSi ) = ρ2
i − �2

(ρi + � + z)(ρi − � + z)

and the density function of each Si at s is

fSi (s) = Res

{
exp(zs)(ρ2

i − �2)

(ρi + � + z)(ρi − � + z)
,−(ρi + �)

}

+Res

{
exp(zs)(ρ2

i − �2)

(ρi + � + z)(ρi − � + z)
,−(ρi − �)

}

= (ρ2
i − �2){e−(ρi−�)s − e−(ρi+�)s}/2�,

where for a function g(z) z ∈ C, Res{g, a} denotes the residue of g at z = a.

References

1. Amari, S.-I.: Geometrical theory of asymptotic ancillarity and conditional inference. Biometrika 69,
1–17 (1982)

2. Amari, S.-I., Kumon,M.: Differential geometry of Edgeworth expansions in curved exponential family.
Ann. Inst. Stat. Math. 35, 1–24 (1983)

3. Amari, S.-I.: Differential Geometry of Statistical Inference. Springer, Berlin (1983)
4. Anderson, E.B.: Asymptotic properties of conditional maximum likelihood estimators. J. R. Stat. Soc.

B 32, 283–301 (1970)
5. Barndorff-Nielsen, O.E., Cox, D.R., Reid, N.M.: The role of differential geometry in statistical theory.

Int. Stat. Rev. 54, 83–96 (1986)
6. Barndorff-Nielsen, O.E., Cox, D.R.: Inference and Asymptotics. Chapman and Hall, London (1994)
7. Bartlett, M.S.: Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. A 160, 268–82 (1937)
8. Cox, D.R.: Two further applications of a model for binary regression. Biometrika 45, 562–65 (1958)
9. Cox, D.R., Reid, N.M.: Parameter orthogonality and approximate conditional inference (with discus-

sion). J. R. Stat. Soc. B 49, 1–39 (1987)
10. Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an

indefinitely large population. Biometrika 10, 507–521 (1915)
11. Fisher, R.A.: Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh (1925)
12. Kartsonaki, C., Cox,D.R.: Somematched comparisons of twodistributions of survival time.Biometrika

103, 219–24 (2016)
13. Kumon, M., Amari, S.-I.: Geometrical theory of higher-order asymptotics of test, interval estimator

and conditional inference. Proc. R. Soc. Lond. Ser. A 387, 429–458 (1983)
14. Kumon, M., Amari, S.-I.: Estimation of a structural parameter in the presence of a large number of

nuisance parameters. Biometrika 71, 445–59 (1984)
15. Lindsay, B.G.:Nuisance parameters,mixturemodels, and the efficiency of partial likelihood estimators.

Philos. Trans. R. Soc. Lond. 296, 639–65 (1980)
16. Lindsay, B.G.: Using empirical partially Bayes inference for increased efficiency.Ann. Stat. 13, 914–31

(1985)
17. Olver, F.W.J.: Introduction to Asymptotics and Special Functions. Academic Press, New York (1974)
18. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for

causal effects. Biometrika 70, 41–55 (1983)

123



148 Information Geometry (2020) 3:119–148

19. Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate distribution. Proc.
Berkeley Symp. Math. Stat. Probab. 1, 197–206 (1956)

20. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58, 267–88 (1996)
21. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis (1965 reprint of the fourth edition).

Cambridge University Press, London (1927)
22. Yates, F.: Complex experiments. J. R. Stat. Soc. B (with discussion) 2, 181–223 (1935)
23. Yates, F.: A new method of arranging variety trials involving a large number of varieties. J. Agric. Sci.

26, 424–55 (1936)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	High dimensional nuisance parameters: an example from parametric survival analysis
	Abstract
	1 Introduction
	2 Issues of formulation
	3 Exponential matched pairs with proportional rates
	3.1 Nuisance parameters as arbitrary constants
	3.2 Nuisance parameters as random variables

	4 Exponential matched pairs with additive rates
	5 Assessment of model adequacy
	6 Empirical validation and numerical extensions
	6.1 Fixed nuisance parameters
	6.2 Randomly generated nuisance parameters
	6.3 Assessment of model adequacy in the proportional rates model

	7 Discussion and open problems
	7.1 A synthesis with earlier literature
	7.2 Open problems

	Acknowledgements
	A Derivations of key results
	A.1 Derivation of Eq. (9)
	A.2 Derivation of Eq. (4)
	A.3 Derivation of Eq. (5)
	A.4 Proof of consistency of the maximum likelihood estimator
	A.5 Derivation of Eq. (10)
	A.6 Derivation of Eq. (12)

	References




