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Abstract

After endowing the space of diagrams of probability spaces with an entropy distance,
we study its large-scale geometry by identifying the asymptotic cone as a closed convex
cone in a Banach space. We call this cone the tropical cone, and its elements tropical
diagrams of probability spaces. Given that the tropical cone has a rich structure, while
tropical diagrams are rather flexible objects, we expect the theory of tropical diagrams
to be useful for information optimization problems in information theory and artificial
intelligence. In a companion article, we give a first application to derive a statement
about the entropic cone.

Keywords Tropical probability - Entropy distance - Diagrams of probability spaces -
Tropical cone

1 Introduction

With [9] we started a research program aiming for a systematic approach to a class of
information optimization problems in information theory and artificial intelligence.
A prototypical example of such a problem, still wide open, is the characterization
of the entropic cone: For an N-tuple of random variables, one may evaluate their
entropies and the entropies of the joint variables and obtain a vector in R2"-1 A
vector obtained in this way is called an entropy vector of an N-tuple of random
variables. The closure of the set of all entropy vectors of N-tuples is what we call the
entropic cone, see also [8]. Besides the characterization of the entropic cone, other
information optimization problems arise for instance in causal inference [ 13], artificial
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intelligence [14], information decomposition [3], robotics [1], neuroscience [5] and
in variational autoencoders [7].

The global strategy of our program is roughly based on the following way of
thinking. The entropic cone is clearly a very complicated object: to date, there is
no explicit description of the entropic cone for four or more random variables, while
it is known that it is not polyhedral [8]. Yet, perhaps, much of its complexity may be
explained by it being the closure of an image under a linear map of another, simpler,
higher-dimensional cone.

The purpose of this article is to construct such a higher-dimensional (infinite-
dimensional, in fact) object, which we call the tropical cone and to derive some of
its properties which are testimony to its simple structure and which help the study of
information optimization problems. As an example of its use, in [11] we apply the
theory to derive a statement about the entropic cone.

Before outlining the construction of the tropical cone, let us mention that for our
purposes, the language of random variables proved inconvenient, which is why work
with diagrams of probability spaces instead.

Diagrams of probability spaces are commutative diagrams in the category of prob-
ability spaces, with (equivalence classes of) measure-preserving maps as morphisms,
such as

z g AN
1
X Y \U/ x Ty <ty
(1.1)

Collections of n random variables give rise to a special type of diagrams, that include,
besides the target spaces of the random variables themselves, the target space of every
joint variable. Such diagrams have a particular combinatorial type. The first and the
last diagrams in (1.1) are examples of such special types of diagrams in case of two
and three random variables respectively. The description of other diagrams, such as
the diagram in the middle of (1.1), using the language of random variables is less
transparent.

We will construct the tropical cone and derive its properties over several sections.
In Sect. 2 we describe the construction of the asymptotic cone in the abstract setting
of a metric Abelian monoid (I", +, d). We believe that this abstract setting will make
the construction more transparent and easier to follow. The results we present in that
section are probably quite standard, but we find it beneficial to gather them under
one roof. Such an asymptotic cone consists of equivalence classes of quasi-linear
sequences in the monoid. Whereas linear sequences have the form (n - a),cn,, where
a is an element of the monoid, quasi-linear sequences may deviate from linearity in
a controlled fashion, measured by a sublinear function ¢ satisfying some additional
conditions that we will specify later. A sequence y € I'N0 is called ¢-quasi-linear if
for all m, n € N, it satisfies
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d(y (m +n), y(m) +y @) < ¢m +n)

and two sequences y and y’ are equivalent if
] /
lim —d(y(n), y'(n)) =0
n—oo n

The asymptotic cone is itself again a metric Abelian monoid, but it admits additional
structure. It admits a distributive action of R and the metric becomes homogeneous
and translation invariant. As an example of this construction, A’Campo [2] constructed
the real numbers as the asymptotic cone in the monoid of integers.

In Sect. 3 we show that, under certain conditions, the asymptotic cone is a complete
metric space and it can be realized as a closed convex cone in a Banach space.

In Sect. 4 we apply the general construction of Sects. 2 and 3 to the monoid of
diagrams of probability spaces endowed with the intrinsic entropy distance [6,9,15]
and with the tensor product as the binary operation. We call the resulting space tropical
cone and its elements tropical diagrams." In Sect. 6, we give a simple characterization
of the tropical cone for special types of diagrams.

For more complicated diagrams, we currently do not have an explicit description
of the tropical cone, but we do show that it possesses a rich algebraic structure. In
particular, one can take convex combinations of tropical diagrams. Other useful oper-
ations and constructions can be carried through for tropical diagrams, whereas they
do not have an equivalent in the classical context of probability spaces, see [10]. All in
all, from some perspective, tropical diagrams are easier to deal with than diagrams or
probability spaces, since only rough, asymptotic relations between probability spaces
are preserved under tropicalization, similar to how all complicated features of the
landscape disappear when looking at the Earth from outer space.

In order to study information optimization problems, we may as well study the more
malleable tropical cone. This is because the entropic cone is the closure of the image
of the bounded linear map defined on the tropical cone that evaluates entropies of
the individual spaces in a tropical diagram. More generally, we call any non-negative
bounded linear functional on the tropical cone an entropic quantity. These include
entropies of individual spaces, but also some other quantities, such as optima of some
linear combinations of entropies of an extended diagram, where some extra spaces are
added to the original diagram. Study of such entropic quantities is the subject of our
future research.

One of the main tools in the study of entropic quantities through the tropical cone is
the Asymptotic Equipartition Property for diagrams. Originally derived in [9], we cast
it here into a density statement of simpler, so-called homogeneous tropical diagrams
in the tropical cone, in terms of Theorems 5.1 and 5.2. Therefore, to prove statements

! The reason for the name tropical cone is the following. For instance in algebraic geometry, tropical
varieties are, roughly speaking, divergent sequences of classical varieties, renormalized on a log scale
with an increasing base. The adjective ‘tropical’ carries little semantics, but was introduced in honor of
the Brazilian mathematician and computer scientist Imre Simon who worked on the subject of tropical
mathematics. Analogously, we construct the asymptotic cone from certain divergent sequences with respect
to the intrinsic entropy distance. As the intrinsic entropy distance is entropy-based, we achieve a similar
type of renormalization as in algebraic geometry.
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about entropic quantities, it suffices to study the much simpler homogeneous tropical
diagrams.

2 Asymptotic cones of metric abelian monoids

In this section we define the asymptotic cone in the setting of an abstract metric Abelian
monoid. In a later section, we will specify to the case of diagrams of probability spaces.

2.1 Metric and pseudo-metric spaces

A pseudo-metric space (X, d) is a set X equipped with a pseudo-distance d, a bivariate
function satisfying all the axioms of a distance function, except that it is allowed to
vanish on pairs of non-identical points. An isometry of such spaces is a distance-
preserving map, such that for any point in the target space there is a point in the
image at zero distance away from it. Given such a pseudo-metric space (X, d) one
could always construct an isometric metric space (X /g=o , d), the metric quotient, by
identifying all pairs of points that are distance zero apart.

Any property formulated in terms of the pseudo-metric holds simultaneously for a
pseudo-metric space and its metric quotient. It will be convenient for us to construct
pseudo-metrics on spaces instead of passing to the quotient spaces.

For a pair of points x, y € X in a pseudo-metric space (X, d) we will write x 4 y
if d(x, y) = 0. We call such a pair of points (d-)metrically equivalent.

Many metric-topological notions such as (Lipschitz-)continuity, compactness, €-
nets, dense subsets, etc., extend to the setting of a pseudo-metric spaces and exercising
certain care one may switch between a pseudo-metric space and its metric quotient

replacing the g-sign with equality.

2.2 Metric abelian monoids
A monoid is a set equipped with a bivariate associative operation and a neutral element.

The operation is usually called multiplication, or addition if it is commutative. We call
a monoid with pseudo-distance (I, 4+, d) a metric Abelian monoid if it satisfies:

1. Forall y, ¥’ € T holds
rd
y+y =y +vy

2. The binary operation is 1-Lipschitz with respect to each argument: For all
v,y .ner

din+y,n+y) <dy,v)
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In other words, the translation maps
T,:I'>T, y—>n+y
are non-expanding for every n € I.

The following proposition is an elementary consequence of the triangle inequality.

Proposition 2.1 Ler (I', +, d) be a metric Abelian monoid. Then:

1. For any quadruple y1, y2, v3, va € I holds

d(y1 + 2, 3 +v4) <d(y1, y3) +d(y2, va)

2. Foreveryn € N, and yy, y» € T also holds

dm-y1,n-y) <n-d(, v2)

A metric Abelian monoid (T", +, &) will be called homogeneous if it satisfies for all
ne No

dm-y1,n-y)=n-8(y1,v2) 2.1

A homogeneous metric Abelian monoid is called an R>q-semi-module (I', +, -, §) if
in addition there is a doubly distributive R>¢-action such that for any A1, A2 € R
and y1, 2 € I' holds

$
A (A2 - y1) = (MA2) -1
8
A+ =r-yi+Ar-ym
8
A+ =242 -n
SOy hy) =218y, v)

A convex cone in a normed vector space would be a typical example of an Rx¢-
semimodule. An intersection of a convex cone in R” with the integer lattice is an
example of a monoid, that does not admit semimodule structure.

The following proposition asserts that if a metric Abelian monoid is homogeneous,
then the pseudo-distance is translation invariant, and, in particular, it satisfies a can-
cellation property. This result was communicated to us by Tobias Fritz.

Proposition 2.2 Let (T, +, 8) be a homogeneous metric Abelian monoid. Then the

pseudo-distance function § is translation invariant, that is it satisfies forany y1, y2, n €
r

Syt +n, 72+ 1) =8(y1, ¥2)
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In particular, the following cancellation property holds in T’
) )
Ifyi+n=y2+n, thenyr = 2.

The proof of this proposition is essentially the same as the proof of [9, Proposition
3.7]. Even though the latter proposition is formulated for a specific homogeneous
metric Abelian monoid, it does not use any of its specific properties, but only defining
properties of a generic homogeneous metric Abelian monoid.

2.3 Asymptotic cones (tropicalization) of monoids

In our construction points of the asymptotic cone of (I', 4+, d) will be sequences of
points in I" that grow almost linearly in a certain sense described below.

2.3.1 Admissible functions

Admissible functions will be used to measure the deviation of a sequence from being
linear. We call a function ¢ : R>1 — R admissible if

1. the function ¢ is non-decreasing;
2. the function ¢(#)/t is non-increasing;
D 1%

3. there exists a constant D, > 0 such that s - ffo @dt < < () foranys > 1.

In particular the function ¢ is summable against dr /2.

For example, the function ¢(¢) = ¢* is admissible for any 0 < a < 1. Any admissible
function is necessarily sub-linear, thatis ¢(z)/t — 0ast — oco. A linear combination
of admissible functions with non-negative coefficients is also admissible.

Lemma 2.3 Let ¢ be a positive admissible function. Then for any o > 0 and A > 1
there is C > 1 such that for any t > 1

-1 +a=C-p)

Proof From positivity and monotonicity of ¢ we have

O[—L. (1)<L. (1)
“om =Y

On the other hand from monotonicity of the function ¢(t)/t it follows that for any
rt>1

e 1) = A1)

Adding the two inequalities above we obtain the conclusion of the lemma. O
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2.3.2 Quasi-linear sequences

Let (I', 4, d) be ametric Abelian monoid and ¢ be an admissible function. A sequence
7 = {y ()} € T'No will be called quasi-linear with defect bounded by ¢ if for every
m, n € N the following bound is satisfied

d(y(m +n),y(m) +y(m) < ¢(m +n) (2:2)
For technical reasons we also require y (0) = 0. Sequences that are quasi-linear with
defect bounded by ¢ = 0 will be called linear sequences.

We will often need the following corollary of quasi-linearity, which follows from
applying the bound (2.2) twice and using the monotonicity of ¢: for all m, n, k € N

d(y (m +n+k), y(m) +y @) +y k) < 2¢0m +n +k) 2.3)
For an admissible function ¢ we will write QL (I", d) for the space of all quasi-linear

sequences with defect bounded by C - ¢ for some (depending on the sequence) constant
C > 0. We will also use notation L(I", d):=QL(T", d) for the space of linear sequences.

2.3.3 Asymptotic distance
Given two quasi-linear sequences y; € QL (I', d) and y» € QL, (T', d) the sequence

of distances a(n):=d(y;(n), y2(n)) is @3-subadditive, where ¢3 = @1 + ¢ is also
admissible, i.e.

a(m+n) <a(m)+am) + @3(m +n)

for any n, m € N. By the generalization of Fekete’s Lemma by De Bruijn and Erdos
[4, Theorem 23], it follows that the following limit exists and finite

A 1
d(y1. »2) = nll)ngo ~ A1), y2(n))

We call the quantity ﬁ()?l , ¥2) the asymptotic distance between y1, > € QLy (I, d).
It is easy to verify that d indeed satisfies all axioms of a pseudo-distance. Even if d
was a proper distance function, the corresponding asymptotic distance may vanish
on some pairs of non-identical elements. We call two sequences y; € QL (I', d),

v2 € Qly, (I', d) asymptotically equivalent if &(371, y2) = 0 and write

_d
V1=

2.3.4 Quasi-homogeneity

We will show that quasi-linear sequences are also quasi-homogeneous in the sense of
the following lemma.
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Lemma 2.4 Lety € I'N0 be a sequence with p-bounded defect. Then foranym,n € N

2m-n
d(y(m~n),m~y(n))§8-m.n./ [AQNY

n

Proof Define the function ¥ : R>¢ — R related to ¢ as follows

V(s):=p(e')/e' or @) =:1-y(nt)
The conclusion of the lemma in terms of ¥ then reads
In(2-m-n)
G-y <8-men- [y

Inn

and it is in that form it will be proven below.
Due to monotonicity properties of ¢, the function i satisfies, for all 0 < sg <'s

Y (s0) < Y(s) e

which integrated over s yields

so+In2 so+In2
o) < — / T pds <4 / T s 24

“ In2 Jg, 50

We proceed by induction with respect to m, keeping n fixed. The conclusion of the
lemma is obvious for m = 1. For the induction step let m = 2m’ + ¢ > 2, where
m' = |m/2] and € € {0, 1}. We first use the bound in (2.3) to estimate

d(y(m-n), m-y®n))
=d(ym -n+m -n+e-n),m-ymy+m-ymn)+e-ym)
<2d(y@m -n), m" -yn)) +2p(m-n)

Next, we continue the estimate using bound (2.4)

d(y(m-n), m-yn))
<2d(y@m -n), m" -yn))+2¢p(m-n)

In(2m’-n)
< 16m/~n-/ 1//(s)ds+2m-n~1p(ln(m-n))
1

nn

In(2m’-n) In(2m-n)
<8m-n / Y(s)ds +/ Y(s)ds
Inn In(m-n)

In(2m-n)
<8m-n / Y(s)ds

Inn
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Applying bound (3) in the definition of admissible functions, we obtain the following
corollary.

Corollary 2.5 Let y be a sequence with ¢-bounded defect. Then for any m,n € N

d(y(m~n),m~y(n))58-m~n~/w¥dt§D¢-m~go(n)

n
2.3.5 The semi-module structure

The group operation + on I' induces a d-continuous (in fact, 1-Lipschitz) group
operation on QL,(I", d) by adding sequences element-wise. Thus (QL,(I", d), +, &)
is also a metric Abelian monoid. In addition, if ¢ is positive it carries the structure of
a R>o-semi-module, as explained below.

If ¢ > 0 is a positive admissible function, the set QL,(I", d) admits an action of
the multiplicative semigroup (Rxo, -) defined in the following way. Let A € R and
vy = {y(m)} € QL (I", d). Then define the action of A on y by

Aoyi= {y(l—)“n-])}neNo (2.5)

To show that y:=A - y belongs to QL (I", d) we bound its defect as follows. Let
m, n € Ny, and define e:=|A(m +n)] — [A-m] — |A-n] € {0, 1}. In the computation
below we assume that A > 1. For A € [0, 1] the computation is similar, but simpler.
We estimate

A(70n + ), 70m) + 7 ()
= d(y (Lrtm +m1). v (1h-m]) +y(1h-n)))
=d(y(Uml+ Uonl +€), y(Lml) +y (1 n))

< d(V(Lk~mJ) +y(lr-nl)+y@,y(r-ml)+ J/(L)wnj))
+2¢(1x-m] + [2-n] +e)

< d(y(€),0) +2¢(LA(m +n)])

<d(y(1),0) +2¢(A(m + n))

< C-g(m+n)

The first inequality above is the bound (2.3) and the last inequality is obtained by
applying Lemma 2.3.

The action defined above is only an action up to asymptotic equivalence. Similarly,
in the constructions that follow we are tacitly assuming they are valid up to asymptotic
equivalence.

The action

- Rso x QLy(T', d) — QL, (T, d)
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is a homothety (dilation)
Ao 71,0 72) = A A1, 72)

and therefore it is continuous with respect to d.
The semigroup structure on QL (I", d) is distributive with respect to the R>¢-action

AM+r)=r-yi+i-m
_d _ _
Ar+r)-y=2-v+Ar vy
In particular, forn € Nand y € QL, (I, d)

- _d _

2.3.6 Completeness

Here, we introduce additional conditions on a metric Abelian monoid (I, 4, d), that
guarantee that (QL,(I"), &) is a complete metric space.

Suppose ¢ is an admissible function and (I, 4+, d) is a metric Abelian monoid
satisfying the following additional property: there exists a constant C > 0, such
that for any quasi-linear sequence y € QL,(I', d), there exists an asymptotically
equivalent quasi-linear sequence 7’ with defect bounded by C¢. Note that, contrary
to the situation in the definition of QL (I, d), the constant C is now not allowed to
depend on the sequence. If this is the case, we say that QL (I", d) has the (C-)uniformly
bounded defect property.

Proposition 2.6 Suppose a metric Abelian monoid (I, +, §) and an admissible func-
tion ¢ > 0 are such that (QLy(T", 8), 8) has the uniformly bounded defect property and

the distance function § is homogeneous. Then the space (QLy (T, §), 3) is complete.

Proof Given a Cauchy sequence {y;} of elements in (QL,(T", 8), 3) we need to find a
limit element 77 € QL (I", §). We will construct 7 by a diagonal argument. First we
replace each element of the sequence {y;} by an asymptotically equivalent element
with defect bounded by C¢ according to the assumption of the proposition. We will
still call the new sequence {y;}. In fact, we may without loss of generality assume that
c=1.

We begin by establishing a bound on the divergence of the tails of sequences y; and
vj. By homogeneity of §, the triangle inequality and Corollary 2.5, it holds for any
n, k € N that

k-8(vi(n), yj(n) =8(k-yi(n), k- y;(n))
<8(yi(k-n), yj(k-n)) +2k- Dy - p(n)
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Dividing by k and passing to the limit k — oo, while keeping » fixed, we obtain

8(vi(n), yj(n) < n -8, 7;) + 2Dy, - p(n)

Since the sequence (y;);eN, is Cauchy, it follows that for any n € N there is a number
i(n) € N such that for any i, j > i(n) holds

8, 7j) <

S| =

Then for any i, j,n € Nwith i, j > i(n) we have the following bound

8(vi(n), yj(n)) <2Dy - o(n) + 1 (2.6)

Now we are ready to define the limiting sequence 7 by setting

n(n):=Yim)(n)

First we verify that 7 is quasi-linear. For m, n € N, we have

8(n(n +m), n(n) + n(m)) = 8( Vicrm) (n 4+ m), Vi) (n) + Yigmy (m) )
< 3( Yitnt+m) (M +m), Vigtm)(n) + Vl(n+m)(m))

+ 8(itntm) (1) + Vicu-tm) (M), Vi) () + Vigm (m) )
<@n+m)+2Dy-9n)+1+2D, - p(m)+1
<@4Dy,+ Don+m)+2<C" -pn+m)

for some constant C’ > 0.
The convergence of y; to 1 is shown as follows. For n, k € N let g,,, r, € Ng be

the quotient and the remainder of the division of n by k, thatisn = ¢, - kK + r, and
0<r, <k .Fixk e Nandleti > i(k), then

A 1
d(yi,m) = lim ;5()/;(”),7’/(11))

n—o00

. 1
= lim —S(Vi(QH'k+rn)» Vi(n)(qn'k+rn))

n—oo n

1
< tim sup ~ (gn - 8(1i (K), yien ®)) + 81 (), yiem (1)

n—oo

+4q0- Dy - 0(k) +29(n))

1
< lim sup —(q,, 2Dy - 9(k) + 1) + (2D, - 9(ry) + 1) +

n—oo

44, Dy - 9(k) +20(n))
=" gk
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Since k € N is arbitrary and ¢ is sub-linear we have

lim (7, 7) =0

1—> 00

2.3.7 On the density of linear sequences

For a metric Abelian monoid (I", 4, d) together with an admissible function ¢ we
say that QL (I, d) has the vanishing defect property if for every € > 0 and for every
7 € QL (T, d) there exists an asymptotically equivalent quasi-linear sequence y’ with
defect bounded by another admissible function ¥ such that || loo @dr <eE€.

The proposition below gives a sufficient condition under which the linear sequences
are dense in the space of quasi-linear sequences.

Proposition 2.7 Suppose QL, (I, +, d) has the vanishing defect property. Then L(T', d)
is dense in QL (T, d).

Proof Let y = {y(n)} be a quasi-linear sequence. For any i € N select a sequence y;

asymptotically equivalent to y with defect bounded by an admissible function ¢; such

that || loo ‘p"t—gt)dt < 1/i according to the “vanishing defect” assumption of the lemma.

Define 7; by
ni(n):=n - y;(1)

Then

A A 1 1
d(y,n:) =d(yi, ni) = nli)H;O ;d(%‘ (n),ni(n)) = nli)ngo ;d(%’ (n),n -y (1))

o8] .
58/ e, 8
1

12 i

where we used Lemma 2.4 in the first inequality. Thus, any quasi-linear sequence can
be approximated by linear sequences. O

2.3.8 Asymptotic distance on original monoid

Starting with an element y € I" one can construct a linear sequence = {i - ¥};¢p,- In
view of Proposition 2.1, the map

.1 (0, d) — (LT, d), d) 2.7)
is a contraction.
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The inclusion in (2.7) induces a metric § on I', satisfying for any y1, y2» € I’

d(y1, y2) <d(y1, 2) (2.8)

and the following homogeneity condition

d(m-y,n-y)=n-8(y1,2) (2.9

for all n € Ny.

Note that if d was homogeneous to begin with, then § coincides withd on I".

By virtue of the bound § < d, sequences that are quasi-linear with respect to
d are also quasi-linear with respect to §. Since § is scale-invariant, the associated
asymptotlc distance & coincides with 8 on . We will show (in Lemma 2.8 below) that
§ also coincides with d on d- -quasi-linear sequences.

Let ¢ be an admissible function. In order to organize all these statements, and to
be more precise, let us include the spaces in the following commutative diagram.

(LT, d),d) <L (QL,(T, d), d)

-
(T, &) r j’l J:lz
—~

(L(T, 8),8) <2 (QLy(T, §), §) 2.10)

The maps f, f/ and 1] are isometries. The maps j, and j, are isometric embed-
dings. The next lemmas show that 1, is also an isometric embedding, and it has dense
image.

Lemma 2.8 Let ¢ be a positive, admissible function. Then, the natural inclusion
121 (QLy (T, d), d) < (QLy (T, 8), §)

is an isometric embedding with the dense image.

Proof First we show that the map z5 is an isometric embedding. Let y1, > € QL (I, d)
be two ¢-quasi-linear sequences with respect to the distance function d. We have to
show that the two numbers

N o
d(71, 72) = lim —d(y1(n), y2(n))
n—oo n
and
~ . 1
(1. 72) = lim —§(y1(n), y2(n))
n—oo n
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are equal. Since shifts are non-expanding maps, we have § < d and it follows imme-
diately that

871, 72) < d(1, )

and we are left to show the opposite inequality. We will do it as follows. Fix n > 0,
then

A . 1
A1, 72) = lim md(m (k- n), ya(k - n))

< lim ﬁ(d(k -y1(n), k - yz(n)) +2k- Dy - 90("))

@(n)
n

< %5(7/1 (n), y2(n)) + 2D,
Passing to the limit with respect to n gives the required inequality
A1, 72) < 871, )
Now we will show that the image of 15 is dense. Given an element y = {y (n)} in

QL (T, &) we have to find a S-approximating sequence ¥; = {y;(n)} in QLy (T, d).
Define

vimi=| = | -y (0)

We have to show that each y; is d-quasi-linear and that § Wi, v) iy 0. These state-
ments follow from

A(yi(m + ). yiom) + yi(m) = d Q’"fﬂJ SN RTGER IR y(i))
=d(y).0)
=Ci-p(m+n)

for some C; > 0. Itis worth noting that the defect of y; may not be bounded uniformly
with respect to i. Finally, it holds that

A 1 1
871, 7) = lim =8 (im, y ) = lim ~8(| %]y, 7m)
n—>oo n n—>oo n

i

T Ly .
< lim |:;8 (v (%)), y(m) + - L?J - Dy, .fﬂ(l):|

n—oQ
1 1 1 i) i—>00
< lim |:— max & (y(k),0) + —<p(n)i| + Dwﬂ = D(p@ — 0
n—oo | n k=0,..., i—1 n 1 1
O
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The difference between the distance functions &, 8 and § is very small: d and § are
defined on the dense subset of the domain of definition of § and they coincide whenever
are both defined. From now on we will write d for the original distance function and
§ for the asymptotic metric on both the monoid and its tropicalization.

3 Grothendieck construction

Given an Abelian monoid with the cancellation property, there is a minimal Abelian
group (called the Grothendieck Group of the monoid), into which it isomorphically
embeds. Similarly, an R>o-semi-module naturally embeds into a normed vector space.
A nice example of this construction applied to the semi-module of convex sets in R”
(with the Minkowski sum and the Hausdorff distance) can be found in [12].

Proposition 3.1 Let (I', +, -, 8) be a complete metric Abelian monoid with R action
(anR>q-semi-module) with homogeneous pseudo-metric 8. Then there exists a Banach
space (B, || - ||) and a distance-preserving homomorphism of monoids

f:T'->B
such that the image of f is a closed convex cone.

If § is a proper pseudo-metric (not a metric), then the map f is not injective.

Proof By Lemma 2.2 the pseudo-metric § is translation invariant. We can therefore
apply the Grothendieck construction to define a normed vector space Bg: Define

Bo:={(x,y):x,yeI'}/~

where (x, y) ~ (x/, y’) if there are z, 7 € T, such that x + z LA +zandy+z L3
y+7.

Define also addition, multiplication by a scalar and a norm on By by setting for all
x,y,x',yyeTand A € R

)+ &Y = (e +x y+)
(=D -, y) = (. %)
A (x,y) = sign(d) - (JA] - x, [A] - y)
[, I == 8(x, y)

These operations respect the equivalence relation and turn (Bg, +, -, || - ||) into a
normed vector-space. The map f defined by

f:I' =By, x— (x,0)
is a well-defined distance-preserving homomorphism.
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That f(I") is closed immediately follows as I' is complete and f is distance-
preserving.

In general, the space By is not complete. We define the Banach space B as the
completion of the normed vector space By. O

4 Tropical probability spaces and their diagrams
4.1 Diagrams of probability spaces

We will now briefly describe the construction of diagrams of probability spaces, see
[9] for a more detailed discussion. By a finite probability space we will mean a set (not
necessarily finite) with a probability measure, such that the support of the measure is
finite. For such probability space X we denote by | X| the cardinality of the support
of probability measure and the expression x € X will mean, that x is an atom in X,
which is a point of positive weight in the underlying set.

We will consider commutative diagrams of finite probability spaces, where arrows
are equivalence classes of measure-preserving maps. Two maps are considered equiv-
alent if they coincide on a set of full measure and such equivalence classes will be
called reductions.

Three examples of diagrams of probability spaces are pictured in (1.1). The com-
binatorial structure of such a commutative diagram can be recorded by an object G,
which could be equivalently considered as a special type of category, a finite poset, or
a directed acyclic graph (DAG) with additional properties. We will call such objects
simply indexing categories. Below we briefly recall the definition.

An indexing category is a finite category such that for any pair of objects there
exists at most one morphism between them in either direction, and such that it satisfies
the following property. For any pair of objects 7, j in an indexing category G there
exists a least common ancestor, i.e. an object k such that there are morphisms k — i
and k — j in G and such that for any other object / admitting morphisms / — i and
| — j, there is also a morphism [ — k.

By [G] we denote the number of objects in the indexing category, or equivalently
the number of vertices in the DAG or the number of points in the poset G. An important
class of examples of indexing categories is formed by so-called full categories A,,,
that correspond to the poset of non-empty subsets of a set {1, ..., n} ordered by
coinclusion. If n = 2, we call the category

Ar = (01 < Op12y — 07)

a fan. We refer to the objects O and O as the feet of the fan and to O, as the initial
object. We use the same terminology for the spaces in a diagram indexed by A».

The space of all commutative diagrams of a fixed combinatorial type will be denoted
Prob(G). A morphism between two diagrams &, ) € Prob(G) is, by definition, a
natural transformation between functors X and ). Essentially, it is a collection of
morphisms between corresponding individual spaces in X and )/, that commute with
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morphisms within the diagrams X and ). We call such morphisms reductions of
diagrams.

The construction of forming commutative diagrams could be iterated, producing
diagrams of diagrams. Especially important will be two-fans of G-diagrams, the space
of which will be denoted Prob (G) (A»).

A two-fan X will be called minimal, if for any morphism of X to another two-fan
Y, the following holds: if the induced morphisms on the feet are isomorphisms, then
the top morphism is also an isomorphism. Any G-diagram will be called minimal if
for any sub-diagram, which is a two-fan, it contains a minimal two-fan with the same
feet.

Given an n-tuple (Xy, ..., X;,) of finite-valued random variables, one can construct
aminimal A,-diagram X' = {X;; x;;} by setting forany ¥ £ I C {1, ...,n}

X1=1_[Xi

iel

where X; is the target space of random variable X;, and the probabilities are the
induced distributions. For the diagram constructed in such a way we will write X =
(X1, ..., X;). On the other hand, any A,-diagram gives rise to the n-tuple of random
variables with the domain of definition being the initial space and the targets being
the spaces indexed by one-point sets.

The constant diagram XS is G-diagram in which all the spaces are isomorphic to
a single probability space X and all the morphisms are identity maps. In particular,
we denote by {0}C the G-diagram consisting entirely of one-point spaces.

The tensor product XY® ) of two G-diagrams is defined by taking the tensor product
of corresponding probability spaces and the Cartesian product of maps. The diagram
{#}6 is a unit with respect to the tensor product. Certain care should be exercised here,
since the assocaitivity, commutativity and unity of {#}C for the tensor product only
hold up to isomorphism.

For a diagram X € Prob(G) one can evaluate entropies of the individual spaces.
The corresponding map will be denoted

Ent, : Prob(G) — RI6]

where the target space is the space of R-valued functions on objects in G and it is
equipped with the £!-norm.

For a two-fan F = (X < Z — ))) of G-diagrams define the entropy distance

kd(F):=||Ent, Z — Ent, X[ + [|[Ent, Z — Ent, Y|y

We interpret kd(F) as a measure of deviation of F from being an isomorphism between
the diagrams X and ). Indeed, kd(F) = O if and only if the two morphisms in F are
isomorphisms, see [9].

We define the intrinsic entropy distance k on the space Prob(G) by

k(X, V):=inf [kd(F) : F = (X < Z — J) € Prob(G)(A2)}
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