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Abstract
The manifold structure of subsets of classical probability distributions and quantum
density operators in infinite dimensions is investigated in the context of C∗-algebras
and actions of Banach-Lie groups. Specificaly, classical probability distributions and
quantum density operators may be both described as states (in the functional analytic
sense) on a givenC∗-algebraA which is Abelian for Classical states, and non-Abelian
for Quantum states. In this contribution, the space of states S of a possibly infinite-
dimensional, unital C∗-algebra A is partitioned into the disjoint union of the orbits
of an action of the group G of invertible elements of A . Then, we prove that the
orbits through density operators on an infinite-dimensional, separable Hilbert space
H are smooth, homogeneous Banach manifolds of G = GL(H), and, whenA admits
a faithful tracial state τ like it happens in the Classical case when we consider prob-
ability distributions with full support, we prove that the orbit through τ is a smooth,
homogeneous Banach manifold for G .
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1 Introduction

The use of differential geometric methods in the context of classical and quantum
information theory is a well-established and flourishing trend. This has led to the birth
of new perspectives in the understanding of theoretical issues, as well as to numerous
achievements in the realm of applications. At the heart of this methodological attitude
towards classical and quantum information geometry there is the notion of a smooth
manifold. This clearly follows from the fact that differential geometry deals with
smooth manifolds and with all the additional structures with which smooth manifolds
may be dressed. However, the smooth manifolds employed in the vast majority of
the literature pertaining to classical and quantum information geometry are finite-
dimensional. This is essentially due to the fact that working with infinite-dimensional
manifolds requires to carefully handle a nontrivial number of technical issues, and these
technicalities may obscure the conceptual ideas one wants to convey. Consequently,
it has been, and it still is useful to focus on finite-dimensional systems in order to
explicitly develop new ideas, and to postpone the analysis of the infinite-dimensional
systems to later times. On the other hand, the number of conceptual results on finite-
dimensional systems is growing so rapidly that we may dare to say to have a well-
estabilished theoretical backbone for the information geometry of finite-dimensional
systems so that it is reasonable to start looking inmore detail at the infinite-dimensional
systems.

Of course, there already have been contributions in the information geometry of
infinite-dimensional systems. For instance, in [50], a Banach manifold structure is
given to the set Mμ of all probability measures on some measure space (X ,Σ) that
are mutually absolutely continuous with respect to a given probability measure μ on
(X ,Σ) by means of Orlicz spaces, and, in [29], the infinite-dimensional analogue of
the α-connections of Amari and Cencov on this class of manifolds is studied. Orlicz
spaces were also employed in the quantum framework in [33,53] to build a Banach
manifold structure on Gibbs-like density operators on an infinite-dimensional, com-
plex, separable Hilbert space H, and in [39,40] to build a Banach manifold structure
on the space of faithful, normal states on an abstract von Neumann algebra.

In [27], a Hilbert manifold was obtained by equipping the space of L2-probability
measures with the Fisher metric. In [47], a Hilbert manifold structure is given to a
subset of Mμ characterized by some constraint relations, and the α-connections on it
are studied. In [12], the uniqueness (up to rescaling) of the Fisher–Rao metric tensor
on the Frechet manifold Prob(M) of smooth positive densities normalized to 1 on a
smooth, compact manifold M under the requirement of invariance with respect to the
group of diffeomorphisms of M is solved.

In [8–10], a new approach to infinite-dimensional parametric models of probability
measures on some measure space is taken, and tensorial structures are obtained by
exploiting the natural immersion of the space of probability measures into the Banach
space of signed finite measures (where the norm is given by the total variation). This
makes the theory independent of the choice of a reference measure, as everything
transforms appropriately and integrability conditions are preservedwhen the reference
measure is changed.
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From a different point of view, the structure of infinite dimensional groups
has been treated exhaustively in relation with mathematical physics problems, like
hydrodynamical-like equations for instance, involving probability densities. It was
realized that the proper way to deal with such problems was to consider a weaker form
of differentiability called IHL-Lie groups introduced by Omori [48] (see for instance
[2] and references therein).

In the context of quantum information theory, the geometrization of someof the rele-
vant structures, for instance the Kähler–Hilbert manifold structure on the space of pure
quantum states given by the complex projective space of an infinite-dimensional, com-
plex, separableHilbert spaceH, togetherwith aHamiltonian formulation of the unitary
evolutions of quantummechanics, as given for instance in [7,23–25,43], allows a sim-
pler treatment of the differentiable structures of the corresponding infinite-dimensional
groups present in the theory as it is shown in [4–6,13,16,32,44], where the action of
Banach-Lie groups of unitary operators on an infinite-dimensional, complex, separa-
ble Hilbert spaceH is used to give a Banach manifold structure to appropriate subsets
of quantum density operators, positive semidefinite linear operators and elements of
Banach Lie-Poisson spaces or, as it will be shown in this paper, to certain orbits of the
group of invertible elements on a C∗-algebra.

The purpose of this contribution is to look at infinite-dimensional systems in both
classical and quantum information geometry from the unifying perspective coming
from the interplay between the theory of C∗-algebras and the infinite-dimensional
differential geometry of Banach manifolds and Banach-Lie groups. The choice of
C∗-algebras as a main ingredient is due to the fact that classical spaces of probabil-
ity distributions as well as spaces of quantum states are both concrete realizations
of the same mathematical object, i.e., the space S of (mathematical) states on a
C∗-algebra A , with the classical case characterized by the requirement that A is
Abelian.

Let us explain the motivations behind our idea by looking at a finite-dimensional
example. Consider a quantum system described by a finite-dimensional Hilbert space
Hwith dim(H) = N < ∞. According to the formalism of standard quantummechan-
ics, a (bounded) observable a of the system is an element of the algebra B(H) of
bounded, linear operators on H, while a state ρ of the system is a positive linear
functional on H such that ρ(I) = 1, where I ∈ B(H) is the identity operator. Since
dim(H) = N < ∞, we may identify the dual space of B(H) with B(H) itself by
means of the trace operation Tr on H, that is, an element ξ ∈ B(H) determines a
linear functional on B(H) by means of

ξ(a) := Tr(ξ a), (1)

and every linear functional on B(H) is of this form. Consequently, a quantum state
may be identifiedwith a so-called density operator onH, that is, a self-adjoint, positive
semidefinite, linear operator ρ such that Tr(ρ) = 1. The set of all density operators
onH is denoted byS (H), and it is a convex body in the affine hyperplane T1(H) of
self-adjoint, linear operators with unit trace. The interior ofS (H) inT1(H) is an open
convex set made of invertible (full-rank) density operators and denoted by SN (H).
Being an open set in the affine hyperplane T1(H), the set SN (H) admits a natural
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structure of smooth manifold modelled on T1(H), and this manifold structure makes
SN (H) the subject of application of the methods of classical information geometry
in the context of quantum information (see [11,28,36,37,46,49]). Note that, if we
consider the subset Sρ(H) of density operators commuting with a fixed ρ ∈ S and
mutually-commuting with each other, the spectral theorem assures us that Sρ(H)

may be identified with the N -dimensional simplex representing classical probability
distributions on a finite sample space.

The manifold structure on SN (H) is compatible with an action of the Lie group
G (H) of invertible linear operators on S (H). Specifically, if g ∈ G (H) and ρ ∈
SN (H), we may define the map1

(g, ρ) �→ g ρ g†

Tr(g ρ g†)
, (2)

an this map defines a smooth, transitive action of G (H) on SN (H). In particular, if
we consider the subgroup U(H) of unitary operators, we obtain the co-adjoint action
U ρ U† ofU(H) the orbits of which are density operators with fixed eigenvalues. From
this, it is clear that the manifold SN (H) carries also the structure of homogeneous
space of the Lie group G (H), and it is precisely this feature that we aim to extend to
the infinite-dimensional setting.

The paper is structured as follows. In Sect. 2, given a possibly infinite-dimensional,
unital C∗-algebraA , we will first define a linear action α of the Banach-Lie group G
of invertible elements of A on the space A ∗

sa of self-adjoint linear functionals on A
that preserves the cone of positive linear functionals. In Sect. 2.1, we will analyse the
casewhereA is the algebraB(H) of bounded linear operators on a complex, separable
Hilbert spaceH. Specifically,wewill prove that, if� is any positive trace-class operator
on H to which it is associated a unique normal, positive linear functional on B(H),
the orbit of G = GL(H) (bounded, invertible linear operators on H) through � by
means of the linear action α is a homogeneous Banach manifold of G . Furthermore,
we provide sufficient conditions for two normal, positive linear functionals to belong
to the same orbit of G . In Sect. 2.2 we will prove that, if A admits a faithful, finite
trace τ , the orbit through τ is a smooth, homogeneous Banach manifold of G .

The action α does not preserve the space of states S , and this leads us to present,
in Sect. 3, a “deformation” of α, denoted by Φ, which is an infinite-dimensional
counterpart of the map given in equation (2) and which is a left action of G on the
spaceS of states ofA . We prove that an orbit of G through ρ ∈ S by means of Φ is
a homogeneous Banach manifold of G if and only if the orbit of G through ρ bymeans
of α is so. We exploit this fact in Sect. 3.1 where we apply the theory to the caseA =
B(H)withH a complex, separableHilbert space. In particular, we obtain that the space
of normal states on B(H), which can be identified with the space of density operators
on H, is partitioned into the disjoint union of homogeneous Banach manifolds of G ,
and, as we do for the case of normal, positive linear functionals, we provide sufficient
conditions for two normal states to belong to the same orbit of G . In this context,
when H is infinite-dimensional, the space of faithful, normal states on B(H) may

1 More generally, this action iswell-defined on thewholeS (H) and its orbits are given by density operators
with fixed rank (see [20] for a recent review).
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not be identified with a convex, open submanifold of the space of self-adjoint, linear
operators onH with unit trace as it happens in the finite-dimensional case. The results
we present point out that, if we consider the manifold structure to be associated with
a not-necessarily-convex group action, any faithful, normal state on B(H) lies on
a smooth homogeneous Banach manifold which is an orbit of G by means of 	.
However, it is still an open question if there is only one such orbit for faithful, normal
states. In Sect. 3.2 we consider the case whereA admits a faithful, tracial state τ , and
we obtain that the orbit through τ is a smooth, homogeneous Banach manifold for G .

Some concluding remarks are presented in Sect. 4, while “Appendix A” is devoted
to a brief introduction of themain notions, results and definitions concerning the theory
ofC∗-algebras for which a more detailed account can be found in [15,19,41,52,54]. In
“Appendix B” we recall some notions, results and definitions concerning Banach-Lie
groups and their homogeneous spaces. In this case, we refer to [1,17,21,45,55] for a
detailed account of the infinite-dimensional formulation of differential geometry that
is used in this paper.

2 Positivity-preserving action of G

LetA be a possibly infinite-dimensional, unitalC∗-algebra, that is, aC∗-algebra with
a multiplicative identity element denoted by I. The existence of an identity element I
in A allows us to define the set G of invertible elements in A , that is, the set of all
g ∈ A admitting an inverse g−1 ∈ A such that g g−1 = I. This is an open subset
of A , and, when endowed with the multiplication operation of A , it becomes a real
Banach-Lie group in the relative topology induced by the norm topology of A . The
Lie algebra g of G can be identified with A which is itself a real Banach-Lie algebra
(see [55, p. 96]). We may define also the subgroup of unitary elements u ∈ G as those
invertible elements such that u∗ = u−1. Then, denoting such subgroup by U , we get
that U ⊂ G is a closed Banach-Lie subgroup.

The purpose of this paper is to show that some of the homogeneous spaces of the
group G are actually subsets of the space of states S on A . Accordingly, even if S
lacks of a differential structure as a whole, wemay partition it into the disjoint union of
Banach manifolds that are homogeneous spaces of the Banach-Lie group G . In order
to do this, we will first consider an action α of G on the spaceA ∗

sa of self-adjoint linear
functionals onA . This action is linear, and preserves the positivity of self-adjoint linear
functionals, and we show that the orbits inside the coneA ∗+ of positive linear function-
als are homogeneous Banach manifolds of G . However, the action α does not preserve
the space of statesS , and we need to suitably deform it in order to overcome this dif-
ficulty. The resulting action, denoted by Φ, is well-defined only on the space of states
S , and we will prove that the orbits of Φ are homogeneous Banach manifolds of G .

We introduce a map α̃ : A × A ∗
sa −→ A ∗

sa given by

(a, ξ) �→ α̃(a, ξ) := ξa, ξa(b) := ξ(a† ba), ∀b ∈ Asa . (3)

Clearly, thismap is linear in ξ and it is possible to prove that α̃ is smoothwith respect to
the real Banach manifold structures ofA × A ∗

sa (endowed with the smooth structure
which is the product of the smooth structures of A and A ∗

sa) and A ∗
sa .
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Proposition 1 The map α̃ : A × A ∗
sa −→ A ∗

sa is smooth.

Proof Given a,b ∈ A and ξ ∈ A ∗
sa we define ξab ∈ A ∗

sa to be

ξab(c) := 1

2

(

ξ(a† c b) + ξ(b† c a)
)

∀ c ∈ Asa . (4)

Then, we consider the map F : (A ×A ∗
sa)× (A ×A ∗

sa)× (A ×A ∗
sa) → A ∗

sa given
by

F(a, ξ ;b, ζ ; c, ϑ) := 1

3
(ξbc + ζca + ϑab) . (5)

A direct computation shows that F is a bounded multilinear map and that

α̃(a, ξ) = F(a, ξ ; a, ξ ; a, ξ), (6)

which means that α̃ is a continuous polynomial map between A × A ∗
sa and A ∗

sa ,
hence, it is smooth with respect to the real Banach manifold structures of A × A ∗

sa
and A ∗

sa (see [21, p. 63]). 	

Since G is an open submanifold of A , the canonical immersion iG : G −→ A

given by iG (g) = g is smooth. Consequently, we may define the map

α : G × A ∗
sa −→ A ∗

sa

α := α̃ ◦ (iG × idA ∗), (7)

where idA ∗
sa

is the identity map, and this map is clearly smooth because it is the
composition of smooth maps.

A direct computation shows that α is a (smooth) left action of G on A ∗
sa . We are

interested in the orbits ofα, in particular, we are interested in the orbits passing through
positive linear functionals. It is possible to prove the following proposition.

Proposition 2 Let α be the action of G on A ∗, then we have

1. if A is a W ∗-algebra, then α preserves the space (A∗)sa of self-adjoint, normal
linear functionals;

2. α preserves the set of positive linear functionals;
3. if ω is a faithful, positive linear functional, then so is α(g, ω) for every g ∈ G .

Proof First of all, we note that the second and third points follow by direct inspection.
Then, concerning the first point, we recall that a normal linear functional ξ is

a continuous linear functional which is also continuous with respect to the weak*
topology onA generated by its topological predualA∗. Equivalently, for every normal
linear functional ξ ∈ A ∗ there is an element˜ξ ∈ A∗ such that ξ = i∗∗(˜ξ)where i∗∗ is
the canonical inclusion ofA∗ in its double dualA ∗. Then, for every b ∈ A , the maps

lb : A → A , lb(a) := ba

rb : A → A , rb(a) := ab (8)
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are continuous with respect to the weak* topology onA generated by its topological
predualA∗, and it it is immediate to check that the linear functional α(g, ξ) : A → C

may be written as

α(g, ξ) = ξ ◦ lg† ◦ rg, (9)

which means that α(g, ξ) is weak* continuous. 	

LetOsa ⊂ A ∗

sa be an orbit of G by means of α. Considering ξ ∈ Osa and the coset
space G /Gξ , where Gξ is the isotropy subgroup

Gξ = {g ∈ G : α(g, ξ) = ξ} , (10)

of ξ with respect to α, the map iαξ : G /Gξ → Osa given by

[g] �→ iαξ ([g]) = α(g, ξ) (11)

provides a set-theoretical bijection between the coset space G /Gξ and the orbitOsa for
every ξ ∈ Osa ⊂ A ∗

sa . According to the results recalled in “Appendix B”, this means
that wemay dress the orbitOsa with the structure of homogeneous Banachmanifold of
G whenever the isotropy subgroup Gξ is a Banach-Lie subgroup of G . Specifically, it
is the quotient space G /Gξ that is endowed with the structure of homogeneous Banach
manifold, and this structure may be “transported” to Osa in view of the bijection iαξ
between G /Gξ and Osa .

In general, the fact thatGξ is a Banach-Lie subgroup ofG depends on both ξ andA .
However, we will now see that Gξ is an algebraic subgroup of G for every ξ and every
unital C∗-algebraA . According to [55, p. 117], a subgroupK of G is called algebraic
of order n if there is a family Q of Banach-space-valued continuous polynomials on
A × A with degree at most n such that

K =
{

g ∈ G : p(g, g−1) = 0 ∀p ∈ Q
}

. (12)

Proposition 3 The isotropy subgroup Gξ of ξ ∈ A ∗
sa is an algebraic subgroup of G of

order 2 for every ξ ∈ A ∗
sa.

Proof Define the family Qξ = {pξ,c}c∈A of complex-valued polynomials of order 2
as follows2:

pξ,c(a,b) := ξ (c) − ξ
(

a† ca
)

. (13)

The continuity of every pξ,c follows easily from the fact that ξ is a norm-continuous
linear functional on A . A moment of reflection shows that

Gξ =
{

g ∈ G : pξ,c(g, g
−1) = 0 ∀pξ,c ∈ Qξ

}

, (14)

and thus Gξ is an algebraic subgroup of G of order 2 for all ξ ∈ A ∗
sa . 	


2 Note that the dependence of pξ,c on the second variable is trivial, and this explains why b does not appear
on the rhs.
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Being an algebraic subgroup of G , the isotropy subgroup Gξ is a closed subgroup of
G which is also a real Banach-Lie group in the relativised norm topology, and its Lie
algebra gξ ⊂ g is given by the closed subalgebra (see [35, p. 667], and [55, p. 118])

gξ = {a ∈ g ≡ A : exp(ta) ∈ Gξ ∀t ∈ R
}

. (15)

According to Proposition 15, the isotropy subgroup Gξ is a Banach-Lie subgroup of
G if and only if the Lie algebra gξ of Gξ is a split subspace of g = A and exp(V ) is
a neighbourhood of the identity element in Gξ for every neighbourhood V of 0 ∈ gξ

(see [55, p. 129] for an explicit proof). The fact that exp(V ) is a neighbourhood of the
identity element in Gξ for every neighbourhood V of 0 ∈ gξ follows from the fact that
Gξ is an algebraic subgroup of G (see [35, p. 667]).

Next, if a ∈ g = A , we have that

gt = exp(ta) (16)

is a smooth curve in G for all t ∈ R. Consequently, we have the smooth curve ξt in
A ∗ given by

ξt (b) = (α(gt , ξ))(b) = ξ
(

g†t b gt
)

(17)

for all t ∈ R and for all b ∈ A . Therefore, we may compute

d

d t

(

ξ
(

g†t b gt
))

t=0
= lim

t→0

1

t

(

ξ
(

g†t b gt
)

− ξ(b)
)

= lim
t→0

1

t

+∞
∑

j,k=0

(

ξ

(
(

ta†
)k

k! b
(ta) j

j !

)

− ξ(b)

)

= ξ
(

a† b + b a
)

(18)

for every b ∈ A , from which it follows that a is in the Lie algebra gξ of the isotropy
group Gξ if and only if

ξ
(

a† b + b a
)

= 0 (19)

for every b ∈ A . In particular, note that the identity operator I never belongs to gξ .
When dim(A ) = N < ∞, the Lie algbera gξ is a split subspace for every ξ ∈ A ∗

sa ,
and thus every orbit of G in A ∗

sa by means of α is a homogeneous Banach manifold
of G . Clearly, when A is infinite-dimensional, this is no-longer true, and a case by
case analysis is required. For instance, in Sect. 2.1, we will show that gξ is a split
subspace of g = A when A is the algebra B(H) of bounded linear operators on a
complex, separable Hilbert space H, and ξ is any normal, positive linear functional
on B(H) (positive, trace-class linear operator on H). This means that all the orbits
of G = GL(H) passing through normal, positive linear functionals are homogeneous
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Banach manifolds of G , and we will classify these orbits into four different types.
Furthermore, in Sect. 2.2, we will prove that gξ is a split subspace of g = A whenever
ξ is a faithful, finite trace on A .

Now, suppose ξ is such that gξ is a split subspace ofA , that is, the isotropy subgroup
Gξ is a Banach-Lie subgroup of G . In this case, the orbitOsa containing ξ is endowed
with a Banach manifold structure such that the map τα

ξ : G → Osa given by

g �→ τα
ξ (g) := α(g, ξ) (20)

is a smooth surjective submersion for every ξ ∈ Osa . Moreover,G acts transitively and
smoothly on Osa , and the tangent space TξOsa at ξ ∈ Osa is diffeomorphic to g/gξ

(see [17, p. 105] and [55, p. 136]). Note that this smooth differential structure onOsa

is unique up to smooth diffeomorphism. The canonical immersion isa : Osa −→ A ∗
sa

given by isa(ξ) = ξ for every ξ ∈ Osa is easily seen to be a smooth map, and its
tangent map is injective for every point in the orbit.

Proposition 4 Let ξ be such that the isotropy subgroup Gξ is a Banach-Lie subgroup
of G , let Osa be the orbit containing ξ endowed with the smooth structure coming
from G , and consider the map la : Osa −→ R, with a a self-adjoint element in A ,
given by

la(ξ) := ξ(a). (21)

Then:

1. the canonical immersion map isa : Osa −→ A ∗
sa is smooth;

2. the map la : Osa −→ R is smooth;
3. the tangent map Tξ isa at ξ ∈ Osa is injective for all ξ in the orbit.

Proof 1. Wewill exploit Proposition 16 in “AppendixB” in order to prove the smooth-
ness of the immersion isa . Specifically, we consider the map

αξ : G −→ A ∗
sa, αξ (g) := α(g, ω) (22)

where α is the action of G onA ∗
sa defined by Eq. (7), and note that, quite trivially,

it holds

αξ = isa ◦ τα
ξ . (23)

Consequently, being τα
ξ a smooth submersion for every ξ ∈ O, Proposition 16 in

“Appendix B implies that the immersion isa is smooth if αα
ξ is smooth. Clearly,

αξ is smooth because α is a smooth action according to Proposition 1 and the
discussion below.

2. Regarding the second point, it suffices to note that la is the composition of the
linear (and thus smooth) map La : A ∗

sa −→ R given by

La(ξ) = ξ(a) (24)
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with the canonical immersion isa : Osa −→ A ∗
sa which is smooth because of what

has been proved above.
3. Now, consider the family {la}a∈A of smooth functions on the orbit Osa , and sup-

pose that Vξ and Wξ are tangent vectors at ξ ∈ Osa such that

〈(dla)ξ ; Vξ 〉 = 〈(dla)ξ ; Wξ 〉 (25)

for every a ∈ Asa . Since la = La ◦ isa , we have

〈(dla)ξ ; Vξ 〉 = 〈(dLa)isa(ξ); Tξ isa(Vξ )〉 (26)

and

〈(dla)ξ ; Wξ 〉 = 〈(dLa)isa(ξ); Tξ i(Wξ )〉 (27)

Note that the family of linear functions of the type La with a ∈ Asa (see Eq. (24))
are enough to separate the tangent vectors at ξ for every ξ ∈ A ∗

sa because the
tangent space at ξ ∈ A ∗

sa is diffeomorphic with A ∗
sa in such a way that

〈(dLa)ξ ;Vξ 〉 = Vξ (a) = La(Vξ ) (28)

for everyVξ ∈ TξA ∗
sa

∼= A ∗
sa , andAsa (the predual ofA ∗

sa) separates the points of
A ∗

sa (see [42]). Consequently, since Tξ isa(Vξ ) and Tξ isa(Wξ ) are tangent vectors
at isa(ξ) ∈ A ∗

sa and the functions La with a ∈ Asa are enough to separate them
and we conclude that the validity of Eq. (25) for all a ∈ Asa is equivalent to

Tξ isa(Vξ ) = Tξ isa(Wξ ). (29)

Then, if gt = exp(ta) is a one-parameter subgroup in G so that

ξt = α(gt , ξ) (30)

is a smooth curve in O starting at ξ with associated tangent vector Vξ , we have

〈(dLb)isa(ξ); Tξ isa(Vξ )〉 = d

dt
(Lb ◦ isa(ξt ))t=0 (31)

which we may compute in analogy with Eq. (18) obtaining

d

dt
(Lb ◦ isa(ξt ))t=0 = ξ

(

a† b + b a
)

. (32)

Comparing Eq. (32) with Eq. (19) we conclude that Vξ andWξ satisfy Eq. (29) if
and only if they coincide, and thus Tξ isa is injective for all ξ ∈ Osa .
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It is important to note that the topology underlying the differential structure on the
orbit Osa containing ξ comes from the topology of G in the sense that a subset U of
the orbit is open iff (τα

ξ )−1(U ) is open in G . In principle, this topology on Osa has
nothing to do with the topology of Osa when thought of as a subset of A ∗

sa endowed
with the relativised norm topology, or with the relativised weak* topology. However,
from Proposition 4, it follows that the map la : Osa −→ R is continuous for every
a ∈ Asa , and wemay conclude that the topology underlying the homogeneous Banach
manifold structure onOsa is stronger than the relativisedweak* topology coming from
A ∗

sa .
In general, the action α does not preserve the space of states S on A . At this

purpose, in Sect. 3, we provide a modification of α that allows us to overcome this
situation.

2.1 Positive, trace-class operators

LetH be a complex, separable Hilbert space and denote by A the W ∗-algebra B(H)

of bounded, linear operators onH. The predual ofA may be identified with the space
T (H) of trace-class linear operators on H (see [54, p. 61]). In particular, a normal,
self-adjoint linear functional˜ξ onA may be identified with a self-adjoint, trace-class
operator ξ on H, and the duality relation may be expressed by means of the trace
operation

˜ξ(a) = Tr (ξ a) (33)

for all a ∈ A = B(H). Furthermore, it is known that A = B(H) may be identified
with the double dual of the C∗-algebra K(H) of compact, linear operators on H in
such a way that the linear functionals on K(H) are identified with the normal linear
functionals on A (see [54, p. 64]).

Now, we will study the orbits of the action α of the group G of invertible elements
in A on the normal, positive linear functionals on A . The group G is the Banach-
Lie group GL(H) of invertible, bounded linear operators on the complex, separable
Hilbert space H, and its action α on a self-adjoint, normal linear functional˜ξ reads

(

α(g, ˜ξ)
)

(a) = ˜ξ
(

g† a g
)

= Tr
(

ξ g† a g
)

∀ a ∈ A = B(H). (34)

Equivalently, we may say that α transform the element ξ in the predual (A∗)sa =
(T (H))sa of Asa in the element ξg given by

ξg = g ξ g†. (35)

This last expression allows us to work directly with trace-class operators.
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According to the spectral theory for compact operators (see
[51, ch. VII]), given a positive, trace-class linear operator � �= 0 on H, there is a

decomposition

H = H� ⊕ H⊥
� (36)

and a countable orthonormal basis {|e j 〉, | f j 〉} adapted to this decomposition such
that � can be written as

� =
dim(H�)
∑

j=1

p j |e j 〉〈e j |, (37)

with dim(H�) > 0 and p j > 0 for all j ∈ [1, ..., dim(H�)]. In general, we have four
different situations:

1. 0 < dim(H�) = N < ∞;
2. dim(H�) = ∞ and 0 < dim(H⊥

� ) = M < ∞;

3. dim(H�) = ∞ and dim(H⊥
� ) = 0

4. dim(H�) = dim(H⊥
� ) = ∞,

and we set

(P∗)N := {

0 �= � ∈ P∗ | 0 < dim(H�) = N < ∞}

(P∗)⊥M :=
{

0 �= � ∈ P∗ | dim(H�) = ∞ and 0 < dim
(

H⊥
�

)

= M < ∞
}

(P∗)⊥0 :=
{

0 �= � ∈ P∗ | dim(H�) = ∞ and dim
(

H⊥
�

)

= 0
}

(P∗)∞ :=
{

0 �= � ∈ P∗ | dim(H�) = dim
(

H⊥
�

)

= ∞
}

. (38)

The subscripts here denote either the dimension of the space on which � operates, or
its codimension when the symbol ⊥ is used. Clearly, when dim(H) < ∞, we have
(P∗)N = ∅ for all N > dim(H), and (P∗)⊥M = (P∗)⊥0 = (P∗)∞ = ∅.

The advantage of working with a separable Hilbert space is that every bounded
linear operator a ∈ B(H) = A may be looked at as an infinite matrix whose matrix
elements a jk are given by

a jk = 〈e j |a|ek〉 (39)

where {|e j 〉} is an orthonormal basis in H. Clearly, the matrix describing a depends
on the choice of the orthonormal basis. However, once this choice is made, we may
translate the algebraic operations in B(H) = A , like the sum, the multiplication, and
the involution, in the language of matrix algebras (see [3, p. 48]).

In particular, if � �= 0 is a positive, trace-class linear operator, we may choose a
countable orthonormal basis {|e j 〉, | f j 〉} adapted to the spectral decomposition of � so
that the matrix associated with � is diagonal. On the other hand, the matrix expression

123



Information Geometry (2019) 2:231–271 243

A of a ∈ A = B(H) with respect to the countable orthonormal basis {|e j 〉, | f j 〉}
adapted to the spectral decomposition of � reads

A =
(

A1 A2
A3 A4

)

, (40)

where A1 may be thought of as a bounded linear operator sending H� in itself, A2
may be thought of as a bounded linear operator sendingH⊥

� inH�, A3 may be thought

of as a bounded linear operator sending H� in H⊥
� , and A4 may be thought of as a

bounded linear operator sending H⊥
� in itself.

Proposition 5 LetH be a complex, separable Hilbert space, let � be a positive, trace-
class linear operator on H, and denote by {|ek〉, | fl〉} the orthonormal basis of H
adapted to the spectral decomposition of � (see Eqs. (36) and (37)). Then, the Lie
algebra g� of the isotropy subgroup G� of � with respect to the action α in Eqs. (34)
and (35) is given by

g� =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a ∈ A :

〈 fk |a| fl〉 arbitrary ∀ k, l ∈ [1, ..., dim(H⊥
� )];

〈ek |a| fl〉 arbitrary ∀ l ∈ [1, ..., dim(H⊥
� )], ∀ k ∈ [1, ..., dim(H�)]

〈 fl |a|ek〉 = 0 ∀ l ∈ [1, ..., dim(H⊥
� )], ∀ k ∈ [1, ..., dim(H�)]

〈ek |a|el〉 = − pk
pl

〈el |a|ek〉 ∀ k, l ∈ [1, ..., dim(H�)]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

(41)

Proof Recall that an element a ∈ g = A = B(H) is in the Lie algebra g� of the
isotropy subgroup G� of � if and only if (see Eq. (19))

�̃(a† b + b a) = Tr
(

� (a† b + b a)
)

= 0 ∀ b ∈ A = B(H). (42)

Using the matrix expressions of �, a, and b, a direct computation shows that Eq. (42)
poses no constraints on the factor A2 in the matrix expression of a, or, equivalenty,
we have that

〈ek |a| fl〉 is arbitrary ∀ l ∈
[

1, ..., dim
(

H⊥
�

)]

, ∀ k ∈ [1, ..., dim(H�)
]

. (43)

Then, since b in Eq. (42) is arbitrary, if we fix k ∈ [1, ..., dim(H�)] and l ∈
[1, ..., dim(H⊥

� )] and take b = |ek〉〈 fl |, Eq. (42) becomes

pk 〈 fl |a|ek〉 = 0 ⇐⇒ 〈 fl |a|ek〉 = 0. (44)

Clearly, we may do this for every k ∈ [1, ..., dim(H�)] and for every l ∈
[1, ..., dim(H⊥

� )], whichmeans that if a is in the isotropy algebra g�, then A3 = 0. Sim-

ilarly, if we fix k ∈ [1, ..., dim(H�)] and l ∈ [1, ..., dim(H⊥
� ) and take b = | fl〉〈ek |,

Eq. (42) becomes
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pk 〈 fl |a|ek〉 = 0 (45)

which is equivalent to the previous equation. Then, if we fix k ∈ [1, ..., dim(H⊥
� ) and

take b = | fk〉〈 fl |, we immediately see that Eq. (42) poses no constraints on a. Putted
differently, if a is in g�, then the factor A4 in the matrix expression of a is arbitrary.
Next, we take b = |el〉〈ek | with l, k ∈ [1, ..., dim(H�)], and a direct computation
shows that we must have

〈ek |a|el〉 = − pk
pl

〈el |a|ek〉. (46)

Consequently, noting that every a ∈ A may be written as the sum of two self-adjoint
elements in A , say x and y, as follows

a = x + ı y, (47)

we immediately obtain that Eq. (46) is equivalent to

xekl = ı
pk − pl
pk + pl

yekl , (48)

where

xekl = 〈ek |x|el〉, yekl = 〈ek |y|el〉. (49)

This means that the self-adjoint part of a on Hρ is uniquely determined by the (arbi-
trary) skew-adjoint part of a onHρ unless we are considering a subspace where ρ acts
as a multiple of the identity, in which case, the self-adjoint part identically vanishes.

	

The characterization of g� given in Proposition 5 may be aesthetically unpleasant,

but it allows to find immediately an algebraic complement for g� in g = A = B(H).
Indeed, if we set

k� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b ∈ A :
〈 fk |b| fl〉 = 0 ∀ k, l ∈ [1, ..., dim(H⊥

� )];
〈ek |b| fl〉 = 0 ∀ l ∈ [1, ..., dim(H⊥

� )], ∀ k ∈ [1, ..., dim(H�)]
〈 fl |b|ek〉 = arbitrary ∀ l ∈ [1, ..., dim(H⊥

� )], ∀ k ∈ [1, ..., dim(H�)]
〈ek |b|el〉 = 〈el |b|ek〉 ∀ k, l ∈ [1, ..., dim(H�)]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(50)

it is clear that g� ∩ k� = {0}. Furthermore, since an arbitrary c ∈ g = A = B(H)

is uniquely determined by its matrix elements with respect to the orthonormal basis
{|ek〉, | fl〉} of H adapted to the spectral decomposition of � (see Eqs. (36) and (37)),
a direct computation shows that

g = g� ⊕ k�, (51)
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algebraically. Then, according to Proposition 15, we have that the orbit of G passing
through � inherits a Banach manifold structure from G /G� whenever k� is closed in
g = A = B(H). The closedness of k� in g = A = B(H) is the content of the next
proposition.

Proposition 6 The linear subspace k� ⊂ g = A = B(H) is closed.

Proof Let {bn}n∈N be a sequence in k� norm-converging to b ∈ g = A = B(H). The
proof of this proposition reduces to a routine check of the matrix elements of b with
respect to the orthonormal basis {|ek〉, | fl〉} ofH adapted to the spectral decomposition
of � in order to show that they satisfy all the conditions in Eq. (50).

The norm convergence of {bn}n∈N to b ∈ g = A = B(H) implies the convergence
of the sequence {(Fψφ)n}n∈N with

(Fψφ)n = 〈ψ |bn|φ〉 (52)

to

Fψφ = 〈ψ |b|φ〉 (53)

for all |ψ〉, |φ〉 ∈ H. In particular, if we take |ψ〉 = | fk〉 and |φ〉 = | fl〉, with arbitrary
k, l ∈ [1, ..., dim(H⊥

� )], we have

0 = (Ffk fl )n
n→∞−→ Ffk fl = 〈 fk |b| fl〉 (54)

which means

Ffk fl = 〈 fk |b| fl〉 = 0 (55)

for all k, l ∈ [1, ..., dim(H⊥
� )]. Similarly, if we take |ψ〉 = |ek〉 and |φ〉 = | fl〉, with

arbitrary k ∈ [1, ..., dim(H�)] and l ∈ [1, ..., dim(H⊥
� )], we obtain

Fek fl = 〈ek |b| fl〉 = 0 (56)

for all k ∈ [1, ..., dim(H�)] and l ∈ [1, ..., dim(H⊥
� )].

Next, if we take |ψ〉 = | fl〉 and |φ〉 = |ek〉, with arbitrary k ∈ [1, ..., dim(H�)]
and l ∈ [1, ..., dim(H⊥

� )], we have that (Fflek )n converges to the complex number

Fflek = 〈 fl |b|ek〉 (57)

and there are no constraints on Fflek for all k ∈ [1, ..., dim(H�)] and l ∈
[1, ..., dim(H⊥

� )].
Eventually, if we take |ψ〉 = |ek〉 and |φ〉 = |el〉, with k, l ∈ [1, ..., dim(H�)], we

have that (Fekel )n converges to the complex number

Fekel = 〈ek |b|el〉. (58)
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Now, since inC the complex conjugate of the limit is equal to the limit of the complex
conjugate, we have

Fekel = lim
n→∞ (Fekel )n = lim

n→∞ (Fekel )n = lim
n→∞ (Felek )n = Felek (59)

which means

〈ek |b|el〉 = 〈el |b|ek〉. (60)

Comparing Eqs. (55), (56), (57), and (60) with the characterization of elements in k�
as given in Eq. (50), it follows that b is in k�, and thus k� is closed in g = A = B(H).

	

From this it follows that, for every positive, trace-class linear operator � onH, the

orbit O+ containing � (see Eqs. (34) and (35)) is a homogeneous Banach manifold
for the group G = GL(H) of bounded, invertible linear operators on H. We decided
to denote by O+ the orbit containing � in order to emphasize the fact that elements
in O are normal, positive linear functionals. Indeed, the proofs of the Propositions 5
and 6 depend crucially on the positivity of �.

We will now give a partial characterization of the orbits of S through normal,
positive linear functionals.

Proposition 7 Let �0 and �1 be positive, trace-class operators on H, and denote by
p j
0 and p j

1 the j-th eigenvalue of �0 and �1, respectively. IfH�0 is isomorphic toH�1 ,
and H⊥

�0
is isomorphic toH⊥

�1
, and the following condition holds

p j
1

p j
0

≤ C < ∞ ∀ j = 1, ..., N , (61)

then, the element g defined by

g :=
N
∑

j=1

√

√

√

√

p j
1

p j
0

|e1j 〉〈e0j | +
M
∑

k=1

| f 1k 〉〈 f 0k |. (62)

is a bounded, invertible operator on H such that

�1 = g �0 g
† . (63)

Proof Since H�0 is isomorphic toH�1 , and H⊥
�0

is isomorphic toH⊥
�1
, the element

g :=
N
∑

j=1

√

√

√

√

p j
1

p j
0

|e1j 〉〈e0j | +
M
∑

k=1

| f 1k 〉〈 f 0k |, (64)
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where N = dim(H�0) = dim(H�1) and M = H⊥
�0

= H⊥
�1
, is well-defined, and a

direct (formal) computation shows that equation (63) actually holds. All that is left
to do is to check that g is bounded and invertible. At this purpose, we consider an
arbitrary element ψ ∈ H which can be written as

|ψ〉 =
N
∑

j=1

ψ
j
0 |e0j 〉 +

M
∑

k=1

ψk
0,⊥ | f 0k 〉 =

=
N
∑

j=1

ψ
j
1 |e1j 〉 +

M
∑

k=1

ψk
1,⊥ | f 1k 〉 ,

(65)

with respect to the orthonormal bases inH adapted to the spectral decompositions of
�0 and �1. From this, we have

||g(ψ)||2 = 〈ψ |g† g|ψ〉 =
N
∑

j=1

|ψ j
0 |2 p j

1

p j
0

+
M
∑

k=1

|ψk
0,⊥|2 ≤

≤ C
N
∑

j=1

|ψ j
0 |2 +

M
∑

k=1

|ψk
0,⊥|2 ≤ (C + 1) ||ψ ||2 < ∞ ,

(66)

where we used equation (61) in the second passage. Clearly, equation (66) implies
that g is bounded. Then, setting

g−1 :=
N
∑

j=1

√

√

√

√

p j
0

p j
1

|e0j 〉〈e1j | +
M
∑

k=1

| f 0k 〉〈 f 1k |, (67)

we may proceed as we did for g to show that g−1 is bounded, and a direct computation
shows that g−1 is the inverse of g. 	


Clearly, the assumptions in Proposition 7 are always satisfied if �0 and �1 are
finite-rank operators with the same rank.

The last step we want to take is to write down a tangent vectorV� at � ∈ O+, where
O+ is any of the orbits of G inside the positive, trace-class operators. At this purpose,
we consider the canonical immersion i+ : O+ −→ A ∗

sa , and we recall Eq. (32), from
which it follows that

T�i+(Vρ)(b) = Tr
(

�
(

a† b + b a
))

∀b ∈ A , (68)

where a is an arbitrary element in A = B(H). Clearly, different choices of a may
lead to the same T�i+(V�). Then, writing a = x + ıy with x, y ∈ Asa , we have

T�i+(V�)(b) = Tr
(({�, x} − ı

[

�, y
])

b
) ∀b ∈ A , (69)

with {·, ·} and [·, ·] the anticommutator and the commutator in B(H), respectively.
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2.2 Faithful, finite trace

Let A be a unital C∗-algebra with a faithful, finite trace τ , that is, τ is a faithful,
positive linear functional on A such that

τ(a b) = τ(b a) ∀ a,b ∈ A . (70)

In particular, ifA is Abelian, then every faithful, positive linear functional is a faithful,
finite trace.

We will prove that the orbitOτ+ of G through τ by means of the linear action α (see
Eq. (7)) is a homogeneous Banachmanifold ofG . At this purpose, the characterization
of an element a in the Lie algebra of the isotropy group Gτ given in Eq. (19) reads

τ
((

a + a†
)

b
)

= 0 ∀ b ∈ A (71)

because τ is a trace, and we see that the skew-adjoint part of a is completely arbitrary.
Then, we recall that τ induces an inner product 〈, 〉τ on A given by3

〈b, c〉τ = τ
(

b† c
)

. (72)

Consequently, the completion of A with respect to 〈, 〉τ is a Hilbert space in which
A is a dense subspace and thus the validity of equation (71) implies

a + a† = 0. (73)

This means that the Lie algebra gτ of Gτ coincides with the space of skew-adjoint
elements in g ∼= A , and this subspace is a closed and complemented subspace of
g ∼= A whose complement is the space of self-adjoint elements in g ∼= A . From this
we conclude that the orbit Oτ+ of G through τ by means of the linear action α is a
homogeneous Banach manifold of G .

It is immediate to check that there is a bijection betweenOτ+ and the set of positive,
invertible elements in A , that is, elements of the form g g† with g ∈ G . If A is
finite-dimensional, thenOτ coincides with the whole space of faithful, positive linear
functionals.

3 State-preserving action of G

In this section, we will see how to “deform” the action of G in such a way that it
preserves the space of states S . Indeed, we recall that S is a subset of the space of
positive linear functionals A ∗

sa characterized by the condition

ρ(I) = 1 (74)

3 Note that the faithfulness of τ is necessary for 〈, 〉τ to be an inner product on the whole A .
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for every ρ inS , and thus, if ρ is inS , we have

(α(g, ρ))(I) = ρ
(

g† g
)

(75)

which is in general different from 1. To overcome this difficulty, we have to deform
the action α. The result is a map Φ which is not defined for all elements in A ∗

sa as it
is the case for α, but only on the cone of positive linear functionals. Furthermore, this
map Φ becomes a left action of G only if we restrict it to act on the space of statesS ,
and, since S does not posses the structure of Banach manifold as a whole, we can
not speak of a smooth action of G on S . However, proceeding in analogy with what
has been done for the case of positive linear functionals, we will see that the orbits of
the action Φ on S may still be endowed with the structure of smooth homogeneous
Banach manifolds of G depending on the behaviour of the isotropy subgroup.

Followingwhat is done in [31, sec. 6] and [22, sec. 2] for the finite-dimensional case
A = B(H) with H being a finite-dimensional, complex Hilbert space, it is possible
to define a map

Φ : G × S −→ S (76)

setting Φ(g, ρ) ≡ Φg(ρ) where Φg(ρ) acts on a ∈ A as follows:

(

Φg(ρ)
)

(a) := ρ
(

g† a g
)

ρ
(

g† g
) . (77)

Clearly, this map is well-defined only if the the term ρ(g† g) in the denominator does
not vainish. This is the content of the following proposition.

Proposition 8 Let ρ be a state on the unital C∗-algebra A , then

ρ
(

g† g
)

> 0 (78)

for every element g in the group G of invertible elements in A .

Proof Let (Hρ, πρ, |ψρ〉) be the data of the GNS construction associated with ρ so
that

ρ(g† g) =
〈

ψρ |πρ

(

g† g
)

|ψρ

〉

. (79)

The polar decomposition of πρ(g) allows us to write

πρ(g) = U P (80)

whereU is a unitary operator and P = √πρ(g)† πρ(g) = √πρ(g† g) is a non-negative
Hermitean operator. Then, and because g is invertible, we have that

√

πρ(g† g) is
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invertible, which implies that πρ(g† g) > 0 and thus

〈

ψρ |πρ

(

g† g
)

|ψρ

〉

> 0. (81)

	

Direct inspection shows that Φ is a left action of G on S , and that the restriction

of the map Φ to U × S will define the standard action of the unitary group U
on the space of states S :

(

Φg(ρ)
)

(a) := ρ(g† a g). Furthermore, given a convex
combination λ1 ρ1 + λ2 ρ2 of states on A , we may have

Φg(λ1 ρ1 + λ2 ρ2) �= λ1 Φg(ρ1) + λ2 Φg(ρ2), (82)

which means that the left action Φ of G does not preserve the convex structure of S
(while that of U does).

In the work [38, p. 214], the authors take inspiration from the seminal paper [34,
p. 850] on the algebraic formulation of quantum field theories to introduce a prototype
of the map Φg in the context of state transformations and measurements in quantum
theories. However, the map they consider depends on the particular state on which it is
applied because they consider the whole algebra A instead of the set G of invertible
elements thus introducing elements for which the denominator may vanish on the
given state (see [22, sec. 2] for a finite-dimensional example).

Remark 1 The rest of this section is devoted to the study of the action Φ in complete
analogy with what has been done for the action α in Sect. 2, and we will obtain similar
results adopting conceptually similar proofs. For the sake of completeness, we decided
to give a detailed account of all the proofs. Furthermore, we want to stress a substantial
difference between the action α and the action Φ, namely, α is a smooth action on a
smooth Banach manifold, while Φ is just an action on a subset of a Banach manifold.
This means that some of the machinery related with smooth actions (e.g., the notion
of fundamental vector field) make no sense in relation with Φ.

We denote by O an orbit of G inS by means of Φ. Some preliminary characteri-
zations of O are proved in the following.

Proposition 9 Let Φ be the action of G on S given by Eq. (77), then:

– ifA is a W ∗-algebra and ρ is a normal state, then Φ(g, ρ) ∈ S is also normal;
– the state Φ(g, ρ) ∈ S is a faithful state for every g ∈ G if and only if ρ ∈ S is
faithful;

– the state Φ(g, ρ) ∈ S is a pure state for every g ∈ G if and only if ρ ∈ S is
pure, and if A is Abelian, then G acts trivially on pure states by means of Φ;

– if ρ is a tracial state4, then the orbitO containing ρ is convex; in particular, every
orbit O is convex for all ρ ∈ S when A is Abelian.

4 A state ρ ∈ S is called tracial if ρ(ab) = ρ(ba) for all a,b ∈ A .
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Proof Concerning the first point, a normal state ρ is an element of S which is also
continuous with respect to the weak* topology on A generated by its topological
predual A∗. Recall that, for every b ∈ A , the maps

lb : A → A , lb(a) := ba

rb : A → A , rb(a) := ab
(83)

are continuous with respect to the weak* topology onA generated by its topological
predualA∗. Furthermore, given any normal state ρ and any invertible element g ∈ G ,
we may define the positive real number

cρg := ρ(g† g). (84)

Now, let α : R+ × C → C be the continuous5 left action of the multiplicative group
R

+ of positive real numbers on C given by

α(c, z) := cz. (85)

It is immediate to check that the normalized positive linear functionalΦ(g, ρ) : A →
C may be written as

Φ(g, ρ) = αc−1
ρg

◦ ρ ◦ lg† ◦ rg, (86)

where αc(z) = α(c, z), and thus Φ(g, ρ) is weak* continuous.
The second point follows by direct inspection.
Concerning the third point, let (Hρ, πρ, |ψρ〉) be the GNS data associated with a

pure state ρ. Then, it is a matter of direct computation to show that (Hγ , πγ , |ψγ 〉),
where Hγ = Hρ , πγ = πρ and

|ψγ 〉 = πρ(g)|ψρ〉
√〈ψρ |πρ(g†g)|ψρ〉 , (87)

is the data of the GNS construction associated with γ = Φ(g, ρ). Since ρ is pure, we
have that πρ = πγ is irreducible which means that γ is pure, and we conclude that the
orbitO containing the pure state ρ is made up only of pure states. A direct consequence
is that the the action of G on the space of pure states of a commutative, unital C∗-
algebra is trivial in the sense that every pure state is a fixed point of the action. Indeed,
recalling that the GNS representation associated with a pure state ρ is irreducible,
then [15, p. 102] implies that the GNS Hilbert space Hρ is one-dimensional since
A is commutative. Consequently, the GNS representation πρ sends every element
in the identity operator on Hρ and we conclude that the orbit O containing ρ is just

5 The topology on R
+ is the Lie group topology, the topology on C is the norm topology associated with

the norm |z| := √
zz, and the topology on R

+ × C is the product topology associated with the previous
two topologies.
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the singleton {ρ}. As we will see, this is in sharp contrast with what happens in the
non-commutative case.

Regarding the last point, we start taking λ ∈ [0, 1], a tracial state ρ, two elements
g1, g2 ∈ G , and writing

ρλ
12 := λ Φ(g1, ρ) + (1 − λ)Φ(g2, ρ). (88)

Then, for every a ∈ A , we have

ρλ
12(a) = λ

ρ
(

g†1 a g1
)

ρ
(

g†1 g1
) + (1 − λ)

ρ
(

g†2 a g2
)

ρ
(

g†2 g2
)

= ρ

⎛

⎝λ
g1 g

†
1

ρ
(

g1 g
†
1

) a

⎞

⎠+ ρ

⎛

⎝(1 − λ)
g2 g

†
2

ρ
(

g2 g
†
2

) a

⎞

⎠

= ρ

⎛

⎝

⎛

⎝λ
g1 g

†
1

ρ
(

g1 g
†
1

) + ((1 − λ)
g2 g

†
2

ρ
(

g2 g
†
2

)

⎞

⎠ a

⎞

⎠

= ρ
(

Pλρ
12 a
)

, (89)

where we have set

Pλρ
12 := λPρ

1 + (1 − λ)Pρ
1 (90)

with

Pρ
1 := g1 g

†
1

ρ
(

g1 g
†
1

) and Pρ
2 := g2 g

†
2

ρ
(

g2 g
†
2

) . (91)

The elements Pρ
1 := g1 g

†
1

ρ(g1 g
†
1)

and Pρ
2 are both positive, invertible elements in A , and

we have that the set

G+ = G ∩ A+ (92)

of positive, invertible elements (strictly positive elements) in A is an open cone (see
[54, p. 11]), so that Pλρ

12 is still a positive, invertible element. Being a positive element,

Pλρ
12 admits a (self-adjoint) square root, say pλρ

12 , and this square-root element is also

invertible, i.e., pλρ
12 ∈ G . Consequently, noting that

ρ
(

Pρ
12

) = 1, (93)
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we obtain

ρλ
12(a) =

ρ

(

(

pλρ
12

)†
a pλρ

12

)

ρ

(

(

pλρ
12

)†
pλρ
12

)

)

(94)

for all a ∈ A . This is equivalent to

ρλ
12 = Φ

(

pλρ
12 , ρ

)

, (95)

which means that the orbit O containing ρ is convex as claimed. In particular, every
orbit O is convex when A is Abelian because all states are tracial. 	


Let O ⊂ S be an orbit of G by means of Φ. Considering ρ ∈ O and the coset
space G /Gρ , where Gρ is the isotropy subgroup

Gρ = {g ∈ G : Φ(g, ρ) = ρ} , (96)

of ρ with respect to Φ, the map iΦρ : G /Gρ → O given by

[g] �→ iΦρ ([g]) = Φ(g, ρ) (97)

provides a set-theoretical bijection between the coset space G /Gρ and the orbit O
for every ρ ∈ S . According to the results recalled in “Appendix B”, this means that
we may dress the orbit O with the structure of homogeneous Banach manifold of G
whenever the isotropy subgroup Gρ is a Banach-Lie subgroup of G . Specifically, it is
the quotient space G /Gρ that is endowed with the structure of homogeneous Banach
manifold, and this structure may be “transported” to O in view of the bijection iΦρ
between G /Gρ and O.

As it happens for the action α defined in Sect. 2, in general, the fact that Gρ is
a Banach-Lie subgroup of G depends on both ρ and A . However, Gρ is always
an algebraic subgroup of G for every ρ ∈ S and every unital C∗-algebra A (see
the discussion above Proposition 3 for the definition and the properties of algebraic
subgroups of a Banach-Lie group).

Proposition 10 The isotropy subgroup Gρ of ρ ∈ S is an algebraic subgroup of G of
order 2 for every ρ ∈ S .

Proof The proof is essentially the same of Proposition 3with only a slightmodification
of the family of polynomials considered. Define the family Qρ = {pρ,c}c∈A of
complex-valued polynomials of order 2 as follows6:

pρ,c(a,b) := ρ(a† a) ρ (c) − ρ
(

a† ca
)

. (98)

6 Note that the dependence of pρ,c on the second variable is trivial, and this explains why b does not appear
on the rhs.
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The continuity of every pρ,c follows easily from the fact that ρ is a norm-continuous
linear functional on A . A moment of reflection shows that

Gρ =
{

g ∈ G : pρ,c(g, g
−1) = 0 ∀pρ,c ∈ Qρ

}

, (99)

and thus Gρ is an algebraic subgroup of G of order 2 for all ρ ∈ S . 	

Being an algebraic subgroup of G , the isotropy subgroup Gρ is a closed subgroup

of G which is also a real Banach-Lie group in the relativised norm topology, and its
Lie algebra gρ ⊂ g = A is given by the closed subalgebra (see [35, p. 667], and [55,
p. 118])

gρ = {a ∈ g ≡ A : exp(ta) ∈ Gρ ∀t ∈ R
}

. (100)

According to Proposition 15, the isotropy subgroup Gρ of G is a Banach-Lie subgroup
of G if and only if the Lie algebra gρ of Gρ is a split subspace of g = A and exp(V ) is
a neighbourhood of the identity element in Gρ for every neighbourhood V of 0 ∈ gρ

(see [55, p. 129] for an explicit proof). The fact that exp(V ) is a neighbourhood of the
identity element in Gρ for every neighbourhood V of 0 ∈ gρ follows from the fact that
Gρ is an algebraic subgroup of G (see [35, p. 667]).

Next, we may characterize gρ as we did in Sect. 2 by considering a ∈ g = A , the
smooth curve in G given by

gt = exp(ta) (101)

for all t ∈ R, the curve ρt inS given by

ρt (b) = (Φ(gt , ρ))(b) = ρ
(

g†t b gt
)

(102)

for all t ∈ R and for all b ∈ A , and computing

d

dt
(ρt (b))t=0 = lim

t→0

ρt (b) − ρ(b)

t

= lim
t→0

1

t

⎛

⎝

ρ
(

g†t b gt
)

ρ
(

g†t gt
) − ρ(b)

⎞

⎠

= lim
t→0

1

t ρ
(

g†t gt
)

(

ρ
(

g†t (b − ρ(b) I) gt
))

= lim
t→0

1

t

(

ρ
(

g†t (b − ρ(b) I) gt
))

(

lim
t→0

1

ρ(g†t gt )

)

= lim
t→0

1

t

(

ρ
(

g†t (b − ρ(b) I) gt
))
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= lim
t→0

1

t

+∞
∑

j,k=0

(

ρ

(
(

ta†
)k

k! (b − ρ(b) I)
(ta) j

j !

))

= ρ
(

a† (b − ρ(b) I)
)

+ ρ ((b − ρ(b) I) a)

= ρ
(

a† b + b a
)

− ρ(b) ρ
(

a† + a
)

(103)

for every b ∈ A , from which it follows that a is in the Lie algebra gρ of the isotropy
group Gρ if and only if

ρ
(

a† b + b a
)

− ρ(b) ρ
(

a† + a
)

= 0 (104)

for every b ∈ A . Incidentally, note that the last term in Eq. (103) gives the covariance
between b and a evaluated at the state ρ whenever a is self-adjoint. Something related
has also been pointed out in [20, Eq. 34], and we postpone to a future work a more
thorough analysis of the connection between the action of G on S and the existence
of contravariant tensor fields associated with the covariance between observables (in
the C∗-algebraic sense).

When dim(A ) = N < ∞, the Lie algbera gρ is a split subspace for ever ρ ∈ S ,
and thus every orbit of G inS by means of Φ is a homogeneous Banach manifold of
G . Clearly, when A is infinite-dimensional, this is no-longer true, and a case by case
analysis is required. For instance, in Sect. 3.1, we will show that gρ is a split subspace
of g = A when A is the algebra B(H) of bounded linear operators on a complex,
separable Hilbert space H, and ρ is any normal state on B(H) (positive, trace-class
linear operator on H with unit trace). This means that all the orbits of G = GL(H)

passing through normal states are homogeneous Banach manifolds of G , and we will
classify these orbits into four different types.

Actually, the results of Sect. 3.1 naturally follows from the results of Sect. 2.1
because, as we will now show, there is an intimate connection between the action α

of G on ρ when the latter is thought of as an element of A ∗
sa , and the action Φ of G

on ρ when the latter is thought of as an element ofS . Indeed, from Eqs. (7) and (77),
we easily obtain that if g is in the isotropy group G α

ρ of ρ with respect to the action α,
then g is also in the isotropy group Gρ of ρ with respect to Φ, while the converse is
not necessarily true. Furthermore, if g is in G α

ρ , then e
γ g is in Gρ for every γ ∈ R, and

it turns out that this is the most general expression for an element in Gρ . This is made
precise in the following proposition where we show that the Lie algebra gρ ofGρ is just
the direct sum of the Lie algebra gα

ρ with the one-dimensional subspace determined
by the linear combinations of multiples of the identity with real coefficients.

Proposition 11 The Lie algebra gρ of the isotropy group Gρ of ρ with respect to Φ

may be written as

gρ = gα
ρ ⊕ spanR{I} (105)
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where gα
ρ is the Lie algebra of the isotropy group G α

ρ of ρ with respect to the action α

introduced in Sect. 2, and spanR{I} is the real, linear subspace spanned by the identity
operator in G = A with real coefficients.

Proof It is a matter of direct inspection to see that if a is in gα
ρ (see Eq. (19)), then

a + γ I is in gρ for every γ ∈ R.
On the other hand, since spanR{I} is one-dimensional, it is complemented in gρ ,

and we may characterize its complement as follows. First, we take the continuous,
real linear functional F on spanR{I} given by

F(γ I) := γ, (106)

and extend it to the whole gρ . The extension of F is highly non-unique, and we may
take it to be the functional Fρ given by

Fρ(a) := 1

2
(ρ + ρ†)(a) = 1

2
ρ(a† + a) ∀ a ∈ gρ. (107)

Indeed, Fρ is a real, continuous linear functional on gρ because (ρ+ρ†) is a continuous
linear functional on the real Banach-Lie algebra g = A of which gρ is a closed, real
subalgebra, and clearly Fρ(γ I) = F(γ I) because ρ is a state. Then, we have a
bounded projection P from gρ to spanR{I} given by

P(a) = Fρ(a) I ∀ a ∈ gρ, (108)

and we may write

a = P(a) − (Idgρ − P
)

(a) ∀ a ∈ gρ. (109)

This allows us to define the complement of spanR{I} in gρ as the closed linear subspace
cρ given by the image of

(

Idgρ − P
)

. Equivalently, an element b ∈ cρ may be written
as

b = (

Idgρ − P
)

(a) (110)

with a ∈ gρ . All that is left to do is to show that b ∈ cρ is actually in gα
ρ . At this

purpose, recalling Eq. (19), we have

ρ
(

b† c + c b
)

= ρ

(

(

a − 1

2
ρ
(

a† + a
)

I

)†

c + c
(

a − 1

2
ρ
(

a† + a
)

I

)

)

= ρ
(

a† c + c a
)

− ρ(c) ρ
(

a† + a
)

= 0 (111)

because a is in gρ (see Eq. (104)). 	
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From Proposition 11 it follows that Gρ is a Banach-Lie subgroup of G if and only if
G α

ρ is a Banach-Lie subgroup of G . Consequently, the orbit of G through ρ by means
of α is a homogeneous Banach manifold of G if and only if the orbit of G through ρ

by means of Φ is a homogeneous Banach manifold of G .

Proposition 12 The Lie algebra gρ is a split subspace of g = A if and only if the Lie
algebra gα

ρ is so.

Proof According to Proposition 11 we may write

gρ = gα
ρ ⊕ spanR{I}. (112)

Consequently, if gρ is complemented in g = A , we have

g = gρ ⊕ kρ (113)

and thus the closed linear subspace kρ ⊕ spanR{I} provides a closed complement for
gα
ρ . On the other hand, if gα

ρ is complemented in g = A , and we may write

g = gα
ρ ⊕ kαρ. (114)

Then, recall that γ I with γ ∈ R is in gα
ρ if and only if γ = 0 (see Eq. (19)), therefore,

the closed one-dimensional subspace spanR{I} is a closed linear subspace of kαρ , and it
is complemented in kαρ because it is finite-dimensional. Denoting by cρ the complement
of spanR{I} in kαρ , we have that

g = gα
ρ ⊕ spanR{I} ⊕ cαρ = gρ ⊕ cαρ, (115)

from which it follows that gρ is complemented in g = A . 	

Now, supposeρ is such that gρ is a split subspace ofA , that is, the isotropy subgroup

Gρ is a Banach-Lie subgroup of G . In this case, the orbit O containing ρ is endowed
with a Banach manifold structure such that the map τΦ

ρ : G → O given by

g �→ τΦ
ρ (g) := Φ(g, ρ) (116)

is a smooth surjective submersion for every ρ ∈ O. Moreover, G acts transitively and
smoothly on O, and the tangent space TρO at ρ ∈ O is diffeomorphic to g/gρ (see
[17, p. 105] and [55, p. 136]). Note that this smooth differential structure on O is
unique up to smooth diffeomorphism. Now, we will prove a proposition very similar
to Proposition 4 in Sect. 2.

Proposition 13 Let ρ be such that the isotropy subgroup Gρ is a Banach-Lie subgroup
of G , letO be the orbit containing ρ endowed with the smooth structure coming from
G , and consider the map la : O −→ R, with a a self-adjoint element in A , given by

la(ρ) := ρ(a). (117)
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Then:

1. the canonical immersion map i : O −→ A ∗
sa is smooth;

2. the map la : O −→ R is smooth;
3. the tangent map Tρ i at ρ ∈ O is injective for all ρ in the orbit.

Proof 1. Wewill exploit Proposition 16 in “AppendixB” in order to prove the smooth-
ness of the canonical immersion. Specifically, we consider the map

Φρ : G −→ A ∗
sa, Φρ(g) := Φ(g, ρ) (118)

and note that, quite trivially, it holds

Φρ = i ◦ τΦ
ρ . (119)

Consequently, being τΦ
ρ a smooth submersion for every ρ ∈ S , Proposition 16

implies that i is smooth if Φρ is smooth.
At this purpose, given a,b ∈ A and ξ ∈ A ∗

sa , we define ξab ∈ A ∗
sa to be

ξab(c) := 1

2

(

ξ(a† c b) + ξ(b† c a)
)

∀ c ∈ Asa, (120)

the map φ : A × A ∗
sa → R × A ∗

sa given by

φ(a, ξ) := (ξa a(I), ξa a), (121)

and the map P : (A × A ∗
sa) × (A × A ∗

sa) × (A × A ∗
sa) → R × A ∗

sa given by

F(a, ρ ;b, σ ; c, τ ) :=
(

1

3
(ξbc(I) + ζca(I) + ϑab(I)) ,

1

3
(ξbc + ζca + ϑab)

)

.

(122)

A direct computation shows that F is a bounded multilinear map and that

φ(a, ξ) = F(a, ξ ; a, ξ ; a, ξ), (123)

whichmeans thatφ is a continuous polynomialmapbetweenA ×A ∗
sa andR×A ∗

sa ,
hence, it is smooth with respect to the Banach manifold structures ofA ×A ∗

sa and
R × A ∗

sa (see [21, p. 63]). Then, we note that G is an open Banach submanifold
of A (see [55, p. 96]), and thus the map

Iξ : G −→ A × A ∗
sa, Iξ (g) := (g, ξ) (124)

is a smooth map for every ξ ∈ A ∗
sa so that φ ◦ Iξ is a smooth map between G and

R × A ∗
sa for every ξ ∈ A ∗

sa .
In particular, Iρ is smooth for every ρ ∈ S , and its image is in the open
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submanifold R0 × A ∗
sa of R × A ∗

sa . Therefore, considering the smooth map
β : R0 × A ∗

sa → A ∗
sa given by

β(b, ξ) := 1

b
ξ, (125)

it follows that β ◦ φ ◦ Iρ is a smooth map between G and A ∗
sa for every ρ ∈ S ,

and a direct computation shows that

Φρ = β ◦ φ ◦ Iρ. (126)

From this it follows that Φρ is smooth which means that the canonical immersion
i : O ⊂ S −→ A ∗

sa is smooth because of Proposition 16.
2. It suffices to note that la is the composition of the linear (and thus smooth) map

La : A ∗
sa −→ R given by

La(ξ) = ξ(a) (127)

with the canonical immersion i which is smooth because of what has been proved
above.

3. Now, consider the family {la}a∈A of smooth functions on the orbitO, and suppose
that Vρ and Wρ are tangent vectors at ρ ∈ O such that

〈(dla)ρ; Vρ〉 = 〈(dla)ρ; Wρ〉 (128)

for every a ∈ Asa . Then, since la = La ◦ i , we have

〈(dla)ρ; Vρ〉 = 〈(dLa)i(ρ); Tρ i(Vρ)〉 (129)

and

〈(dla)ρ; Wρ〉 = 〈(dLa)i(ρ); Tρ i(Wρ)〉. (130)

Note that the family of linear functions of the type La with a ∈ Asa (see Eq. (24))
are enough to separate the tangent vectors at ξ for every ξ ∈ A ∗

sa because the
tangent space at ξ ∈ A ∗

sa is diffeomorphic with A ∗
sa in such a way that

〈(dLa)ξ ;Vξ 〉 = Vξ (a) = La(Vξ ) (131)

for every Vξ ∈ TξA ∗
sa

∼= A ∗
sa , and Asa (the predual of A ∗

sa) separates the points
of A ∗

sa (see [42]). Consequently, since Tρ i(Vρ) and Tρ i(Wρ) are tangent vectors
at i(ρ) ∈ A ∗

sa and the functions La with a ∈ Asa are enough to separate them and
we conclude that the validity of Eq. (128) for all a ∈ Asa is equivalent to

Tρ i(Vρ) = Tρ i(Wρ). (132)
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Then, if gt = exp(ta) is a one-parameter subgroup in G so that

ρt = Φ(gt , ρ) (133)

is a smooth curve in O starting at ρ with associated tangent vector Vρ , we have

〈(dLb)i(ρ); Tρ i(Vρ)〉 = d

dt
(Lb ◦ i(ρt ))t=0 (134)

which we may compute analogously to Eq. (103) to obtain

d

dt
(Lb ◦ i(ρt ))t=0 = ρ

(

a† b + b a
)

− ρ(b) ρ
(

a† + a
)

(135)

Comparing Eq. (135) with Eq. (103) we conclude thatVρ andWρ satisfy Eq. (29)
if and only if they coincide, and thus Tρ i is injective for all ρ ∈ O.

	

It is important to note that the topology underlying the differential structure on O

comes from the topology of G in the sense that a subset U of the orbit is open iff
(τΦ

ρ )−1(U ) is open in G . In principle, this topology on O has nothing to do with the
topology of O when thought of as a subset of S endowed with the relativised norm
topology, or with the relativised weak* topology. However, from Proposition 13, it
follows that themap la : O −→ R is continuous for every a ∈ Asa . Therefore, wemay
conclude that the topology underlying the homogeneous Banach manifold structure
on O is stronger than the relativised weak* topology coming from A ∗

sa .

3.1 Density operators

Similarly to what is done in Sect. 2.1, we consider a complex, separable Hilbert space
H and denote by A the W ∗-algebra B(H) of bounded, linear operators on H. A
normal state ρ̃ of A may be identified with a density operator on H, that is, a trace-
class, positive semidefinite operator ρ with unit trace, and the duality relation may be
expressed by means of the trace operation

ρ̃(a) = Tr (ρ a) (136)

for all a ∈ A = B(H).
We will study the orbits of the group G of invertible, bounded linear operators in

A on the space N of normal states on A . The analysis will be very similar to the
one presented in Sect. 2.1.

According to the spectral theory for compact operators (see [51, ch. VII]), given a
density operator ρ on H, there is a decomposition H = Hρ ⊕ H⊥

ρ and a countable
orthonormal basis {|e j 〉, | f j 〉} adapted to this decomposition such that ρ can bewritten
as
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ρ =
dim(Hρ)
∑

j=1

p j |e j 〉〈e j |, (137)

with p j > 0 and
∑dim(Hρ)

j=1 p j = 1. In general, we have four different situations:

1. 0 < dim(Hρ) = N < ∞;
2. dim(Hρ) = ∞ and 0 < dim(H⊥

ρ ) = M < ∞;
3. dim(Hρ) = ∞ and dim(H⊥

ρ ) = 0
4. dim(Hρ) = dim(H⊥

ρ ) = ∞,

and we set

NN := {

ρ ∈ N | 0 < dim(Hρ) = N < ∞}

N ⊥
M :=

{

ρ ∈ N | dim(Hρ) = ∞ and 0 < dim(H⊥
ρ ) = M < ∞

}

N ⊥
0 :=

{

ρ ∈ N | dim(Hρ) = ∞ and dim(H⊥
ρ ) = 0

}

N∞ :=
{

ρ ∈ N | dim(Hρ) = dim(H⊥
ρ ) = ∞

}

. (138)

The subscript here denotes either the dimension of the space on which ρ operates, or
its codimension when the symbol ⊥ is used. Clearly, when dim(H) < ∞, we have
NN = ∅ for all N > dim(H), and N ⊥

M = N ⊥
0 = N∞ = ∅.

Proceeding in exactly the same way as we did in Sect. 2.1, we may prove that the
action Φ of G is transitive on NN , on N ⊥

M , on N ⊥
0 and on N∞. Consequently, the

space N of normal states on A = B(H) is partitioned into the disjoint union

N = N∞ 
 N ⊥
0 


(

⊔

N∈N
NN

)



(

⊔

M∈N
N ⊥

M

)

. (139)

Propositions 11, 12, and 6 imply that the isotropy subgroup Gρ of ρ with respect to Φ

is a Banach-Lie subgroup of G = GL(H). By adapting the proof of Proposition 7 in
the obvious way, we may prove the following proposition:

Proposition 14 Let �0 and �1 be density operators onH, that is, positive, trace-class
operators with unit trace. Denote by p j

0 and p j
1 the j-th eigenvalue of �0 and �1,

respectively. If H�0 is isomorphic to H�1 , and H⊥
�0

is isomorphic to H⊥
�1
, and if the

following condition holds

p j
1

p j
0

≤ C < ∞ ∀ j = 1, ..., N , (140)

then, the element g given by
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g :=
N
∑

j=1

√

√

√

√

p j
1

p j
0

|e1j 〉〈e0j | +
M
∑

k=1

| f 1k 〉〈 f 0k | (141)

is a bounded, invertible operator on H such that

�1 = g �0 g†

Tr(g �0 g†)
. (142)

Clearly, the assumptions in Proposition 14 are always satisfied if �0 and �1 are
finite-rank operators with the same rank.

Now, we want to write down a tangent vector Vρ at ρ ∈ O, where O is any of
the orbits of G inside the space of density operators. At this purpose, we consider the
canonical immersion i : O −→ A ∗

sa , and we recall Eq. (135), from which it follows
that

Tρ i(Vρ)(b) = ρ
(

a† b + b a
)

− ρ(b) ρ
(

a† + a
)

∀b ∈ A , (143)

where a is an arbitrary element in A = B(H). Clearly, different choices of a may
lead to the same Tρ i(Vρ). Then, writing a = x + ıy with x, y ∈ Asa , we have

Tρ i(Vρ)(b) = Tr
(({ρ, x} − ı

[

ρ, y
])

b
)− Tr(ρ b)Tr ({ρ, x}) ∀b ∈ A , (144)

with {·, ·} and [·, ·] the anticommutator and the commutator in B(H), respectively.

3.2 Faithful, tracial state

Similarly to what is done in 2.2, we consider A to be a unital C∗-algebra with a
faithful, tracial state τ , that is, τ is a faithful, state on A such that

τ(a b) = τ(b a) ∀ a,b ∈ A . (145)

In particular, if A is Abelian, then every faithful, state is a faithful, tracial state.
The result of Sect. 2.2 and Proposition 12 allow us to conclude that the orbit Oτ

of G through τ by means of Φ (see Eq. (77)) is a homogeneous Banach manifold of
G . Furthermore, it is immediate to check that there is a bijection between Oτ and the
set of positive, invertible elements in A with unit trace, that is, elements of the form
gg†

τ(g g†)
with g ∈ G . IfA is finite-dimensional, thenOτ coincides with the whole space

of faithful, tracial states, and, ifA is finite-dimensional and Abelian (i.e.,A ∼= C
n for

some n ∈ N), then Oτ may be identified with the open interior of the n-dimensional
simplex. Note that points in the orbit through τ need not be tracial state when A is
non-Abelian (e.g., when A = B(H) with dim(H) < ∞ and τ the maximally mixed
state).

Now, we want to explore the example given by the Abelian W ∗-algebra A =
L∞(X , ν), where (X ,Σ, ν) is a probability space (see [54, p. 109]), and the support
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of ν is the whole X . The sum, multiplication and involution in A = L∞(X , ν) are
defined as for the C∗-algebra of complex-valued, bounded, continuous functions on a
Hausdorff topological space, but the norm is given by

|| f || = inf {C ≥ 0 | | f (x)| ≤ C for ν − almost every x} . (146)

In this case, the pre-dual space A∗ may be identified with L1(X , ν) by means of the
duality

〈 f , ξ 〉 =
∫

X
f (x) ξ(x) dν(x), (147)

while the dual space A ∗ may be identified with the space BV (Σ, ν) of complex-
valued, finitely-additive, bounded functions onΣ which vanish on every locally ν-null
set (see [54, p. 116] for the explicit construction of the Banach space structure on
BV (X , ν)) by means of the duality

μ( f ) =
∫

X
f (x) dμ(x). (148)

The space S of states is then the space of normalized, positive, finitely-additive,
bounded functions on Σ . When μ is a normal state, there exists μ̃ ∈ A∗ ∼= L1(X , ν)

such that
∫

X
f (x) dμ(x) = μ( f ) = 〈 f , μ̃〉 =

∫

X
f (x) μ̃(x) dν(x) (149)

for all f ∈ A . Clearly, the function μ̃ is μ-integrable, non-negative, and such that

∫

X
μ̃(x) dν(x) = 1. (150)

Consequently, every normal stateμdetermines a probabilitymeasure on (X ,Σ)which
is absolutely continuous with respect to ν, and has μ̃ as its Radon–Nikodym derivative.

The action of G on the normal state μ is easily written as

(Φ(g, μ)) ( f ) =
∫

X |g(x)|2 f (x) dμ(x)
∫

X |g(y)|2 dμ(y)
≡
∫

X
αν
g (x) f (x) dμ(x), (151)

where f is inA = L∞(X , ν), and αν
g (x) is the strictly positive,μ-integrable function

αμ
g (x) = |g(x)|2

∫

X |g(y)|2 dμ(y)
(152)

such thatμ(α
μ
g ) = 1. Ifμ is faithful, the orbitOμ throughμ is a smooth, homogeneous

Banach manifold for G , and a point in Oμ is a probability measure μg which is
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mutually absolutely continuous with respect to μ with α
μ
g ∈ A = L∞(X , ν) as its

Radon–Nikodym derivative.
In particular, ifwe take ν as the reference faithful, normal state,we have that the orbit

O containing ν is given by all the probability measures on (X ,Σ) that are mutually
absolutely continuous with respect to ν, and with a Radon–Nikodym derivative which
is a strictly positive function in A = L∞(X , ν) integrating to 1 with respect to ν.
Therefore, the set

Mν :=
{

f ∈ L∞(X , ν) | f (x) > 0 ν − a.s.,
∫

X
f (x) dν(x) = 1

}

(153)

is a homogeneous Banach manifold of the Banach-Lie group G of invertible elements
in L∞(X , ν).

4 Concluding remarks

In thiswork,wepresented apreliminary analysis concerning twopossible actions of the
Banach-Lie groupG of invertible elements in a unitalC∗-algebraA on the continuous,
self-adjoint linear functionals inA ∗

sa . Specifically, we analysed a linear action α of G
on A ∗

sa which is smooth and preserves the positivity and the normality of the linear
functionals on which it acts. In the case where A is the algebra B(H) of bounded
linear operators on a complex, separable Hilbert space H, we were able to prove that
all the orbits passing through normal, positive linear functionals (positive trace-class
operators on H) are smooth, homogeneous Banach manifolds of G = GL(H) with
respect to the action α. Furthermore, we gave sufficient conditions for two normal,
positive linear functionals to belong to the same orbit. If A admits a faithful, finite
trace τ , then we proved that the orbit through τ is a smooth, homogeneous Banach
manifold of G .

The action α does not preserve the space of states S on A . Consequently, we
provided a sort of deformation of α, denoted by Φ, which allows us to overcome this
problem. However, Φ turns out to be an action of G which is well-defined only on
the space of states S , and, in general, it does not preserve the convex structure of
S . The subgroup of unitary elements in G is the maximal subgroup such that the
restriction ofΦ preserves convexity. SinceS lacks a differential structure as a whole,
it is meaningless to speak of the smoothness of Φ, nevertheless, an orbitO of Φ may
still inherit the structure of smooth homogeneous Banach manifold if the isotropy
subgroup of an element (and thus of every element) in O is a Banach-Lie subgroup
of G . At this purpose, we analysed the case whereA = B(H) mentioned before, and
we proved that the orbits through normal states (density operators on H) are indeed
smooth homogeneous Banach manifolds for G = GL(H) with respect to the action
Φ. Similarly to what we obtained for the action α in the case of normal positive
functionals on A = B(H), we gave sufficient conditions for two normal states to
belong to the same orbit. Furthermore, if A admits a faithful, tracial state τ , then we
proved that the orbit of G through τ by means ofΦ is a smooth, homogeneous Banach
manifold of G . In particular, ifA is finite-dimensional, the orbit through τ coincides
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with the space of faithful states on A , while, if A is finite-dimensional and Abelian,
the orbit through τ may be identified with the open interior of the finite-dimensional
simplex. Note that points in the orbit through τ need not be tracial state when A is
non-Abelian, e.g., when A = B(H) with dim(H) < ∞ and τ the maximally mixed
state.

In the finite-dimensional case when A = B(H) with dim(H) < ∞, the space
of faithful states (invertible density operators) may be identified with a smooth, open
submanifold of the affine hyperplane of the self-adjoint operators with unit trace,
and numerous constructions related with classical information geometry have been
adapted to this quantum case. However, a straightforward extension of this formalism
to the infinite dimensional case is not possible because no density operator can be
invertible in this case, and this prevents the possibility of endowing the set of faithful
(normal) states with a smooth manifold structure as it is done in the finite-dimensional
case. As noted in the introduction, in the finite-dimensional case it is also known that
the manifold structure on faithful normal states admits a compatible transitive action
of the group of invertible elements making it a smooth homogeneous space. Clearly,
these twomanifold structures are completely equivalent in the finite-dimensional case.
A relevant conclusion that can be drawn from the results of this manuscript is that, in
the infinite-dimensional case, it is possible to define a smooth homogeneous structure
on the orbit of G = GL(H) through any given faithful normal state. However, it is
still an open question if there is only one such orbit as in the finite-dimensional case,
and we plan to address this delicate issue in a future work.

The content of thiswork should be thought of as a preliminary step toward the gener-
alization of the methods of quantum information geometry to the infinite-dimensional
case, and, as such, it is far from being complete. For instance, the problem of character-
izing the isotropy subgroups for other types ofC∗-algebras other than those considered
here in order to understand if the associated orbit (with respect to α or Φ) is a smooth
homogeneous Banach manifold for G is still open. Then, it would be relevant to anal-
yse the smoothness of well-known informational quantities (e.g., quantum relative
entropies) with respect to the smooth structures introduced in this work, so that, if
smoothness is assured, we may proceed to analyse the statistical structures they give
rise to in the infinite-dimensional case. Relevant examples would be given by the von
Neumann-Umegaki relative entropy, and by the Bures distance function (quantum
fidelity).

Other geometrical structures that will emerge naturally for certain states, like a
complex structure or a symplectic structure [13,14], induced from the Banach-Lie
group of invertible elements, will be studied in a future contribution in relation with
the well-known informational metrics.

For this purpose, it may turn out to be helpful to analyse the smooth structure on the
homogeneous Banach manifolds in terms of the smooth subalgebra ofA determined
by the isotropy subgroup of the state ρ “labelling” the homogeneous Banach manifold
[18]. Clearly, the smooth structure of the algebra will be related to the smooth structure
of the orbit and it will provide a new insigh in the structure of the C∗-algebra obtained
from an action of a Lie group as indicated for instance in [26]. We plan to address
these and related issues in future publications.
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Appendix A: C*-algebras and states

Let (A , +, || · ||, ·) be a Banach algebra, that is, a Banach space endowed with a (not
necessarily commutative) multiplication operation which is continuous with respect
to the norm topology and is such that

||a1 a2|| ≤ ||a1|| ||a2|| (154)

for every a1 and a2 in A . Suppose that there is a linear anti-isomorphism † on A ,
called involution, such that (a†)† = a and:

(a1 a2)† = a†2 a
†
1 (155)

for every a1 and a2 inA . If the pentuple (A , +, || · ||, ·, †) satisfies the compatibility
condition between the norm, the multiplication and the involution given by

||a||2 = ||a† a|| (156)

for every a inA , then (A , +, || · ||, ·, †) is called C∗-algebra. In the following, we
will avoid the notation (A , +, || · ||, ·, †) to denote a C∗-algebra, and will simply
write A because, hopefully, all the operations will be clear from the context.

An element a ∈ A is called self-adjoint if a = a†, and we denote byAsa the space
of self-adjoint elements inA . An element a ∈ A is called positive if it can be written
as

a = bb† (157)

for some b ∈ A . Without loss of generality, we may take b to be self-adjoint (see [19,
p. 33]). The space of positive elements in A is denoted by A+ and it is easy to see
that it is a cone in A .
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Let A be a possibly infinite-dimensional, unital C∗-algebra, that is, a C∗-algebra
with a multiplicative identity element denoted by I. LetA ∗ be the topological dual of
A , that is, the space of complex-valued, continuous linear functions onA . We denote
by T the Banach space topology (norm topology) on A ∗ induced by the canonical
norm

||ω|| := sup
||a||=1

|ω(a)|. (158)

A linear functional ω ∈ A ∗ is called self-adjoint if

ω(a†) = ω(a) (159)

so that ω takes real values when evaluated on self-adjoint elements in A . We denote
by A ∗+ be the cone of positive linear functionals on A , that is, the set of all ω ∈ A ∗
such that ω(a† a) ≥ 0 for every a ∈ A . According to [19, p. 49], positive linear
functionals are self-adjoint, and, given ω ∈ A ∗+ , it holds ||ω|| = ω(I) where I is the
identity ofA . We denote byS the space of states ofA , that is, the set of all ω ∈ A ∗+
such that ||ω|| = 1. A state ω ∈ S is called faithful if ω(a) > 0 for all a ∈ A+. A
state ω ∈ S is called pure if, given ξ ∈ A ∗+ , then (ω − ξ) is in A ∗+ only if ξ = λω

with 0 ≤ λ ≤ 1. The set of pure states is denoted byP , and, according to [19, p. 53],
the space of statesS is a convex, weak* compact convex subset ofA ∗, andP is the
set of extremal points ofS , that is,S is the weak* closure of the convex envelope of
P . Note that the weak* compactness ofS depends on the fact thatA has an identity
element.

Given a positive linear functional ω ∈ A ∗+ , it is always possible to build a triple
(Hω, πω, |ψω〉) whereHω is a possibly infinite-dimensional complex Hilbert space,
πω is a *-representation ofA in B(Hω), and |ψω〉 is a nonzero vector inHω such that

ω(a) = 〈ψω|πω(a)|ψω〉 (160)

for all a ∈ A , and such that

Hω := {|ψ〉 ∈ Hψ : ∃ a ∈ A such that |ψ〉 = πω(a)|ψω〉} (161)

is a dense subset in Hω. This construction is referred to as the GNS construction
associated with ω (see [15, sec. II.6.4], [19, ch. 2.3] and [41, ch. 4.5] for more details).
Note that theGNSconstruction associatedwithω is uniqueup tounitary isomorphisms,
and there is a one-to-one correspondence between positive linear functionals in A ∗+
and the ∗-representations of A with a specified cyclic vector. Furthermore, the GNS
representation πω is irreducible if and only if ω is a pure state (see [19, p. 57]) and two
irreducible GNS representations πω and πρ are unitarily equivalent if ||ω − ρ|| < 2
(see [30, p. 551]).

A W ∗-algebra A is a C∗-algebra which is the Banach dual of a Banach space
A∗ called the predual of A . According to [52, p. 30], the predual A∗ is unique up to
isometric isomorphisms.We denote by 〈·, ·〉 the canonical pairing betweenA∗ andA ,
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that is, the action of a ∈ A on ξ ∈ A∗ when the former is thought of as a continuous
linear functional on A∗, reads

〈ξ, a〉 = a(ξ). (162)

There is a natural immersion i of A∗ into its double (topological) dual A ∗ given by
ξ �→ i(ξ)with (i(ξ)) (a) = 〈a, ξ 〉, and, by the very definition of the weak* topology
onA , it is clear that a linear functional˜ξ inA ∗ is continuouswith respect to theweak*
topology on A if and only if there is an element ξ ∈ A∗ such that i(ξ) = ˜ξ . Linear
functionals of this type are called normal, and the set of normal states onA is denoted
byN . In the finite dimensional case, every C∗-algebra is a W ∗-algebra, every linear
functional ξ ∈ A ∗ is normal, and the immersion i is actually an isomorphism. This is
no longer true in the infinite dimensional case.

Appendix B: Banach-Lie groups and homogeneous spaces

In this section we will assume familiarity with the notions of real, smooth Banach
manifolds, smoothmapsbetween (smooth)Banachmanifolds, andBanach-Lie groups.
As stated at the end of the introduction, the main references concerning the infinite-
dimensional differential geometry of Banach manifolds and Banach-Lie groups are
[1,17,21,45,55], however, we think it is useful to recall here some notions regarding
Banach-Lie subgroups of Banach-Lie groups.

According to [55, p. 96 and p. 114], every closed subgroup K of a given Banach-Lie
group G is a Banach-Lie group with respect to a unique Hausdorff topology in K such
that the closed real subalgebra

k = {a ∈ g : exp(ta) ∈ K ∀t ∈ R} (163)

of the Lie algebra g of G is the Lie algebra of K . In general, the Hausdorff topology
on K does not coincide with the relative topology inherited from the norm topology
of G. A subgroup K of a Banach-Lie group G which is also a Banach submanifold
of G is called a Banach-Lie subgroup of G. In particular, a Banach-Lie subgroup K
of G is closed, it is a Banach-Lie group with respect to the relative topology inherited
from the topology of G, and its Lie algebra k is given by Eq. (163) (see [55, p. 128]).

Note that, in the finite-dimensional case dim(G) < ∞, it is always true that every
closed subgroup of G is a Banach-Lie subgroup G.

An explicit characterization of Banach-Lie subgroups is given by the following
proposition (see [55, p. 129]).

Proposition 15 A closed subgroup K of a Banach-Lie group G is a Banach-Lie sub-
group if and only if the closed subalgebra k given by Eq. (163) is a split subspace of
the Lie algebra g of G, and for every neighbourhood U of 0 ∈ k, we have that exp(V )

is a neighbourhood of the identity element in K .

The importance of Banach-Lie subgroups comes from the following theorem (see
[17, p. 105] and [55, p. 136]).
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Theorem 1 Let K be a Banach-Lie subgroup of the Banach-Lie group G with Lie
algebra g. Then, the quotient space M ≡ G/K carries the structure of an analytic
Banach manifold such that the canonical projectio π : G −→ M is an analytic sub-
mersion. Writing [h] = hK ≡ m ∈ M with h ∈ G, we have that the Lie group G acts
analytically on M by the left translation given L(g,m) := [gh] = ghK . The kernel
of the tangent map Tπe : g −→ Tπ(e)M at the identity element e ∈ G coincides with
the closed, split subalgebra k of Eq. (163) so that Tπ(e)M ∼= g/k.

A smooth BanachmanifoldM which is diffeomorphic withG/K for someBanach-
Lie group G with Banach-Lie subgroup K is called a homogeneous Banach manifold
of G. In particular, let G be a Banach-Lie group acting on a set S by means of the left
action α : G× S −→ S, letO be an orbit of G in S by means of α, and let s ∈ O ⊆ S.
The isotropy subgroup of G at s is the set

Gs := {g ∈ G | α(g, s) = s} . (164)

Then, the map is : G/Gs → O given by

[g] �→ is([g]) = α(g, s) (165)

defines a bijection from G/Gs toO for every s ∈ O. Consequently, if Gs is a Banach-
Lie subgroup of G, we may endow the orbit O containing s with the structure of
Banach manifold according to Theorem 1 so that O becomes an homogeneous space
of G for which the projection map τs : G −→ O, obtained composing the projection
of G onto G/Gs with the map is introduced above, is a surjective submersion. Note
that S is just a set and no structural properties on the action α are required. In particular,
if G acts transitively on S, then S itself is an homogeneous Banach manifold of G.

Given a Banach manifold N , a useful tool for determining if a map ψ : O → N
is smooth is given by the following proposition provided we make the identifications
M = O, K = G and φ = τs for some s ∈ O (see [55, p. 125]).

Proposition 16 Let M, N , K be Banach manifolds, and consider the following com-
mutative diagram:

M N

K

φ ϕ

ψ

Then, if φ is a surjective submersion and ϕ is smooth, then ψ is smooth. If ϕ is also a
submersion, then ψ is also a submersion.
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32. Grabowski, J., Kuś, M., Marmo, G., Shulman, T.: Geometry of quantum dynamics in infinite-
dimensional Hilbert space. J. Phys. A Math. Theor. 51(16), 165301 (2018)

33. Grasselli, M.R., Streater, R.F.: The quantum information manifold for ε-bounded forms. Rep. Math.
Phys. 46(3), 325–335 (2000)

34. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5(7), 848–861
(1964)

35. Harris, L.A., Kaup, W.: Linear algebraic groups in infinite dimensions. Ill. J. Math. 21(3), 666–674
(1977)

36. Hasegawa, H.: Quantum Communications and Measurement, Chapter Non-Commutative Extension
of the Information Geometry, pp. 327 –337. Springer, New York (1995)

37. Hasegawa, H., Petz, D.: Quantum Communication, Computing, and Measurement, Chapter Non-
Commutative Extension of Information Geometry II, pp. 109 – 118. Springer, New York (1997)

38. Hellwig, K.-E., Kraus, K.: Pure operations and measurements. Commun. Math. Phys. 11, 214–220
(1969)

39. Jencova, A.: Affine connections, duality and divergences for a von Neumann algebra (2003).
arXiv:math-ph/0311004v1

40. Jencova, A.: A construction of a nonparametric quantum information manifold (2005).
arXiv:math-ph/0511065v1

41. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras Volume I: Elementary
Theory. Academic Press, New York (1983)

42. Kaijser, S.: A note on dual Banach spaces. Math. Scand. 41(2), 325–330 (1977)
43. Kibble, T.W.B.: Geometrization of quantummechanics. Commun. Math. Phys. 65(2), 189–201 (1979)
44. G. Larotonda. The metric geometry of infinite dimensional Lie groups and their homogeneous spaces

(2019). arXiv:1805.02631v3 [math.DG]
45. Lang, S.: Fundamentals of Differential Geometry. Springer, Berlin (1999)
46. Naudts, J.: Quantum statistical manifolds. Entropy 20(6), 472 (2018)
47. Newton, N.J.: An infinite-dimensional statistical manifold modelled on Hilbert space. J. Funct. Anal.

263(6), 1661–1681 (2012)
48. Omori, H.: Infinite Dimensional Lie Transformation Groups. Springer Lecture Notes Mathematics,

New York (1974)
49. Petz, D., Sudar, C.: Geometries of Quantum States. J. Math. Phys. 37, 2662–2673 (1996)
50. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability

measures equivalent to a given one. Ann. Stat. 23(5), 1543–1561 (1995)
51. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic

Press, London (1980)
52. Sakai, S.: C∗-algebras and W∗-algebras. Springer, Berlin (1971)
53. Streater, R.F.: Quantum Orlicz spaces in information geometry. Open Syst. Inf. Dyn. 11, 359–375

(2004)
54. Takesaki, M.: Theory of Operator Algebra I. Springer, Berlin (2002)
55. Upmeier, H.: Symmetric Banach manifolds and Jordan C∗-algebras. Elsevier, Amsterdam (1985)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/math-ph/0311004v1
http://arxiv.org/abs/math-ph/0511065v1
http://arxiv.org/abs/1805.02631v3

	Manifolds of classical probability distributions and quantum density operators in infinite dimensions
	Abstract
	1 Introduction
	2 Positivity-preserving action of mathscrG
	2.1 Positive, trace-class operators
	2.2 Faithful, finite trace

	3 State-preserving action of mathscrG
	3.1 Density operators
	3.2 Faithful, tracial state

	4 Concluding remarks
	Acknowledgements
	Appendix A: C*-algebras and states
	Appendix B: Banach-Lie groups and homogeneous spaces
	References




