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Abstract
FIB-SEM tomography is a powerful technique that integrates a focused ion beam (FIB) and a scanning electron microscope 
(SEM) to capture high-resolution imaging data of nanostructures. This approach involves collecting in-plane SEM images 
and using FIB to remove material layers for imaging subsequent planes, thereby producing image stacks. However, these 
image stacks in FIB-SEM tomography are subject to the shine-through effect, which makes structures visible from the 
posterior regions of the current plane. This artifact introduces an ambiguity between image intensity and structures in the 
current plane, making conventional segmentation methods such as thresholding or the k-means algorithm insufficient. In 
this study, we propose a multimodal machine learning approach that combines intensity information obtained at different 
electron beam accelerating voltages to improve the three-dimensional (3D) reconstruction of nanostructures. By treating 
the increased shine-through effect at higher accelerating voltages as a form of additional information, the proposed method 
significantly improves segmentation accuracy and leads to more precise 3D reconstructions for real FIB tomography data.

Highlights

1. FIB-SEM tomography can be used to acquire high-res-
olution image stacks of nanostructures.

2. Machine learning reduces artifacts and ambiguities 
introduced in FIB-SEM tomography because of the 
shine-through effect.

3. Our approach treats the shine-through effect as a valu-
able additional information for precise reconstruction.

4. Using multi-voltage images, our multimodal ML 
approach improves 3D reconstruction accuracy.
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1 Introduction

Structural analysis is essential in materials science, ena-
bling the precise characterization and modeling of complex 
materials. This knowledge facilitates the implementation of 
these materials in the mass production industry and everyday 
life [1]. However, high-resolution imaging techniques are 
typically required to investigate materials with nanoscale 
features, which limit the range of suitable methods. For 
instance, when examining hierarchical nanoporous materi-
als such as those in our case with ligament sizes larger than 
100 nm and nanopores smaller than 20 nm, conventional 
techniques, such as X-ray nanotomography, may lack the 
necessary resolution [2].

Electron microscopy, particularly focused ion beam (FIB) 
tomography in conjunction with scanning electron micros-
copy (SEM), offers the essential resolution for analyzing 
conductive hierarchical nanoporous materials. FIB removes 
nanometer-thin layers of material after each SEM imaging 
step, building a stack of images for subsequent three-dimen-
sional (3D) reconstruction. Although FIB-SEM tomography 
has been applied to the study of nanoporous gold and hier-
archical nanoporous gold (HNPG) in various studies [3–5], 
several challenges persist.

First, the variation in slice thickness in FIB tomography 
images can introduce inaccuracies in 3D reconstructions. 
A slice repositioning method was proposed to address this 
issue, and a machine learning (ML) method was adopted to 
solve this problem from the perspective of an image inpaint-
ing problem [6].

The shine-through effect is another challenge, where 
structures from posterior regions become visible through 
pores in the currently milled plane [7]. This effect compli-
cates the mapping between actual structure and image inten-
sity [8, 9]. While classical machine learning methods like 
random forests or k-means clustering are effective in cases 
where the shine-through effect is minimal [8, 10], the utility 
of more advanced machine learning techniques for suppress-
ing this effect in cases where it is non-negligible was demon-
strated [11, 12]. They used simulated data to train machine 
learning models and successfully applied these optimized 
models to real nanostructures. This technique, known as 
transfer learning, has exhibited notable performance in mate-
rials science applications [13].

The extent of the shine-through effect is directly related 
to the beam energy (Fig. 1), allowing its use as an auxiliary 
method to establish an overdetermined system and collect a 
comprehensive SEM dataset. In other words, by analyzing 
images acquired at different voltages, it is possible to sepa-
rate the shine-through effect signal from the surface area 
signal, ultimately enabling the reconstruction of hierarchical 
nanoporous structures with significantly improved accuracy. 

We use advanced ML methods to solve the overdetermined 
system obtained from images obtained at different voltages.

In general, multimodal ML leverages different data types, 
such as speech and images, to improve task-specific perfor-
mance [14]. In medical imaging, multimodal data fusion, 
such as combining positron emission tomography with 
computed tomography and/or magnetic resonance imaging, 
enhances lesion quantification [15–18]. Shared image fea-
tures from unregistered views enhance classification [19]. A 
comprehensive summary of multimodal ML developments 
in medical imaging can be found in [20]. In electron micros-
copy, combining signals from high-angle annular dark-field 
and energy-dispersive X-ray spectroscopy facilitates the 
3D reconstruction of nanostructures [21], and combining 
transmission X-ray microscopy with FIB-SEM improves the 
image quality for shale analysis [22].

In this study, we present a novel ML-based method for a 
multi-voltage (multiV) FIB tomography dataset of HNPG. 
To develop this method, we created synthetic multiV images 
using a Monte Carlo-based method [12]. These simulated 
multiV data are used to train ML models. We compared dif-
ferent segmentation methods and demonstrated significant 
segmentation improvements with multiple modalities. In 
particular, our multimodal ML method outperforms single-
modality ML methods in mitigating the shine-through effect.

2  Materials and Methods

2.1  Acquisition of Imaging Data

In this study, we used imaging data obtained from both real 
HNPG samples and computer-generated synthetic imaging 

Fig. 1  Schematic overview of multi-voltage image acquisition: pen-
etration of electron beam (e-beam) into microstructure from the top 
(top row) for acceleration voltages of 1 kV (A), 2 kV (B), and 4 kV 
(C) and resulting planar SEM image (bottom row)
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data, closely resembling actual HNPG imaging data, to con-
struct datasets for ML.

2.1.1  Real Samples

An HNPG sample featuring a uniform random network 
structure with two well-defined ligament sizes of 15 and 
110 nm was prepared using the dealloying-coarsening-
dealloying method [23]. To improve SEM imaging and dis-
tinguish solid and pore phases, epoxy resin infiltration was 
employed because it provides a dark, homogeneous back-
ground during SEM imaging [24]. MultiV FIB tomography 
of the HNPG sample was performed using a Dual Beam 
FEI Helios NanoLab G3 system, integrating ASV4 Thermo 
Fisher Scientific Inc (2017) software [25] for automated 
tomography control. This software acquires electron- and 
ion-beam images to monitor milling progress and compen-
sate for image drift resulting from various sources, including 
charge effects, mechanical stage drift, and thermal-induced 
drift [26].

To perform drift compensation during FIB tomography, 
two fiducial markers were prepared and positioned on the 
side of the region of interest (ROI). Each fiducial marker 

comprised two perpendicularly intersecting trenches milled 
on a platinum-deposited area, separate from the ROI. In 
addition, a ruler system was implemented on top of the ROI 
to ensure precise slice thickness determination, following a 
methodology similar to that presented in [27] and optimized 
for HNPG tomography [3]. This approach involved sput-
tering a 1-µm carbon layer atop the ROI to smoothen the 
surface and render the ruler visible (see Fig. 2).

During multiV tomography, each slice was imaged three 
times with accelerating voltages of 1, 2, and 4 kV at a con-
stant current of 50 pA. This process generated three real FIB 
tomography image datasets referred to as r-1 kV, r-2 kV, and 
r-4 kV (where the letter “r” refers to the fact that the data 
are based on real rather than synthetic, computer-generated 
microstructures). The SEM image parameters included a 
resolution of 3072 × 2048 and a horizontal field of view 
spanning 10 µm, resulting in a pixel size of 3.26 nm. Low-
noise imaging was achieved with a dwell time of 30 µs. A 
through-the-lens detector (TLD) was used to detect back-
scattered electrons (BSEs).

In total, 316 slices were milled using an ion beam with an 
aperture of 80 pA and an accelerating voltage of 30 kV. This 
dataset yielded a mean slice thickness of < d >= 10.16 nm, 

Fig. 2  Experimental dataset. A Schematic overview. Dark areas with 
white crosses represent fiducial structures for drift compensation. 
B Imaged block face-electron-beam view (BSE, TLD, 2 kV, 50 pA, 
52◦ tilt) and C milling view (ETD, SE, 30 kV, 80 pA, 0◦ tilt) with 

(1) ruler structure, (2) e-beam fiducial structure, (3) HNPG infiltrated 
with epoxy, (4) ion-beam fiducial structure, (5) 30-µm deep trenches, 
and (6) direction of ion mill (scale bar: 1 µm)

Fig. 3  Single raw FIB-SEM slice images of real HNPG at A 1 kV, 
B 2 kV, and C 4 kV, each featuring a fiducial marker in the xy-plane. 
Misalignment is evident from the marked rectangles (red), showcas-

ing variations in x- and y-directions between images acquired at dif-
ferent accelerating voltages. Scale bar: 1000 nm
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with a standard deviation of � = 3.12 nm, aligning closely 
with the target thickness of 10 nm. Notably, 9% of the slices, 
characterized by thickness outliers (z-scores of 1.5), were 
excluded from the thickness calculation analysis.

Owing to instrument constraints, misalignments fre-
quently occur in images captured at different accelerating 
voltages within and across stacks (see Fig. 3). Consequently, 
image registration is essential to ensure that the same region 
is consistently exposed across all voxel groups for images 
obtained at different accelerating voltages. This registration 
process comprises two key steps:

Intra-stack image registration
The first step involves aligning the images within each 

image stack acquired at a specific accelerating voltage (1, 
2, and 4 kV). The initial image in each stack serves as a 
reference. Subsequent images are translated in the (in-plane) 
x- and y-directions to maximize the correlation between con-
secutive slices. We used the Fiji plugin [28] ‘Register virtual 
stack slices’ to perform intra-stack registration.

Inter-stack image registration
After intra-stack registration, images across stacks 

acquired with different voltages (1, 2, and 4 kV) were 
aligned considering the image stack acquired at 2-kV 

accelerating voltage as the reference. Calculating correla-
tions between corresponding slices in 1- and 2-kV stacks 
enabled translational shifts for optimal alignment. A sup-
plementary fiducial marker, milled on the right side of the 
sample (Fig. 2), enhanced the inter-stack correlation as no 
shine-through effect is noticed for the region across different 
image stacks. Aligning the 4- and 2-kV stacks followed the 
same procedure. Figure 4 shows an identical slice from each 
dataset after the registration procedure.

2.1.2  Synthetic Samples

Supervised ML on electron microscopy data, particularly 
for FIB tomography of HNPG, can be challenging because 
of the high cost and time involved in acquiring substantial 
training datasets. Because ground truth images are unavail-
able for the FIB tomography data of HNPG, we generated 
synthetic FIB tomography images, as described in [12]. In 
the first step, virtual initial structures resembling real HNPG 
structures were generated using the method described in 
[23]. The leveled-wave model [29] provides a basis for each 
virtual HNPG hierarchy level. This model starts with a con-
centration field formed by the superimposition of waves with 

(A) (B) (C) (D)

Fig. 4  Aligned single identical slice of real FIB-SEM image of HNPG imaged at accelerating voltages of A 1 kV, B 2 kV, and C 4 kV; D mean 
intensity plot of the highlighted area (green square) for 1-, 2-, and 4-kV images. Scale bar: 300 nm

(A) (B) (C) (D)

Fig. 5  Same slice of simulated FIB tomography data with accelerating voltages of A 1 kV, B 2 kV, and C 4 kV; D mean intensity plot of the 
highlighted area (green square) for 1-, 2-, and 4-kV images. Scale bar: 300 nm
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the same wavelength but with random wave vector direc-
tions. The wave vectors have the same magnitude, which 
dominates the ligament size of the virtual nanoporous net-
work. Subsequently, a level cut was selected for binarization 
into a pore or solid phase, and virtual nanoporous micro-
structures were generated after removing the pore phase. 
Various level cuts can be applied to achieve the desired solid 
fraction. In the next step, the process of FIB-SEM tomog-
raphy was simulated on these binary structures by Monte 
Carlo simulations using the MCXray plugin of Dragonfly 
software [30]. We generated three datasets using the same 
virtual initial structure but at different accelerating voltages 
(1, 2, and 4 kV), similar to the real HNPG data. As shown 
in Fig. 5, these datasets, named s-1 kV, s-2 kV, and s-4 kV 
(where “s” refers to “synthetic”), resemble the real HNPG 
data acquired at different accelerating voltages.

2.2  Machine Learning Architectures for Semantic 
Segmentation

We used multimodal ML to segment the FIB tomography 
data semantically. Inspired by [20], we developed three 
architectures for 3D nanostructure reconstruction, adapted 
from [12], employing different data fusion techniques:

2.2.1  Early Fusion

In the early fusion architecture (Fig. 6(A)), we fused multi-
modal images at the input level by channel-wise concatenat-
ing single two-dimensional (2D) slices from the s-1 kV, s-2 
kV, and s-4 kV datasets. These slices form the input tensor, 
passing through custom 2D and 3D U-Net models to produce 
the final segmentation output.

2.2.2  Intermediate Fusion

The intermediate fusion architecture (Fig. 6(B)) contains 
separate branches for each imaging modality, focusing on 
images at different accelerating voltages. These images pass 
through modality-specific subnetworks to extract low-level 
features, which are then concatenated and classified using a 
fully connected neural network to yield the final segmenta-
tion. This architecture posed challenges because of its size 
during the optimization process.

2.2.3  Late Fusion

The late fusion architecture (Fig. 6(C)) resembles inter-
mediate fusion, with each branch dedicated to a different 
modality, initially trained and optimized. These trained ML 
models estimate the probabilities of each pixel belonging 
to either the material or pore phase. In the second step, the 

output probabilities from these optimized branches are col-
lected and concatenated. These concatenated probabilities 
then train a final neural network layer (ensemble), which, 
once optimized, produces the ultimate segmentation output.

2.3  ML Model Training Process

We trained all ML architectures on Tesla K80 GPUs. Images 
were initially cropped into smaller patches (64 × 64) with a 
32-pixel stride using a sliding window technique. Our net-
works are trained using a structured approach where data 
are presented as individual 2D slices, a 3D volumetric stack, 
or a 2D slice coupled with its neighboring slices for a 2D 
convolutional neural network (CNN), 2D CNN with adjacent 
slices, and 3D CNN. We used Dice loss in conjunction with 
the Adam optimizer, starting with an initial learning rate of 
0.0001. If the learning rate did not decrease for ten consecu-
tive training epochs, the learning rate was reduced by a fac-
tor of 10. Table 1 shows details of the training parameters, 
and supplementary (Appendix) Fig. 10 illustrates a typical 
training and validation data Dice loss curve.

2.4  Data Augmentation

ML requires a large set of training data. When it is difficult 
to collect sufficient training data, data augmentation can 
be a powerful method for increasing the data size for ML 
[31]. Differences in data distributions between synthetic and 
real datasets and variations stemming from different micro-
scopes emphasize the need for extensive data augmentation 
in electron microscopy. We applied online data upsampling, 
where the data size was increased during training by apply-
ing different image processing operations such as random 
flips, image rotations, random croppings, and changes in 
brightness.

2.5  Evaluation Criteria for 3D Image Reconstruction

2.5.1  Metrics Based on Ground Truth Values

In cases where ground truth data are available as a binary 
virtual initial structure, e.g., for synthetic datasets, we cal-
culated the following three absolute error metrics:

The first metric, the fraction of misplaced pixels (MP), 
measures the percentage of pixels whose predicted and 
ground truth values do not match. This metric was calculated 
using the following formula:

(1)MP =

(
1 −

TP + TN

TP + FP + FN + TN

)
× 100
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Fig. 6  Different multimodal ML 
architectures: A early fusion, B 
intermediate fusion, and C late 
fusion. Note: Each CNN model 
block (blue color) contains deep 
CNNs for semantic segmenta-
tion (see Appendix 1)
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where TP denotes the number of true positives, TN denotes 
the number of true negatives, FP denotes the number of false 
positives, and FN denotes the number of false negatives.

The second metric, the percentage of misplaced gold 
pixels (MGP), calculates falsely predicted gold pixels using 
ground truth values. One should be careful while using this 
metric alone, as FP is not considered in this metric. MGP is 
calculated as follows:

The third metric, the Dice score (DS), measures the overlap-
ping regions between predicted and ground truth binarized 
images. It provides a valuable measure when data imbal-
ances exist. DS takes values from 0 to 1, 1 being the best 
performance indicator. DS is calculated as follows:

We computed the DS for both the material and pore phases 
and then averaged them to obtain the mean Dice score 
(MDS).

2.5.2  Metrics Based on Anisotropy in the Absence 
of Ground Truth Values

When ground truth data are unavailable, e.g., for real HNPG 
FIB tomography, anisotropy-based metrics are used to assess 
ML model performance under the assumption of isotropy 
of the actual nanostructure [12]. These metrics account for 
the shine-through effect observed in the z-direction. Three 
metrics are calculated in the x-, y-, and z-directions and 
compared to evaluate anisotropy based on the three func-
tions. The first metric is based on the two-point correlation 

(2)MGP =

(
1 −

TP

TP + FN

)
× 100

(3)DS =
2 TP

2TP + FN + FP
.

function (TPCF), which is the probability of having two 
points in the same material phase at a given distance from 
each other in x-, y-, and z-directions. Let this function cal-
culated in the three spatial directions be denoted as f x , f y , 
and f z . When these functions are uniformly discretized with 
n data points, we obtain the function values f x

i
 , f y

i
 , and f z

i
 , 

where i ranges from 1 to n. TPCFs statistically characterize 
the microstructure in different spatial directions. For iso-
tropic microstructures, identical TPCFs are expected in all 
spatial directions. Conversely, the differences between the 
TPCFs in different directions are a measure of the anisot-
ropy of the microstructure. To quantify these differences, 
we calculated the L2 differences between the TPCF in x- 
and z-directions and y- and z-directions. These L2 differ-
ences were averaged to obtain the final anisotropy metric 
as follows:

A similar anisotropy metric can be defined using the lineal 
path function (LPF) instead of the TPCF. The LPF measures 
the probability that two points at a certain distance in a cer-
tain direction can be connected by a line fully located in the 
same phase. The resulting anisotropy metric eLPF

L2
 is calcu-

lated analogously to eTPCF
L2

 . The third metric, eD
L2

 , is a similar 
metric and calculates the average difference of ligament 
diameters in x- and z-directions and y- and z-directions:

Here, Dij denotes the calculated average diameter of liga-
ments in the ij plane with i, j ∈ {x, y, z} . When calculated for 
a completely isotropic structure, zero errors indicate the best 
reconstruction performance. However, higher error values 
for these functions suggest anisotropy in the reconstructed 
structure. For an underlying actual isotropic microstructure, 
this indicates a segmentation error.

3  Results and Discussion

3.1  Comparison of Different Multimodal ML 
Architectures

First, we performed a comparative analysis of the three 
multimodal ML architectures to identify the most effec-
tive segmentation model. We trained all three architectures, 

(4)eTPCF
L2

=
1

2

⎛
⎜⎜⎜⎝

2 ×

�∑n

i=1
(f x
i
− f z

i
)2

�∑n

i=1
(f x
i
)2 +

�∑n

i=1
(f z
i
)2

+

2 ×

�∑n

i=1
(f

y

i
− f z

i
)2

�∑n

i=1
(f

y

i
)2 +

�∑n

i=1
(f z
i
)2

⎞⎟⎟⎟⎠

(5)eD
L2

=
1

2

⎛
⎜⎜⎝

���� (Dxz − Dxy)
2

D2
xy

+

���� (Dyz − Dxy)
2

D2
xy

⎞⎟⎟⎠

Table 1  Summary of parameters used for training ML models

Parameter Value

Patch size 64
Stride 0.5
Batch size 64
Epochs 100 with early stopping with patience=25
Loss Dice loss
Optimizer Adam
Learning rate 0.0001, adapted with a patience of 10 

(reduction factor 10)



 Nanomanufacturing and Metrology             (2024) 7:4     4  Page 8 of 13

as described in Sect. 2.2, using synthetic datasets (s-1 kV, 
s-2 kV, and s-4 kV). After fine-tuning these models, we 
evaluated their performance using the metrics outlined in 
Sect. 2.5.1, leveraging the availability of ground truth data 
for the synthetic dataset. It is essential to emphasize that 
the synthetic dataset used for metrics calculation remained 
entirely isolated from that used during the training process. 
Our results, presented in Table 2, indicate that the late fusion 
architecture excelled among the three options.

Notably, the intermediate fusion architecture exhibited 
significantly poorer metrics than the late fusion architec-
ture. This decline in performance can be attributed to the 
large size of the ML model, which posed challenges for 

optimization given the limited training data. MP, MGP, and 
MDS were significantly less favorable for the more straight-
forward multimodal architecture, early fusion. In addition, 
we examined the behavior of the late fusion network on the 
shine-through effect by substituting the ensemble layer with 
a voting mechanism. This adaptation revealed weights of 
0.5, 0.3, and 0.2 for CNN models trained individually on the 
s-1 kV, s-2 kV, and s-4 kV datasets, respectively, signifying 
that the model learns valuable insights from the 2- and 4-kV 
datasets despite their shine-through effects. On the basis of 
these comparative findings, we decided to proceed with the 
late fusion architecture for all subsequent parts of this study.

3.2  Comparison of Segmentation Methods 
(Synthetic Data)

Subsequently, we performed a comparative analysis, pit-
ting our multimodal ML method (ML-multiV) against the 
cluster-based k-means clustering algorithm and ML mod-
els trained using individual single kV datasets, denoted as 
ML-singleV. The results are tabulated in Table 3, featuring 
metrics such as MP, MGP, and MDS for the reconstructed 
simulated structure. ML-singleV (s-1 kV), ML-singleV (s-2 
kV), and ML-singleV (s-4 kV) represent cases where the 

Table 2  Performance comparison of the different multimodal archi-
tectures on the synthetic dataset

The first row in the table represents the target metric values for the 
original dataset (ground truth)

Architecture MP ↓ MGP ↓ MDS ↑

Original 0 0 1
Early fusion 2.8 20.33 0.93
Intermediate fusion 2.58 6.92 0.94
Late fusion 0.23 0.94 0.99

Table 3  Quantitative evaluation 
of different segmentation 
methods using synthetic 
datasets

The last column shows the results of our new multimodal ML method trained on a synthetic multiV dataset

Method k-means (k=3) ML-singleV ML-

Measure Original s-1 kV s-2 kV s-4 kV s-1 kV s-2 kV s-4 kV multiV

MP ↓ 0.000 4.455 9.490 18.626 0.245 0.654 1.407 0.225
MGP ↓ 0.000 8.776 15.573 20.904 0.963 2.512 6.466 0.944
MDS ↑ 1.000 0.904 0.815 0.698 0.994 0.985 0.967 0.995

Fig. 7  A Slice of a synthetic microstructure (ground truth) and seg-
mentation results of Monte Carlo-simulated BSE images using 
k-means clustering (top row) and the ML-singleV method (bottom 

row) of B s-1 kV, C s-2 kV, D s-4 kV datasets, and E our multimodal 
ML-multiV method. Scale bar: 300 nm
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ML model was trained and tested using only a single kV 
dataset, s-1 kV, s-2 kV, and s-4 kV, respectively.

Notably, our multimodal ML method, ML-multiV, out-
performed all alternative techniques assessed. All ML mod-
els surpassed the cluster-based k-means clustering method 
when applied to their respective individual datasets. The best 
results were observed for the multimodal ML approach, par-
ticularly when considering all three datasets for segmenta-
tion. This underscores the distinct advantage gained from the 
additional information acquired through images captured at 
various accelerating voltages.

Supplementary (Appendix) Table 7 provides a detailed 
exploration of anisotropy-based metrics for each segmenta-
tion method, reaffirming the trends observed in Table 3. In 
addition, Fig. 7 offers a visual representation of the segmen-
tation outputs, further supporting the efficacy of our multi-
modal ML technique.

3.3  Comparison of Performance for Real HNPG Data

We have demonstrated the superior performance of our mul-
timodal ML approach on synthetic datasets created using 
Monte Carlo simulations of the FIB tomography process. 
To validate these results on real data, we assessed the seg-
mentation performance of our ML-multiV method on real 
HNPG FIB tomography data (r-1 kV, r-2 kV, and r-4 kV) 
using anisotropy-based metrics (see Sect. 2.5.2). The out-
comes presented in Table 4 confirm the advantages of our 
method, ML-multiV, over alternatives when applied to real 
FIB tomography data. Figure 8 shows a single slice from a 
segmented real HNPG dataset using different segmentation 

methods. This figure illustrates the enhanced ability of all 
ML-based techniques in mitigating the shine-through effect 
when compared with classical segmentation methods. 
Note that ML-multiV, on average, exhibits more than 50% 
improvement in performance based on anisotropy meas-
ures compared with k-means clustering. Furthermore, the 
enhancement over k-means clustering (r-1 kV) in anisotropy 
measures exceeds 30%.

4  Conclusion

FIB-SEM tomography data are affected by artifacts such 
as the shine-through effect and the resulting ambiguity in 
image intensities. These artifacts make it difficult to use 
cluster-based segmentation methods, such as k-means clus-
tering. More advanced ML-based methods can efficiently 
suppress the shine-through effect, even when trained only 
on a single set of synthetic FIB tomography images. The 
reconstruction performance can be further improved using 
more than one set of FIB tomography data for the same sys-
tem. Exploiting this idea, we developed an overdetermined 
system for FIB-SEM tomography of nanostructured materi-
als such as HNPG. We accomplished this by combining FIB 
tomography data collected for the same system at different 
acceleration voltages. The additional data collected in this 
way can help decide with greater certainty whether certain 
high-intensity pixels of the SEM image belong to the surface 
area or are rather shine-through artifacts from deeper layers 
that should ideally be neglected.

Table 4  Error measures based 
on anisotropy of reconstructed 
microstructure achieved using 
four different microstructure 
reconstruction methods

The best possible error value is 0 for all measures

Method k-means (k=3) ML-singleV ML-

 Measure r-1 kV r-2 kV r-4 kV r-1 kV r-2 kV r-4 kV multiV

e
TPCF

L2
 ↓ 0.1645 0.1899 0.2742 0.1454 0.1686 0.2708 0.1206

e
LPF

L2
 ↓ 0.0531 0.2494 0.2369 0.0591 0.0911 0.1810 0.0489

e
D

L2
 ↓ 0.0312 0.1943 0.1858 0.0304 0.0370 0.1383 0.0119

Fig. 8  Image segmentation 
results of an example region of 
a real HNPG dataset using A 
k-means clustering (r-1 kV), B 
ML-singleV (r-2 kV), and C our 
multimodal ML-multiV. Scale 
bar: 300 nm
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This study demonstrated that a multimodal ML method 
using imaging data collected with various acceleration 
voltages can outperform classical segmentation methods 
using only one dataset (obtained with a single acceleration 
voltage). We demonstrated this specifically using a multi-
modal ML architecture that combined imaging information 
obtained at acceleration voltages of 1, 2, and 4  kV.

Appendix 1: Machine Learning Architecture

We designed custom U-Net-based architectures for multi-
modal ML models (Fig. 6). These architectures were tai-
lored for each fusion method and differed in their approach 
to processing image data. In all U-Net architectures [32, 
33], we incorporated customizations such as residual con-
nections, padding, and the number of encoding/decod-
ing blocks (Fig. 9). After evaluating the performance of 

various architectures for different fusion techniques, we 
selected the following:

In the early fusion approach, we opted for a 3D U-Net 
model comprising four encoding blocks with residual 
connections.

In the case of intermediate fusion, we narrowed our 
focus to a 2D CNN and a 2D CNN with adjacent slices 
because of the significant size of the multimodal ML 
model. To our surprise, the 2D CNN proved to be the 
most effective, probably because of the constraints of the 
limited dataset size and the overall large model size after 
intermediate fusion. Consequently, we adopted a 2D U-Net 
model that features two encoding blocks with residual con-
nections. The fully connected layer block incorporated two 
convolutional layers: The first expanded output channels 
to 64, followed by a second output classifier layer with a 
kernel size of 1.

Fig. 9  Schematic representation of U-Net architecture with residual connections



Nanomanufacturing and Metrology             (2024) 7:4  Page 11 of 13     4 

For the late fusion approach, we trained and compared 
the 2D CNN, 2D CNN with adjacent slices, and 3D CNN 
architectures, with the 2D CNN featuring adjacent slices 
outperforming the others. This approach employed seven 
adjacent slices, four encoding blocks, and residual connec-
tions and included an ensemble block with a convolutional 
layer and a kernel size of 1.

Appendix 2: Training Curves

Figure 10 depicts training and validation Dice loss curves. 
These curves display the mean Dice loss over epochs, with 
the blue line representing training scores and the orange 
line representing validation scores. We used data augmen-
tation during training, which made the training dataset 
more complex. Consequently, validation Dice loss values 

were consistently lower than training Dice loss values in 
all curves.

Appendix 3: Effect of 3D Reconstruction 
on Material Properties (Solid Fraction)

The solid fraction ( � ), which is a critical property in materi-
als science, quantifies the volume of the solid phase within 
a structure. It significantly influences mechanical and opti-
cal properties, underscoring the importance of its accurate 
measurement, which relies on precise 3D reconstruction. 
The solid fraction can be calculated from the binary struc-
ture as follows:

(6)� =
Nm

Ntotal

Fig. 10  Training and validation 
data Dice loss function for ML 
method singleV trained on A 
s-1 kV, B s-2 kV, C s-4 kV, and 
D our multimodal ML-multiV 
method

(B)(A)

(D)(C)

Table 5  Quantitative evaluation 
of different segmentation 
methods on material properties 
(solid fraction) of synthetic 
datasets

Method k-means (k=3) ML-singleV ML-

 Measure Original s-1 kV s-2 kV s-4 kV s-1 kV s-2 kV s-4 kV multiV

Solid Fraction 0.123 0.147 0.180 0.258 0.123 0.123 0.121 0.123

Table 6  Quantitative evaluation 
of different segmentation 
methods on material properties 
(solid fraction) in real datasets

Method k-means (k=3) ML-singleV ML-

Measure r-1 kV r-2 kV r-4 kV r-1 kV r-2 kV r-4 kV multiV

Solid Fraction 0.214 0.253 0.355 0.164 0.123 0.247 0.130
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where Nm represents voxels within phase m and Ntotal denotes 
the total voxel count. Synthetic data with ground truth allow 
us to observe the impact of reconstruction on the solid frac-
tion. Table 5 shows that the ML-based methods yield similar 
solid fractions, while with k-means clustering, the solid frac-
tion increases with increasing voltage, indicating its struggle 
with the shine-through effect.

Real FIB-SEM image data (r-1 kV, r-2 kV, and r-4 kV) 
lack ground truth, limiting direct comparison. Nevertheless, 
Table 6 shows that ML-singleV (r-1 kV), ML-singleV (r-2 
kV), and ML-multiV exhibit solid fractions indicative of 
realistic hierarchical nanoporous materials.

Appendix 4: Additional Results Using 
Anisotropy‑Based Error Measures 
for Synthetic Data

In this section, we computed anisotropy-based errors as 
detailed in Sect. 2.5.2 to compare the performance of dif-
ferent segmentation methods. Table 7 presents the compre-
hensive metrics for the synthetic datasets including for the 
original dataset, serving as reference values for evaluating 
the outcomes obtained from different methods.
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