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Abstract
The limited material removal rate of conventional chemical mechanical polishing (CMP) significantly hinders the fabrica-
tion efficiency and surface quality, thereby preventing the development of gallium nitride (GaN)-based devices. Moreover, 
the incorporation of photoelectrochemistry in CMP has garnered increasing attention because of its potential to enhance the 
quality and efficiency of the GaN process. However, a considerable gap still exists in the comprehensive understanding of the 
specific photoelectrochemical (PEC) behavior of GaN. Here, we report the influence of the electrolyte on the PEC etching 
of GaN. Various acids and bases were tested, with their pH being carefully adjusted. The concentrations of the cations and 
anions were also examined. The results showed that photocorrosion/photoetching was more pronounced in sulfuric acid, 
phosphoric acid, and nitric acid environments than in alkaline environments, but it was less pronounced in hydrochloric acid. 
Furthermore, the effects of pH and anion concentration on photoetching were investigated, and the results revealed that pho-
toetching in acidic environments weakened with increasing pH levels and diminished with increasing sulfate concentration. 
The underlying reasons contributing to this observation were explored. These findings provide ideas for improving the pho-
toetching efficiency of GaN, thereby enriching the photoelectrochemical mechanical polishing (PECMP) technology of GaN.

Highlights

1. The impact of various anion and cation species, pH val-
ues, and ion concentrations on the PEC behavior of GaN 
was investigated.

2. The differences in the photoetching of GaN under vari-
ous solution environments were analyzed.
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1 Introduction

With the rapid development of the information age, the 
demand for high-performance semiconductor devices is also 
growing [1–9]. Following the emergence and development 
of first-generation semiconductors (Si and Ge) and second-
generation semiconductors (GaAs and InP), third-generation 
semiconductor gallium nitride (GaN) has attracted extensive 
attention because of its outstanding characteristics, such as 
a direct bandgap, high breakdown voltage, high electron 
mobility, high mechanical and chemical stability, and strong 
radiation resistance [1, 4, 10–13]. Given the aforementioned 
advantages, GaN has been widely used in diverse fields, such 
as aerospace, national defense, lighting, renewable energy, 
power electronics, and 5G communications [14–20]. To 
obtain excellent performance in GaN-based devices, it is 
better to conduct homoepitaxy of GaN to minimize the inter-
facial dislocation density [21, 22]. Therefore, a perfectly 
finished GaN substrate is of paramount importance for the 
subsequent epitaxy [23]. Currently, chemical mechanical 
polishing (CMP) is the primary processing technique for 
achieving globally planarized and damage-free semicon-
ductor wafer surfaces [22, 24–26]. However, compared 
with silicon, GaN possesses notable hardness, brittleness, 
and chemical inertness [27, 28]. Therefore, the main chal-
lenges in employing conventional CMP to achieve ultra-
precision polishing of GaN lie in its low material removal 
rate (MRR) and poor surface quality, which makes the GaN 
substrate fail to meet the practical demands of industriali-
zation [29–32]. To address the aforementioned problems, 
other energy fields (e.g., magnetic fields, electric fields, and 
light fields) have been introduced on the basis of CMP to 
enhance the MRR and further improve the surface quality 
of GaN [30, 31, 33–37]. Compared with plasma-assisted 
polishing, magnetic field-assisted polishing, and ultrasoni-
cally assisted electrochemical mechanical polishing, pho-
toelectrochemical mechanical polishing (PECMP) features 
a simple configuration; it inherits most of the CMP with 
the minimum modification of the current apparatus, leading 
to a cost-effective adaptation of conventional CMP equip-
ment. Moreover, PECMP exhibits significant enhancements 
in both processing efficiency and quality, thus attracting 
increasing attention. Dong et al. developed a novel PECMP 
system and applied it to the polishing of GaN. They achieved 
a high MRR of up to 1.2 μm/h and obtained an atomically 
smooth surface with a roughness of 0.067 nm over an area 
of 1 × 1 μm2 [38]. Ou and his colleagues selected Au nano-
particles as the photocathode to facilitate the extraction of 
photogenerated electrons from GaN under light irradiation 
in the presence of an oxidizing agent, which is beneficial 
for GaN oxidation via photogenerated holes [39]. Qiao et al. 
found that during PECMP processing, the MRR of GaN was 

determined by the oxidation of GaN, which correlated posi-
tively with the bias voltage and UV light intensity but nega-
tively with the dislocation density of GaN [40].

CMP and PECMP mainly differ in the surface oxidation 
method. CMP employs oxidants such as  H2O2 or  KMnO4 for 
surface oxidation [41–45], while PECMP can more effec-
tively achieve this goal by introducing an external energy 
source (i.e., UV light and bias voltage) to overcome the 
energy barrier of GaN oxidation. In the PECMP process, the 
GaN surface undergoes oxidation by photogenerated holes 
to form a softer oxide layer, which is subsequently removed 
by abrasives [39, 46]. Therefore, balancing the oxidation rate 
achieved via photoelectrochemistry and the oxide removal 
rate is a critical issue for advancing this novel polishing tech-
nique. However, studies have predominantly focused on the 
mechanical removal process, while the photoelectrochemical 
(PEC) process of GaN has received less attention. Several 
factors, including pH, applied bias, and illumination, sig-
nificantly influence the PEC behavior of GaN. A systematic 
investigation into the roles of these factors will contribute 
to a more comprehensive understanding of the PECMP of 
GaN.

In this study, we performed PEC testing on GaN in various 
electrolytes with different concentrations and pH values. The 
PEC behavior and surface morphology (obtained via atomic 
force microscopy and scanning electron microscopy) were 
systematically analyzed and compared. The results showed 
that in an acidic environment, the relationship between pho-
tocurrent and photoetching highly depended on the anions, 
resulting in a severely corroded surface from nitric acid, 
sulfuric acid, and phosphoric acid but a sustained almost 
pristine-like surface with hydrochloric acid. The GaN tested 
under the alkaline solution showed a similar photocurrent 
but a barely corroded surface. Furthermore, the pH and ionic 
effects on the photoetching of GaN were investigated. This 
finding can elucidate the appropriate electrolyte selection for 
PECMP of GaN and serve as a testing model for the discov-
ery of suitable solution for other semiconductor fabrications.

2  Materials and Methods

2.1  Specimen

Commercial GaN epilayers grown on sapphire substrates with 
a thickness of ~ 4 μm (Shanghai GaNova Electronic Informa-
tion Co., Ltd., China) were cleaved into the appropriate chips. 
Subsequently, the samples were sonicated in acetone, ethanol, 
and DI water for 5 min and then dried with  N2. Finally, cop-
per wires were connected to the samples using silver paste, 
and exposed copper wires and silver paste were isolated using 
epoxy resin to prevent contact with the electrolyte.
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2.2  PEC Measurements

A 500  W Xe lamp (PLS-FX 300 HU, Beijing Perfect-
light Technology Co., Ltd., China) with an AM 1.5G fil-
ter was used as the light source, and the light output was 
calibrated to 6 suns (600 mW  cm−2) using a power meter 
(PL-MW2000, Beijing Perfectlight Technology Co., Ltd., 
China). The PEC performance of GaN was evaluated in 
a three-electrode configuration using an electrochemical 
workstation (CHI760e, Shanghai Chenhua Instrument Co., 
Ltd., China). The reference electrodes in acidic and alkaline 
environments were saturated calomel (SCE) and Hg/HgO 
electrodes, respectively. A Pt piece was used as the counter 
electrode. In this study, all linear sweep voltammetry (LSV) 
measurements were conducted with anodic sweeping (i.e., 
scanned toward the positive direction) at a rate of 50 mV  s−1, 
and chronoamperometry (CA) measurements lasted 15 min. 
In all cases, light irradiation came from the front side of the 
electrodes. All potentials reported in this work were against 
the reversible hydrogen electrode (RHE) and were obtained 
relative to the SCE or Hg/HgO reference electrode using the 
Nernst equation [47, 48]:

Unless specified otherwise, the pH values for all acidic 
and alkaline environments were 0 and 14, respectively. After 
the PEC experiments were completed, GaN was sonicated 
in acetone, ethanol, and DI water for 5 min and then dried 
with  N2.

2.3  Atomic Force Microscopy and Scanning Electron 
Microscopy

The surface morphology of the pristine GaN and GaN 
after 15 min of CA measurements was characterized via 
atomic force microscopy (AFM, Bruker Dimension Icon, 
Bruker Co., Germany) and scanning electron microscopy 
(SEM, Apreo2 S Lovac, Thermo Fisher Scientific Brno 
s.r.o, Czechia). The equipped AFM tip, purchased from 
Bruker, consisted of a silicon tip on a nitride lever. The sur-
face roughness (Ra) of the samples was measured via AFM 
within a scan area of 2 μm × 2 μm.

2.4  Inductively Coupled Plasma Mass Spectrometry

The electrolytes used for CA measurements were analyzed 
via inductively coupled plasma mass spectrometry (ICP–MS, 
Agilent 7700×, Agilent Technologies Co. Ltd., USA). Aque-
ous 2 wt%  HNO3 was used as the carrier solution to dilute 

ERHE = ESCE + 0.0591pH + 0.1976V(in acidic experiment)

ERHE = EHg∕HgO + 0.0591pH + 0.098V(in alkaline experiment)

the analyzed samples. After CA tests, aqueous solutions of 
sulfuric, phosphoric, nitric, and hydrochloric acids, as well 
as sodium hydroxide and potassium hydroxide, were col-
lected to identify gallium ion concentrations. The volume of 
all electrolytes used in the ICP–MS experiments was 80 mL.

2.5  In situ Raman Spectroscopy

In situ Raman experiments (DXR2xi, Thermo Fisher Sci-
entific Inc., USA) were conducted in sulfuric acid at pH 0, 
with GaN serving as the working electrode and platinum 
wire acting as the counter and reference electrodes. The laser 
wavelength was 532 nm, and the exposure time was 10 s. To 
minimize the interference of visible stray light with Raman 
measurements, a ZWB2-type ultraviolet-transmitting optical 
filter was used.

2.6  X‑ray Photoelectron Spectroscopy

The chemical compositions of the pristine surface and the 
surface subjected to a 15 min CA test in  H2SO4 (pH 0) of 
GaN were analyzed via X-ray photoelectron spectroscopy 
(XPS, Escalab  Xi+, Thermo Fisher Scientific Inc., USA). 
An Al Kα X-ray source (hν = 1,486.6 eV) and a spot size of 
100 μm were employed for the detection of the core levels of 
the Ga 3d, N 1s, and O 1s regions. A pass energy of 20 eV 
was used for the narrow scan with a step size of 0.01 eV for 
each core level. The binding energy scales of all core levels 
were corrected to the N 1s of the Ga–N bond at 397.8 eV 
(Fig. S1).

3  Results and Discussion

3.1  PEC Testing in an Acidic Environment

To evaluate the effect of the electrolyte on the PEC behavior 
and the photoetching of GaN, we first tested GaN in dif-
ferent acids. Sulfuric acid, nitric acid, hydrochloric acid, 
and phosphoric acid were chosen as the electrolytes, and the 
testing conditions (applied bias, illumination intensity, total 
time for CA, pH, linear sweep voltammetry) were kept the 
same. Considering that GaN is a renowned material for PEC 
photoelectrode protection, we employed much higher radia-
tion intensity to intensify the photoetching process; thus, 
the electrolyte effect could be distinguished more conveni-
ently. First, the dark current under all circumstances could 
be neglected, as shown in Fig. S2, which excludes the dis-
solution and electrochemical degradation of GaN. Figure 1 
compares the LSV and CA plots for different acidic solutions 
under 6-sun illumination.  H2SO4 yielded the highest satu-
rated photocurrent, and  HNO3 exhibited the lowest saturated 
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photocurrent, while  H3PO4 showed the highest cathodic 
onset potential (Fig. 1a). We selected VRHE = 2.25 V as the 
applied bias for all tests to guarantee that the CAs were 
conducted at the corresponding photocurrent steady states. 
Figure 1b shows a similar order of the photocurrent as the 
LSV plots, with  H2SO4 exhibiting the highest performance, 
while  HNO3 shows the lowest performance. All cases except 
for HCl exhibited an increase in photocurrent, with  H2SO4 
exhibiting the most significant growth (0.39 to 0.48 mA/cm2, 
growth of 23%) and  HNO3 exhibiting the least growth (0.25 
to 0.27 mA/cm2, growth of 8%). Such an increase in photo-
current can originate either from self-improving (referred to 

as self-healing in some studies) [14, 49–51] or photocorro-
sion [52]. Therefore, the tested surfaces were analyzed via 
SEM and AFM to determine the origin of the increase in 
photocurrent. The pristine surface morphology is shown in 
Fig. 2a and Fig. S3. According to the SEM results (Figs. 2 
and S4), various forms of photocorrosion occurred on the 
surface of GaN in  H2SO4,  HNO3, and  H3PO4. In contrast, the 
HCl-tested surface remained almost intact. To study the size 
of corroded pits and Ra, we further investigated the surface 
morphology of GaN via AFM (Fig. S5). The corrosion/etch-
ing of the GaN surface exhibited the following sequence: 
 H2SO4 >  H3PO4 >  HNO3 > HCl, which is consistent with 

Fig. 1  a LSV curves of GaN under illumination in  H2SO4,  H3PO4,  HNO3, and HCl at pH 0. b CA curves of GaN based on 2.25 V vs. RHE in 
 H2SO4,  H3PO4,  HNO3, and HCl at pH 0

Fig. 2  SEM morphology images of a pristine GaN and GaN after CA tests in b  H2SO4, c  H3PO4, d  HNO3, and e HCl at pH 0
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the CA results, except for  HNO3 (Fig. 1b). Specifically, the 
 H2SO4-etched surface exhibited large pores and grain-like 
structures, while the  HNO3-etched surface showed much 
tinier grain features compared with the  H2SO4 case, with 
negligible pinholes afterward. The surface morphology 
measured via AFM aligned well with the SEM results. In 
addition to characterizing the surface morphology, we fur-
ther elucidated the findings through the analysis of Ra and 
the Ga ions contained in the electrolyte after CA tests. The 
tested  H2SO4 solution contained significant Ga ions, whereas 
the Ga ions were barely visible in the HCl solution (Fig. 3). 
Thus, we speculate that the increasing in photocurrent is 
strongly correlated with surface corrosion/etching, in which 
the corrosion of GaN highly depends on the types of anions 
used during the PEC process. Extensive research has been 
conducted on the photocorrosion (or photoetching) process 
in GaN during PEC processes [30, 53–56]:

Some studies have experimentally observed the phe-
nomenon of the photocorrosion of GaN in acidic experi-
ments [53, 57–59]. Through Gibbs free energy calcula-
tions, Chen’s team revealed that GaN exhibited a higher 
oxidation potential in acidic environments at pH  0 
compared with the oxidation potential of water, which 
confirms the thermodynamically feasible occurrence of 
photocorrosion in GaN under illumination at acidic con-
ditions [60]. Nandjou et al. reported similar conclusions 

2GaN + 6h+ + 3H2O = 3Ga2O3 + N2

Ga2O3 + 6H+ = 2Ga3+ + 3H2O

Ga2O3 + 6OH− = GaO3
3− + 3H2O

[61]. The authors experimentally and theoretically con-
firmed that GaN underwent photocorrosion in acidic 
environments. In this work, we employed in situ Raman 
spectroscopy to investigate the changes in GaN during the 
CA test in the presence of  H2SO4. In situ Raman analy-
sis under PEC testing conditions was performed within 
a self-constructed PEC cell (Fig. 4a), and the changes 
in surface composition of GaN during the CA test (Fig. 
S6) were tracked. Figure 4b illustrates the Raman spectra 
acquired in  H2SO4. The Raman peak at 417  cm−1 cor-
responded to the sapphire substrate [62–64], whereas the 
peaks at 570 and 735  cm−1 corresponded to GaN [62, 65, 
66]. The appearance of the Raman peak of the sapphire is 
attributed to the longitudinal resolution of Raman imag-
ing being ~ 2 μm, and GaN exhibited good light transmit-
tance. If the Raman focus is not perfectly aligned with the 
surface of GaN, there is a possibility of acquiring a signal 
from the sapphire substrate instead. In  H2SO4, the minor 
shoulder located near 748  cm−1 belongs to gallium oxide 
during the CA test [67–69]. During the initial phases 
of the CA test in  H2SO4, gallium oxide progressively 
emerged and was sustained throughout subsequent reac-
tions without an escalation in content. In contrast to other 
reactions in which the product concentration gradually 
increases, this phenomenon originates from a dynamic 
equilibrium between the oxidation of GaN by photogen-
erated holes, leading to the formation of gallium oxide, 
and the dissolution of gallium oxide by  H2SO4.

Considering that the in situ Raman spectroscopy has a 
relatively large detection limit and that the signal of oxide 
was quite weak for observation, some uncertainties existed. 
Therefore, XPS was applied to check the surface chemical 
composition before and after PEC testing. The O 1s from the 
etched surface showed a weaker O–Ga signal compared to 
the pristine GaN surface (Fig. 5), and both surfaces featured 
a similar amount of chemisorbed OH that bound to the oxide 
layer. Moreover, the Ga 3d peak was perfectly aligned with 
O 1s, and the etched surface also exhibited a weaker Ga–O 
signal. Given that the probing depth of XPS was only about 
a few nanometers of the topmost surface, and the total inte-
grated area of the oxide peak from the etched surface was 
not much smaller than that of the pristine surface, the results 
further indicated that the etched surface was first oxidized 
and then quickly dissolved in the electrolyte.

Furthermore, the extent of photoetching significantly var-
ied depending on the specific acid, and this variation was 
due to the influence of anions. In particular, photoetching in 
HCl was less severe than that in  H2SO4. This was due to the 
specific adsorption of  Cl− ions on the surface of the mate-
rial, and photogenerated holes might preferentially oxidize 
 Cl− ions, thereby inhibiting the photocorrosion of semicon-
ductors [70–75].

Fig. 3  Ra of the untreated GaN and GaN after CA tests in  H2SO4, 
 H3PO4,  HNO3, and HCl at pH 0, and the concentration of Ga ions 
measured via ICP–MS after CA tests in the same solutions
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To further examine the effect of the acid solution, dif-
ferent pH values (0, 1, 2, and 4) of  H2SO4 were employed. 
The lower the pH value in an acidic environment, the 

higher the photocurrent (Figs. 6a and S7), which resulted 
in much heavier corrosion of GaN (Figs. 6b and 7). Except 
for a slight decrease in photocurrent observed in the pH 4 

Fig. 4  a Schematic of the PEC cell used for in situ Raman PEC meas-
urements. b In  situ Raman spectroscopy results of the CA test in 
 H2SO4 at pH 0. “ON_x min” refers to the x-th minute after the start 

of the CA test. The inset is an enlarged image near the minor shoulder 
after normalization processing in “ON_3 min” and “ON_0 s”.

Fig. 5  Ga 3d XPS spectra of a pristine GaN surface and b GaN surface after the CA test in  H2SO4 at pH 0. O 1s XPS spectra of c pristine GaN 
surface and d GaN surface after the CA test in  H2SO4 at pH 0
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environment (0.252 to 0.248 mA/cm2, decrease of 1.6%.), 
photocurrent significantly increased with decreasing pH 
(Fig. S7). Hill et al. revealed that as the pH of  H2SO4 
increased, the kinetics of oxygen evolution reaction (OER) 
improved [70]. This substantiates the notion that an ele-
vated pH value improves hole transfer, thereby diminish-
ing photoetching. The relationship between the pH value 
and the PEC behavior of GaN can be explained by ther-
modynamics. Figure 8 delineates the oxidation potential 
and reduction potential relative to the normal hydrogen 
electrode and vacuum level for a range of semiconduc-
tors in solution at pH 0. According to the Nernst equation 
[47, 48], when the pH value increased by 1, the oxygen 

evolution potential increased by − 0.0591 V. Therefore, as 
the pH value increased, more holes migrated to the inter-
face to trigger OER, and fewer holes were available to 
oxidize GaN, resulting in weaker etching.

3.2  PEC Testing in an Alkaline Environment

For comparison, the photoetching of GaN was also tested 
in alkaline solutions (namely sodium hydroxide and potas-
sium hydroxide) at pH 14. As can be seen in Figs. 9a and 
S8, the photocurrent from NaOH was higher than that from 
KOH, whereas the CA, unlike the acidic solution, showed 
a relatively stable photocurrent over a certain period of 

Fig. 6  a Onset potential and saturated photocurrent of GaN in  H2SO4 at pH 0, 1, 2, and 4. b Ra of pristine GaN and GaN after CA tests in  H2SO4 
at pH 0, 1, 2, and 4, respectively

Fig. 7  a–d 2 μm-scale AFM images of GaN after CA tests in  H2SO4 at pH 0, 1, 2, and 4, respectively. e–h 500 nm-scale AFM images corre-
sponding to (a–d)
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testing time. The surface morphology and Ra obtained 
via AFM showed that in an alkaline environment, etching 
barely occurred, with KOH presenting tiny pores, whereas 
NaOH exhibited an almost pristine-like surface after CA 
tests (Figs. 9b and 10). The Ga ions concentration meas-
ured via ICP–MS also validates this point (Fig. 9b). The 
milder photoetching of GaN in alkaline electrolytes also 
verifies our speculation that a higher pH corresponds to 
reduced photoetching.

The OER conventionally uses  OH− ions as its primary 
reactants in alkaline electrolytes [61, 76–78]. Because the 
ionic radius of  K+ is larger than that of  Na+, when a KOH 
electrolyte is used, the large  K+ ions act as an impediment 
to the effective adsorption of  OH− ions onto the active sites 
of the GaN surface [79, 80]. This hindrance leads to the 
accumulation of a greater number of photogenerated holes, 
which in turn results in mild photoetching. In addition, Ding 
et al. employed density functional theory calculations and 

Fig. 8  Calculated oxidation potential (red bars) and reduction poten-
tial (black bars) relative to the normal hydrogen electrode and vac-
uum level for a series of semiconductors in solution at pH 0, ambient 

temperature 298.15 K, and pressure 1 bar. The water redox potentials 
(dashed lines) and the valence (green columns) and conduction (blue 
columns) band edge positions at pH 0 are also plotted [60]

Fig. 9  a Onset potential and saturated photocurrent of GaN in NaOH and KOH at pH 14. b Ra of pristine GaN and GaN after CA tests in NaOH 
and KOH at pH 14, and the concentration of Ga ions measured via ICP–MS after CA tests in the same solutions
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determined that hydrated sodium ions exhibited higher affin-
ity to  OH− species on the electrode surface than potassium 
ions. This increased interaction resulted in the weakening 
of the O–H bond, thereby enhancing the OER. This led to a 
relatively reduced occurrence of photoetching [79]. In addi-
tion to the ion dimension, other factors such as ion conduc-
tivity (interface kinetics) and electrochemical activity might 
also contribute to this cation effect [81, 82].

3.3  Anionic Concentration Effect 
on the Photoetching of GaN

According to the ionic effect on GaN photoetching,  H2SO4 
exhibited the most significant impact on GaN. To further 
determine how this sulfate radically affected the stability of 
GaN, we conducted a PEC test of GaN in an acidic environ-
ment with various controlled  SO4

2− concentrations. Because 
NaOH had the mildest influence, sodium sulfate was used 
to adjust the concentration of  SO4

2−. As shown in Table 1 
and Figs. S9 and 10, with the increase in the concentration 
of  SO4

2−, surface corrosion was greatly alleviated, photocur-
rent generation was reduced, fewer pores were generated, 
and surface roughness continually decreased.

Under PEC conditions, the oxidation of  SO4
2− or 

 HSO4
− ions, which tended to be adsorbed at the surface 

sites of semiconductor materials, expedited the transfer or 
consumption of photogenerated holes [70, 83–87]. This 
phenomenon contributed to the reduction in photoetch-
ing resulting from residual holes at the surface/interface. 

Furthermore, the increased presence of  SO4
2− ions enhanced 

solution mass transfer and reduced interfacial impedance, 
thus further facilitating photogenerated holes transfer at the 
surface/interface [88, 89].

4  Conclusion

We systematically investigated the effect of electrolytes 
on GaN photoetching during the PEC process. Both acidic 
and alkaline electrolytes were used and compared, and vari-
ous anions and cations were also investigated. The results 
revealed that the acids actively interacted with the GaN 
surface and led to a severely corroded surface, except for 
HCl. The peculiar behavior of HCl is attributed to the com-
petition between surface corrosion and  Cl2/O2 evolution. 
Furthermore, the alkaline electrolytes induced insubstantial 
damage to GaN. The GaN surface was barely corroded and 
etched after accelerated CA testing under 6-sun illumina-
tion. In addition, the effects of pH on GaN stability under 
photoetching were examined. Higher  H+ concentrations 
led to more severe surface photoetching. Furthermore, 
increasing the  SO4

2− concentration alleviated the damage 
to the surface; this effect is attributed to the oxidation of 
 SO4

2− and/or  HSO4
− ions and ionic conductivity. This study 

provides valuable insights into the electrolyte effect on the 
PEC behavior of GaN and other semiconductors and can 
guide the selection of the appropriate working environment 
for PECMP.

Fig. 10  a, c 2 μm-scale AFM images of GaN after CA tests in NaOH and KOH at pH 14, respectively. b, d 500 nm-scale AFM images corre-
sponding to (a, c)

Table 1  Onset potential, 
saturated photocurrent, and 
Ra of GaN after CA tests at 
different anion concentrations

Electrolyte pH Onset potential 
(V)

Saturated photocurrent 
(mA/cm2)

Ra after the 
CA test (nm)

0.5 M  Na2SO4 7 1.46 0.28 3.63
0.5 M  H2SO4 0 1.18 0.38 28.4
0.5 M  H2SO4 + 0.5 M  Na2SO4 0 0.69 0.29 17.7
0.5 M  H2SO4 + 1.5 M  Na2SO4 0 0.81 0.28 12.7
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