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Abstract
Nickel is typically used as one of the main components in electrical contact devices or connectors. Nickel oxide (NiO) is 
usually formed on the surfaces of electrodes and can negatively impact system performance by introducing electrical contact 
resistance. The thermal, electrical, and transport properties of NiO, as a Mott insulator or a p-type semiconductor, can be 
altered by operating and environmental conditions such as temperature and stress/strain by contact. In this study, we inves-
tigate the fundamental material properties of NiO through the first-principle calculations. First, we obtain and compare the 
lattice parameter, magnetic moment, and electronic structure for NiO via the WIEN2K simulations with four different poten-
tials (i.e., GGA, GGA + U, LSDA, and LSDA + U). Then, using the WIEN2K simulation results with LSDA + U potential 
that produces a highly accurate bandgap for NiO, we calculate the electrical conductivity and electrical part of the thermal 
conductivity of nickel and NiO as a function of temperature and carrier concentration through the BoltzTraP simulations. 
Systematic simulation results revealed that the electrical conductivity relative to the relaxation time for NiO increases with 
the carrier concentration, while it shows a slightly decreasing trend with temperature under a fixed carrier concentration. 
By contrast, the electrical part of the thermal conductivity shows an increasing trend considering carrier concentration and 
temperature.

Highlights

1. DFT + U methods are more reliable than the DFT ones 
in predicting the correct bandgap of semiconductors.

2. LSDA has a good potential to obtain the magnetic 
moment of antiferromagnetic NiO.

3. The Seebeck coefficient of NiO is inversely propor-
tional to carrier concentration, while its relaxation-time 
dependent electrical and thermal conductivities are 
directly proportional.
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1 Introduction

Nickel (Ni) is one of the most common materials used for 
electrodes in electrical devices such as solid oxide fuel cells, 
lead-free piezoelectrics, capacitive devices, and electrical 
connectors [1–6]. When the electrodes are exposed to an 
atmosphere with high temperatures during operation, nickel 
and other metal components on the electrodes can develop 
an oxidation process, which can negatively affect the perfor-
mance of the system. For example, in the case of electrical 
contact devices such as a pin–receptacle system, if metal 
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oxide layers are formed on the electrode surface, then these 
layers can increase the electrical contact resistance (ECR), 
which can change the system conductivity accordingly. Elec-
tric vehicles, air fighters, and passenger aircraft are equipped 
with thousands of electrical connectors, and ECR is a com-
mon issue that must be addressed to acquire their sustain-
ability under harsh operating conditions. If the ECR allow-
ance is inappropriately controlled, then this phenomenon 
can lead to an electrical discontinuity or ohmic loss in the 
system. Therefore, the electrical and transport properties of 
metal oxides on the electrode surface are important param-
eters to obtain fundamental insights into the conductivity 
of systems.

A popular type of nickel is nickel oxide (NiO), which is 
known as an antiferromagnetic material [10], a transition 
metal oxide, and a p-type semiconductor [11] with a wide 
bandgap of 3.4–4.3 eV [12, 13]. Metal oxides can be p- or 
n-type depending on the type of dominant charge carriers. In 
p-type metal oxides such as NiO, the dominant charge car-
riers are the holes, while electrons are the dominant charge 
carriers in n-type ones such as  In2O3 and ZnO. NiO has been 
used for numerous applications, such as a catalyst [14, 15], 
fuel cells [16], electrochromic devices [17], and gas sensors 
[18], due to its good chemical stability, low toxicity, low 
cost, and abundance. NiO is also an attractive candidate for 
the anode layer of solid oxide fuel cells, lithium-ion batter-
ies, and electrochromic coatings [19].

Various computational and experimental works have been 
performed to investigate the thermo-electro-magnetic and 
transport properties of NiO. Linnera et al. [20] calculated 
the thermoelectric properties of NiO using the first-principle 
calculation. Their simulation results revealed that the See-
beck coefficient and electrical conductivity relative to the 
relaxation time of NiO are 900 µV/K and 2 ×  1015 (Ω ms)−1, 
respectively, at the temperature of 600 K, where the cor-
responding carrier concentration was 9 ×  1016  cm−3. Keem 
and Honig [21] measured the Seebeck coefficient of a sin-
gle-crystal NiO through experiments, which produced a 
consistent value of 900 µV/K at 600 K. However, no cor-
responding carrier concentration value was included in 
their measurement. Another experiment by Parravano [22] 
controlled the hole concentration of NiO to be approxi-
mately 1 ×  1021  cm−3, and the resulting Seebeck coefficient 
was approximately 450  µV/K at 600  K. Moreover, the 
experimental study by Nachmann et al. [23] revealed that 
the thermopower of NiO was 600 µV/K at 600 K, while 
the electrical conductivity relative to relaxation time was 
1 ×  1017 (Ω ms)−1. Considering the harsh operating condi-
tions required for the electrical systems comprising NiO, the 
effects of temperature and carrier concentration on its elec-
trical and transport properties are topics of crucial impor-
tance to sustain the conductivity of the system. Despite these 
outstanding achievements for NiO, quantitative discussions 

on the thermal and electrical conductivity of NiO consider-
ing carrier concentration and temperature are limited. Most 
previous experiments and simulations for NiO have been 
conducted at fixed temperatures and carrier concentrations. 
The first-principle calculation can be affected by the type 
of applied potential. However, information regarding the 
impacts of applied potential on the calculated properties of 
NiO has been limited.

In this study, we investigate the thermal and electrical 
properties of NiO considering carrier concentration and 
temperature through novel computational techniques. First, 
the first-principle calculations are performed using the 
WIEN2K simulation [24–27] with four different types of 
potential (i.e., GGA, GGA + U, LSDA, and LSDA + U), and 
the band structure and density of states (DOS) of NiO are 
obtained. Then, the transport properties (i.e., electrical and 
thermal conductivity relative to relaxation time) of NiO are 
determined as a function of temperature and carrier concen-
tration using the Boltzmann transport properties (BoltzTraP) 
simulation [28]. BoltzTraP is a simulation package based 
on the Boltzmann transport equation, which has widespread 
applications for thermoelectric research and also for obtain-
ing transport coefficients. Using the lattice parameters, cal-
culated energy function, wave vector (k) dependent band 
energies, and eigenvalues from WIEN2k or similar types of 
packages, BoltzTraP can calculate thermoelectric properties 
such as electrical and thermal conductivities and Seebeck 
coefficient. This study will be the first to perform a system-
atic evaluation of the transport properties of NiO consider-
ing carrier concentration and temperature. Therefore, the 
outcome of this study can contribute to the field of electrical 
contact devices as well as thermoelectric and semiconductor 
applications.

2  Computational Procedures

For the purpose of the comparative study, DFT calcula-
tions were conducted for Ni and NiO with the four potential 
functionals (i.e., GGA, GGA + U, LSDA, and LSDA + U). 
The Coulomb interaction term U = 7 eV for the GGA + U 
and LSDA + U potentials was applied at the 3d orbital of 
Ni according to the work by Li et al. [29]. As a reference, 
the properties of Ni were calculated to validate the compu-
tational approaches prior to the main study for NiO. The 
crystal structures of Ni and NiO in Fig. 1 were obtained 
using VESTA. NiO is an antiferromagnetic material. Thus, 
the magnetic moments of Ni are aligned in (111) planes, 
antiferromagnetically coupling with the magnetic moments 
in neighboring (111) planes.

First, the cutoff parameter in WIEN2K simulations was 
set to R

mt
× K

max
= 9 and G

max
= 12.u.

−1 , where Rmt is the 
smallest atomic sphere radius in the unit cell, Kmax is the 
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magnitude of the largest K vector, and Gmax is the plane-
wave cutoff parameter. All the calculations were obtained 
using 3500 k-points in the irreducible part of the Brillouin 
zone. A total of 3500 k-points were selected as the energy 
curve stabilized at 3500. The magnetic moment, DOS, and 
bandgap for Ni and NiO were also calculated.

Using the results of WIEN2K simulations, the electrical 
conductivity (σe/τ) and electrical part of the thermal conduc-
tivity (κe/τ) relative to relaxation time were then obtained 
through the BoltzTraP simulations. The thermal conductiv-
ity of a material depends on its free electrons and phonons. 
The contribution made by free electrons is known as the 
electrical thermal conductivity of materials, while that made 
by phonons is known as the phonon thermal conductivity or 
lattice thermal conductivity. Thermal conductivity measured 
in a conventional experiment yields the total thermal con-
ductivity, which is the sum of electron and phonon contribu-
tions. Reducing the lattice thermal conductivity is crucial to 
enhancing the efficiency of thermoelectric materials. The 
electrical thermal conductivity of NiO, which is contrib-
uted by the electrons, was calculated in the current study 
using BoltzTraP. Therefore, this value from the BoltzTraP 
simulation will not match the experimental measurement, 
and additional computational work is required to make a 
complete comparison.

In BoltzTraP simulations, the wave functions were 
recalculated using a substantially dense k-mesh of 
20,000 k-points, and the number of interpolated lattice 
points per k-point was set to 2. The calculation of Boltz-
TraP mostly depends on the wave-vector-dependent energy 
function. Depending on band structures or energy values 
considering the wave vector, the carrier concentration can 
be altered, which will change the resulting transport proper-
ties accordingly. Therefore, the BoltzTraP simulation used 

a substantially denser k-mesh than the WIEN2K simulation 
to obtain superior calculation results. The electrical conduc-
tivity (σe/τ) and thermal conductivity (κe/τ) of NiO can be 
correlated with temperature and carrier concentration based 
on the results of BoltzTraP simulations.

3  Results and Discussion

3.1  Lattice Constants

The lattice constants of Ni and NiO were calculated using 
WIEN2K simulations with the GGA, GGA + U, LSDA, and 
LSDA + U potentials. First, we conducted volume optimiza-
tion, that is, the volume with the lowest energy value. Then, 
under this optimum volume, we performed the c/a ratio 
maximization to obtain the correct lattice parameters. The 
simulation results with the GGA and GGA + U potentials 
produced a lattice constant of 3.51–3.52 and 4.20–4.21 Å for 
Ni and NiO, respectively. These values agree with the exper-
imental measurements, that is, 3.517–3.523 Å for Ni [30, 31] 
and 4.170–4.195 Å for NiO [32, 33]. By contrast, the lattice 
constant calculated from the LSDA and LSDA + U poten-
tials was 3.42–3.43 and 4.07 Å for Ni and NiO, respectively, 
which are slightly smaller than the values from the GGA and 
GGA + U potentials. This dependency on the applied poten-
tial functional is also observed in other computational work 
for NiO [34–38], where the lattice constants of NiO were 
4.16–4.23 and 4.04–4.18 Å with the GGA and GGA + U and 
the LSDA and LSDA + U potentials, respectively. Therefore, 
these comparative data on lattice constants could validate 
the WIEN2K simulations, and the resulting lattice constants 
were used for the following calculation of the magnetic 
moment and DOS.

Fig. 1  Crystal structure of Ni and NiO created using the Visualiza-
tion for Electronic and STructural Analysis (VESTA). a Ni, b con-
ventional unit cell of NiO, and c antiferromagnetic unit cell of NiO. 

The yellow and blue beads are Ni and O, respectively. NiO is antifer-
romagnetic; therefore, the black and red arrows in c show the upward 
and downward spins, respectively
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3.2  Magnetic Moments

We calculated the magnetic moment of Ni and NiO using 
WIEN2K simulations with the GGA, GGA + U, LSDA, and 
LSDA + U potentials based on the lattice constants obtained 
in Sect. 3.1. After optimizing the lattice parameters, the 
structure of Ni and NiO was initialized through the selec-
tion of the potential of consideration and the specification 
of desired k-points. We then performed the self-consistent 
calculation, which produced the magnetic moments of the 
elements in the structures. Under the GGA, LSDA, and 
LSDA + U potentials, the calculated magnetic moment of Ni 
was 0.60–0.66 µB, which agrees well with the previous com-
putational work with the GGA and LSDA [36–38] poten-
tials and experimental measurements of around 0.59–0.66 µB 
[37, 39–41]. By contrast, the WIEN2K simulation with the 
GGA + U potential overestimated the magnetic moment of 
Ni to be 1.06 µB.

Next, the calculated magnetic moment of NiO is summa-
rized in Table 1. Under the GGA, GGA + U, and LSDA + U 
potentials, the total magnetic moment of NiO ranged 
from 3.75 µB to 4.00 µB, which agrees with the previously 
reported values of 3.28–4.0 µB [34, 38, 42–44]. The LSDA 
potential considerably underestimated the total magnetic 
moment of NiO to be 0.26 µB. These results of calculated 
magnetic moments indicate that the LSDA may not be a 
relevant potential to analyze the magnetic property of NiO 
compared to the three other potentials.

3.3  DOS and Bandgap for NiO

We obtained the DOS using the WIEN2K simulations to 
investigate the electrically conductive characteristics of Ni 
and NiO. First, the DOS plots for Ni were obtained from the 
four different potentials, and the results were used to vali-
date our computational approaches. As shown in Additional 
file 1: Fig. S1, all plots confirm that Ni is an electrically 
conductive material without a bandgap.

Next, Fig. 2 provides the DOS plots for NiO, where 
the zero in the x-axis represents the Fermi energy level. 

In contrast to Ni, NiO has a semiconductor characteristic 
with a specific bandgap. The calculated bandgap values for 
NiO are summarized in Table 1. Under the GGA (Fig. 2a) 
and LSDA (Fig. 2b) potentials, the calculated bandgap for 
NiO was 0.93 and 0.42 eV, respectively, which is consider-
ably smaller than the reported values of 3.0–4.3 eV [34, 
38, 45]. However, the bandgap obtained from the DOS with 
the GGA + U and LSDA + U potentials produced 3.09 and 
3.76 eV, respectively, which agrees with the values measured 
from experiments [46–50].

These results indicate that the implementation of the Cou-
lomb interaction term U can provide a superior calculation 
of the NiO bandgap from the WIEN2K simulation, and the 
LSDA + U potential produces the most accurate bandgap 
value. Therefore, the WIEN2K simulation results obtained 
with the LSDA + U potential are applied to the BoltzTraP 
simulation to calculate the electrical and thermal conductivi-
ties of NiO, as described in Sect. 3.4.

3.4  Boltzmann Transport Property of NiO

3.4.1  Validation of BoltzTraP Simulation

This study aims to obtain the electrical and thermal con-
ductivities of NiO considering temperature and carrier con-
centration through the BoltzTraP simulation. As explained 
above, we performed the BoltzTraP simulation with a sub-
stantially dense k-mesh of 20,000 k-points based on the 
WIEN2K simulation results for NiO under the LSDA + U 
potential to calculate the transport properties. First, we 
obtained the Seebeck coefficient and electrical and thermal 
conductivities for Ni considering temperature to validate 
the proposed computational approaches, as shown in Addi-
tional file 1: Fig. S2 and Table S1. The results showed that 
the Seebeck coefficient (S) of Ni decreased with tempera-
ture, as shown in Fig. S2a. The calculated Seebeck coef-
ficient at 300 K was around − 15 µV/K, which is consistent 
with the previous results [51, 52]. Notably, the BoltzTraP 
simulation produces the electrical conductivity (σe) and the 
electrical part of the thermal (κe/τ) conductivity relative to 
relaxation time, as shown in Figs. S2b and S2c, respectively. 
The corresponding relaxation time should be obtained to 
calculate the intrinsic conductivity of Ni. We compared 
our results with the available experimental data (i.e., 
σelectrical = 13.3 ×  106 (Ωm)−1 at 300 K) to find the relaxation 
time for Ni [53]. This comparison showed that the relaxa-
tion time of Ni at 300 K is 2.77 ×  10−14 s for the LSDA + U 
potential. Using this relaxation time value, we could calcu-
late the thermal conductivity of Ni to be 102.22 W/m/K for 
the LSDA-U potential, which reasonably agrees with the 
reported value of 90 W/m/K [53]. Accordingly, this could 
validate the proposed computational approaches.

Table 1  Magnetic moment and bandgap of NiO

Method Magnetic moment, µB Bandgap (eV)

Ni O Total

GGA 1.54 0.31 3.75 0.93
GGA + U 1.81 0.17 4.00 3.09
LSDA 0.12 0.004 0.26 0.42
LSDA + U 1.75 0.22 4.00 3.76
Reference works 3.28–4.00 

[34, 38, 
42–44]

3.40–4.30 [34, 38, 
45–50]
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Next, we calculated the thermoelectrical properties of 
NiO considering temperature and carrier concentration using 
the same computational approaches performed for Ni.

First, considering some previously published work on the 
Seebeck coefficient (S) and electrical conductivity/relaxa-
tion time (σe/τ) for NiO at a fixed temperature and carrier 
concentration, we compared our calculations with previously 
reported values. This comparison is summarized in Table 2.

Based on our BoltzTraP simulations with the LSDA + U 
potential, when the temperature and carrier concentration 
were fixed to 600 K and 9.0 ×  1016  cm−3, respectively, the 
calculated Seebeck coefficient and electrical conductivity 
(σe/τ) relative to relaxation time were S = 942.17 µV/K and 
σe/τ = 2.36 ×  1015 (Ω ms)−1, respectively. This result agrees 
with previous computational and experimental works [20, 

21]. Linnera et al. [20] computed the Seebeck coefficient 
and electrical conductivity (σe/τ) relative to relaxation time 
for NiO at the same temperature and carrier concentration, 
which were 900.00 µV/K and 2.00 ×  1015 (Ω ms)−1, respec-
tively. The experimental work by Keem and Honig [21] 
measured the Seebeck coefficient for NiO to be 900 µV/K 
at 600 K. In addition, we calculated S and σe/τ values for 
NiO using the carrier concentration of 2.18 ×  1018   cm−3 
with the fixed temperature of 600  K, which produced 
S = 675.15 µV/K and σe/τ = 0.5 ×  1017 (Ω ms)−1. The exper-
imental measurement by Nachman et al. [23] calculated 
the properties of NiO using the same carrier concentra-
tion of 2.18 ×  1018  cm−3, which provided S = 600 µV/K and 
σe/τ = 1.0 ×  1017 (Ω ms)−1. Comparing our simulations to 
the experimental measurements, our calculated σe/τ value 

Fig. 2  DOS plots for NiO obtained from the WIEN2K simulations with a GGA, b LSDA, c GGA + U, and d LSDA + U potentials

Table 2  Calculated Seebeck 
coefficient and electrical 
conductivity of NiO compared 
to the previously reported 
values

T (K) Carrier concentration  (cm−3) S (µV/K) σe/τ (Ω ms)−1

Our calculations 600 K 9.0 ×  1016 942.17 2.36 ×  1015

600 K 2.18 ×  1018 675.15 0.50 ×  1017

Linnera et al. [20] 600 K 9.0 ×  1016 900.00 2.00 ×  1015

Keem and Honig [21] 600 K N/A 900 N/A
Nachman et al. [23] 600 K 2.18 ×  1018 (measured at 300 K) 600 1.00 ×  1017
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is lower than the experiment despite reasonable matching 
of the measured S value. Notably, the temperature in our 
simulations was fixed at 600 K for all procedures. How-
ever, in the experiment, Nachman et al. [23] first obtained 
the carrier concentration at 300 K and then measured the 
conductivity at 600 K. This finding indicates that the actual 
carrier concentration in their experiment at 600 K would be 
different from the value obtained at 300 K, which would be 
the reason for the difference between our calculations and 
their experimental measurements. Therefore, we can validate 
the computational approaches based on the aforementioned 
comparative data to calculate the thermoelectrical properties 
of NiO considering temperature and carrier concentration.

3.4.2  Electrical and Thermal Conductivities of NiO 
Considering Temperature and Carrier Concentration

Using the computational procedures described above, we 
calculated the electrical (σe/τ) and thermal conductivity 
(κe/τ) relative to relaxation time for NiO considering tem-
perature and carrier concentration. First, Fig. 3 shows the 
change of σe/τ considering carrier concentration, which 
was obtained at different temperatures ranging from 298 
to 800 K. We found that the σe/τ value of NiO for p-type 
(Fig. 3a) and n-type (Fig. 3b) carriers increases with the 
carrier concentration. We plotted the trend of σe/τ with tem-
perature at fixed carrier concentration numbers of 9.0 ×  1016, 
1.0 ×  1019, and 1.0 ×  1021   cm−3 to evaluate the effects of 

Fig. 3  Electrical conductivity relative to relaxation time (σe/τ) for 
NiO: a, b are the changes of σe/τ considering carrier concentration for 
p- and for n-type carriers, respectively. c is the change of σe/τ consid-
ering temperature

Fig. 4  Thermal conductivity relative to relaxation time (κe/τ) for NiO: 
a, b are the changes of κe/τ considering carrier concentration for p- 
and for n-type carriers, respectively. c is the change of κe/τ consider-
ing temperature
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temperature on the electrical conductivity, as shown in 
Fig. 3c. The results revealed that the σe/τ value of NiO is 
insignificantly affected by the temperature within the tested 
range of temperatures. Next, Fig. 4 provides the calculated 
κe/τ value for NiO considering carrier concentration, which 
was obtained at different temperatures ranging from 298 to 
800 K. Similarly, the κe/τ values for p-type (Fig. 4a) and 
n-type (Fig. 4b) carriers increased with the carrier concen-
tration. Compared to the results of σe/τ in Fig. 3c, the ther-
mal conductivity (κe/τ) relative to relaxation time demon-
strated an increasing trend with the temperature.

The relationship between the electrical and thermal con-
ductivities of a material and temperature is dependent upon 
its type. Metals typically have several available carriers 
that can move freely. Therefore, if the material temperature 
increases, then the carriers will obtain additional energy and 
move with high velocity accordingly. Consequently, addi-
tional collisions will occur between the carriers, which will 
increase resistivity (or decrease conductivity). Semiconduc-
tors do not have free carriers at 0 K because valence elec-
trons are tightly bonded. When the temperature of semicon-
ductors increases, the covalent bonds in the crystal structure 
start to break due to the increased energy, which generates 
free electrons and holes. Therefore, nearby electrons attempt 
to fill up the empty space (holes). Through this mechanism, 
electrons can move and flow, thereby increasing the conduc-
tivity of a semiconductor. As a semiconductor, the conduc-
tivity of NiO is expected to increase with temperature. Based 
on our calculations in Figs. 3c and 4c, the thermal conduc-
tivity relative to relaxation time (κe/τ) slightly increased with 
the temperature, but the electrical conductivity relative to 
relaxation time (σe/τ) was only slightly affected by the tem-
perature. This weak relationship with the temperature might 
be attributed to the temperature dependency of the relaxation 
time value for NiO. The calculated conductivity is a rela-
tive value to the relaxation time (σe/τ). Thus, the relaxation 
time value for NiO should be determined as a function of 
temperature, (T), to obtain the exact relationship between 
conductivity and temperature. The relaxation time of semi-
conductors decreases with temperature [54–57]. Therefore, 
the τ value for NiO becomes small at high temperatures, 
which can provide a clear relationship between the calcu-
lated conductivity value and the applied temperature accord-
ingly, similar to increasing conductivity with temperature.

4  Conclusion

The magnetic, electrical, and transport properties of NiO 
were calculated using the framework of density functional 
and Boltzmann transport theories. The lattice constants, 
magnetic properties, and DOS of NiO were calculated 
through WIEN2K simulations with four different potentials 

(i.e., GGA, GGA + U, LSDA, and LSDA + U). The lattice 
constants of NiO obtained from GGA and GGA + U poten-
tials were close to the experimental measurements, while the 
simulations with LSDA and LSDA + U potentials produced 
small values. The magnetic moment of NiO calculated from 
GGA + U and LSDA + U potentials matched well with the 
experimental measurements, but the results with GGA and 
LSDA potentials underestimated it. The DOS and bandgap 
for NiO were best described with the LSDA + U potential 
compared to the three other potentials. Therefore, using the 
results of the WIEN2K simulation with LSDA + U poten-
tial, the BoltzTraP simulations were performed to determine 
the electrical conductivity (σe/τ) and electrical part of the 
thermal conductivity (κe/τ) of NiO considering temperature 
and carrier concentration. The results revealed that electrical 
conductivity relative to relaxation time (σe/τ) increased with 
the carrier concentration but was not significantly changed 
with temperature under a fixed carrier concentration. The 
electrical part of the thermal conductivity relative to the 
relaxation time (κe/τ) showed an increasing trend consider-
ing carrier concentration and temperature.

This study quantitatively evaluates the transport proper-
ties of NiO considering carrier concentration and tempera-
ture. The impact of strain is also crucial because current and 
future devices made of NiO are required to operate under 
harsh temperatures and stress. Studying the individual and 
coupled effects of temperature and strain on the properties 
of NiO through novel experimental and computational tech-
niques is necessary to further contribute to the thermoelec-
tric and semiconductor sectors.
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