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Abstract
After endowing the space of diagrams of probability spaces with an entropy distance,
we study its large-scale geometry by identifying the asymptotic cone as a closed convex
cone in a Banach space. We call this cone the tropical cone, and its elements tropical
diagrams of probability spaces. Given that the tropical cone has a rich structure, while
tropical diagrams are rather flexible objects, we expect the theory of tropical diagrams
to be useful for information optimization problems in information theory and artificial
intelligence. In a companion article, we give a first application to derive a statement
about the entropic cone.

Keywords Tropical probability · Entropy distance · Diagrams of probability spaces ·
Tropical cone

1 Introduction

With [9] we started a research program aiming for a systematic approach to a class of
information optimization problems in information theory and artificial intelligence.
A prototypical example of such a problem, still wide open, is the characterization
of the entropic cone: For an N -tuple of random variables, one may evaluate their
entropies and the entropies of the joint variables and obtain a vector in R

2N−1. A
vector obtained in this way is called an entropy vector of an N -tuple of random
variables. The closure of the set of all entropy vectors of N -tuples is what we call the
entropic cone, see also [8]. Besides the characterization of the entropic cone, other
information optimization problems arise for instance in causal inference [13], artificial
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intelligence [14], information decomposition [3], robotics [1], neuroscience [5] and
in variational autoencoders [7].

The global strategy of our program is roughly based on the following way of
thinking. The entropic cone is clearly a very complicated object: to date, there is
no explicit description of the entropic cone for four or more random variables, while
it is known that it is not polyhedral [8]. Yet, perhaps, much of its complexity may be
explained by it being the closure of an image under a linear map of another, simpler,
higher-dimensional cone.

The purpose of this article is to construct such a higher-dimensional (infinite-
dimensional, in fact) object, which we call the tropical cone and to derive some of
its properties which are testimony to its simple structure and which help the study of
information optimization problems. As an example of its use, in [11] we apply the
theory to derive a statement about the entropic cone.

Before outlining the construction of the tropical cone, let us mention that for our
purposes, the language of random variables proved inconvenient, which is why work
with diagrams of probability spaces instead.

Diagrams of probability spaces are commutative diagrams in the category of prob-
ability spaces, with (equivalence classes of) measure-preserving maps as morphisms,
such as

Z

X Y

Z

X Y

U

T

U V W

X Y Z
(1.1)

Collections of n random variables give rise to a special type of diagrams, that include,
besides the target spaces of the random variables themselves, the target space of every
joint variable. Such diagrams have a particular combinatorial type. The first and the
last diagrams in (1.1) are examples of such special types of diagrams in case of two
and three random variables respectively. The description of other diagrams, such as
the diagram in the middle of (1.1), using the language of random variables is less
transparent.

We will construct the tropical cone and derive its properties over several sections.
In Sect. 2 we describe the construction of the asymptotic cone in the abstract setting
of a metric Abelian monoid (�,+,d). We believe that this abstract setting will make
the construction more transparent and easier to follow. The results we present in that
section are probably quite standard, but we find it beneficial to gather them under
one roof. Such an asymptotic cone consists of equivalence classes of quasi-linear
sequences in the monoid. Whereas linear sequences have the form (n · a)n∈N0 , where
a is an element of the monoid, quasi-linear sequences may deviate from linearity in
a controlled fashion, measured by a sublinear function ϕ satisfying some additional
conditions that we will specify later. A sequence γ ∈ �N0 is called ϕ-quasi-linear if
for all m, n ∈ N, it satisfies
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d
(
γ (m + n), γ (m) + γ (n)

) ≤ ϕ(m + n)

and two sequences γ and γ ′ are equivalent if

lim
n→∞

1

n
d
(
γ (n), γ ′(n)

) = 0

The asymptotic cone is itself again ametricAbelianmonoid, but it admits additional
structure. It admits a distributive action of R≥0 and the metric becomes homogeneous
and translation invariant. As an example of this construction, A’Campo [2] constructed
the real numbers as the asymptotic cone in the monoid of integers.

In Sect. 3 we show that, under certain conditions, the asymptotic cone is a complete
metric space and it can be realized as a closed convex cone in a Banach space.

In Sect. 4 we apply the general construction of Sects. 2 and 3 to the monoid of
diagrams of probability spaces endowed with the intrinsic entropy distance [6,9,15]
andwith the tensor product as the binary operation.We call the resulting space tropical
cone and its elements tropical diagrams.1 In Sect. 6, we give a simple characterization
of the tropical cone for special types of diagrams.

For more complicated diagrams, we currently do not have an explicit description
of the tropical cone, but we do show that it possesses a rich algebraic structure. In
particular, one can take convex combinations of tropical diagrams. Other useful oper-
ations and constructions can be carried through for tropical diagrams, whereas they
do not have an equivalent in the classical context of probability spaces, see [10]. All in
all, from some perspective, tropical diagrams are easier to deal with than diagrams or
probability spaces, since only rough, asymptotic relations between probability spaces
are preserved under tropicalization, similar to how all complicated features of the
landscape disappear when looking at the Earth from outer space.

In order to study information optimization problems, wemay aswell study themore
malleable tropical cone. This is because the entropic cone is the closure of the image
of the bounded linear map defined on the tropical cone that evaluates entropies of
the individual spaces in a tropical diagram. More generally, we call any non-negative
bounded linear functional on the tropical cone an entropic quantity. These include
entropies of individual spaces, but also some other quantities, such as optima of some
linear combinations of entropies of an extended diagram, where some extra spaces are
added to the original diagram. Study of such entropic quantities is the subject of our
future research.

One of the main tools in the study of entropic quantities through the tropical cone is
the Asymptotic Equipartition Property for diagrams. Originally derived in [9], we cast
it here into a density statement of simpler, so-called homogeneous tropical diagrams
in the tropical cone, in terms of Theorems 5.1 and 5.2. Therefore, to prove statements

1 The reason for the name tropical cone is the following. For instance in algebraic geometry, tropical
varieties are, roughly speaking, divergent sequences of classical varieties, renormalized on a log scale
with an increasing base. The adjective ‘tropical’ carries little semantics, but was introduced in honor of
the Brazilian mathematician and computer scientist Imre Simon who worked on the subject of tropical
mathematics. Analogously, we construct the asymptotic cone from certain divergent sequences with respect
to the intrinsic entropy distance. As the intrinsic entropy distance is entropy-based, we achieve a similar
type of renormalization as in algebraic geometry.
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about entropic quantities, it suffices to study the much simpler homogeneous tropical
diagrams.

2 Asymptotic cones of metric abelianmonoids

In this sectionwe define the asymptotic cone in the setting of an abstractmetricAbelian
monoid. In a later section, wewill specify to the case of diagrams of probability spaces.

2.1 Metric and pseudo-metric spaces

Apseudo-metric space (X ,d) is a set X equipped with a pseudo-distance d, a bivariate
function satisfying all the axioms of a distance function, except that it is allowed to
vanish on pairs of non-identical points. An isometry of such spaces is a distance-
preserving map, such that for any point in the target space there is a point in the
image at zero distance away from it. Given such a pseudo-metric space (X ,d) one
could always construct an isometric metric space (X/d=0 ,d), the metric quotient, by
identifying all pairs of points that are distance zero apart.

Any property formulated in terms of the pseudo-metric holds simultaneously for a
pseudo-metric space and its metric quotient. It will be convenient for us to construct
pseudo-metrics on spaces instead of passing to the quotient spaces.

For a pair of points x, y ∈ X in a pseudo-metric space (X ,d) we will write x
d= y

if d(x, y) = 0. We call such a pair of points (d-)metrically equivalent.
Many metric-topological notions such as (Lipschitz-)continuity, compactness, ε-

nets, dense subsets, etc., extend to the setting of a pseudo-metric spaces and exercising
certain care one may switch between a pseudo-metric space and its metric quotient

replacing the
d=-sign with equality.

2.2 Metric abelianmonoids

Amonoid is a set equippedwith a bivariate associative operation and a neutral element.
The operation is usually called multiplication, or addition if it is commutative. We call
a monoid with pseudo-distance (�,+,d) a metric Abelian monoid if it satisfies:

1. For all γ, γ ′ ∈ � holds

γ + γ ′ d= γ ′ + γ

2. The binary operation is 1-Lipschitz with respect to each argument: For all
γ, γ ′, η ∈ �

d(η + γ, η + γ ′) ≤ d(γ, γ ′)
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In other words, the translation maps

Tη : � → �, γ �→ η + γ

are non-expanding for every η ∈ �.

The following proposition is an elementary consequence of the triangle inequality.

Proposition 2.1 Let (�,+,d) be a metric Abelian monoid. Then:

1. For any quadruple γ1, γ2, γ3, γ4 ∈ � holds

d(γ1 + γ2, γ3 + γ4) ≤ d(γ1, γ3) + d(γ2, γ4)

2. For every n ∈ N, and γ1, γ2 ∈ � also holds

d(n · γ1, n · γ2) ≤ n · d(γ1, γ2)

Ametric Abelian monoid (�,+, δ) will be called homogeneous if it satisfies for all
n ∈ N0

δ(n · γ1, n · γ2) = n · δ(γ1, γ2) (2.1)

A homogeneous metric Abelian monoid is called an R≥0-semi-module (�,+, · , δ) if
in addition there is a doubly distributive R≥0-action such that for any λ1, λ2 ∈ R≥0
and γ1, γ2 ∈ � holds

λ1 · (λ2 · γ1)
δ= (λ1λ2) · γ1

λ · (γ1 + γ2)
δ= λ · γ1 + λ · γ2

(λ + λ′) · γ1
δ= λ · γ1 + λ′ · γ1

δ(λ · γ, λ · γ ′) = λ · δ(γ, γ ′)

A convex cone in a normed vector space would be a typical example of an R≥0-
semimodule. An intersection of a convex cone in R

n with the integer lattice is an
example of a monoid, that does not admit semimodule structure.

The following proposition asserts that if a metric Abelian monoid is homogeneous,
then the pseudo-distance is translation invariant, and, in particular, it satisfies a can-
cellation property. This result was communicated to us by Tobias Fritz.

Proposition 2.2 Let (�,+, δ) be a homogeneous metric Abelian monoid. Then the
pseudo-distance function δ is translation invariant, that is it satisfies for any γ1, γ2, η ∈
�

δ(γ1 + η, γ2 + η) = δ(γ1, γ2)
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In particular, the following cancellation property holds in �

If γ1 + η
δ= γ2 + η, then γ1

δ= γ2.

The proof of this proposition is essentially the same as the proof of [9, Proposition
3.7]. Even though the latter proposition is formulated for a specific homogeneous
metric Abelian monoid, it does not use any of its specific properties, but only defining
properties of a generic homogeneous metric Abelian monoid.

2.3 Asymptotic cones (tropicalization) of monoids

In our construction points of the asymptotic cone of (�,+,d) will be sequences of
points in � that grow almost linearly in a certain sense described below.

2.3.1 Admissible functions

Admissible functions will be used to measure the deviation of a sequence from being
linear. We call a function ϕ : R≥1 → R≥0 admissible if

1. the function ϕ is non-decreasing;
2. the function ϕ(t)/t is non-increasing;
3. there exists a constant Dϕ ≥ 0 such that s · ∫ ∞

s
ϕ(t)
t2

dt ≤ Dϕ

8 · ϕ(s) for any s ≥ 1.

In particular the function ϕ is summable against dt/t2.

For example, the function ϕ(t): = tα is admissible for any 0 ≤ α < 1. Any admissible
function is necessarily sub-linear, that is ϕ(t)/t → 0 as t → ∞. A linear combination
of admissible functions with non-negative coefficients is also admissible.

Lemma 2.3 Let ϕ be a positive admissible function. Then for any α ≥ 0 and λ ≥ 1
there is C > 1 such that for any t ≥ 1

ϕ(λ · t) + α ≤ C · ϕ(t)

Proof From positivity and monotonicity of ϕ we have

α = α

ϕ(1)
· ϕ(1) ≤ α

ϕ(1)
· ϕ(t)

On the other hand from monotonicity of the function ϕ(t)/t it follows that for any
λ, t ≥ 1

ϕ(λ · t) ≤ λ · ϕ(t)

Adding the two inequalities above we obtain the conclusion of the lemma. 	
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2.3.2 Quasi-linear sequences

Let (�,+,d) be ametric Abelianmonoid and ϕ be an admissible function. A sequence
γ̄ = {γ (i)} ∈ �N0 will be called quasi-linear with defect bounded by ϕ if for every
m, n ∈ N the following bound is satisfied

d
(
γ (m + n), γ (m) + γ (n)

) ≤ ϕ(m + n) (2.2)

For technical reasons we also require γ (0) = 0. Sequences that are quasi-linear with
defect bounded by ϕ ≡ 0 will be called linear sequences.

We will often need the following corollary of quasi-linearity, which follows from
applying the bound (2.2) twice and using the monotonicity of ϕ: for all m, n, k ∈ N

d
(
γ (m + n + k), γ (m) + γ (n) + γ (k)

) ≤ 2ϕ(m + n + k) (2.3)

For an admissible function ϕ we will write QLϕ(�,d) for the space of all quasi-linear
sequences with defect bounded byC ·ϕ for some (depending on the sequence) constant
C ≥ 0.Wewill also use notation L(�,d):=QL0(�,d) for the space of linear sequences.

2.3.3 Asymptotic distance

Given two quasi-linear sequences γ̄1 ∈ QLϕ1(�,d) and γ̄2 ∈ QLϕ2(�,d) the sequence
of distances a(n):=d(γ1(n), γ2(n)) is ϕ3-subadditive, where ϕ3 = ϕ1 + ϕ2 is also
admissible, i.e.

a(m + n) ≤ a(m) + a(n) + ϕ3(m + n)

for any n,m ∈ N. By the generalization of Fekete’s Lemma by De Bruijn and Erdös
[4, Theorem 23], it follows that the following limit exists and finite

d̂(γ̄1, γ̄2) := lim
n→∞

1

n
d(γ1(n), γ2(n))

We call the quantity d̂(γ̄1, γ̄2) the asymptotic distance between γ̄1, γ̄2 ∈ QLϕ(�,d).
It is easy to verify that d̂ indeed satisfies all axioms of a pseudo-distance. Even if d
was a proper distance function, the corresponding asymptotic distance may vanish
on some pairs of non-identical elements. We call two sequences γ̄1 ∈ QLϕ1(�,d),
γ̄2 ∈ QLϕ2(�,d) asymptotically equivalent if d̂(γ̄1, γ̄2) = 0 and write

γ̄1
d̂= γ̄2

2.3.4 Quasi-homogeneity

We will show that quasi-linear sequences are also quasi-homogeneous in the sense of
the following lemma.
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Lemma 2.4 Let γ̄ ∈ �N0 be a sequencewithϕ-bounded defect. Then for anym, n ∈ N

d(γ (m · n),m · γ (n)) ≤ 8 · m · n ·
∫ 2m·n

n

ϕ(t)

t2
dt

Proof Define the function ψ : R≥0 → R related to ϕ as follows

ψ(s):=ϕ(es)/es or ϕ(t) =: t · ψ(ln t)

The conclusion of the lemma in terms of ψ then reads

d(γ (m · n),m · γ (n)) ≤ 8 · m · n ·
∫ ln(2·m·n)

ln n
ψ(s)ds

and it is in that form it will be proven below.
Due to monotonicity properties of ϕ, the function ψ satisfies, for all 0 ≤ s0 ≤ s

ψ(s0) ≤ ψ(s) · es−s0

which integrated over s yields

ψ(s0) ≤ 2

ln 2

∫ s0+ln 2

s0
ψ(s)ds ≤ 4

∫ s0+ln 2

s0
ψ(s)ds (2.4)

We proceed by induction with respect to m, keeping n fixed. The conclusion of the
lemma is obvious for m = 1. For the induction step let m = 2m′ + ε ≥ 2, where
m′ = �m/2 and ε ∈ {0, 1}. We first use the bound in (2.3) to estimate

d
(
γ (m · n) , m · γ (n)

)

= d
(
γ (m′ · n + m′ · n + ε · n) , m′ · γ (n) + m′ · γ (n) + ε · γ (n)

)

≤ 2d
(
γ (m′ · n) , m′ · γ (n)

) + 2ϕ
(
m · n )

Next, we continue the estimate using bound (2.4)

d
(
γ (m · n) , m · γ (n)

)

≤ 2d
(
γ (m′ · n) , m′ · γ (n)

) + 2ϕ
(
m · n )

≤ 16m′ · n ·
∫ ln(2m′·n)

ln n
ψ(s)ds + 2m · n · ψ

(
ln(m · n)

)

≤ 8m · n
(∫ ln(2m′·n)

ln n
ψ(s)ds +

∫ ln(2m·n)

ln(m·n)

ψ(s)ds

)

≤ 8m · n ·
∫ ln(2m·n)

ln n
ψ(s)ds
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Applying bound (3) in the definition of admissible functions, we obtain the following
corollary.

Corollary 2.5 Let γ̄ be a sequence with ϕ-bounded defect. Then for any m, n ∈ N

d(γ (m · n),m · γ (n)) ≤ 8 · m · n ·
∫ ∞

n

ϕ(t)

t2
dt ≤ Dϕ · m · ϕ(n)

2.3.5 The semi-module structure

The group operation + on � induces a d̂-continuous (in fact, 1-Lipschitz) group
operation on QLϕ(�,d) by adding sequences element-wise. Thus (QLϕ(�,d),+, d̂)

is also a metric Abelian monoid. In addition, if ϕ is positive it carries the structure of
a R≥0-semi-module, as explained below.

If ϕ > 0 is a positive admissible function, the set QLϕ(�,d) admits an action of
the multiplicative semigroup (R≥0, · ) defined in the following way. Let λ ∈ R≥0 and
γ̄ = {γ (n)} ∈ QLϕ(�,d). Then define the action of λ on γ̄ by

λ · γ̄ := {
γ

(�λ · n)}n∈N0
(2.5)

To show that γ̃ :=λ · γ̄ belongs to QLϕ(�,d) we bound its defect as follows. Let
m, n ∈ N0, and define ε:=�λ(m+n)−�λ ·m−�λ ·n ∈ {0, 1}. In the computation
below we assume that λ ≥ 1. For λ ∈ [0, 1] the computation is similar, but simpler.
We estimate

d
(
γ̃ (m + n), γ̃ (m) + γ̃ (n)

)

= d
(
γ

(�λ(m + n)), γ (�λ · m) + γ
(�λ · n)

)

= d
(
γ

(�λ · m + �λ · n + ε
)
, γ

(�λ · m) + γ
(�λ · n)

)

≤ d
(
γ

(�λ · m) + γ
(�λ · n) + γ (ε), γ

(�λ · m) + γ
(�λ · n)

)

+ 2ϕ
(�λ · m + �λ · n + ε

)

≤ d(γ (ε), 0) + 2ϕ
(�λ(m + n))

≤ d(γ (1), 0) + 2ϕ
(
λ(m + n)

)

≤ C · ϕ
(
m + n)

The first inequality above is the bound (2.3) and the last inequality is obtained by
applying Lemma 2.3.

The action defined above is only an action up to asymptotic equivalence. Similarly,
in the constructions that follow we are tacitly assuming they are valid up to asymptotic
equivalence.

The action

· : R≥0 × QLϕ(�,d) → QLϕ(�,d)
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is a homothety (dilation)

d̂(λ · γ̄1, λ · γ̄2) = λ · d̂(γ̄1, γ̄2)

and therefore it is continuous with respect to d.
The semigroup structure onQLϕ(�,d) is distributive with respect to theR≥0-action

λ · (γ̄1 + γ̄2) = λ · γ̄1 + λ · γ̄2

(λ1 + λ2) · γ̄
d̂= λ1 · γ̄ + λ2 · γ̄

In particular, for n ∈ N and γ̄ ∈ QLϕ(�,d)

γ̄ + · · · + γ̄
︸ ︷︷ ︸

n

d̂= n · γ̄

2.3.6 Completeness

Here, we introduce additional conditions on a metric Abelian monoid (�,+,d), that
guarantee that (QLϕ(�), d̂) is a complete metric space.

Suppose ϕ is an admissible function and (�,+,d) is a metric Abelian monoid
satisfying the following additional property: there exists a constant C > 0, such
that for any quasi-linear sequence γ̄ ∈ QLϕ(�,d), there exists an asymptotically
equivalent quasi-linear sequence γ̄ ′ with defect bounded by Cϕ. Note that, contrary
to the situation in the definition of QLϕ(�,d), the constant C is now not allowed to
depend on the sequence. If this is the case, we say thatQLϕ(�,d) has the (C-)uniformly
bounded defect property.

Proposition 2.6 Suppose a metric Abelian monoid (�,+, δ) and an admissible func-
tion ϕ > 0 are such that (QLϕ(�, δ), δ̂) has the uniformly bounded defect property and

the distance function δ is homogeneous. Then the space (QLϕ(�, δ), δ̂) is complete.

Proof Given a Cauchy sequence {γ̄i } of elements in (QLϕ(�, δ), δ̂) we need to find a
limit element η̄ ∈ QLϕ(�, δ). We will construct η̄ by a diagonal argument. First we
replace each element of the sequence {γ̄i } by an asymptotically equivalent element
with defect bounded by Cϕ according to the assumption of the proposition. We will
still call the new sequence {γ̄i }. In fact, we may without loss of generality assume that
C = 1.

We begin by establishing a bound on the divergence of the tails of sequences γ̄i and
γ̄ j . By homogeneity of δ, the triangle inequality and Corollary 2.5, it holds for any
n, k ∈ N that

k · δ
(
γi (n), γ j (n)

) = δ
(
k · γi (n), k · γ j (n)

)

≤ δ
(
γi (k · n), γ j (k · n)

) + 2k · Dϕ · ϕ(n)
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Dividing by k and passing to the limit k → ∞, while keeping n fixed, we obtain

δ(γi (n), γ j (n)) ≤ n · δ̂(γ̄i , γ̄ j ) + 2Dϕ · ϕ(n)

Since the sequence (γ̄i )i∈N0 is Cauchy, it follows that for any n ∈ N there is a number
i(n) ∈ N such that for any i, j ≥ i(n) holds

δ̂(γ̄i , γ̄ j ) ≤ 1

n

Then for any i, j, n ∈ N with i, j ≥ i(n) we have the following bound

δ
(
γi (n), γ j (n)

) ≤ 2Dϕ · ϕ(n) + 1 (2.6)

Now we are ready to define the limiting sequence η̄ by setting

η(n):=γi(n)(n)

First we verify that η̄ is quasi-linear. For m, n ∈ N, we have

δ
(
η(n + m), η(n) + η(m)

) = δ
(
γi(n+m)(n + m), γi(n)(n) + γi(m)(m)

)

≤ δ
(
γi(n+m)(n + m), γi(n+m)(n) + γi(n+m)(m)

)

+ δ
(
γi(n+m)(n) + γi(n+m)(m), γi(n)(n) + γi(m)(m)

)

≤ ϕ(n + m) + 2Dϕ · ϕ(n) + 1 + 2Dϕ · ϕ(m) + 1

≤ (4Dϕ + 1)ϕ(n + m) + 2 ≤ C ′ · ϕ(n + m)

for some constant C ′ > 0.
The convergence of γ̄i to η̄ is shown as follows. For n, k ∈ N let qn, rn ∈ N0 be

the quotient and the remainder of the division of n by k, that is n = qn · k + rn and
0 ≤ rn < k. Fix k ∈ N and let i ≥ i(k), then

δ̂(γ̄i , η̄) = lim
n→∞

1

n
δ
(
γi (n), η(n)

)

= lim
n→∞

1

n
δ
(
γi (qn · k + rn), γi(n)(qn · k + rn)

)

≤ lim sup
n→∞

1

n

(
qn · δ

(
γi (k), γi(n)(k)

) + δ
(
γi (rn), γi(n)(rn)

)

+ 4qn · Dϕ · ϕ(k) + 2ϕ(n)
)

≤ lim sup
n→∞

1

n

(
qn · (2Dϕ · ϕ(k) + 1) + (2Dϕ · ϕ(rn) + 1) +

+ 4qn · Dϕ · ϕ(k) + 2ϕ(n)
)

= C ′′ · ϕ(k)/k
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Since k ∈ N is arbitrary and ϕ is sub-linear we have

lim
i→∞

δ̂(γ̄i , η̄) = 0

	


2.3.7 On the density of linear sequences

For a metric Abelian monoid (�,+,d) together with an admissible function ϕ we
say that QLϕ(�,d) has the vanishing defect property if for every ε > 0 and for every
γ̄ ∈ QLϕ(�,d) there exists an asymptotically equivalent quasi-linear sequence γ̄ ′ with
defect bounded by another admissible function ψ such that

∫ ∞
1

ψ(t)
t2

dt < ε.
The proposition below gives a sufficient condition under which the linear sequences

are dense in the space of quasi-linear sequences.

Proposition 2.7 SupposeQLϕ(�,+,d) has the vanishing defect property. Then L(�,d)

is dense in QLϕ(�,d).

Proof Let γ̄ = {γ (n)} be a quasi-linear sequence. For any i ∈ N select a sequence γ̄i
asymptotically equivalent to γ̄ with defect bounded by an admissible function ϕi such
that

∫ ∞
1

ϕi (t)
t2

dt < 1/i according to the “vanishing defect” assumption of the lemma.
Define η̄i by

ηi (n):=n · γi (1)

Then

d̂(γ̄ , η̄i ) = d̂(γ̄i , η̄i ) = lim
n→∞

1

n
d(γi (n), ηi (n)) = lim

n→∞
1

n
d
(
γi (n), n · γi (1)

)

≤ 8
∫ ∞

1

ϕi (t)

t2
dt ≤ 8

i

where we used Lemma 2.4 in the first inequality. Thus, any quasi-linear sequence can
be approximated by linear sequences. 	


2.3.8 Asymptotic distance on original monoid

Starting with an element γ ∈ � one can construct a linear sequence = {i · γ }i∈N0
. In

view of Proposition 2.1, the map

· : (
�,d

) → (
L(�,d), d̂

)
(2.7)

is a contraction.
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The inclusion in (2.7) induces a metric δ on �, satisfying for any γ1, γ2 ∈ �

δ(γ1, γ2) ≤ d(γ1, γ2) (2.8)

and the following homogeneity condition

δ(n · γ1, n · γ2) = n · δ(γ1, γ2) (2.9)

for all n ∈ N0.
Note that if d was homogeneous to begin with, then δ coincides with d on �.
By virtue of the bound δ ≤ d, sequences that are quasi-linear with respect to

d are also quasi-linear with respect to δ. Since δ is scale-invariant, the associated
asymptotic distance δ̂ coincides with δ on �. We will show (in Lemma 2.8 below) that
δ̂ also coincides with d̂ on d-quasi-linear sequences.

Let ϕ be an admissible function. In order to organize all these statements, and to
be more precise, let us include the spaces in the following commutative diagram.

L d), d̂ QLϕ d), d̂

δ)

L δ), δ̂ QLϕ δ), δ̂

ı1

j1

ı2

f

f

j2

(2.10)

The maps f , f ′ and ı1 are isometries. The maps j1 and j2 are isometric embed-
dings. The next lemmas show that ı2 is also an isometric embedding, and it has dense
image.

Lemma 2.8 Let ϕ be a positive, admissible function. Then, the natural inclusion

ı2 : (
QLϕ(�,d), d̂

)
↪→ (

QLϕ(�, δ), δ̂
)

is an isometric embedding with the dense image.

Proof Firstwe show that themap ı2 is an isometric embedding. Let γ̄1, γ̄2 ∈ QLϕ(�,d)

be two ϕ-quasi-linear sequences with respect to the distance function d. We have to
show that the two numbers

d̂(γ̄1, γ̄2) = lim
n→∞

1

n
d
(
γ1(n), γ2(n)

)

and

δ̂(γ̄1, γ̄2) = lim
n→∞

1

n
δ
(
γ1(n), γ2(n)

)
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are equal. Since shifts are non-expanding maps, we have δ ≤ d and it follows imme-
diately that

δ̂(γ̄1, γ̄2) ≤ d̂(γ̄1, γ̄2)

and we are left to show the opposite inequality. We will do it as follows. Fix n > 0,
then

d̂(γ̄1, γ̄2) = lim
k→∞

1

k · nd
(
γ1(k · n), γ2(k · n)

)

≤ lim
k→∞

1

k · n
(
d
(
k · γ1(n), k · γ2(n)

) + 2k · Dϕ · ϕ(n)

)

≤ 1

n
δ
(
γ1(n), γ2(n)

) + 2Dϕ

ϕ(n)

n

Passing to the limit with respect to n gives the required inequality

d̂(γ̄1, γ̄2) ≤ δ̂(γ̄1, γ̄2)

Now we will show that the image of ı2 is dense. Given an element γ̄ = {γ (n)} in
QLϕ(�, d̂) we have to find a δ̂-approximating sequence γ̄i = {γi (n)} in QLϕ(�,d).
Define

γi (n):=
⌊n
i

⌋
· γ (i)

We have to show that each γ̄i is d-quasi-linear and that δ̂(γ̄i , γ̄ )
i→∞−→ 0. These state-

ments follow from

d
(
γi (m + n), γi (m) + γi (n)

) = d
(⌊

m + n

i

⌋
· γ (i),

⌊m
i

⌋
· γ (i) +

⌊n
i

⌋
· γ (i)

)

≤ d (γ (i), 0)

≤ Ci · ϕ(m + n)

for someCi > 0. It is worth noting that the defect of γ̄i may not be bounded uniformly
with respect to i . Finally, it holds that

δ̂(γ̄i , γ̄ ) = lim
n→∞

1

n
δ (γi (n), γ (n)) = lim

n→∞
1

n
δ

(⌊n
i

⌋
· γ (i), γ (n)

)

≤ lim
n→∞

[
1

n
δ

(
γ

(
i� n

i 
)
, γ (n)

) + 1

n

⌊n
i

⌋
· Dϕ · ϕ(i)

]

≤ lim
n→∞

[
1

n
max

k=0,...,i−1
δ (γ (k), 0) + 1

n
ϕ(n)

]
+ Dϕ

ϕ(i)

i
= Dϕ

ϕ(i)

i

i→∞
−→ 0
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The difference between the distance functions d̂, δ and δ̂ is very small: d̂ and δ are
defined on the dense subset of the domain of definition of δ̂ and they coincidewhenever
are both defined. From now on we will write d for the original distance function and
δ for the asymptotic metric on both the monoid and its tropicalization.

3 Grothendieck construction

Given an Abelian monoid with the cancellation property, there is a minimal Abelian
group (called the Grothendieck Group of the monoid), into which it isomorphically
embeds. Similarly, anR≥0-semi-module naturally embeds into a normed vector space.
A nice example of this construction applied to the semi-module of convex sets in R

n

(with the Minkowski sum and the Hausdorff distance) can be found in [12].

Proposition 3.1 Let (�,+, ·, δ) be a complete metric Abelian monoid withR≥0 action
(anR≥0-semi-module) with homogeneous pseudo-metric δ. Then there exists a Banach
space (B, || · ||) and a distance-preserving homomorphism of monoids

f : � → B

such that the image of f is a closed convex cone.

If δ is a proper pseudo-metric (not a metric), then the map f is not injective.

Proof By Lemma 2.2 the pseudo-metric δ is translation invariant. We can therefore
apply the Grothendieck construction to define a normed vector space B0: Define

B0:= {(x, y) : x, y ∈ �} / ∼

where (x, y) ∼ (x ′, y′) if there are z, z′ ∈ �, such that x + z
δ= x ′ + z′ and y + z

δ=
y′ + z′.

Define also addition, multiplication by a scalar and a norm on B0 by setting for all
x, y, x ′, y′ ∈ � and λ ∈ R

(x, y) + (x ′, y′) := (x + x ′, y + y′)
(−1) · (x, y) := (y, x)

λ · (x, y) := sign(λ) · (|λ| · x, |λ| · y)
||(x, y)|| := δ(x, y)

These operations respect the equivalence relation and turn (B0,+, ·, || · ||) into a
normed vector-space. The map f defined by

f : � → B0, x �→ (x, 0)

is a well-defined distance-preserving homomorphism.
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That f (�) is closed immediately follows as � is complete and f is distance-
preserving.

In general, the space B0 is not complete. We define the Banach space B as the
completion of the normed vector space B0. 	


4 Tropical probability spaces and their diagrams

4.1 Diagrams of probability spaces

We will now briefly describe the construction of diagrams of probability spaces, see
[9] for a more detailed discussion. By a finite probability spacewewill mean a set (not
necessarily finite) with a probability measure, such that the support of the measure is
finite. For such probability space X we denote by |X | the cardinality of the support
of probability measure and the expression x ∈ X will mean, that x is an atom in X ,
which is a point of positive weight in the underlying set.

We will consider commutative diagrams of finite probability spaces, where arrows
are equivalence classes of measure-preserving maps. Two maps are considered equiv-
alent if they coincide on a set of full measure and such equivalence classes will be
called reductions.

Three examples of diagrams of probability spaces are pictured in (1.1). The com-
binatorial structure of such a commutative diagram can be recorded by an object G,
which could be equivalently considered as a special type of category, a finite poset, or
a directed acyclic graph (DAG) with additional properties. We will call such objects
simply indexing categories. Below we briefly recall the definition.

An indexing category is a finite category such that for any pair of objects there
exists at most one morphism between them in either direction, and such that it satisfies
the following property. For any pair of objects i, j in an indexing category G there
exists a least common ancestor, i.e. an object k such that there are morphisms k → i
and k → j in G and such that for any other object l admitting morphisms l → i and
l → j , there is also a morphism l → k.

By �G� we denote the number of objects in the indexing category, or equivalently
the number of vertices in theDAGor the number of points in the posetG. An important
class of examples of indexing categories is formed by so-called full categories �n ,
that correspond to the poset of non-empty subsets of a set {1, . . . , n} ordered by
coinclusion. If n = 2, we call the category

�2 = (O1 ← O{1,2} → O2)

a fan. We refer to the objects O1 and O2 as the feet of the fan and to O12 as the initial
object. We use the same terminology for the spaces in a diagram indexed by �2.

The space of all commutative diagrams of a fixed combinatorial typewill be denoted
Prob〈G〉. A morphism between two diagrams X,Y ∈ Prob〈G〉 is, by definition, a
natural transformation between functors X and Y. Essentially, it is a collection of
morphisms between corresponding individual spaces in X and Y, that commute with
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morphisms within the diagrams X and Y. We call such morphisms reductions of
diagrams.

The construction of forming commutative diagrams could be iterated, producing
diagrams of diagrams. Especially important will be two-fans ofG-diagrams, the space
of which will be denoted Prob 〈G〉 〈�2〉.

A two-fan X will be called minimal, if for any morphism of X to another two-fan
Y, the following holds: if the induced morphisms on the feet are isomorphisms, then
the top morphism is also an isomorphism. Any G-diagram will be called minimal if
for any sub-diagram, which is a two-fan, it contains a minimal two-fan with the same
feet.

Given an n-tuple (X1, . . . ,Xn) of finite-valued random variables, one can construct
a minimal �n-diagram X = {XI ;χI J } by setting for any ∅ �= I ⊂ {1, . . . , n}

XI =
∏

i∈I
Xi

where Xi is the target space of random variable Xi , and the probabilities are the
induced distributions. For the diagram constructed in such a way we will write X =
〈X1, . . . ,Xn〉. On the other hand, any �n-diagram gives rise to the n-tuple of random
variables with the domain of definition being the initial space and the targets being
the spaces indexed by one-point sets.

The constant diagram XG is G-diagram in which all the spaces are isomorphic to
a single probability space X and all the morphisms are identity maps. In particular,
we denote by {•}G the G-diagram consisting entirely of one-point spaces.

The tensor productX⊗Y of twoG-diagrams is defined by taking the tensor product
of corresponding probability spaces and the Cartesian product of maps. The diagram
{•}G is a unit with respect to the tensor product. Certain care should be exercised here,
since the assocaitivity, commutativity and unity of {•}G for the tensor product only
hold up to isomorphism.

For a diagram X ∈ Prob〈G〉 one can evaluate entropies of the individual spaces.
The corresponding map will be denoted

Ent∗ : Prob〈G〉 → R
�G�

where the target space is the space of R-valued functions on objects in G and it is
equipped with the �1-norm.

For a two-fan F = (X ← Z → Y) of G-diagrams define the entropy distance

kd(F):=‖Ent∗Z − Ent∗X‖1 + ‖Ent∗Z − Ent∗Y‖1
We interpret kd(F) as ameasure of deviation ofF from being an isomorphism between
the diagrams X and Y. Indeed, kd(F) = 0 if and only if the two morphisms in F are
isomorphisms, see [9].

We define the intrinsic entropy distance k on the space Prob〈G〉 by

k(X,Y):= inf
{
kd(F) : F = (X ← Z → Y) ∈ Prob〈G〉〈�2〉

}
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Note that according to the definitions used in this article any indexing category
must have an initial object. In [9] such indexing categories and diagrams indexed by
such categories were called complete. Therefore purely by a change of names, results
that in [9] were said to hold for complete indexing categories, hold for the indexing
categories of this article.

The tensor product is 1-Lipschitz with respect to k, thus (Prob〈G〉,⊗,k) is a
metric Abelian monoid and Ent∗ : (Prob〈G〉,⊗,k) → (R�G�, ‖ · ‖1) is a 1-Lipschitz
homomorphism. For proofs and more detailed discussion the reader is referred to [9].

4.2 Tropical diagrams

In this section we apply the general construction in Sects. 2 and 3 to the metric Abelian
monoid (Prob 〈G〉 ,⊗, · , κ).

We define the asymptotic distance on Prob 〈G〉 by

κ(X,Y):= lim
n→∞

1

n
k(Xn,Yn)

One of the main tools for the estimation of the (asymptotic) distance is the so-called
Slicing Lemma, [9, Proposition 3.9]. We will only need its corollary that we formulate
below in Proposition 4.1. For a diagram X, a space U in it and an atom u ∈ U , we
may form a conditioned diagram X|u by conditioning all the spaces in X on u.

Proposition 4.1 LetG bean indexing category,X,Y ∈ Prob 〈G〉andUG ∈ Prob 〈G〉.
(1) Let X → UG be a reduction, then

k(X,Y) ≤
∫

U
k(X|u,Y)dpU (u) + �G� · Ent(U )

(2) For a “co-fan” X → UG ← Y holds

k(X,Y) ≤
∫

U
k(X|u,Y|u)dpU (u)

The statements and the proofs of the Slicing Lemma and its consequences can be
found in [9].

Wewill show below that (Prob〈G〉,⊗, κ) has the uniformly bounded and vanishing
defect properties. For this purpose we need to develop some technical tools.

4.3 Mixtures

The input data for the mixture operation is a family of G-diagrams, parameterized
by a probability space. As a result one obtains another G-diagram with pre-specified
conditionals. One particular instance of a mixture is when one mixes two diagrams X
and {•}G, the latter being a constant G-diagram of one-point probability spaces. This

operation will be used as a substitute for taking radicals “X 1
n ” below.
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4.3.1 Definition of mixtures

Let G be an indexing category and  be a probability space. By G we denote the
constant G-diagram—the diagram such that all spaces in it are  and all morphisms
are identity morphisms. Let {Xθ }θ∈ be a family ofG-diagrams parameterized by .
The mixture of the family {Xθ } is the reduction

Mix {Xθ } =
(
Y −→ G

)

such that

Y|θ ∼= Xθ for any θ ∈  (4.1)

The mixture exists and is uniquely defined by property (4.1) up to an isomorphism
which is identity on G.

We denote the top diagram Y of the mixture by

Y =:
⊕

θ∈

Xθ

and also call it the mixture of the family {Xθ }.
When

 = Bα:= ( {�,�} ; p(�) = α
)

is a binary space we write simply

X� ⊕Bα
X�

for the mixture. The diagram subindexed by the � will always be the first summand.
The entropy of the mixture can be evaluated by the following formula

Ent∗

(
⊕

θ∈

Xθ

)

=
∫



Ent∗(Xθ )dp(θ) + Ent∗(G)

Mixtures satisfy the distributive law with respect to the tensor product

Mix({Xθ }θ∈) ⊗ Mix({Yθ ′ }θ ′∈′) ∼= Mix({Xθ ⊗ Yθ ′ }(θ,θ ′)∈⊗′)
(

⊕

θ∈

Xθ

)

⊗
(

⊕

θ ′∈′
Yθ ′

)
∼=

⊕

(θ,θ ′)∈⊗′
(Xθ ⊗ Yθ ′)
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4.3.2 The distance estimates for the mixtures

The mixture of aG-diagram with the constant diagram of one-point spaces {•}G may
serve as an substitute of taking radicals of the diagram. The following lemma provides
a justification of this by some distance estimates related to mixtures and will be used
below.

Lemma 4.2 Let G be a complete indexing category and X,Y ∈ Prob 〈G〉. Then
1. κ(X,Xn ⊕B1/n {•}) ≤ Ent(B1/n)

2. κ
(X, (X ⊕B1/n {•})n) ≤ n · Ent(B1/n)

3. κ
(
(X ⊗ Y) ⊕B1/n {•} , (X ⊕B1/n {•}) ⊗ (Y ⊕B1/n {•})) ≤ 3Ent(B1/n)

4. κ
(
(X ⊕B1/n {•}), (Y ⊕B1/n {•})) ≤ 1

n
κ(X,Y)

Note that the distance estimates in the lemma above are with respect to the asymptotic
distance. This is essential, since from the perspective of the intrinsic distance mixtures
are very badly behaved.

Proof For λ ∈ B
N
1/n , define q(λ) to be the number of black squares in the sequence λ.

It is a binomially distributed random variable with mean N/n and variance N
n (1− 1

n ).
The first claim is then proven by the following calculation

κ(X,Xn ⊕B1/n {•})
= lim

N→∞
1

N
k

(
XN , (Xn ⊕B1/n {•})N

)

= lim
N→∞

1

N
k

⎛

⎜
⎝XN ,

⊕

λ∈BN
1/n

Xn·q(λ)

⎞

⎟
⎠

≤ Ent(B1/n) + lim
N→∞

1

N

∫

λ∈Bn
1/n

k(XN ,Xn·q(λ))dp(λ)

≤ Ent(B1/n) + ‖Ent∗(X)‖1 · lim
N→∞

n

N
·
∫

λ∈BN
1/n

∣∣N/n − q(λ)
∣∣dp(λ)

≤ Ent(B1/n) + ‖Ent∗(X)‖1 · lim
N→∞

n

N
·
√

N · 1
n
(1 − 1

n
) = Ent(B1/n)

where we used Proposition 4.1(1) for the inequality on the third line above, and the
following estimate: for any diagram A and integers 0 ≤ m ≤ n

k(An,Am) ≤ k(An−m, 0) = ‖Ent∗(A)‖1 · (n − m)

The second claim is proven similarly and the third follows from the second and the
1-Lipschitz property of the tensor product:

123



Information Geometry (2020) 3:61–88 81

κ
(
(X ⊗ Y) ⊕B1/n {•} , (X ⊕B1/n {•}) ⊗ (Y ⊕B1/n {•}))

≤ κ
(
(X ⊗ Y) ⊕B1/n {•} ,X ⊗ Y) + 2Ent(B1/n)

≤ 3Ent(B1/n)

Finally, the fourth follows from Proposition 4.1(2), by slicing both arguments along
B1/n . 	


4.4 Vanishing defect property and completeness of the tropical cone

Lemma 4.3 For every admissible function ϕ, every X̄ ∈ QLϕ(Prob 〈G〉 , κ) and every
k ∈ N, there exists an asymptotically equivalent sequence Ȳ with defect bounded by
the admissible function ϕk defined by

ϕk(s):=3Ent(B1/k) + 1

k
ϕ(k · s)

Proof Let X̄ = {X(i)} be a quasi-linear sequence with defect bounded by ϕ and let
k ∈ N.

Define a new sequence Ȳ = {Y(i)} by

Y(i):=(X(k · i)) ⊕B1/k {•}

First we verify that the sequences X̄ and Ȳ are asymptotically equivalent, that is

κ̂(X̄, Ȳ):= lim
i→∞

1

i
κ (X(i),Y(i)) = 0

We estimate the asymptotic distance between individual members of sequences X̄ and
Ȳ using Lemma 4.2 and Corollary 2.5 as follows

κ(X(i),Y(i)) = κ
(X(i),X(k · i) ⊕B1/k {•} )

≤ κ
(
X(i),X(i)k ⊕B1/k {•}

)
+ κ

(
X(i)k ⊕B1/k {•} ,X(k · i) ⊕B1/k {•}

)

≤ Ent(B1/k) + Dϕ · ϕ(i)

Thus κ̂(X̄, Ȳ) = 0 and the two sequences are asymptotically equivalent. Next we show
that the sequence Ȳ is κ-quasi-linear and evaluate its defect, also using Lemma 4.2.
Let i, j ∈ N, then

κ
(Y(i + j),Y(i) ⊗ Y( j)

)

= κ
(
X(k · i + k · j) ⊕B1/k {•} ,

(X(k · i) ⊕B1/k {•} ) ⊗ (X(k · j) ⊕B1/k {•} ))

≤ κ
((X(k · i)⊗X(k · j))⊕B1/k {•} ,

(X(k · i) ⊕B1/k {•} )⊗(X(k · j) ⊕B1/k {•} ))
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+ 1

k
ϕ
(
k · (i + j)

)

≤ 3Ent(B1/k) + 1

k
ϕ
(
k · (i + j)

)

	

Corollary 4.4 For any indexing categoryG and for the admissible function ϕ given by
ϕ(t) = tα , α ∈ [0, 1), QLϕ(Prob 〈G〉 , κ) has the uniformly bounded and vanishing
defect properties.

Proof Let X̄ ∈ QLϕ(Prob 〈G〉 , κ). By Lemma 4.3 there exists an asymptotically
equivalent sequence Ȳ with defect bounded by ϕk defined by

ϕk(t):=3Ent(B1/k) + 1

k
Cϕ(k · t)

= 3Ent(B1/k) + 1

k
C(k · t)α

Hence there exists a sequence ck → 0 such that for all t ≥ 1,

ϕk(t) ≤ ckt
α

showing the uniformly bounded and vanishing defect property. 	


4.5 Diagrams of tropical probability spaces

By applying the general setup in the previous section to the metric Abelian monoids
(Prob 〈G〉 ,⊗,k) and (Prob 〈G〉 ,⊗, κ) and using the Corollary 4.4 we obtain the
following theorem.

Theorem 4.5 Fix an admissible function ϕ and consider the commutative diagram

L(Prob G ,k), κ QLϕ(Prob G ,k), κ

(Prob G , κ)

L(Prob G , κ), κ̂ QLϕ(Prob G , κ), κ̂

ı1

j1

ı2

f

f
j2

(4.2)

Then the following statements hold:

1. The maps f , f ′, ı1 are isometries.
2. The maps ı2, j1, j2 are isometric embeddings and each map has a dense image

in the corresponding target space.
3. The space in the lower-right corner,

(
QLϕ(Prob 〈G〉 , κ), κ̂

)
, is complete.
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We would like to conjecture that all maps in the diagram above are isometries.
Since QLϕ(Prob 〈G〉 , κ) is complete and has L(Prob 〈G〉 , κ) as a dense subset

for any ϕ > 0, it follows that QLϕ(Prob 〈G〉 , κ) does not depend (up to isometry
of pseudo-metric spaces) on the choice of admissible ϕ > 0. From now on we will
choose the particular function ϕ(t):=t3/4. The choice will be clear when we formulate
the Asymptotic Equipartition Property for diagrams. We may finally define the space
of tropical G-diagrams, as the space in the lower-right corner of the diagram

Prob[G]:=(
QLϕ(Prob 〈G〉 , κ),⊗, ·, κ̂)

By Theorem 4.5 above, this space is complete.
The entropy function Ent∗ : Prob 〈G〉 → R

�G� extends to a linear functional

Ent∗ : Prob[G] →
(
R

�G�, ‖ · ‖1
)

of norm one, defined by

Ent∗(X̄) = lim
n→∞

1

n
Ent∗

(X(n)
)

Applying the construction of Sect. 3 we realize Prob[G] as a closed convex cone
in some Banach space Prob[[G]]. Entropy extends to a bounded linear functional
Ent∗ : Prob[[G]] → (R�G�, ‖ ·‖1), whose coordinates evaluate non-negatively on the
cone. At this point we would like to define an entropic quantity as a bounded linear
functional on Prob[[G]], which is non-negative on the cone Prob[G]. Studying such
entropic quantities is the subject of our future research.

5 AEP

5.1 Homogeneous diagrams

A G-diagram X is called homogeneous if the automorphism group Aut(X) acts tran-
sitively on every space in X. Homogeneous probability spaces are uniform. For more
complex indexing categories this simple description is not sufficient. The subcategory
of all homogeneous G-diagrams will be denoted Prob 〈G〉h. This space is invariant
under the tensor product, thus it is a metric Abelian monoid.

5.1.1 Universal construction of homogeneous diagrams

Examples of homogeneous diagrams could be constructed in the followingmanner. Fix
a finite group G and consider a G-diagram

{
Gi ;αi j

}
i∈G of (not necessarily normal)

subgroups of G, where morphisms αi j are inclusions. The G-diagram of probability
spaces

{
Xi ; fi j

}
is constructed by setting Xi = (G/Gi , unif), where G/Gi denotes

the set of left cosets and unif is the uniform measure, and taking fi j to be the natural
projection G/Gi → G/G j , whenever Gi ⊂ G j . The resulting diagram X will be
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minimal if and only if for any i, j ∈ G there is k ∈ G, such that Gk = Gi ∩ G j . In
fact, any complete homogeneous diagram arises this way, according to the following
argument from [9], although the representation of homogeneous diagrams by diagrams
of subgroups is highly non-unique.

Indeed, let X = {
Xi ; χi j

}
be a homogeneous G-diagram of probability spaces,

such that X0 is the initial space in X. Then Aut(X) acts transitively on every space Xi

in X. Let x0 ∈ X0 be an atom and set xi :=χ0i x0. Define G:=Aut(X) to be the full
automorphism group and Gi :=Stab(xi ) to be the stabilizer of the action of Aut(X) on
Xi at point xi . The spaces Xi can be naturally identified with G/Gi . Note that xi is
the image of x j under the equivariant map χ j i whenever it is present in the diagram
X. Thus we have G j ⊂ Gi and a natural surjection G/G j → G/Gi , if the morphism
χ j i is present in the diagram X. Under the identification G/G j ∼= Xi the surjection
G/G j → G/Gi coincides with χ j i due to the equivariance of χ j i .

5.2 Asymptotic equipartition property

In [9] the following theorem is proven.

Theorem 5.1 Suppose X ∈ Prob 〈G〉 is a G-diagram of probability spaces for some
fixed complete indexing category G. Then there exists a sequence H̄ = (Hn)

∞
n=0 of

homogeneous G-diagrams such that

1

n
k(X⊗n,Hn) ≤ C(|X0|, �G�) ·

√
ln3 n

n
(5.1)

where C(|X0|, �G�) is a constant only depending on the cardinality |X0| of the initial
space X0 of X and the number �G� of objects in G.

The Asymptotic Equipartition Property of Theorem 5.1 is a direct generalization
of the classical Asymptotic Equipartition Property, which states that if (Xi ) is a
sequence of identically distributed, independent random variables, the random vari-
ables − 1

n log p(X1, . . . ,Xn) converge as n → ∞ in probability to the entropy of X1.
Indeed, in that case the approximating sequence Hn corresponds to a sequence of
uniform random variables Hn , with Ent(Hn)/n → Ent(X1). Denote by p(x,h) the
optimal coupling achieving the distance in left-hand-side of (5.1). Then

1

n

∫

Xn
|log p(x) − Ent(Hn)| dp(x)

= 1

n

∫

Xn×Hn

∣∣∣
∣log

p(x|h)

p(h|x)
∣∣∣
∣ dp(x,h)

≤ 1

n

∫

Xn×Hn

|log p(h|x)| dp(x,h) + 1

n

∫

Xn×Hn

|log p(x|h)| dp(x,h)
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≤ 1

n
k(Xn, Hn)

≤ C(|X0|, �G�) ·
√
ln3 n

n

which implies the classical Asymptotic Equipartition Property.
We define the space of tropical homogeneous diagrams by

Prob[G]h:=QLϕ(Prob 〈G〉h , κ)

Then, the Asymptotic Equipartition Property can be reformulated as follows.

Theorem 5.2 For any indexing category G the image of the natural inclusion

Prob[G]h ↪→ Prob[G]

is dense.

Proof By Theorem 5.1, every linear sequence can be approximated by a homoge-
neous sequence. It follows from the bound (5.1) that the defect of the approximating
homogeneous sequence is bounded by a constant times ϕ, defined by ϕ(t) =
t3/4. Moreover, the linear sequences are dense by Theorem 4.5. This finishes the
proof. 	


6 The tropical cone for probability spaces and chains

Although for general indexing categories G the space of tropical G-diagrams will
typically be infinite dimensional, it has a very simple, finite-dimensional description
if G consists of a single object, or if it is a special type of indexing categories called
a chain.

The chain of length k, denoted by Ck , is the indexing category with k objects
O1, . . . , Ok , and a morphism from Oi to Oj whenever i ≥ j . A Ck-diagram of
probability spaces is then a chain of reductions

Xk → Xk−1 → · · · → X1

For chains we can describe the tropical cone explicitly.

Theorem 6.1 For k ∈ N, the tropical cone Prob[Ck] is isomorphic to the following
cone in (Rk, | · |1):

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

xk
...

x1

⎞

⎟
⎠ ∈ R

k

∣∣∣
∣∣∣∣
0 ≤ x1 ≤ · · · ≤ xk

⎫
⎪⎬

⎪⎭
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In particular, the algebraic structure and the pseudo-distance are preserved under the
isomorphism.

Recall that a homogeneous probability space is (isomorphic to) a probability space
with a uniform distribution and therefore its isomorphism class is completely deter-
mined by its cardinality or entropy.Ahomogeneous chain has a very simple description
as well: A chain is homogeneous if and only if the individual probability spaces are
homogeneous, i.e. if and only if the individual probability spaces are (isomorphic to)
probability spaces with a uniformmeasure. Similarly, the isomorphism class of a chain
is completely determined by the cardinalities of the spaces contained in it. This allows
us to construct a canonical model for any chain.

We denote by Hn the homogeneous probability space with the underlying set
{0, . . . , n − 1} with uniform measure. For n | m the map fm,n : Hm → Hn defined
by

fm,n(x):=
⌊ x · n

m

⌋

is a reduction of probability spaces. For a triple of positive integers satisfying n | m | l
holds

fm,n ◦ fl,m = fl,n (6.1)

If X = (Xk → · · · → X1) is a homogeneous chain, and ni :=|Xi | then there is an
isomorphism

X ∼= (Hnk

fnk ,nk−1−→ . . .
fn2,n1−→ Hn1) (6.2)

Let N ,m, n ∈ N be such that m | N and n | N . Consider a fan of homogeneous
spaces

Hn
fN ,n←− HN

fN ,m−→ Hm

This fan is not minimal (and not homogeneous). We denote its minimization by Zn,m

Zn,m = (
Hn ← Zn,m → Hm

)

with the top space Zn,m in the minimization satisfying

|Zn,m | ≤ n + m

Also note that minimization does not depend on N , since we assumed it is a multiple
of lcm(m, n). Now we can estimate

kd(Zn,m) ≤ 2 ln(n + m) − ln(n) − ln(m) ≤ 2 ln 2 + | ln n − lnm|
= 2 ln 2 + |EntHn − EntHm | (6.3)
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Lemma 6.2 Let X,Y ∈ Prob 〈Ck〉 be two homogeneous chains of length k. Then

k(X,Y) ≤ 2k · ln 2 + ‖Ent∗X − Ent∗Y‖1
Proof Let (ni ) and (mi ) be sequences of cardinalities of spaces in X and Y respec-
tively. Without loss of generality we may assume that both chains have canonical
form provided by (6.2). Let N :=lcm(nk,mk). Then ni and mi are divisors of N for
all 1 ≤ i ≤ k. Consider two-fan of chains

X l←− H r−→ Y

where H = HCk
N and li = fN ,ni , ri = fN ,mi for 1 ≤ i ≤ k. Due to transitivity (6.1)

this is indeed a two-fan of chains. Its minimization is a chain of minimal fans

Zi :=(Xi ← Zni ,mi → Yi )

Thus we can estimate

k(X,Y) ≤
∑

kd(Zi ) ≤ 2k · ln 2 + ‖Ent∗X − Ent∗Y‖1
	


Corollary 6.3

Ent∗ : Prob[Ck]h → (Rk, ‖ · ‖1)

is an isometric embedding.

Proof Let [H1] and [H2] be two tropical chains of length k. Then

κ
([H1], [H2]

) = lim
n→∞

1

n
k
(H1(n),H2(n)

)

≤ lim
n→∞

1

n

(
2k ln 2 + ‖Ent∗H1(n) − Ent∗H2(n)‖1

)

= ∥∥Ent∗[H1] − Ent∗[H2]
∥∥
1

The opposite inequality is the 1-Lipschitz property of entropy. 	

Proof of Theorem 6.1 The space Prob[Ck]h is dense in Prob[Ck] by Theorem 5.2.
Therefore the isomorphism in Corollary 6.3 extends to the isomorphic embedding of
Prob[Ck]. To prove the surjectivity one constructs chains of probability spaces with
prescribed entropies satisfying the inequalities defining the cone in the theorem. This
is left to the reader. 	
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