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Abstract
Atomic layer deposition (ALD) is a thin-film fabrication technique that has great potential in nanofabrication. Based on 
its self-limiting surface reactions, ALD has excellent conformality, sub-nanometer thickness control, and good process 
compatibility. These merits promote the industrial and research applications of ALD in various fields. This article provides 
an introduction to ALD and highlights its applications in semiconductors, pan-semiconductors, environment and energy, 
and other fields. The applications of ALD in the key nodes of integrated circuits are initially demonstrated, and the area-
selective ALD technique is discussed as a bottom-up method for self-aligned nanomanufacturing. Emerging applications of 
ALD are illustrated in the fabrication of passivation layers, functional surface layers, and buffer layers, which have shown 
the development trend of ALD in miniaturization and diversification. ALD is an enabling technique for atomic and close-
to-atomic scale manufacturing (ACSM) of materials, structures, devices, and systems in versatile applications. The use of 
theory calculation, multiscale simulation, and more novel methods would steer ALD into further evolution, which makes it 
possible to cater to the demand of ACSM.
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1  Introduction

With the development of atomic and close-to-atomic-scale 
manufacturing (ACSM), the requirement of depositing thin 
films without defects and impurities for laminated struc-
tures is greatly improved. When the target film thickness 
approaches atomic scale, conventional thin-film techniques 
face great challenges [1]. Consequently, atomic layer dep-
osition (ALD) has emerged as an important technique to 
deposit ultrathin films for various applications. ALD was 
popularly utilized as “atomic layer epitaxy” by Tuomo Sun-
tola in the 1970s, which deposited ZnS films for flat panel 
displays. Few studies have involved epitaxial films such as 

silicon and GaAs; thus, the general name of ALD was used 
to describe this process until now [2].

ALD is a vapor deposition method; the ALD precur-
sors and co-reactants are separated by sequential alternat-
ing pulses indicating self-limiting reactions [3]. Figure 1 
shows the general process of ALD, which consists of cyclic 
surface reactions: (1) adsorption of precursor A; (2) inert 
gas to purge excess precursors and byproducts; (3) adsorp-
tion of precursor B; (4) repeated inert gas purging and then 
circulation to acquire layer-by-layer growth until the target 
film thickness is achieved. The adsorption process includes 
physisorption and chemisorption of the precursors, where 
the excess physisorbed materials could be eliminated by 
inert gas purging. Given the finite active surface sites, the 
surface reactions are limited in every cycle, which leads to 
self-limiting chemisorption reactions. In general, the tem-
perature of the process is crucial for ALD reactions. The 
temperature range of the saturated ALD process is defined 
as the “ALD temperature window.” At lower temperatures, 
it may lead to inadequate reaction or precursor condensa-
tion. By contrast, at higher temperatures, the desorption or 
thermal decomposition of precursors may occur. That is, the 
self-limiting ALD reactions could only generate within the 
ALD temperature window [4].
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Based on its self-limiting characteristics, ALD could 
achieve atomic-level thickness that is only controlled by 
adjusting the number of growth cycles. In addition, the satu-
ration process restricts the reaction of precursors to less than 
one atomic/molecular layer, which enables conformality on 
complex surfaces and structures. It also ensures the excel-
lent step coverage and uniformity of thin films in a large 
area. Moreover, ALD has great tolerance to materials and 
processes. It can obtain a variety of thin films, including 
oxides, nitrides, fluorides, sulfides, pure metals, polymers, 
and mixed or doped materials [5–7]. Multilayers can even be 
deposited, and the properties of each layer can be custom-
ized at the atomic level, which provides more possibilities 
for ALD applications. Furthermore, the ALD process could 
be extended to large substrates and conducted into parallel 
processes, and it can be used for mass production in industry 
fields.

Given the above-mentioned advantages, ALD is uti-
lized in several applications for industry and research. In 
this review, the advances of ALD will be discussed. These 
applications can be divided into four groups in this article 
(Fig. 1). First, ALD is considered as the key technique for 
the manufacturing of next-generation semiconductors, which 
meets the requirement of atomic-level control [8]. It has 

been utilized in the fabrication of integrated circuits (ICs) 
2000 [9]. Subsequently, area-selective ALD is applied as a 
bottom-up method that enables self-aligned manufacturing. 
Second, ALD is applied in the pan-semiconductor indus-
try. The self-limiting characteristic of ALD makes it a “soft 
deposition process,” which could avoid substrate damage 
compared with traditional sputtering [10, 11]. Third, coating 
of particles can be performed by ALD in the fields of envi-
ronment and energy, which shows great potential in future 
applications. Fourth, ALD applications in other emerging 
fields have been illustrated. Finally, the perspective is pre-
sented to show the possible challenges and development 
trends of ALD.

2 � ALD in the Semiconductor Industry

As the footstone of information technology, the semicon-
ductor industry promotes the continuous downscaling of 
ICs [14]. From thousands of transistors to billions today, 
the gate length of transistors, which is a symbol of feature 
size, has evolved from 10 μm to 3 nm and even 1 nm in 
the future [15]. Nanodevices are facing the demand of fea-
ture size down to atomic scale, and the existing process and 

Fig. 1   General process, advan-
tages, and applications of ALD. 
Reprinted with permission from 
Ref. [12], Copyright © 2008 
American Chemical Society. 
Reprinted with permission from 
Ref. [13], Copyright © 2020 
American Chemical Society
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equipment are encountering grave difficulties. Thus, the 
increasing requirement of thin-film techniques in the semi-
conductor industry has driven the development of ALD [16].

2.1 � ALD‑Enabled IC Nanomanufacturing

In front-end-of-line (FEOL) ICs, the structure of field-effect 
transistor (FET) changes greatly (Fig. 2). With regard to the 
downscaling of transistors, the SiO2 dielectric gate layers 
become thinner, thereby causing increasing leakage current 
resulting from the quantum tunneling effect. Afterward, Intel 
launched the high-k metal gate structure with ALD HfO2 
in 2007 [17–19]. The equivalent thickness of the gate is 
reduced by introducing high-k dielectric layers. In addition, 
ultrathin ALD HfO2 layers have reduced the leakage current 
simultaneously. Moreover, ALD ensures the quality in the 
interface between dielectric and metal gates to prevent the 
influence of interface defect charge.

With the continuous shrinking of critical dimensions, 
new device structures are furtherly invented. As for FinFET, 
a 3D gate is used to replace planar grids, which improves 
device density and performance. 3D structures and devices 
are the main directions for chip manufacturing in the future 
[20]. Afterward, Intel proposed advanced processes such as 
self-aligned quadruple patterning (SAQP) to increase the 
Fin height and reduce the spacing between Fins by ALD 
[21, 22]. Then, Samsung and IBM started working on gate-
all-around (GAA) tubes, in which each transistor consists 
of three stacked nanosheets surrounded by gate materials 
[23]. Using GAA-FET, stacked Si and Si-Ge layers could be 
achieved, thereby improving the performance and reducing 
the power consumption after 5-nm nodes [24]. The demand 
for deposition increases from high-k silicon Fins to stacked 
nanowires and nanosheets. The challenge settles in the con-
formal coating on three-dimensional and high-aspect-ratio 

structures. The conformal covering of high-k gate dielec-
tric materials on complex surfaces could be achieved by 
ALD. With the development of GAA-FET from nanosheet 
to forksheet and even to complementary FET (CFET), 
the requirement of conformal coating achieved by ALD 
will increase. In addition, atomic layer etching (ALE) is 
an important technique to etch excess materials and clean 
defects or byproducts in the manufacturing of GAA-FET 
[26–28]. Similar to ALD, ALE provides self-limiting reac-
tions during etching and leads to a layer-by-layer removal of 
materials at an atomic scale [29, 30]. Moreover, ALE could 
control the quantity of the interface and smoothen the line 
edge roughness. Atomic-scale systematic processes, includ-
ing ALD, ALE, and cleaning, enable the manufacturing of 
high-precision nanodevices [31].

In the back end of line (BEOL), ALD also plays an 
important role in barrier layers or seed layers in through-
silicon via (TSV) and metal contact/interconnect. Chips 
are built through layer-by-layer aligned strategies by pho-
tolithography [32]. In BEOL, several layers of conductive 
metal wires are connected by columnar metals [33]. High-
density TSVs have been attracting considerable attention in 
large-scale integration and package [34]. At present, copper 
is mostly used as a conducting metal because of its excel-
lent conductivity [35]. However, the resistance of BEOL Cu 
wire increases at smaller geometries because of its inher-
ent bulk conductor resistivity and scattering effect at grain 
boundaries and surfaces. As the size of the conductor vias 
decreases to less than 10 nm, the proportion of the volume 
occupied by the metal liner/barrier layers and the seed lay-
ers increases; thus, the volume left for the conductive metal 
filling decreases. The above-mentioned problems result in 
slow performance and high power consumption of chips. 
Therefore, developing new processes to fill low-resistance 
materials in tiny vias is necessary. Considering the excellent 

Fig. 2   Evolution of transistor 
density and gate length in ICs. 
Reprinted with permission from 
Ref. [20], Copyright © 2019 
MDPI. Reprinted with permis-
sion from Ref. [23], Copyright 
© 2017 Elsevier Inc. Reprinted 
with permission from Ref. [25], 
Copyright © 2019 American 
Chemical Society
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step coverage of ALD, it could achieve conformal deposition 
at the trenches or vias. After depositing seed layers by ALD, 
vias could be filled by other high-volume manufacturing pro-
cesses such as chemical vapor deposition or electroplating. 
The new fill technology is critical to maximize conductor 
volume and minimize interface resistance. New alternative 
materials such as Co, Ru, W, and Ir have also been devel-
oped for reducing resistance [36, 37]. The development of 
new metals and fill strategies ensures a great interface and 
defect-free wire filling.

2.2 � Area‑Selective ALD for Nanopatterning

Nanopatterning is an important step for semiconductor man-
ufacturing. The main patterning process relies on photoli-
thography, which has enabled the downscaling of features 
through light sources from deep ultraviolet to extreme ultra-
violet [38, 39]. However, conventional top-down methods 
are facing challenges in advanced nodes. Edge placement 
error becomes the primary problem of aligned manufac-
turing (Fig. 2) [40]. It may cause shorting between metal 

vias and neighboring metal parts [41]. Moreover, the cost 
of EUV remarkably increases with the downscaling of 
devices. Consequently, complementary techniques are in 
great demand [42].

Bottom-up area-selective atomic layer deposition (AS-
ALD) enables film growth on the desired area and could 
achieve self-aligned nanopatterning because of its addic-
tive process (Fig. 3). It provides atomic-scale accuracy and 
streamlines the processing steps of the semiconductor indus-
try. The origin of AS-ALD primarily refers to the differ-
ences in nucleation behavior of precursors and co-reactants 
on different substrates. In the presence of a nucleation dis-
crepancy between the growth and non-growth areas, it could 
be exploited to achieve AS-ALD. The maximum number of 
cycles before the growth initials on the non-growth areas 
could be defined as the selective window. The selectivity of a 
process can be defined in two ways: comparing the selectiv-
ity for a specific thickness and comparing the thickness that 
could be achieved after setting a specific selectivity.

After several cycles, selectivity may be reduced at a spe-
cific thickness, which will lead to unexpected deposition 

Fig. 3   a Templated AS-ALD achieved by SAMs. Reprinted with per-
mission from Ref. [43], Copyright © 2021 Springer Nature. b Tem-
plated AS-ALD achieved by SMIs. Reprinted with permission from 
Ref. [44], Copyright © 2018 American Chemical Society. c Inherent 
AS-ALD on metal/oxide substrates. Reprinted with permission from 
Ref. [45], Copyright © 2021 MDPI. d Inherent adsorption difference 
of metal oxides on different metal facets. Reprinted with permission 

from Ref. [46], Copyright © 2018 American Chemical Society. e 
Direct-write-assisted AS-ALD. Reprinted with permission from Ref. 
[47], Copyright © 2013 American Chemical Society. f ALD + etching 
process of AS-ALD. Reprinted with permission from Ref. [48], Cop-
yright © 2019 American Chemical Society. g Substrate-bias-assisted 
AS-ALD. Reprinted with permission from Ref. [49], Copyright © 
2021 American Chemical Society
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on the non-growth areas. To date, various approaches have 
been developed to extend the selective window (Fig. 3) [50, 
51]. The major approaches include templated and inherent 
AS-ALD. Other supplementary approaches will also be 
illustrated in this study.

The template is used to modify surface chemistry and 
enhance the selectivity of AS-ALD. Template-assisted AS-
ALD is based on the selective chemisorption of template 
molecules on the non-growth areas. The treated areas inhibit 
the adsorption of precursor molecules. Meanwhile, untreated 
surfaces can react normally. At present, the commonly used 
templates are self-assembled monolayers (SAMs) [52]. 
SAMs are amphiphilic molecules that consist of a long 
chain of carbon atoms. By implementing the liquid-phase 
method, substrates are immersed in SAMs solution for a 
period to achieve dense-packed adsorption. After the hydro-
philic group bonded to specific surfaces, the hydrophobic 
groups of SAMs could be used to block the adsorption of 
the precursors. Subsequently, only the required surfaces can 
be deposited [53]. SAMs have achieved selective deposition 
of metal oxides [54–58], metals [43, 57, 59], and organic 
compounds [60]. As shown in Fig. 3a, the Pd/Pt core–shell 
nanoparticles are fabricated on the pinhole sites of SAMs 
[43]. Furthermore, vapor-phase SAMs have been devel-
oped, which can reduce the formation time of SAMs. By 
redosing the SAMs between several ALD cycles, the block-
ing ability can be improved [61]. AS-ALD based on small 
molecule inhibitors (SMIs) is another option for template-
assisted AS-ALD. Unlike long-chain SAMs, SMIs can be 
introduced in the gas phase before each ALD cycle, and 
the adsorption of inhibitors in the non-growth areas can be 
repaired and can further improve the selectivity of AS-ALD 
[44, 62]. As illustrated in Fig. 3b, two Si precursors are used 
as inhibitors to achieve the AS-ALD of Pt or Ru [44]. The 
inhibitors could selectively adsorb on OH-terminated Si 
but not on H-terminated Si; thus, the deposition will only 
occur on H-terminated surfaces. This precursor-type inhibi-
tor could be easily incorporated into the ALD process and 
could achieve selective passivation of OH-terminated Si. 
AS-ALD of SiO2 [62] and TiN [63] achieved by SMIs were 
also studied. SMIs are considered tools of AS-ALD for next-
generation nanopatterning.

With the downscaling of devices, the critical dimen-
sion of nanostructures is shrinking synchronously. Given 
the increasing difficulty of finding a suitable template at 
the atomic level, inherent AS-ALD approaches are rapidly 
developing. Inherent AS-ALD primarily focuses on the dif-
ferences of chemisorption energy between the growth area 
and the non-growth area. It is based on process control, 
which is highly related to the thermodynamic and kinetic 
mechanisms. The target thickness of inherent approaches is 
usually less than 10 nm, which is suitable for ultrathin-film 
applications. Inherent approaches could omit the process 

of removing the templates and further streamline the pro-
cess steps. As mentioned previously, ALD reactions are 
sensitive to the surface chemical groups. Numerous stud-
ies have focused on the chemical characteristic between 
H-terminated, OH-terminated, and NH2-terminated surfaces 
[64–67]. The deposition rate is related to the main surface 
reaction between the substrates and precursors. Several stud-
ies have focused on the differences between oxides and met-
als. Kessels et al. utilized chemical dissociation adsorption 
of co-reactant O2 on noble metals such as Pt to achieve AS-
ALD [68]. The result showed that the catalytic dissociation 
of the oxygen molecules on noble metal surfaces acceler-
ated deposition, and no deposition was observed on SiO2 
and Al2O3. As shown in Fig. 3c, Li et al. discovered that 
the selective growth of MnOx was achieved on Pt prior to 
SiO2 [45]. In addition, the initial nucleation rate was related 
to the electronegativity differences among the substrates. 
Furthermore, AS-ALD could achieve selective growth on 
specific crystal facets. As shown in Fig. 3d, the dissociation 
energy barriers on Pt facets are different, which enables the 
preferential adsorption of precursors. The AS-ALD of metal 
oxides on different facets of Pt has been confirmed by first-
principle calculations combined with microkinetic methods 
[46]. The MCp2 (M = Fe, Co, Ni) precursors tend to deposit 
on edge sites and (111) facet, and this process is tempera-
ture dependent. The selective deposition on different facets 
could be utilized in nanoelectronics as well as environment 
and energy fields.

Additional approaches are identified to enhance the selec-
tivity except for templated and inherent methods. As shown 
in Fig. 3e, the direct-write approach has achieved selective 
deposition of Pt on Pt seed layers prepared by electron beam-
induced deposition (EBID) [47]. The direct-write approach 
is contrary to the surface passivation templated approach; 
the seed layers grown by EBID can be considered as a sur-
face activation process [22]. The direct-write technique can 
create the desired patterns. However, the quality and yield of 
deposition material are relatively low when only the direct-
write method is used for metal deposition. Therefore, sub-
sequent ALD is needed to combine with EBID [69]. Except 
for surface pretreatment, the selective deposition could also 
be optimized by introducing etching steps after ALD. First, 
nucleation differences of ALD precursors on different sub-
strates are used to form films with different thicknesses. 
Then, the etching or ALE process is introduced to remove 
the films deposited on the growth and non-growth areas. The 
growth rate on the growth area is always faster than that on 
the non-growth area; thus, the selective thickness is gradu-
ally improved after several ALD + etching cycles [70]. In the 
study of Vos et al. (Fig. 3f), the inherent selectivity of Ru 
precursor on Pt and SiO2 substrates was utilized, and then 
O2 plasma etching was introduced to enhance the selectivity 
[48]. As illustrated in Fig. 3g, the nucleation behavior could 
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also be controlled by substrate bias during plasma-enhanced 
ALD (PE-ALD) [49]. Considering the precursor adsorption 
difference between the growth area and non-growth area, the 
plasma produced by radio frequency substrate bias removed 
the precursor molecules adsorbed on the non-growth area 
but not the species on the growth area. Thus, selective depo-
sition of Al2O3 and AlN on SiO2 prior to Pt was achieved.

AS-ALD has shown great potential for self-aligned nano-
patterning and industrial applications such as self-aligned 
via. More AS-ALD approaches are expected to be developed 
and applied to the semiconductor industry. These approaches 
are based on nucleation control, which is highly related to 
the main surface reaction. Therefore, understanding the 
interaction between precursors and substrates is important. 
Notably, no universal approach has been developed for AS-
ALD, and every approach has its advantage and limitation. 
Therefore, AS-ALD should be selected or developed based 
on specific scenarios.

3 � Emerging Applications of ALD

Applications in the semiconductor industry are the main 
driving force of ALD, and the demand for ALD equipment 
is increasing every year. ALD in the semiconductor industry 
primarily focuses on the fabrication of chips (FEOL and 
BEOL), memory, and other semiconductor components. In 
addition to IC manufacturing, ALD plays an increasingly 
important role in emerging fields, including pan-semicon-
ductor, environment and energy, and other fields such as aer-
ospace and biomedicine [4]. The representative applications 
and corresponding ALD materials, substrates, processes, and 
function/nanostructures in emerging fields are presented in 
Table 1. ALD is utilized for constructing passivation layers 
and surface functional layers to enhance the performance 
of devices, and it is developed to form nanostructures with 
multiple functions in catalyst and biomedicine to increase 
the efficiency of reactions.

3.1 � ALD in Pan‑Semiconductor

Pan-semiconductor devices, including photovoltaics and 
displays, are based on the generation or recombination of 
electron–hole pairs, respectively. The interfaces among 
different layers enormously affect carrier transportation, 
which will influence the efficiency and performance of 
pan-semiconductor devices [71]. Consequently, strategies 
to modify the interfaces of pan-semiconductor devices are 
in great demand. In addition, the functional layers of pan-
semiconductor devices easily decompose, age, and fail in 
ambient environments such as light, heat, moisture, oxy-
gen, and electric field. ALD could deposit conformal films 
with controlled atomic-scale thickness on complex surfaces. 

Therefore, ALD is widely used in the modification of inter-
faces, encapsulation of devices, and stabilization of quantum 
dots (QDs).

In addition, the equipment efficiency of ALD is in great 
demand in the pan-semiconductor industry. The spatial 
ALD (S-ALD) technique is applied in the production of 
solar cells and displays to achieve high-throughput and 
large-scale deposition [72]. The introduction of metal oxide 
layers could effectively improve the performance of solar 
cells and display devices, and S-ALD can be implemented 
into the production line with low cost and large deposition 
capacity [73]. Furthermore, pan-semiconductor devices are 
sensitive to high-temperature processes, which may lead to 
the damage or loss of functional layers. Consequently, PE-
ALD and low-temperature ALD are usually utilized in the 
pan-semiconductor field because of their low-temperature 
deposition characteristic.

3.1.1 � Photovoltaics

Applications of ALD in the photovoltaic industry is initially 
related to silicon wafer-based solar cell type. In reducing 
the surface recombination of solar cells, Al2O3 passivation 
layers have been deposited to passivate the defect states at 
rear silicon surfaces [10]. The inclusion of Al2O3 passiva-
tion layers has boosted the energy conversion efficiencies 
of solar cells. Furthermore, ALD plays a potential role in 
poly-Si passivation contact. By applying ALD Al2O3 layers, 
the passivation of p-type poly-Si/SiOx contacts to n-type c-Si 
could be improved [77]. ALD Al2O3 is a hydrogen source 
of SiOx for the chemical passivation of defects. The con-
tact layers are sensitive to their thickness, which can also be 
precisely prepared by ALD. After introducing a thin TiO2 
contact by ALD, the contact resistivity and absorption loss 
could be reduced [78]. In addition, on the top of poly-Si, 
transparent conductive oxides (TCOs) can be added by ALD. 
TCOs are commonly used for lateral electrical transport. 
High-mobility hydrogen-doped TCOs can be used in vari-
ous configurations of solar cells [79–81]. Moreover, silicon 
surface passivation can be achieved by ALD TCOs. ZnO 
TCOs have been deposited by ALD as passivation layers on 
both n- and p-type c-Si surfaces [82]. Such TCOs have cre-
ated a high-quality SiO2 interface layer and achieved perfect 
surface passivation.

Apart from silicon-based solar cells, perovskite solar 
cells have also received increasing interest. Silicon-per-
ovskite tandem cells have shown excellent performance 
in conversion efficiency [83]. However, perovskite may 
be damaged under plasma conditions. As a soft deposi-
tion process, ALD was utilized in the preparation of SnO2 
buffer layers to protect the electron contact of perovskite 
[84, 85]. Moreover, the hole contact of the perovskite top 
cell was implemented by ALD NiOx [86]. It could improve 
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the power conversion efficiency of perovskite solar cells. 
Another application of ALD was to deposit an ultrathin 
Al2O3 film for passivating perovskite layers, which could 
enhance the efficiency and improve the stability of solar 
cells (Fig. 4a) [74, 87, 88]. The thickness of Al2O3 should 
be ultrathin to allow the tunneling of electrons, which 
could be achieved by controlling the thickness of ALD.

3.1.2 � Display

In the display industry, organic light-emitting diode (OLED) 
and quantum light-emitting diode (QLED) have spontane-
ous luminance, wide angle, low power consumption, and 
high reaction rate. However, the light-emitting layers are 
easily eroded by water and oxygen during the process, which 
causes defects and reduces the service life [89]. Therefore, 

Table 1   Emerging applications and innovations of ALD

Application ALD material Substrate Process Function/nanostructure Ref

Photovoltaics Al2O3 Perovskite ALD Passivation 75
Poly-Si ALD Passivation 78

TiO2 SiO2 PE-ALD Carrier-selective contacts 79
ZnO:H SiO2 ALD Transparent conductive oxides 80, 82
In2O3:H Al2O3 Low-temperature ALD Transparent conductive oxides 81
ZnO:H/Al/B SiO2 ALD Passivation 83
SnO2 C60 Low-temperature ALD Passivation 86
NiOx C60 ALD Passivation 87

Display Al2O3 PDMS ALD Thin film encapsulation 76
ITO ALD Passivation 77
SiNx S-ALD Thin film encapsulation 93
Perovskite Low-temperature ALD Passivation 94

SiO2 Perovskite PE-ALD Passivation 97
Energetic particles AlF3 LiMn1.5Ni0.5O4 Powder ALD Passivation 101

Al2O3 SnO2 Powder ALD Passivation 106
S electrode PE-ALD Passivation 107
S electrode Low-temperature ALD Passivation 108
AlH3 Powder ALD Passivation 110

Catalyst Pd/Pt SiO2 ALD Core/shell structure 43
Pt/Co3O4 Al2O3 Powder ALD Embedded structure 61
Pt Pd Powder ALD Core/shell structure 113

Ce0.99Cu0.01O2 Powder ALD Single-atom distribution 125
Pd Graphene ALD Single-atom distribution 124
Ru/Pt Al2O3 Powder ALD Discontinuous coating structure 115
MnOx Pd Powder ALD Discontinuous coating structure 102
NiOx Pt Powder ALD Discontinuous coating structure 114
Co3O4 MWCNTs ALD Embedded structure 116
ZnO Carbon foam ALD Metal–organic frames 118

Aerospace YSZ Si ALD Thermal insulation coating 130
ZnO Cr-Ni-Mo steel ALD Passivation 131
Al2O3/ZnO Ni(OH)2 nanowire ALD Microwave-absorbing coating 133
NiO Graphene ALD Microwave-absorbing coating 127, 134
TiO2 PDMS ALD Anti-icing coating 132

Biomedicine Pt Al2O3 ALD Electrochemical actuators 136
SiO2/TiO2/Al2O3 Budesonide Powder ALD Core/shell structure 128
CoO Nanoporous gold ALD Catalytic functional layer 138
ZnO 3D polymer foam ALD Metal–organic frames 139

Ni foam ALD Metal–organic frames 140
TiO2 PEEK ALD/PE-ALD Biocompatibility modification 141–143
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thin-film encapsulation (TFE) should be implemented on 
the basis of devices, which improves the water–oxygen bar-
rier ability without affecting the luminescence performance 
[90, 91].

As traditional packaging methods cannot adapt to flexible 
devices, TFE is accomplished by ALD because of the high 
demand for film density, process compatibility, and stabil-
ity problems. It can effectively solve the problems such as 
pinhole, stress release crack, and thermal failure aging dur-
ing film packaging. Then, the service life and stability of 
OLED devices are greatly improved. The composite pack-
aging structure could be designed by ALD. By combining 
PE-CVD with ALD, SiNx/Al2O3 packaging layers were pre-
pared. The laminated film could reduce the pinhole density 
and extend the infiltration path of water and oxygen, thereby 
greatly improving the life of OLED [92]. The mechanical 
design can effectively prevent interface fracture of compos-
ite packaging layers and improve interface toughness. The 
ALD-based encapsulation structure also provides a good 
mechanical model for flexible OLED. As shown in Fig. 4b, 
flexible PDMS/Al2O3 nanolaminates have been developed 
to protect OLED from erosion caused by moisture [75]. The 

thickness of ALD Al2O3 and spin-coated PDMS sublayers 
is optimized to obtain distinct interfaces and great static 
mechanical stability.

Moreover, QDs have attracted considerable interest in 
the fields of optoelectronics and photovoltaics because of 
their continuously adjustable band gap and excellent lumi-
nescence performance. QDs can effectively improve the 
brightness and reality of display and adapt to the demand of 
mobile electronics and virtual reality. However, the exist-
ence of surface states and defect sites affects the quantum 
efficiency of photoluminescence. Similarly, QLED devices 
are often composed of multiple functional layers, which also 
restrict the luminescence efficiency and stability of QLED 
devices due to energy-level mismatch and ion migration. The 
role of ALD in QDs focuses on the passivation of surfaces 
and the preparation of functional layers.

Metal oxides are commonly used in the surface passiva-
tion of QDs by ALD, including Al2O3 and SiO2 [93–96]. 
For example, nanoscale Al2O3 films have been deposited 
on the surface of CsPbBr3 QDs and selectively passivated 
the defects on the surface of QDs. In addition, the stability 
of QDs is greatly improved without affecting the quantum 

Fig. 4   a Passivation layers by Al2O3 ALD in perovskite solar cells. 
Reprinted with permission from Ref. [74], Copyright © 2017 John 
Wiley & Sons, Inc. b ALD Al2O3 and spin-coated PDMS encapsula-
tion layers. Reprinted with permission from Ref. [75], Copyright © 

2021 John Wiley & Sons, Inc. c Buffer barrier by Al2O3 ALD in QD 
devices. Reprinted with permission from Ref. [76], Copyright © 2021 
American Chemical Society
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luminescence efficiency [97]. ALD has a passivation effect 
on the defect sites of QD monomers, and it can also be used 
in the fabrication of buffer barriers in the interface of QD 
devices (Fig. 4c). The introduction of ALD Al2O3 layers 
could effectively block the migration of metal ions from 
the electrode to the functional layers [76]. Moreover, the 
Al2O3 layers improved the carrier balance of the QD device, 
thereby increasing the external quantum efficiency.

3.2 � ALD in Environment and Energy

The applications of ALD in the environment and energy 
mostly correlate to the coating of nanoparticles, including 
energetic particles and catalysts. The energetic and cata-
lytic nanoparticles suffer from instability. As a nanoscale 
method, ALD is utilized to coat ultrathin and complete films 
on these nanoparticles to enhance the stability without dete-
riorating the performance. Furthermore, fluidized bed ALD 
(FB-ALD) is an effective method for coating nanoparticles. 
The development of FB-ALD has shown its potential for 
scalable production of nanoparticles with an ultrathin and 
conformal layer [98]. It provides the ability to break the 
aggregates of clusters and enhance the heat and mass trans-
fer rates between the gas and particle surfaces [99]. FB-ALD 
has been utilized in other emerging fields. The increasing 
throughput of FB-ALD will promote the industrial applica-
tion of ALD in nanoparticles.

3.2.1 � Energetic Particles

ALD-coated energetic particles include electrode particles 
and combustible particles. The electrode particles are pri-
marily used in batteries. As for battery coating layers, a con-
tinuous ultrathin coating is needed to prevent the failure of 
cathode/anode materials and keep the transfer of electrons 
and ions [102]. The surface coating should also have good 
toughness to protect the pulverization of electrode mate-
rials caused by volume change during cycling [103]. For 
example, Li-ion batteries have a high-energy density, high 
output voltage, and superior cycling performance. They are 
widely used in electric vehicles and energy storage systems 
[104]. The stability and safety of Li-ion batteries are highly 
related to the solid electrolyte interphase (SEI) formed on 
the anode. SEI layers could improve the cycling performance 
of Li-ion batteries by preventing further decomposition of 
aqueous electrolytes. However, SEI layers also consume 
Li-ions because of the interfacial reactions, which leads 
to a decrease in coulombic efficiency. Al2O3 layers coated 
on SnO2 nanoparticles by ALD could greatly improve the 
cycling lifetime and coulombic efficiency [105]. In addition, 
ALD Al2O3 layers could be considered as artificial ionic 
conductive SEI layers, and such layers could prevent the 
direct contact between anode and electrolyte. Moreover, 

ALD could protect the battery from capacity fading dur-
ing cycling by depositing thin-film AlF3 on LiMn1.5Ni0.5O4 
cathode (Fig.  5a) [100]. It significantly improved the 
capacity retention and coulombic efficiency of the battery. 
This method can also be extended to other Li-ion cathode 
materials.

ALD has also been used in the stabilization of lithium-
sulfur batteries. Lithium-sulfur batteries have a high-energy 
density and low cost. However, polysulfide dissolution pri-
marily hinders the development of lithium-sulfur batteries, 
leading to cell overcharge and low coulombic efficiency. 
Consequently, PE-ALD is utilized to deposit thin films on 
sulfur electrodes [106]. The low-temperature characteristic 
of PE-ALD prevents the evaporation of sulfur during deposi-
tion. In addition, PE-ALD Al2O3 coatings enhance the cycle 
stability of sulfur electrodes for hundreds of cycles. Moreo-
ver, ALD Al2O3 could be used to inhibit sulfur nanoparticles 
from shuttling, which could enhance the sustainable capacity 
and coulombic efficiency of lithium-sulfur batteries [107].

The combustible particles coated by ALD are primarily 
adopted to high-energy propellants. Higher performance and 
lower hazard ratings are the goals for solid rocket propellants 
[108]. The improvement of propellant can be achieved by 
using highly reactive ingredients, but the use of such ingre-
dients is limited by availability and security. Therefore, 
balancing the performance and stability of the propellant 
is necessary. Aluminum hydride (AlH3) is an alternative 
high-performance energy storage material, which has high 
gravimetric hydrogen capacity. However, it has not been 
adopted in many standard systems because of uncertainty 
about suitability. Hydrogen might be slowly released and 
might react with moisture and oxygen under ambient condi-
tions during the storage of AlH3, which greatly increases the 
risk of explosion. Thus, Chen et al. coated amorphous Al2O3 
films around the crystalline AlH3 particles, and the Al2O3 
films served as physical barriers to prevent the reaction of 
hydrogen release [109]. The Al2O3 films were applied in 
thermal insulation, which reduced the potential risks during 
handling or transportation. The overall hydrogen capacity 
reduction was relatively small because of conformality and 
nanoscale thickness control. ALD is a feasible technique to 
stabilize solid rocket propellant during mixing, storage, and 
transportation without affecting its performance.

3.2.2 � Catalyst

Catalysis is a critical technology in accelerating and guid-
ing chemical reactions, which is highly related to the struc-
ture and active sites of catalysts [110]. Consequently, there 
is a great demand for precise control in nanostructures, 
active sites, and concentration of future catalyst synthesis. 
ALD has unique advantages in the atomic-level synthe-
sis of advanced catalysts, which provide the strategies in 



200	 Nanomanufacturing and Metrology (2022) 5:191–208

1 3

establishing structure–activity relationships and enhancing 
efficiency [111]. The utilization of ALD to precisely fabri-
cate nanostructures, nanoclusters, and single atoms is feasi-
ble. Furthermore, AS-ALD on nanoparticles can be applied 
for accurate passivation of specific facets because of the 
varied adsorption energy on different crystal facets. These 
methods can directly modify the particles on the nanometer 
scale and improve the activity and stability of catalysts. In 
addition, the growth of precursors on different substrates can 
be predicted by establishing a deposition model and analyz-
ing the growth theory. The above-mentioned studies aim to 
achieve the precise control of the dispersion, composition, 
and structure of catalysts, which can improve noble metal 
utilization, activity, selectivity, and stability.

Several nanostructures have been applied in the design 
of catalyst, such as a core-shell structure [43, 112], discon-
tinuous coating structure [101, 113, 114], and embedded 
structure [115, 116]. These nanostructures could be utilized 
to passivate the specific facets and enhance the performance 

of catalysts. For example, Pd (111) was selectively passi-
vated by discontinuous MnOx ALD (Fig. 5b). It can pas-
sivate the dehydroxylation of benzyl alcohol and eliminate 
the formation of toluene and benzene. It can also improve 
the selectivity of the Pd/Al2O3 catalyst for the oxidation of 
benzyl alcohol to improve the yield of benzaldehyde [101].

The conformal deposition characteristic of ALD ena-
bles the deposition of three-dimensional structures in the 
synthesis of metal-organic frameworks (MOF) [117]. ZnO 
nanomembrane was deposited onto carbon foam to induce 
a solvothermal process, which constructs a unique structure 
with a large surface area and great flexibility [118]. Apart 
from their applications in catalysis, MOF-based materials 
can also be used in electrocatalyst and flexible devices, such 
as supercapacitors [119, 120].

Moreover, sub-nanoclusters and single-atom catalysts are 
developed to minimize metal atom fraction during heteroge-
neous catalysis reactions by ALD. For example, the isolated 
single-metal atoms are fabricated on different supports by 

Fig. 5   a Protection layers by AlF3 ALD on the Li-ion battery cath-
ode material. Reprinted with permission from Ref. [100], Copyright 
© 2018 American Chemical Society. b Selective surface passivation 

of Pd catalysts by MnOx ALD. Reprinted with permission from Ref. 
[101], Copyright © 2020 Elsevier Inc



201Nanomanufacturing and Metrology (2022) 5:191–208	

1 3

ALD, which show effectively enhanced catalytic activity 
[121–124]. Furthermore, ALD can be used to control the 
interfacial structures of supported nanoparticles and sub-
nanoclusters, which could control the concentration or size 
distribution of catalysts [116, 125, 126]. Liu et al. applied 
redox-coupled ALD to control the size of deposited Pt cata-
lysts [125]. The Cu doping concentration near the Pt cluster 
was high, which can improve the activity of the composite 
catalyst.

3.3 � ALD in Other Emerging Fields

In addition to the above-mentioned applications, ALD can 
be used to deposit functional layers on specific surfaces, 
such as thermal barriers and anti-corrosion layers. Moreover, 
the separated process of ALD can be modified to achieve 
efficient doping by avoiding dopant clustering in the fabrica-
tion of films [7]. The ALD coating is practical for some spe-
cific scenarios, such as aerospace and biomedicine. Based on 
ALD characteristics, the applications will be continuously 
developed.

3.3.1 � Aerospace

Aerospace functional coatings have long faced challenges 
such as fall off, corrosion, and wear. Developing advanced 
ALD coatings is conducive to breaking through the typical 
bottleneck in the aerospace field. Various aerospace func-
tional coatings are prepared by ALD, such as thermal barrier 
coating for gas turbines and anti-corrosion coating. A gas 
turbine is the key component of aircraft propulsion, and ther-
mal barrier coatings are prepared to keep inlet temperature 
[129]. In the preparation of thermal barrier coating, keep-
ing the density and adhesion of thermal barrier coating is 
the key to maintaining the thermal insulation performance. 
Yttria-stabilized zirconia (YSZ) films prepared by ALD 
have low thermal conductivity and are insensitive to film 
thickness. The thermal conductivity of YSZ films prepared 
by ALD was lower than that prepared by EB-PVD, and its 
thermal barrier property was better [130]. The anti-corrosion 
coating is served for aircraft body materials. Considering 
that the space shuttle is served in a harsh atmosphere for 
a long time, strong ultraviolet radiation and oxygen corro-
sion will greatly shorten the effective life of space coating. 
Hard anti-corrosion coating can effectively resist external 
erosion and prolong the service life. Anti-corrosion coat-
ing deposited by ALD could effectively resist UV radiation, 
improve the hardness of body material, and slow down the 
corrosion rate of atomic oxygen infiltration. Increasing the 
coating thickness of ZnO could improve its electrochemical 
properties and then enhance its anti-corrosion performance 
[131]. Furthermore, some potential functional coatings can 
be prepared by ALD in the aerospace field, such as anti-icing 

coating and microwave-absorbing coating [132–134]. After 
NiO ALD followed by an acetylene pyrolysis process, NiO 
nanoparticles could be uniformly deposited onto the surface 
of graphene, and then two different forms of carbon could 
be fabricated. Carbon nano-onion and carbon nanotube 
structures were obtained by ALD, which could be applied 
as lightweight and low-frequency microwave absorbers 
(Fig. 6a) [127]. Consequently, ALD is a potential technique 
in the fabrication of thin-coat and low-cost microwave 
absorbers.

3.3.2 � Biomedicine

With the rapid development of nanotechnology, medi-
cal methods of detection, diagnosis, and treatment have 
entered a new era, and these technologies cannot be sepa-
rated from the progress of medical devices. A range of new 
medical technologies, such as micro/nanoscopic robots, has 
been developed at present, which will be used in the field 
of medical devices in the future. The application of micro/
nanorobots in precision medicine provides a higher demand 
for nanomanufacturing and sensing technology [135]. To 
date, ALD technology has shown its great ability in the fab-
rication of biomedical devices. For example, Miskin et al. 
have used ALD to construct the legs of micro/nanorobots 
by using Pt strips with only a few dozen atoms capped on 
one side by a thin layer of inert titanium [136]. Moreover, 
ALD could be utilized in the enhancement of biosensors 
based on modification and passivation of the functional lay-
ers. A core/shell structure was made by ALD to sustain the 
release of budesonide in drug delivery. By implementing 
ceramic ALD films such as SiO2, TiO2, and Al2O3, the fine 
particle fraction of budesonide highly proceeded, which 
represents the high drug loading and cell viability (Fig. 6b) 
[128]. The as-deposited ceramic films showed no toxicity in 
the ambient of human cells. ALD has been proven to be an 
effective method to fabricate drug delivery systems. Further-
more, ALD has also been applied in the coating of sensor 
fabrication. Duan et al. formed uniform Al2O3 passivation 
layers on Fe3O4 nanoparticles; such layers could effectively 
protect magnetic nanoparticles from oxidation and main-
tain saturation magnetization [137]. This good preservation 
of magnetic properties with superior oxidation resistance 
could improve magnetic resonance imaging. Zhang et al. 
used ALD to deposit an ultrathin CoO layer on a nanoporous 
gold film [138]. The synergistic effect of Au and CoO at the 
interfaces achieved high catalytic activity for glucose oxida-
tion and H2O2 reduction. It enhanced the sensitivity of H2O2 
reduction, which could be utilized in exhaled gas detection. 
Moreover, the integration of MOF could be applied in the 
fabrication of sensor devices to form a functional composite 
by ZnO ALD [139]. The hierarchically porous structure of 
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MOF films results in a large surface area, which provides a 
strategy to enhance the sensitivity of devices [140].

Notably, ALD is applied in orthopedic implants. For 
example, ALD is used for surface modification of poly-
etheretherketone (PEEK) [141]. After conformal TiO2 
thin films were deposited on the PEEK substrate, the bio-
compatibility was significantly improved [142]. A further 
study reported that titanium-coated surfaces could improve 
osseointegration compared with uncoated PEEK surfaces 
[143]. Given the tolerance of various deposited materials, 
ALD could deposit more varieties of materials, which could 
enhance the robustness, biocompatibility, and osseointegra-
tion of future orthopedic implant materials.

4 � Conclusions and Perspective

In this article, the characteristics and applications of 
ALD are primarily introduced. With the development of 
ACSM, the demand for high-accuracy deposition tech-
niques has never been higher [144]. Optimized ALD 

processes could fabricate complex nanostructures and 
enhance the performance of devices. Thus, ALD has been 
widely used in semiconductors, pan-semiconductors, envi-
ronment and energy, and other emerging fields, which 
gradually becomes an integral part of future intelligent 
manufacturing.

ALD has several advantages that enable its applications. 
These applications encompass different characteristics. 
In the semiconductor industry, the evolution of nano-
structures such as GAA-FET provides high-performance 
devices and requires high-accuracy fabrication. ALD is 
considered the key technique for next-generation IC manu-
facturing. Furthermore, GAA-FET and TSV are the main 
driving force for ALD. Considering the continuous scal-
ing down of devices, the implementation of atomic-scale 
fabrication must use bottom-up AS-ALD. AS-ALD is a 
remarkable innovation for ALD. Given its self-aligned 
characteristics, AS-ALD can be utilized in pattern transfer 
and high-density fabrication of the semiconductor indus-
try. However, AS-ALD must enhance its nucleation con-
trol to extend the selectivity window. Novel strategies are 

Fig. 6   a Uniform deposition by ALD in microwave absorption coat-
ing. Reprinted with permission from Ref. [127], Copyright © 2019 
Elsevier B.V. b Core/shell structure by ALD in drug delivery system. 

Reprinted with permission from Ref. [128], Copyright © 2021 The 
Authors. Published by American Chemical Society
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required to expand the AS-ALD toolbox and increase the 
stability of the process.

In the pan-semiconductor field, ALD is suitable for engi-
neering the surface and tailoring the properties of interfaces. 
For example, ALD has been utilized to deposit passivation 
layers, which could effectively enhance the performance and 
stability of pan-semiconductor devices. It focuses on how to 
fabricate high-quality films without damaging the functional 
layers during deposition. As the thickness of passivation lay-
ers decreases, the barrier performance must be optimized 
by designing the passivation structures using materials with 
optical, mechanical, and electrical properties. The deposition 
must also be considered because the devices are sensitive to 
high temperatures and precursors. PE-ALD has been utilized 
to reduce the deposition temperature and extend the range 
of materials that can be used, and new processes can also be 
proposed, such as atomic layer infiltration. Moreover, ALD 
is used to form functional layers and balance the carriers on 
the interface, which could enhance the efficiency of pan-
semiconductor devices. The optimal role and thickness of 
ALD functional layers still need to be evaluated in accord-
ance with the simulation of interface engineering.

In the environment and energy field, ALD has shown its 
ability in the coating and functionalization of nanoparticles. 
It could enhance the performance of energetic particles, 
increase the activity, selectivity, and stability of catalysts, 
and modify the concentration of nanoparticles. Considering 
the large specific surface area, the coating of nanoparticles 
focuses on high uniformity, which is related to precursor dif-
fusion and reaction on the surface of nanoparticles. Develop-
ing suitable precursors using organic chemistries is impor-
tant. In addressing the aggregation of nanoparticles, more 
external forces have to be applied to increase the fluidiza-
tion quality during coating. By contrast, in the modification 
of catalyst nanoparticles, the fabrication accuracy of ALD 
caused by small particle size must be considered. It will 
be more dependent on atomic-level techniques such as AS-
ALD approaches. AS-ALD can modify points, lines, sheets, 
and complex nanostructures, thereby achieving atomic-scale 
accuracy.

The growth mechanism of ALD needs further study to keep 
in step with ACSM. At the initial stage of deposition, consider-
ing the nucleation behavior on different surfaces is essential. 
During the deposition of thin films, the process parameters, 
including temperature, pressure, and gas flow, must be opti-
mized. In addition, there is an increasing demand for in-situ 
characterization methods, which provide more information on 
the nucleation behavior and mechanism of deposition. More-
over, precursor selection must be considered by theoretical 
calculation, including reactivity, steric hindrance, and polari-
zation. For example, using high activity and quick diffusion 
precursors in the coating of nanoparticles is important because 
of the large surface areas. However, in AS-ALD, the activity of 

precursors should be relatively low to retain a large growth dif-
ference in the growth and non-growth areas. The combination 
of the above-mentioned characteristics has a strong effect on 
the quality of films, such as surface density, impurity, rough-
ness, and stress.

Equipment of ALD also needs great advance. First, the dep-
osition rate of ALD is relatively low because of its self-limit-
ing reactions. To date, the innovation in equipment powers the 
mass production of ALD. For example, S-ALD offers the abil-
ity of fast and large-scale ultrathin films deposition. FB-ALD 
facilitates the precursor delivery and intensifies the dynamic 
dismantling of soft agglomerates in the coating of nanoparti-
cles, which ensures the consistency of production. However, 
there is a compromise between the throughput and accuracy. 
By multiscale modeling and simulation approaches, the opti-
mization and scaling up of existing ALD equipment could pro-
ceed, which could enhance the efficiency of production [145]. 
Second, the design of novel ALD equipment requires further 
development. Except for the mechanical engineering of ALD 
reactors, the introduction of external fields such as electric 
field, ultrasonic field, and thermal field may increase the ability 
of growth behavior control and high-quality film fabrication.

The evolution of the ALD technique should also consider 
the diversification in the integration of novel technologies. 
ALD has provided the technological driving force in ACSM, 
and novel methods could be integrated with ALD, such as 
machine learning to achieve cross-scale manufacturing. 
ALD plays different roles in various applications, which are 
based on the properties of the as-deposited materials. Con-
sequently, introducing novel materials is important to con-
tinuously develop ALD. The introduction of novel materials 
needs the exploration of ALD precursors. New materials 
are fabricated by ALD, such as two-dimensional materials, 
carbon materials, and ferroelectrics. As novel materials are 
introduced into the ALD process, the application range of 
ALD will continuously increase to build high-value systems.
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