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Abstract
Owing to their compactness, robustness, low cost, high stability, and diffraction-limited beam quality, mode-locked fiber 
lasers play an indispensable role in micro/nanomanufacturing, precision metrology, laser spectroscopy, LiDAR, biomedi-
cal imaging, optical communication, and soliton physics. Mode-locked fiber lasers are a highly complex nonlinear optical 
system, and understanding the underlying physical mechanisms or the flexible manipulation of ultrafast laser output is chal-
lenging. The traditional research paradigm often relies on known physical models, sophisticated numerical calculations, and 
exploratory experimental attempts. However, when dealing with several complex issues, these traditional approaches often 
face limitations and struggles in finding effective solutions. As an emerging data-driven analysis and processing technology, 
artificial intelligence (AI) has brought new insights into the development of mode-locked fiber lasers. This review highlights 
the areas where AI exhibits potential in accelerating the development of mode-locked fiber lasers, including nonlinear 
dynamics prediction, ultrashort pulse characterization, inverse design, and automatic control of mode-locked fiber lasers. 
Furthermore, the challenges and potential future development are discussed.

Highlights

1.	 A comprehensive review of the recent progress in AI-
enabled mode-locked fiber lasers is provided.

2.	 The applications of AI algorithms in nonlinear dynam-
ics prediction, ultrashort pulse characterization, inverse 

design, and automatic control of mode-locked fiber laser 
are presented.

3.	 The challenges and potential future development of AI-
enabled mode-locked fiber lasers are discussed.
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1  Introduction

Owing to their compactness, robustness, low cost, and high 
performance, mode-locked fiber lasers have become a main-
stream laser source for generating ultrashort pulse output 
(time duration is of the order of 10−12 s or less) [1–3] and 
play an indispensable role in various research fields. First, 
mode-locked fiber lasers have extremely high peak power 

and beam quality, they can enable precise and efficient mate-
rial ablation, cutting, and surface structuring, which are suit-
able for micro/nanomanufacturing and precision machining 
[4–7]. Second, mode-locked fiber lasers with ultrashort 
pulses allow efficient excitation of fluorophores and deep 
penetration into tissue, making them ideal candidates for 
biomedical imaging and multiphoton microscopy [8–10]. 
Third, in the frequency domain, mode-locked fiber lasers 
have equidistant narrow-linewidth modes that can effectively 
generate optical frequency combs [11–14]. Owing to the 
good balance between their cost and performance, optical 
frequency combs based on mode-locked fiber lasers have 
been widely exploited for precision metrology [15–18], laser 
spectroscopy [19–21], and LIDAR [22–26]. Fourth, mode-
locked fiber lasers can carry rich information across a broad 
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spectral range, showing potential as a key component in 
high-speed optical communication systems and massively 
parallel optical computation [27, 28]. Last but not least, 
mode-locked fiber lasers are a highly complex nonlinear sys-
tem. Different dissipative soliton dynamics (such as soliton 
molecules, soliton rain, dissipative soliton resonance, and 
noise-like pulse) could occur by adjusting the gain, loss, 
dispersion, and nonlinear parameters in the laser cavity to 
deepen the understanding of soliton physics in the scientific 
community [29–32].

However, research on mode-locked fiber lasers faces a 
series of challenges. First, it is difficult to accurately model 
the pulse propagation process in mode-locked fiber laser, 
which hinders the prediction of highly complex nonlinear 
dynamics. The propagation process of light in the fiber laser 
cavity is usually described by the coupled Ginzburg–Lan-
dau equation. Sophisticated numerical simulation based on 
the split-step Fourier method (SSFM) is typically required 
to solve this partial differential equation and predict the 
dynamic process of mode-locked fiber laser [33]. When 
requiring high model accuracy, the calculation amount 
would become huge, making the total calculation rather 
time-consuming. Then, to date, the characterization methods 
of mode-locked fiber lasers are relatively limited. The time 
durations of ultrashort pulses generated by mode-locked 
fiber lasers are on the picosecond or even femtosecond level, 
which considerably exceed the response speed of electronic 
devices, such as photodetectors. Frequency-resolved opti-
cal gating (FROG), spectral phase interferometry for direct 
electric-field reconstruction (SPIDER), and dispersion scan 
(d-scan) can characterize the electric field to some extent, 
but require complicated inversion algorithm to reconstruct 
accurate pulse parameters [34]. Next, the on-demand 
design and controllable fabrication of mode-locked fiber 
lasers remain a challenge due to the unclear subtle relation-
ships between laser output and variable parameters. Much 
uncertainty surrounds the existing laser design process, and 
whether the output of the laser meets the needs is difficult 
to judge in advance, thus limiting the further application 
of mode-locked fiber lasers. Finally, as a delicate resonator 
system, mode-locked fiber laser is very sensitive to external 
environment fluctuations [35]. In practical applications, the 
optimized mode-locked state may be disrupted by tempera-
ture drift, vibration, and stress. The common solution is to 
manually search for the optimized state by tuning the mode-
locked fiber laser, but this approach is rather difficult and 
time-consuming. Hence, intelligent automatic control and 
flexible state switching are urgently needed.

Artificial intelligence (AI) [36] is a wide-ranging 
branch of computer science concerned with building smart 
machines capable of performing tasks that typically require 
human intelligence. As a data-driven automatic learning 
technology, AI exhibits excellent self-adaptation and avoids 

unnecessary human intervention. It also has strong nonlinear 
function fit ability, massively parallel ability, and fast com-
puting speed. To date, AI has demonstrated its superiority 
in various fields, such as autonomous driving [37], natural 
language processing [38], medical diagnosis [39], computer 
vision [40], intelligent manufacturing [41], computational 
imaging [42], spectral informatics [43], ultrafast photonics 
[44], and fiber lasers [45].

The rapid development of AI technology provides new 
opportunities for advancing the progress of mode-locked 
fiber lasers. As shown in Fig. 1, the four major tasks in 
AI-enabled mode-locked fiber lasers are nonlinear dynam-
ics prediction, ultrashort pulse characterization, inverse 
design, and automatic control. In these tasks, there are two 
types of common requirements: data-driven modeling and 
model-free optimization. Data-driven modeling learns the 
complex mapping relationship between input and output 
nodes from data to build a “black box” and achieve efficient 
computation. It can serve as the basis for nonlinear dynam-
ics predictions (input: laser parameters and initial perturba-
tion; output: predicted dynamic process), ultrashort pulse 
characterization (input: measurement data, output: pulse 
parameter), inverse design (input: on-demand laser output, 
output: designed laser parameters), and automatic control 
(input: on-demand laser output, output: in-cavity actuator 
parameters). Emerging AI technologies, such as feedforward 
neural network (FNN), convolutional neural network (CNN), 
recurrent neural network (RNN), reinforcement learning, 
and autoencoder, are suitable for solving this issue. Mean-
while, model-free optimization tries to directly search in the 
parameter space to minimize the objective function. Com-
mon model-free optimization methods include genetic algo-
rithm, particle swarm algorithm, and simulated annealing 
algorithm. Owing to its robust performance, low complexity, 
and low label dependence, model-free optimization is also 
an attractive route for mode-locked fiber laser applications, 
such as inverse design and automatic control (minimizing 
the difference between actual and on-demand laser outputs). 

Fig. 1   Typical AI-enabled tasks in mode-locked fiber lasers



Nanomanufacturing and Metrology            (2023) 6:36 	

1 3

Page 3 of 14     36 

It can also be used as an auxiliary algorithm to optimize the 
hyperparameters of the data-driven model.

In this paper, the recent progresses of AI-enabled mode-
locked fiber lasers are reviewed, especially the interdiscipli-
nary research of nonlinear dynamics prediction, ultrashort 
pulse characterization, inverse design, and automatic con-
trol. Finally, the challenges and potential future development 
are discussed.

2 � Nonlinear dynamics prediction

Mode-locked fiber lasers are dissipative nonlinear systems 
whose dynamic processes are complex, highly nonlinear, 
and highly dimensional. The accurate prediction of nonlinear 
dynamics in mode-locked fiber lasers is the basis for opti-
mizing their design and understanding the underlying soliton 
physics. The pulse propagation model in optical fibers can be 
described by the Ginzburg–Landau equation [33], which is 
a partial differential equation. Conventional numerical solu-
tion methods are based on the SSFM, which suffers from a 
relatively large amount of calculation and slow calculation 
speed. With the in-depth study of the dynamic process of 
mode-locked lasers [30], the demand for effective prediction 
methods to study the in-cavity pulse evolution has increased. 
However, as the pulse signal iteratively propagates in the 
fiber cavity, the mode-locked fiber laser is extremely sensi-
tive to parameter changes and external perturbations, which 
puts forward higher requirements on the accuracy of pulse 
propagation modeling. With the development of AI tech-
nology, deep learning is expected to predict the complex 
dynamic process of mode-locked fiber lasers in an efficient 
data-driven manner, eventually eliminating the sophisticated 
numerical calculation required by conventional methods. It 
has great potential for promoting theoretical research on 
mode-locked fiber lasers.

The efficient solution of partial differential equations is 
a key problem in conventional pulse propagation modeling 
and nonlinear dynamic prediction. In scientific computing, 
AI has shown the advantage of solving such equations. An 
emerging algorithm is the physics-informed neural network 
(PINN) [46], and its structure is shown in Fig. 2a. PINN 
integrates physical information into deep learning, allowing 
the latter to directly learn the solution of the partial differen-
tial equation from the data without mesh deformation prob-
lems. Compared with conventional numerical algorithms, 
PINN has improved computational efficiency. Additionally, 
PINN reduces the dependency on extensive data collection 
and labeling efforts, making it suitable for scenarios with 
limited data availability. In recent years, PINN has made 
great achievements in modeling the dynamic propagation of 
optical pulses in fiber. Jiang et al. [47] used PINN to solve 
the nonlinear Schrödinger equation for learning nonlinear 

dynamics in fiber optics. The physical mechanisms, includ-
ing dispersion, self-phase modulation, and high-order non-
linearity, are carried out with PINN to investigate the soliton 
and multi-pulse propagations. The results show that the com-
putational complexity of PINN is generally two orders of 
magnitude lower than that of SSFM. The function of PINN 
can be further extended by introducing extra physical law 
[48], proposing new net structures [49], and optimizing 
model training [50]. With these modified algorithms, the 
behavior of vector solitons can be effectively predicted, as 
shown in Fig. 3a.

Although PINN provides an efficient solution to par-
tial differential equations, it is highly dependent on known 
physical mechanisms, and the model training is relatively 
difficult. By contrast, a purely data-driven method based on 
RNN can learn system dynamical behavior from a set of 
training data without any prior knowledge [51, 52]. As a 
unique type of RNN architecture, long short-term memory 
(LSTM) introduces a gate mechanism to control the flow and 
loss of features to solve the long-term dependence problem 
of conventional RNN (Fig. 2b). LSTM has been widely used 
to solve the sequence prediction problem. In mode-locked 
fiber lasers, the evolved pulse of each roundtrip can form a 
long sequence. Thus, LSTM is quite suitable for the nonlin-
ear dynamics prediction of mode-locked fiber lasers.

As shown in Fig. 3b, LSTM is effective for modeling 
the dynamic propagation of optical pulse in single-mode 
fibers [53] and multimode fibers [54], laying the foundation 
for predicting the complex nonlinear dynamics of mode-
locked fiber lasers. The nonlinear Schrödinger physics model 
was also combined with LSTM to reduce dependency on 
abundant labeled data [55]. In 2022, He et al. [56] com-
bined LSTM with a dense network for soliton dynamics 
prediction in mode-locked fiber lasers. On the basis of the 

Fig. 2   Deep learning architecture for modeling the dynamic propaga-
tion of optical pulse in fiber. a PINN. b LSTM
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particle characteristics of soliton interaction, the separa-
tion and relative phase between solitons are used as char-
acteristic parameters to predict the nonlinear dynamics. In 
2023, Pu et al. [57] exploited LSTM for the fast and accurate 

nonlinear dynamics prediction of mode-locked fiber lasers 
and achieved generalization over different cavity settings 
using a prior information feeding method. The speed of the 
proposed AI model inferring 500 roundtrips is about 146 

Fig. 3   AI-enabled nonlinear dynamics prediction. a Soliton evolution 
process predicted by PINN (with permission from [48] © Elsevier). 
b Supercontinuum generation process predicted by LSTM (with per-

mission from [53] © The Optical Society). c Build-up dynamics of 
mode-locked fiber lasers predicted by LSTM (with permission from 
[57] © Wiley)
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times faster than that of SSFM (Fig. 3c). Fang et al. [58] 
proposed a Bi-LSTM method with an attentional mechanism 
to predict the dynamics of solitons from the detuning steady 
state to a stable mode-locked state.

In addition to PINN and LSTM, FNN with fully con-
nected network architecture [59–62] has been successfully 
used for the end-to-end dynamics prediction of nonlinear 
optical fiber systems. CNN with cascaded convolution lay-
ers and pooling layers has also been introduced to further 
simplify the training process. Yang et al. [63] proposed a 
convolutional feature separation modeling method with 
low complexity and strong, highly accurate generaliza-
tion ability. Sui et al. [64] proposed a compressed CNN to 
accurately predict the initial pulse distribution of the non-
linear optical fiber system with different initial widths and 
powers. Gautam et al. [65] used a CNN model based on 
knowledge distillation to learn the pulse evolution in the 
nonlinear fiber; this model uses few trainable parameters to 
obtain good generalization and a fast convergence rate. Liu 
et al. [66] used a convolutional autoencoder neural network 
to reduce data dimension and reconstruct soliton dynamics 
in mode-locked fiber lasers. The average similarity between 
the reconstructed and original spectra is more than 99%.

3 � Ultrashort pulse characterization

The time durations of ultrashort pulses generated by mode-
locked fiber lasers are on the order of picosecond or even 
femtosecond level. Thus, the characterization of mode-
locked fiber lasers allows for the examination of the ultrafast 
phenomenon and the exploration of new physical mecha-
nisms. However, comprehensively characterizing the output 
of mode-locked fiber lasers with high speed, resolution, and 
accuracy is challenging due to the limited response band-
width of existing photoelectric sensors and the insufficient 
processing level of analog/digital circuits.

The accurate inversion of the pulse phase must be 
achieved to completely characterize the electric field of 
ultrashort pulses. The common time-domain electric-field 
characterization methods include FROG, SPIDER, and 
d-scan. However, these methods typically require complex 
experimental configuration and sophisticated nonlinear 
devices, have limited signal-to-noise ratio (SNR), and com-
monly necessitate complicated reconstruction algorithms. 
When the amount of data is large, a large amount of comput-
ing resources and time are required for accurate electric-field 
reconstruction. The rapid development of AI technology has 
brought new hope for solving the above problems.

In 1996, Krumbügel et al. [67] proved that an FNN could 
directly obtain the intensity and phase of a pulse from the 
FROG trace of a pulse. Although the performance of FNN 
was limited, it opened up new ideas for researchers. In 2018, 

Zahavy et al. [68] reconstructed the ultrashort optical pulse 
by a deep neural network with convolutional and fully con-
nected layers called deepFROG (Fig. 4a), which outperforms 
the other methods under low SNR. In 2019, Kleinert et al. 
[69] used a DenseNet to perform ultrashort pulse reconstruc-
tion based on d-scan traces. This method showed an excel-
lent tolerance against noisy conditions, and the retrieval took 
only 16 ms, thus enabling video-rate reconstructions.

With the development of nonlinear optics, computational 
imaging, and ultrafast photonics, pulse characterization 
methods based on deep learning have been enriched continu-
ously. In 2020, Ziv et al. [72] proposed a simple all-line sys-
tem for ultrashort pulse reconstruction from sum-frequency 
field interference measurements. This system inverts the 
nonlinear interference pattern to pulse mapping by employ-
ing the CNN, thus achieving a good performance. Xiong 
et al. [73] proposed a self-referenced method of characteriz-
ing the spectral phases of ultrashort pulses with a multimode 
fiber. They combined CNN with compressive sensing by 
representing the spectral phase on a sparse basis to dramati-
cally reduce the number of parameters to be predicted by 
the neural network. Kolesnichenko et al. [74] demonstrated 
an approach to characterize ultrashort pulses from 1D inter-
ferometric correction time traces using CNN. The results 
implied that rapid ultrashort pulse characterization can be 
achieved using a simple experimental setup with only one 
delay stage, a single-channel detector, and a spectrometer.

Different from the slow characterization method based 
on commercial spectrum analyzers and autocorrelators, dis-
persive Fourier transform (DFT) [75] has been proposed to 
track the pulse-to-pulse spectral evolution. DFT has revolu-
tionized the time-resolved pulse characterization. In Fig. 4b, 
Kokhanovskiy et al. [70] predicted the temporal characteris-
tics (temporal width, optical spectrum, and RF spectrum) of 
ultrashort pulses by employing a DFT trace and supervised 
machine learning, which considerably reduced the system 
complexity. In 2020, to obtain further information within the 
DFT data, Li et al. [71] trained a residual CNN to retrieve 
the separation and relative phase of solitons in three- and 
six-soliton molecules from the DFT data, providing an 
effective method for exploring complex soliton molecule 
dynamics (Fig. 4(c)). The performance of three deep CNN 
networks (VGG, ResNets, and DenseNets) for studying the 
internal dynamics evolution of soliton molecules with real-
time spectral interference was also compared and discussed 
[76].

4 � Inverse design

The inverse design of mode-locked fiber lasers is important 
for generating on-demand laser output. Common param-
eters to be optimized include net group velocity dispersion, 
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total cavity length, pump power, loss, and polarization state. 
Owing to the unclear relationship between the final laser 
output and these parameters, no explicit theory has been 
established to guide the on-demand design of mode-locked 
fiber lasers. Conventional laser designs must traverse the 
entire parameter space to find the optimal parameter setting. 
This process is time-consuming and requires human inter-
vention. When the parameter space to be optimized is highly 
dimensional, the global optimal solution becomes difficult 
to find accurately. In actual ultrafast laser systems, optical 
amplifiers and supercontinuum generation modules are com-
monly cascaded after mode-locked fiber lasers to further 

increase the degree of freedom of the pulse output; however, 
this step further increases the difficulty of the optimization 
problem (as shown in Fig. 5). AI has a natural advantage in 
solving such complex optimization problems and has been 
successfully introduced in the inverse design of mode-locked 
fiber lasers.

As shown in Fig. 6a, Kokhanovskiy et al. [77] proposed 
the design of mode-locked fiber lasers based on a particle 
swarm optimization algorithm, which can determine the 
laser cavity architectures with on-demand pulse duration 
in the range of 1.5–105 ps and spectral width in the range 
0.1–20.5 nm. Bahloul et al. [78] used a genetic algorithm 

Fig. 4   Ultrashort pulse characterization with deep learning. a Deep 
learning reconstruction of the ultrashort pulse (with permission from 
[68] © The Optical Society). b Pulse width characterization (with 

permission from [70] © The Optical Society). c Soliton dynamics 
characterization (with permission from [71] © AIP Publishing)
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to optimize the cavity parameters to obtain a high-energy 
rectangular pulse operating in the dissipative soliton reso-
nance regime. As shown in Fig. 6b, Feehan et al. [79] used 

an improved genetic algorithm and intuitive optimization 
loss function to automatically design the cavity parameters 
of experimental mode-locked fiber lasers. This method 
achieved exceptional accuracy using minimal prior knowl-
edge. Chen et al. [80] proposed an online machine learning 
method based on the Gaussian process (GP) to determine 
the parameters of mode-locked fiber lasers for generating 
on-demand dissipative solitons. The GP learner iteratively 
searches the target parameters according to the optimization 
strategy until the desired cavity parameters are determined.

Apart from the seed source, success was also achieved 
in the reverse design of the optical amplifier and supercon-
tinuum generation module. In 2020, Zibar et al. [81] demon-
strated a high-precision pumping setup for arbitrary Raman 
gain spectrum using multilayer neural networks. With the 

Fig. 5   Inverse design of mode-locked fiber lasers

Fig. 6   AI-enabled inverse design of the mode-locked fiber lasers. a 
Inverse design of mode‑locked fiber laser by particle swarm optimi-
zation algorithm (with permission from [77] © Springer Nature). b 
Computer-automated design of mode-locked fiber lasers (with per-

mission from [79] © The optical Society). c Customizing supercon-
tinuum generation via on-chip adaptive temporal pulse-splitting (with 
permission from [83] © Springer Nature)
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use of four pumps and a 100-km span, the maximum errors 
for the numerical and experimental values exhibit mean 
and standard deviation of 0.46 and 0.35 dB and 0.20 and 
0.17 dB, respectively. Zhang et al. [82] presented a design 
of optical microstructure fibers that have group velocity 
dispersion and effective nonlinear coefficient tailored for 
supercontinuum generation by using a hybrid approach that 
combines a genetic algorithm with pulse propagation mod-
eling. As shown in Fig. 6c, Wetzel et al. [83] used an actively 
controlled photonic chip to generate supercontinuum and 
applied the genetic algorithm to customize nonlinear interac-
tions and manipulate the patterns of ultrashort pulses.

5 � Automatic control

Mode-locked fiber lasers have the potential for large-scale 
application in various fields, such as industrial manufactur-
ing, medical treatment, and scientific research, due to their 
simple configuration and low cost. However, mode-locked 
fiber lasers are a delicate resonator system that is very sensi-
tive to parameter drift and external environment perturba-
tion. In practical applications, temperature drift, vibration, 
and stress may disrupt the optimized mode-locked state, 
causing performance degradation or even loss of the mode-
locked state. For example, for mode-locked fiber lasers based 
on nonlinear polarization rotation (NPR), environment per-
turbation can directly affect the balance among dispersion, 
nonlinearity, gain, and loss, thus creating obstacles to practi-
cal applications.

As shown in Fig. 7, mode-locked fiber lasers are expected 
to maintain the target state even under complex external per-
turbation. An electronically controlled polarization control-
ler can be used to traverse all possible polarization states for 
searching on-demand mode-locked states [84, 85]. Although 
tuning to the desired state is guaranteed, this method is 

highly inefficient, and this open-loop system has difficulty 
adapting to complex environmental changes. AI algorithms 
are expected to enable self-tuning and efficient updates for 
on-demand mode-locked states. Through the monitoring of 
the output of the mode-locked fiber lasers, the current oper-
ating state can be accurately perceived, and an intelligent 
decision can be made on the next action. This closed-loop 
system enables the robust automatic control of the mode-
locked fiber lasers and can intelligently adapt to the changes 
in the external environment.

For the automatic control of mode-locked fiber lasers, 
intelligent optimization algorithms are first applied to the 
self-tuning of mode-locked lasers. In 2013, Brunton et al. 
[86] proposed a multiparameter extremum-seeking control 
algorithm with a physically achievable objective function to 
realize the optimal mode-locked state. This algorithm can 
track the locally maximal mode-locked state under signifi-
cant disturbances. In 2015, Andral et al. [87] experimentally 
proved the ability of genetic algorithms to autotune mode-
locked fiber lasers. They also emphasized the importance 
of carefully designing the merit function, which constitutes 
a prerequisite for the predetermined goal. In 2020, Pu et al. 
[88] adopted the ultrafast DFT as the spectral discrimination 
criterion, combined it with the genetic algorithm, and real-
ized the real-time control of the spectrum width and shape 
of the mode-locked fiber pulses. In addition to evolutionary 
algorithms, expertise can also guide the search for an on-
demand mode-locked state. In 2019, Pu et al. [89] proposed 
a programmable mode-locked laser based on a human-like 
algorithm (Fig. 8a). The laser can be automatically locked 
onto desired operation states. The shortest initial mode-lock-
ing time and recovery time from detachment are only 0.22 s 
and 14.8 ms, respectively.

In order to adapt to more complex environment and task, 
machine learning can be employed to achieve automatic 
control of mode-locked fiber lasers. In 2014, Fu et al. [90] 
demonstrated an efficient, self-tuning laser using machine 
learning and sparse representation. L1-norm optimization 
was applied to classify the birefringence of the fiber laser, 
and this method performs well even in the presence of noise. 
Servo-control motors can be used to adjust the wave plates 
and polarizers to the optimal positions obtained from the 
toroidal search. In 2018, Baumerster et al. [91] first dem-
onstrated the integration of a deep learning architecture 
with model predictive control (MPC). Deep learning can 
be used to approximate the unknown fiber birefringence 
and establish the dynamics model of the laser. Meanwhile, 
MPC control law can be utilized to maintain high-energy 
pulses against random birefringence drift. In 2020, Sun 
et al. [92] applied a deep Q-learning network (DQN) to 
automatic control mode-locked fiber lasers. They further 
integrated transfer learning to help the deep reinforcement 
learning algorithm quickly learn new parameter systems Fig. 7   Automatic control of mode-locked fiber laser
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and generalize their control rights. In 2022, Kokhanovskiy 
et al. [93] used double DQN to learn the dynamic adjustment 
strategy of cavity parameters and generate stable solitons in 
mode-locked fiber lasers. The algorithm learns the hysteresis 
phenomena (represented by different optical pump adjust-
ment trajectories) of different pump power thresholds under 
a mode-locked state. Li et al. [94] presented a spectrum 
series learning-based model combining deep reinforcement 
learning and LSTM networks for the state searching and 
switching of mode-locked fiber lasers. The switch of the 

mode-locked state is realized by a predictive neural network 
that controls the pump power. The algorithm uses an average 
of only 690 ms to obtain a stable mode-locked state, which 
is one order of magnitude less than that of the conventional 
method.

In addition to controlling the in-cavity polarization state 
of NPR-based mode-locked fiber lasers, AI technology is 
effective for nonlinear amplifier loop mirror (NALM)-based 
mode-locked fiber lasers and saturable absorber (SA)-based 
mode-locked fiber lasers. Kokhanovskiy et al. [95] and 

Fig. 8   AI-enabled automatic control of the mode-locked fiber lasers. 
a Programmable mode-locked laser based on a human-like algorithm 
(with permission from [89] © The Optical Society). b Low-latency 
deep reinforcement learning algorithm for ultrafast fiber lasers (with 

permission from [97] © Chinese Laser Press). c Intelligent breathing 
solitons generated using a genetic algorithm (with permission from 
[100] © Wiley)
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Woodward et al. [96] used a genetic algorithm to control 
the laser operation state by adjusting the pump power. As 
shown in Fig. 8b, Yan et al. [97] proposed a low-latency 
deep reinforcement learning algorithm based on deep deter-
ministic policy gradients for SA-based mode-locked fiber 
lasers. The algorithm consists of two actor neural networks 
and two critic neural networks, which can provide strategies 
to modify the in-cavity polarization state and evaluate the 
effect of the actor network. The average mode-locking recov-
ery time of the network model after training is only 1.948s.

Beyond fundamental mode-locking, mode-locked 
fiber lasers can experience rich regimes by manipulating 
the balance among gain, dispersion, and nonlinearity. AI 
technology has also been used in the automatic control of 
Q-switching [98], Q-switching mode-locking [89], harmonic 
mode-locking [89], dissipative solitons [99], and breathing 
solitons [100] (Fig. 8c). Furthermore, the AI-enabled auto-
matic control is feasible for mode-locked lasers in the 2-μm 
band [101] and single-cavity dual-comb lasers [102], show-
ing the strong adaptability of AI to different types of lasers.

6 � Discussion

Mode-locked fiber lasers are a highly complex nonlin-
ear ultrafast optical system that is very sensitive to inter-
nal parameters and external perturbation. The traditional 
research paradigm often relies on known physical mod-
els, sophisticated numerical calculations, and exploratory 
experimental attempts. However, when dealing with many 
complex issues, these traditional approaches often face limi-
tations and struggle to find effective solutions. For exam-
ple, efficient and high-precision nonlinear dynamics predic-
tion, accurate ultrashort pulse characterization, on-demand 
inverse design, and robust automatic control involve unclear 
physics models, a substantial amount of complex calcula-
tions, and limited instrument performance. In recent years, 
AI for science has set off an upsurge. AI has irreplaceable 
advantages in solving multivariable complex nonlinear prob-
lems, bringing new opportunities for scientific research on 
mode-locked fiber lasers. Despite the above great achieve-
ments, the following challenges remain:

In the nonlinear dynamics prediction of mode-locked 
fiber lasers, current AI technology still rely on the known 
physical model and existing numerical methods to generate 
labeled data set. Hence, the prediction model cannot surpass 
the existing knowledge of human beings. In addition, most 
of the current works are focused on making numerical cal-
culations efficient. Further mining and revealing the intrinsic 
physical mechanism of mode-locked fiber lasers have not 
been attempted. In this sense, the potential of AI has not 
been fully realized. Therefore, realizing the full integration 
of big data, physical mechanisms, and prior experience to 

discover unknown valuable physical laws is a challenge for 
the future.

In ultrashort pulse reconstruction, current AI technolo-
gies have only played an auxiliary role. AI-enabled ultra-
short pulse reconstruction has not completely reformed the 
conventional pulse characterization instruments and meth-
odologies. Elegantly simplifying the existing characteriza-
tion configuration would be beneficial for comprehensive, 
fast, and accurate ultrashort pulse characterization. In addi-
tion, AI technology is mainly used for data postprocessing 
and cannot fully realize the effective encoding–decoding of 
information. In recent years, the joint optimization of opti-
cal measurement systems and postprocessing algorithms 
has become a trend for improving the performance of 
spectrometers and optical imaging systems. Hence, the co-
design of the characterization instrument and postprocessing 
algorithms based on emerging AI technologies would be a 
promising direction in the future.

In the inverse design of mode-locked fiber lasers, some 
AI-based inverse design methods have already been pro-
posed. However, whether these existing model-free inverse 
design methods have sufficient generalization and inter-
pretability remains questionable. In particular, the mapping 
relationship between fiber laser output and actual control-
lable laser parameters remains unclear. At present, the main-
stream inverse design of mode-locked fiber lasers still relies 
on expert experience and trial–error improvement iteration. 
This situation is partly because the constraints of real condi-
tions are difficult to fully consider. Fortunately, AI technol-
ogy is still developing rapidly, and a systematic and highly 
interpretable theory of inverse design for mode-locked fiber 
lasers is expected to be established in the future.

In the automatic control of mode-locked lasers, the exist-
ing methods are mainly based on complete expert experi-
ence (such as human-like algorithms) or complete data-
driven strategy (such as model-free evolutionary algorithm 
and machine learning). These methods all have their own 
insurmountable limitations. For further improvement in the 
effect of automatic control, the accurate and comprehensive 
digitization of the expert experience and its integration with 
physical mechanisms and data-driven models is a potential 
research direction.

Although AI can achieve many unprecedented functions 
and applications, it also has limitations. First, too much 
reliance on data. AI technology, particularly those repre-
sented by deep learning, typically requires cumbersome 
dataset construction and time-consuming model training 
process, which could bring additional costs. These costs 
should be carefully considered in practical applications. 
Moreover, when the amount of data is insufficient, the data 
quality is poor, or the dataset is unbalanced, the perfor-
mance of the AI algorithm would greatly decline, and its 
benefits over conventional methods would diminish. Then, 
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tricky overfitting and limited generalization. AI algorithm 
is commonly difficult to adapt to the change of the research 
object or even realize the dynamic transfer of the scene. 
Given the huge cost of retraining a new data-driven model, 
the practicability of the AI algorithm should be further 
improved. Next, “black box” properties and insufficient 
interpretability. The “black-box” model of AI technology 
can always give a result, but this result may not meet our 
needs. Therefore, the uncertainty analysis and interpret-
ability exploration of AI models is an important develop-
ment direction. Finally, the insufficient use of prior knowl-
edge. The comprehensive digital representation of human 
knowledge is a very challenging problem. It is expected 
that knowledge and data can be fully integrated so that 
the AI model learns more efficiently from data and is not 
bound by existing experience.

With the rapid development of AI technology in numer-
ous applications, an increasing number of researchers have 
engaged in this rapidly developing field. The emergence 
of new technologies is expected to solve the current limi-
tations of AI-enabled mode-locked lasers. For example, 
small sample learning [103] can effectively use a small 
amount of data for training, which can considerably reduce 
labeling and training costs. Lightweight deep learning 
[104] allows the easy deployment of AI technology, thus 
improving its competitiveness compared with conventional 
methods for field-deployed applications. Transfer learning 
can transfer learned models to new tasks, which reduces 
the cost of retraining and is promising to improve the gen-
eralization of AI. Explainable AI [105] can provide new 
ways to evaluate the uncertainty of AI models, enabling 
the discovery of new laws of physics and the expansion of 
human knowledge. Knowledge graph [106] is able of rep-
resenting and organizing knowledge in a graphical struc-
ture, which is potential to reveal the relationship between 
entities, infer hidden knowledge, handle complex query 
questions, and support intelligent decisions. It is believed 
that with the development of AI technology, AI-enabled 
mode-locked fiber lasers can break through current limita-
tions and advance the applications in micro/nanomanufac-
turing, precision metrology, laser spectroscopy, LiDAR, 
biomedical imaging, optical communication, and soliton 
physics.
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