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Abstract
Manufacturing at the atomic scale is the next generation of the industrial revolution. Atomic and close-to-atomic scale 
manufacturing (ACSM) helps to achieve this. Atomic force microscopy (AFM) is a promising method for this purpose 
since an instrument to machine at this small scale has not yet been developed. As the need for increasing the number of 
electronic components inside an integrated circuit chip is emerging in the present-day scenario, methods should be adopted 
to reduce the size of connections inside the chip. This can be achieved using molecules. However, connecting molecules 
with the electrodes and then to the external world is challenging. Foundations must be laid to make this possible for the 
future. Atomic layer removal, down to one atom, can be employed for this purpose. Presently, theoretical works are being 
performed extensively to study the interactions happening at the molecule–electrode junction, and how electronic transport 
is affected by the functionality and robustness of the system. These theoretical studies can be verified experimentally only 
if nano electrodes are fabricated. Silicon is widely used in the semiconductor industry to fabricate electronic components. 
Likewise, carbon-based materials such as highly oriented pyrolytic graphite, gold, and silicon carbide find applications in 
the electronic device manufacturing sector. Hence, ACSM of these materials should be developed intensively. This paper 
presents a review on the state-of-the-art research performed on material removal at the atomic scale by electrochemical and 
mechanical methods of the mentioned materials using AFM and provides a roadmap to achieve effective mass production 
of these devices.

Keywords  Atomic force microscopy · Atomic-scale manufacturing · Molecular scale devices · Electrochemistry · ACSM · 
Manufacturing III

1  Introduction

The world has improved in all forms from the ancient stone 
age from around 2 million years ago to the present postmo-
dernity age. Among them, manufacturing technology was a 
milestone for all civilizations. It has formed the backbone 
of a country’s wealth and power. The industrial sector has 
emerged from steam engines to programmable logic con-
trollers (PLC) [1]. The reason for these developments is the 
need for ultimate technological outgrowth.

The best example of this is the increasing number of tran-
sistors on an integrated circuit (IC) chip. The first transistor 
was developed in 1947 at Bell Laboratories, where they used 
a single transistor for the study [2]. There are around 19.2 
billion or more transistors on a present-day chip. This is in 
favor of the famous Moore’s law, according to which the 
number of transistors doubles every 24 months [3], even 
though the doubling is happening every 18 months in the 
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present-day scenario [4]. In order to accommodate more 
transistors on a chip, their size should be reduced even 
further.

Atomic force microscopy (AFM) is an astounding and 
promising tool for the reduction of material size to the 
nanometer scale and extensive research has been performed 
since its discovery in 1986 by Binning and coworkers [5]. 
If pushed further, its abilities can be drawn towards manu-
facturing at the atomic scale. The applications of AFM in 
manufacturing include scratching [6–13], patterning the 
structures [14–17], and biomedical applications [18–20].

Apart from that, AFM has great potential to deal with 
the first characteristic of atomic and close-to-atomic-scale 
manufacturing (ACSM), since individual atoms can be 
manipulated and displaced using AFM, as shown by Morita 
et al. [21], where they positioned atoms using non-contact 
AFM (NC-AFM). In addition, other scanning probe micro-
scopes (SPM) such as scanning tunneling microscope (STM) 
have the ability to move single atoms, which was explored 
by IBM Research in making the world’s smallest motion 
film named, ‘A Boy and His Atom’, by moving single atoms 
frame by frame.

Conducting probe atomic force microscopy (c-AFM) is 
found to have a novel application in the patterning of sin-
gle atoms [22], over semiconducting and metallic surfaces 
[23, 24]. Also, c-AFM has been employed in nanopattern-
ing research over highly oriented pyrolytic graphite (HOPG) 
[25], graphene oxide [26], and other carbon-based mate-
rials such as carbon nanotubes (CNT) [27] and graphene 
flakes [28–30]. Also, recent works performed by Buck-
well et al. [31] and Steffes et al. [32] have emphasized the 
importance of conductance tomographic AFM (T-AFM). A 
wide range of research has been carried out using AFM in 
material removal research [33, 34]. Very recently, Rashidi 
and Wolkow [35] have developed an automation method 
using artificial intelligence for automated atomic-scale 
manufacturing.

These material removal applications of AFM make it a 
leading candidate for the future development of ACSM [36]. 
Attaining single atomic layer removal is the goal that every 
researcher in this field is aiming at, even though much pro-
gress is needed to achieve this reliably. Different methods 
and perspectives are being approached by the researchers, 
such as mechanical [34, 37, 38], mechanochemical [6, 39, 
40], and electrochemical [41, 42], to perfectly remove an 
atomic layer from a substrate.

When it comes to manufacturing, mechanical methods 
are the most basic approach towards material removal. 
This can be precisely performed at the micrometer scale, 
beyond that, it is a daunting task. To overcome this prob-
lem, basic knowledge of the mechanism of nanomanu-
facturing should be extended in a different aspect [43]. 
These include approaches such as scratching, and piercing 

by AFM, but the major issue lies in the material removal 
mechanism. We require chip formation as the dominant 
mechanism rather than plastic deformation. AFM-based 
mechanical machining has the disadvantage of ridge for-
mation or the accumulation of materials around the fea-
tures [44].

This issue was solved by the research of Gozen and 
Ozdoganlar [37] in which they used AFM tip as a drilling 
machine and named the process “nanomilling.” In their 
research, the AFM tip was rotated at high frequency with 
the help of a three-axis piezoelectric actuator, while keeping 
the sample stationary. As a result, they were able to pro-
duce long curly chips as the product of material removal 
and thereby established the dominance of shear mechanism 
using rotary motion of an AFM tip. Similar work performed 
recently by Geng et al. [45] also showed the formation of 
chips with the nanomilling process. In their study, they per-
formed the experiments in two cycles: the first half formed 
the outer profile and the second half formed the inner profile. 
They used a poly(methyl)methacrylate (PMMA) substrate 
and a silicon tip and established the importance of nanomill-
ing in nanofluidic applications. In comparison with these 
milling processes, the residual materials formed affect the 
surface quality of microchannels, which can be improved by 
optimizing parameters such as cutting depth, feeding rate, 
and tool-path strategy [46].

However, when chemical methods are mixed with 
mechanical processes, precision can be extended to the 
atomic scale because the mechanical energy can be used to 
activate chemical reactions [38]. A recent study performed 
by Chen et al. [6] revealed that a single atomic layer of Si 
can be removed via a mechanochemical method, which was 
theoretically verified using molecular dynamics simulations. 
They performed experiments in a humid environment with 
relative humidity (RH) of 75% ± 2% using a silica sphere of 
radius 1.25 μm as the AFM tip for the material removal pro-
cess. In their observation, the mechanical pressure applied 
determined the number of layers to be removed and an upper 
bound of 247 MPa was set out, below which no removal 
was obtained. Apart from that, a chemically reactive counter 
surface, i.e., the probe, was required for the atomic layer 
removal, whereby water adsorption along with the coun-
ter surface enhanced the removal mechanism at the atomic 
scale.

Electrochemical AFM material removal methods are 
currently the trending and promising approaches for nano/
atomic-scale manufacturing. This includes the oxidation 
reaction happening at the junction between the AFM tip and 
the substrate, known as the local anodic oxidation (LAO). 
Different substrates are used such as graphene [47], silicon 
(Si) [48, 49], highly oriented pyrolytic graphite (HOPG) 
[50], and other materials such as polymers [51–53], glass 
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[54], and mica [55]. Even though much progress has been 
made in this field, more work remains to be conducted.

Detailed reviews on mechanical material removal using 
AFM [56], mechanochemical nanofabrication processes on 
Si [38], micro/nano-cutting [57] and tip-based nanomachin-
ing [58] are published. Also, a comprehensive explanation 
of different material categories for AFM based and other 
tip-based machining can be referred from [55]. Hence, we 
provide a short review on different state-of-the art AFM 
material removal studies, focusing mainly on electrochemi-
cal methods, and some novel mechanical removal research, 
conducted on Si, HOPG, gold (Au), and silicon carbide 
(SiC), over the last two decades. The summarized proper-
ties of these materials are given in Table 1.

The mechanism of electrochemical AFM etching is fairly 
simple. Electrochemical reactions can take place when there 
are applied voltage, electrodes, and electrolyte. The AFM 
tip and the substrate act as two electrodes (electrode 1 and 
electrode 2), and the water meniscus formed at the tip–sub-
strate junction acts as the electrolyte [67], as shown in Fig. 1. 
These electrodes can be made anode or cathode depending 
on the connection given. This method can help in selectively 
modifying the surface chemistry with nanometer scale reso-
lution [68–70].

The electric field dissociates the water molecules into 
negatively charged hydroxides, as shown in Eq. (1), and 
these react with the material atoms [71].

The mechanism of electrochemical etching varies with 
the materials used. The Si surface oxidation by AFM is 
widely studied [72–75]. Here, the OH− ions react with Si to 
form silicon dioxide (SiO2) as in Eq. (2) [76].

These dioxides are accumulated over the substrate, 
extending underneath it, forming the convex structures, 
which can be removed by etching with acidic solutions to 
achieve concave features, leading to material removal.

In the case of HOPG, the water is adsorbed over the 
graphite under wet conditions, above 15% RH [50, 77]. 
The O− and OH− ions can interact with the carbon on the 
HOPG surface and form carbon monoxide (CO) and carbon 

(1)2H
2
O + 2e

−
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2
+ 2OH

−

(2)Si + 2OH
−
→ SiO

2
+ 2H

+ + 4e
−

dioxide (CO2), as given by Eqs. (3) and (4). These gases get 
removed from the surface and result in the material removal 
mechanism.

In the case of SiC, the oxidation takes place by the fol-
lowing, as given in Eqs. (5) and (6) [78].

A direct anodic reaction over SiC [79] can be given by,

However, formation of an oxide over SiC is more difficult 
than over Si, since the Si–C bond is stronger than the Si–Si 
bond [78]. Apart from that, much higher energy is required 
for the removal of carbon in the form of CO.
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Table 1   Material properties of 
Si, HOPG, Au, and SiC

Material Density (gm/cc) [59] Hardness (Mohs) [59] Tensile strength (MPa) Fracture tough-
ness (MPa m1/2)

Si 2.33 6.5 1180 [59] 1 [60]
HOPG (graphite) 2.25 0.5 3.43–17.2 [59] 2.25 [61]
Au 19.3 [62] 2.5–3 [63] 137 [59] 2 [64]
SiC [65] 3.1 9–10 [63] 1625 [66] 4.6

Fig. 1   The electrochemical cell formation with an AFM tip and sam-
ple
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The different studies on the four substrates are given in 
Sect. 2. Detailed information on the research trends in this 
field and the future outlooks are depicted in Sect. 3 and 
finally, concluding remarks are given in Sect. 4.

2 � Electrochemical and Mechanical Material 
Removal Using AFM

2.1 � Silicon: The Most Widely Used Semiconductor 
Material in the Electronics Industry

Single-crystal silicon is well known for its electrical as well 
as mechanical properties [80]. Si is found to have native 
oxides over them, which aids in the formation of oxide 
deposits [81]. This oxide deposit can be removed by treating 
the sample with hydrofluoric (HF) solution. Many attempts 
have been made in the late 90s to pattern oxide structures as 
the application for developing nanoscale electronic devices 
[82–85]. These experiments are further extended to attain 
atomic layer removal for the application of fabricating nano-
electrodes, which are essential for developing molecular 
electronic devices such as transistors and switches [39, 40, 
48, 86, 87]. Also, nanometric cutting over monocrystalline 
silicon under high vacuum conditions in a scanning elec-
tron microscope (SEM) has also been developed to study 
the nanoscale material removal behavior [88].

Different factors such as sample material, tip speed, 
applied force, applied voltage, tip angle, sliding direction, 
humidity, and sample orientation, affect the material removal 
mechanism. In most of the research performed, n-type/p-
type silicon in its (100) orientation is used as the substrate. A 
possible reason could be that the silicon etching in alkaline 
solutions stops at the (111) orientation [80, 89, 90]. Also, the 
Si/SiO2 state density is lower for (100) than the (110), (111), 
and other orientations, and, as a result, lower amounts of 
dangling bonds are present, yielding higher carrier mobility. 
Apart from that, negative bias is given to the tip to make it 
anode and enable anodic oxidation. It is claimed that oxida-
tion happens only when the tip is grounded, and sample is 
given positive voltage [76]. In addition, factors such as elec-
tric field strength, surface stress, water meniscus formation, 
and OH− diffusion are responsible for the mechanism and 
kinetics of oxide formation [72, 73, 91, 92].

Tip material is an important factor in atomic-scale 
machining. Various tips such as pyramidal silicon nitride 
(Si3N4) [82, 83, 85], diamond [40], diamond-like carbon 
(DLC) coated [86], NSC21/Ti–Pt probe [76], NSC18/Ti–Pt 
probe [93], and so on are used for the experimentation over 
Si. A detailed review on diamond machining over Si based 
on molecular simulations can be referred from [94]. It has 
been noted that the nanoscale tip wear is a major problem 
faced by researchers while machining atomic structures 

over the substrates. Wear occurring on Si3N4 tips while 
scanning in contact mode under applied loads of 20–100 
nN is reported in earlier studies [95, 96]. Experiments 
performed by Fletcher et al. [97] have shown the durabil-
ity of ultranano-crystalline diamond (UNCD) tips scanned 
over different substrates such as quartz, SiC, Si, or UNCD. 
They applied forces up to 200 nN and temperatures up to 
400 °C. Si tips were found to experience severe damage 
over quartz and UNCD, while moderate damage occurred 
over Si and SiC (except for temperature at 400 °C, where 
the damage was extreme). On the other hand, UNCD tips 
were unaffected over Si. These tip degradations and wear 
can be identified and quantified to improve the experimental 
results [98]. Coating a silicon tip can reduce the wear such 
as SiO2 tip encapsulation [99], platinum silicide [100], and 
diamond particles [101–103]. Another way of reducing wear 
using molding technique has also been reported to fabri-
cate monolithic ultra-sharp tips of DLC with Si (Si-DLC) 
[104]. Single-crystal diamond probes are well suited and 
are commercially available for machining purposes. How-
ever, the main concern is to achieve direct etching over Si at 
the atomic scale, with cost-effective methods. DLC-coated 
probes could be used for this purpose. It is found to have less 
wear resistance due to its high hardness, elastic modulus, 
low wear, and tribological properties [105].

A way of achieving direct etching on Si substrate was 
investigated by Yamamoto et al. [48]. They used a cata-
lytically active platinum-coated AFM probe instead of 
DLC-coated probes. The experimental setup consisted of 
a three-electrode system, with Ag/AgCl as the reference 
electrode (RE), rather than a two-electrode system. They 
etched using three different probes: uncoated Si, Pt-coated, 
and Au-coated. Protuberances of height ranging between 2 
and 5 nm with uncoated Si, narrow grooves of ~ 0.8 nm and 
a width of ~ 170 nm with Pt-coated, and shallow grooves 
less than 0.1 nm with Au-coated probes were obtained, as 
shown in Fig. 2.

Jiang et al. [86] achieved direct etching over p-type Si 
(100) using DLC coated Si probe. First, they scratched two 
lines on the surface, both being parallel but scratched in 
opposite directions, forward and backward, with a normal 
force of 10 μN and a tip speed of 1 μm/s. A deeper groove 
was achieved for the forward when compared to the back-
ward direction, as shown in Fig. 3a, b. This can be due to 
the tip damage or the bending of cantilever corresponding to 
the direction of scratching [92]. Apart from that, they have 
investigated the effects of applied tip force, scratch speed, 
scratch direction, and number of scratches on the geometry 
of already-scratched surfaces. In their experiments, they 
have reported an increase of depth from 0.68 to 3.35 nm and 
a width from 21.59 to 26.19 nm corresponding to an increase 
of applied force from 1 to 20 μN as shown in Fig. 3c, d, 
which is graphically shown in Fig. 3e.
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On the other hand, depth decreased slightly from 3.09 
to 2.73 nm when the tip speed was increased from 0.1 
to 10 μm/s, as shown in Fig. 3f, g. The depth and width 
increased linearly when scratched repeatedly with some 
debris deposited along the bank of grooves. All calculations 
were performed in ambient air. Hence, DLC-coated probes 
with optimum parameters could be a successful cost-effec-
tive candidate for achieving atomic-scale material removal, 
even though they exhibit lower resolution than single-crystal 
diamond.

The application of AFM machining over Si in fabricat-
ing nanofluidic devices by scratching the surface by the 
principle of electrochemical etching has been conducted by 
Promyoo et al. [106]. They also reported the importance of 
machining parameters such as scratching speed, feed rate, 
scratching direction, applied load, tip geometry, tip angle, 
tip radius, and number of scratching cycles in the formation 
of chip, surface roughness, and machines geometry. They 
were able to create increased depths with the applied force. 
Parameters such as 243.75 μN scratching force, tip surface 
approaching speed of 1 Hz, scratch rate of 0.996 Hz, and 
step over 10 nm were found to be optimum for scratching 
the surface. Nanochannel depths of ~ 30 nm were obtained.

These types of experiments [107] find their application in 
developing molecular devices such as transistors, by incor-
porating molecules through the nanochannels and bond-
ing with the nanoelectrodes fabricated through the AFM 
machining. Theoretical studies could aid for the selection 
of molecules and substrates to study the bonding interactions 
between them [108].

Another important factor that affects the electrochemi-
cal etching process over Si is the presence of humidity. 

Experiments have been performed both in humid envi-
ronment [40, 83, 84] and in ambient air [76, 105]. Typi-
cally, in most of the research with an external setup to pro-
vide a humid environment, the RH is always in the range 
of ~ 30%–90%. This humid environment acts as an aid for 
the formation of oxide deposits over the Si substrate. Huang 
et al. [109] compared the effect of oxide heights in deionized 
(DI) water and in ambient air. They found an increased oxide 
height of 117.29 nm and a width of 551.28 nm in atmos-
pheric conditions when compared with that performed in DI 
water, which was 66.6 nm high and 467.03 nm wide. The 
oxides formed can be treated with acidic solutions to attain 
concave features, leading to material removal.

Therefore, apart from the direct etching techniques over 
Si, the oxidized substrate patterns can be treated with spe-
cific solutions such as KOH, HF, and H2SO4 to enable etch-
ing. The most widely used is diluted HF solution. KOH 
solutions can also be used but for removing the untreated 
silicon substrate rather than the oxide deposits formed. This 
KOH solution can be mixed with isopropyl alcohol (IPA) for 
smoothening the Si surface but the etching rate is reduced 
[110]. However, the etching rate is found to increase when 
IPA is mixed with highly concentrated KOH, by controlling 
the temperature.

Some of the earlier works based on oxide formation are 
mentioned in the introduction of this review. Other than 
removal of oxides, material removal is possible with reduced 
tip wear, when a deposition is made over Si substrate. An 
example of this is the recent study performed by Geng et al. 
[111]. They deposited PMMA over the substrate before the 
scratching experiment. They combined this study with reac-
tive ion etching (RIE) to produce grooves and holes on the 

Fig. 2   Etching on a silicon substrate with a uncoated Si probe, b with Pt-coated probe, and c with Au-coated probe. Figures below show the 
cross-sectional profiles of the grooves. Reproduced from Ref. [48]. Copyright Elsevier
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substrate. PMMA and aluminum thin films were used as the 
resist for the RIE process. This study enabled the possibili-
ties to control the width of etched grooves with minimal tip 
damage.

Applying optimum force along with the reaction can 
successfully remove materials from the substrate. The main 
advantage of AFM is to provide nano and micro Newtons 
of force with precision, thereby controlling the depth of 
machining. Diamond probes [112, 113] are the most favored 
for this purpose, since they are hard and experience less wear 
while scratching over the substrate. This application of con-
trolled force helps in attaining nanochannels over hard mate-
rials such as Si [112]. Work performed by Temiryazev [113] 
showed the importance of pulse force nanolithography using 

a sharp diamond probe to attain high aspect ratio grooves 
over Si substrate with 30–100 nm pitch and 5–52 nm depth.

Non-contact mode of electrochemical material removal 
is an effective approach to produce oxide structures over 
Si, which can be subsequently removed by chemical etch-
ing [114]. One of the methods to achieve this mode of 
machining is through pulse electrochemical nanomachin-
ing (PECM) [115]. Pulse electrochemical polishing (PECP) 
of stainless steel and pulse electrochemical nanopatterning 
(PECN) over Si have been reported by Lee et al. [116] in 
2013. However, very recently, a dedicated study on PECN 
as a possibility of nanofabrication in non-contact mode was 
conducted by Kim et al. [93]. The sample used was p-type 
Si (100) and the electrical conditions were fixed at 8 V and 

Fig. 3   Direct etching over 
Si (100) with DLC-coated 
Si Probe. a The forward and 
backward direction of scratch-
ing. b The corresponding line 
profiles showing the depth of 
each lines. c–d Grooves with 
increased tip force. e Graph 
showing grooves as a function 
of applied force. f Grooves with 
increased tip speed and g rela-
tion of scratched grooves with 
scratch speed. Reproduced from 
Ref. [86]. Copyright Springer 
Publishing. CC BY 2.0
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5 kHz at each position. They were able to produce nanoscale 
oxides in the non-contact mode, keeping a tip-sample dis-
tance of 0.1 μm and 0.2 μm. They achieved oxide deposits 
by supplying ultrashort voltage pulses over specific posi-
tions with durations of 2, 50, 100, and 190 μs, for 3 min. 
When the tip-sample distance was 0.1 μm, the formed oxide 
height ranged from 0.34 to 1.6 nm and the width from 170 to 
201 nm corresponding to the increase of pulse duration from 
2 to 190 μs. On the other hand, for the tip-sample distance 
of 0.2 μm, the oxide height ranged from 0.65 to 5.40 nm 
and width from 100 to 187 nm, for the mentioned pulse 
durations, as shown in Fig. 4. From this, it is clear that the 
overall dimension of the oxide increases as the distance of 
the tip from the sample increases. This is due to the water 

bridge formed at the tip-sample junction. When the substrate 
was treated with 25% aqueous HF solution for 20 min, they 
achieved concave structures as small as 0.3 nm, as shown in 
Fig. 5. The effect of tip–substrate distance on etching pro-
cess of III–V semiconductors can be referred from [117]. 
Hence, according to their study, PECN could be considered 
as a novel method to achieve atomic-scale material removal 
and since this can be performed in non-contact mode, the tip 
wear can be reduced considerably. 

Recently, Ki et al. [118] performed electrochemical local 
etching (ELE) to attain etching over Si using non-contact 
mode of AFM machining. They used polygon tips to etch 
through doped n-type Si substrate with the use of KOH. 
They were able to produce polygonal sub-micrometer 

Fig. 4   Formation of nano oxide. 
a The nanoscale oxides formed 
with a tip-sample distance of 
0.1 μm and b its 3D topographi-
cal image. c The nanoscale 
oxides formed with a tip-sample 
distance of 0.2 μm and d its 3D 
topographical image. Repro-
duced from Ref. [93]. Copyright 
IOP Publishing

Fig. 5   The nanodot formation. 
a The nanodots formed after 
treating the substrate with HF 
solution. b–d The magnified 
and line profiles of nanodots for 
the time durations 190, 100, 50, 
and 2 μs, respectively (from left 
to right). Reproduced from Ref. 
[93]. Copyright IOP Publishing
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patterns directly over the substrate. Hence, contact and non-
contact modes of material removal are possible, and their 
application must be explored further with improvements to 
achieve consistent ways of machining.

With Si being a brittle material, machining can be per-
formed in the ductile mode and with this, tens to hundreds of 
nanometers of depth can be achieved, with less wear resist-
ance using a diamond tip, as reported by Kawasegi et al. 
[119]. These machining characteristics in the ductile mode 
and the ductile/brittle transitions can be analyzed to have a 
clear picture of various mode transitions from plastic defor-
mation to brittle crack during nano-scale machining [120]. 
Methods such as surface modification by ion implantations 
can also be implemented to cut Si-like brittle materials 
such as the softening of tungsten carbide surface, making 
it easier for machining with improved chip formation and 
machinability at nanoscale [121]. Even though Si is hard and 
brittle, the research above shows that there are possibilities 
for direct etching that can lead to proper development of 
Si-based electronic components, which in turn result in its 
mass production.

2.2 � HOPG: Highly Oriented Pyrolytic Graphite

HOPG is a variant of graphite synthesized by thermal crack-
ing of hydrocarbons and heat treatment along with pres-
sure to modify the c-axis orientation of crystallites [122]. 
HOPG has a layered surface and is easy to prepare [123, 
124], although it is expensive due to the requirements of 
high temperature and pressure. The cleaning methodology 
is as simple as using an adhesive tape, such as Scotch tape, 
to remove the defective layers, which is known as mechani-
cal exfoliation [125, 126]. It has been reported that an AFM 
tip can be used to exfoliate HOPG to achieve thickness 
of ~ 200 nm [127]. This is possible due to the mechanically 
weak graphite layers [128]. This method can be used to 
attain monolayers of graphene from HOPG. These atomi-
cally flat and layered structures make HOPG a great candi-
date for lithography and machining studies [123, 124, 129].

Owing to this flat and uniform surface, the roughness 
over HOPG is typically low. As a result, the scratches 

formed over the sample are V-shaped, as reported by Has-
sani et al. [130]. They have applied forces ranging from 5.5 
to 50.5 μN and found debris accumulating at the beginning 
and end of the scratches as the forces increased. They have 
reported that the rate of tip wear with time and number 
of scratches was high due to the hard surface of HOPG. 
Controlled humidity conditions can improve the removal 
rate and the surface can be etched electrochemically, with 
less applied force.

Electrochemical etching using AFM tip over HOPG sur-
face to obtain atomic-scale machining has been reported in 
earlier studies [76, 131, 132]. Since only a few works have 
been performed on AFM machining over HOPG in recent 
years, we have mentioned some of the earlier works before 
2010. Kim et al. [27] showed that cutting is possible only 
if the tip is negatively biased, below a threshold. At – 10 V, 
they achieved a depth of 7.9 nm, which is approximately 23 
atomic layers of graphite. They proposed that the cutting 
mechanism can be implemented by controlling the graphite 
etching by adjusting the field-emission current originating 
from the negatively biased tip. Better etching was obtained 
above − 8 V, as shown in Fig. 6. In their report, the threshold 
voltage for etching increased with increasing scan speed. 
Hence, scan speed, loading force, and applied bias contrib-
ute largely to the material removal mechanism.

The work performed by Park et  al. [132] resulted in 
achieving nanoholes up to 10 nm in diameter and 0.34 nm 
in depth, which corresponds to a single layer of graphene. In 
their experiment, voltage of − 10 V was applied to the metal-
coated tip with a 50-ms pulse width. The pressure applied 
by the tip was found to be ~ 800 nN with ~ 20-nm tip deflec-
tion. It should be noted that no debris was formed around 
the nanoholes after machining. They consider the chemi-
cal reaction between the graphite and tunneling electrons 
to be the machining principle. By maintaining the optimum 
scratching velocity, force, and other parameters, single-layer 
material removal can be extended to obtain arbitrary shapes. 
Similar research was performed by Jiao et al. [76] but they 
attained grooves of depth up to 17.5 nm at − 10 V provided 
to the tip. Also, the threshold voltage was found to be − 4 V, 
since there was no etching below this voltage.

Fig. 6   Etched lines over HOPG. 
a Etched lines over HOPG for 
different voltages and b the 
line profile for the different 
etched lines showing the depth 
of each line. Reproduced from 
Ref. [27]. Copyright American 
Physical Society
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On the contrary, Jiang et al. [50] achieved convex and 
concave structures over HOPG, depending on the ampli-
tude and duration of voltage pulse. These features were 
achieved when the tip was placed over different spots, 
each for a particular voltage pulse, as shown in Fig. 7. 
In Fig. 7d, the numbers from 1 to 9 correspond to the 
voltage pulse of 8  V applied for durations 100, 200, 
500, 1000, 2000, 4000, 6000, 8000, and 10,000 ms. The 
convex structures were obtained for pulses from 100 to 
1000 ms, whereas concave ones were formed from 2000 
to 10,000 ms, with exponential increase with the duration. 
The experiments were performed in a humid environment 
with RH ~ 60%. They applied positive voltage to the sub-
strate, concentrating the electrons on the tip. They also 
scratched the substrate with different voltages up to 9 V 
and a scratching speed of 1 μm/s. In their experiment, 
the threshold to obtain material removal was estimated 
to be 5–6 V, as shown in Fig. 7a. In their conclusion, the 
height of convex features depended only slightly on the 
voltage, while there is a large influence of voltage over 
the concave features, as the depth increased considerably 
with increased voltage. According to them, the adsorbed 
water and oxygen over the graphite facilitated the forma-
tion of concave structures, while the oxidation induced 
by the defects of graphite caused the convex depositions. 
In 2011, the same authors demonstrated the transition 
from the convex to concave features over HOPG beyond a 
threshold voltage, which ranged between 4.1 and 5 V [25].

Similarly, protrusions and trench features were observed 
on HOPG by Gowthami et al. [133] in 2013 by LAO. They 
also grounded the tip and the humidity was maintained 
between 55% and 60%. They observed the changes happen-
ing on the substrate over different days. The patterns they 
obtained were reported to have a widening and reduction 
in width over a day’s time. They explained this change as a 
result of water adsorption by the LAO-modified region and 
the subsequent evaporation with time or the sweeping effect 
of AFM scanning. These types of research are important to 
develop stable and robust atomic-scale devices in the future.

An important factor in atomic-scale manufacturing 
is the ability to control the machining of samples. This 
includes the effects of machining performance on fabri-
cation mechanism and transition from LAO to electrical 
breakdown during lithography. Yang and Lin [131] per-
formed such an experiment to understand the machining 
performance and the transitions like the above mentioned 
on HOPG. They have used a Si probe coated with conduc-
tive TiN films. The humidity provided was in the range 
of 50% to 55%. HOPG sample was given voltages up to 
10 V, keeping the tip grounded. They evaluated the I–V 
curves with feedback on and off. Their results showed 
that when the feedback was on, a gradual increase of cur-
rent till 4 V, as from the linear curve, and a rapid increase 
in current flow above 5.5 V, as in the exponential curve, 
was observed. Hence, the transition region was found 
to be in the range of 4–5.5 V, as shown in Fig. 8. On 

Fig. 7   Formation of nano holes 
over HOPG. a The scratched 
lines, b the line profile, c 
the surface of HOPG before 
machining, and d the nanoholes 
obtained for pulse durations 
from 100 to 10,000 ms, which 
is noted by numbers from 1 to 
9. Reproduced from Ref. [50]. 
Copyright IOP Publishing
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the other hand, when the feedback was off, there was 
a rapid decrease in the current flow above 5.5 V. They 
also etched HOPG, with applied bias of 4 V and a scan 
speed of 2 μm/s, attaining a depth of 0.9 nm and width of 
100 nm, which is close to three graphene layers.

Another work by Kurra et al. [134] succeeded in fabri-
cating mesoscopic graphitic island (MGI) over HOPG by 
local electrochemical oxidation and etching using AFM 
tip. These MGIs could store charges, which were stable 
over time. They have reported that at a voltage of − 8 V 
and humidity of 35%, the HOPG surface could be oxi-
dized with tapping AFM mode and could be etched with 
contact mode of operation. They have achieved oxide 
deposits as high as 1 nm with tapping mode and a depth 
of 1.5 nm in the contact mode, which is comparable with 
that reported in Ref. [50].

With graphene being a widely used material for elec-
tronic applications [28, 135–138], machining HOPG 
using AFM could bring about breakthrough research in 
atomic-scale device fabrication.

2.3 � Gold: A Universal Reference Material 
for Moletronics

Gold is an important material and used as a reference for 
molecular electronic studies [87, 139]. Most of the theo-
retical works for developing atomic-scale electronic compo-
nents are performed considering gold as the electrode mate-
rial [108, 122, 139–144]. Apart from this, the properties and 
structures of gold in different orientations have been stud-
ied in detail by many researchers both in ultra-high vacuum 
(UHV) and electrochemical environments [145]. Scanning 
probe microscopes have been used for machining Au nanow-
ires in the earlier years [146, 147]. Hence, machining Au 
in atomic precision can bring about drastic development in 
the experimental realities, and in the manufacturing sector.

It has already been discussed that the tunneling current 
passing between the AFM tip and the substrate can cause 
oxide structures, which can act as potential barrier regions in 
the electronic transport studies [148]. Li et al. [149] achieved 
nanochannels and nanopatterns over gold nanowires manu-
factured on silicon wafer, with the combination of nanoin-
denter and AFM. These nanochannels were created using 
a sharp diamond tip. No debris was formed after scratch-
ing the gold surface. They have achieved nanochannels of 
170 nm length and a depth of 5 nm, as shown in Fig. 9a. 
They have also shown that complex patterns can be obtained 
over Au combining nanoindentation and nanochannel forma-
tion, as shown in Fig. 9b.

Similar grooves are achieved by Fang et al. [150] by 
scratching the Au and platinum surfaces with a diamond 
AFM tip in ambient air conditions. In their experiment, 
they have used a pyramidal-shaped diamond tip with an 
apex angle of 60º and tip radius of 15 nm. According to 
their report, the depth of grooves for Au was greater than 
platinum. They scratched the surface with different applied 
forces, from 0.5 μN, with an increment of 0.5 μN, to 2 μN, 
and the depth increased with increasing force, as shown in 
Fig. 10a. With further increase in force up to 7.5 μN, the 
wear mark increased, as shown in Fig. 10b. The increase 
in wear depth over Au due to the increased force shows the 

Fig. 8   The I versus V curve showing the transition from local anodic 
oxidation to the breakdown region when the feedback was on and 
off. Reproduced from Ref. [133]. Copyright Microscopy Society of 
America 2016

Fig. 9   a Nanochannel formed 
with a depth of 5 nm and b the 
combined nanochannel and 
nanoindentation formation. 
Reproduced from Ref. [147]. 
Copyright IOP Publishing
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possibilities of removing single atomic layers with optimum 
parameters.

In the mentioned research, no voltage was applied to the 
AFM tip and the sample. Instead, they have applied differ-
ent loads to achieve different depths; hence it is a mechani-
cal method of material removal. Therefore, the effects of 
applying voltage across the tip-sample junction should be 
explored to understand the effects of oxide formation or 
the material removal mechanism over Au substrate. This 
might be useful in enabling better removal rate from the Au 
surface. Other options such as using a counter material as 
the AFM tip other than diamond can also be implemented, 
which makes it cost-effective and efficient. In this way, much 
more research can be carried out on this material.

AFM-based machining research on Au is lacking at this 
stage. From the above-mentioned studies, most of them are 
related to the fabrication of Au nanowires. An electrochemi-
cal AFM etching methodology on Au is lacking, and is an 
open field of research, even though etching on Au within 
nanoshaved self-assembled monolayers with the aid of AFM 
has been reported [151]. Also, Au is malleable and not ideal, 
making it a challenge for machining purposes. Hence, elec-
trochemical approaches are needed for these reasons.

2.4 � Silicon Carbide: A Wide Bandgap Semiconductor

SiC is a semiconductor having a wide bandgap [152]. They 
have different applications because of their physical and 
electronic properties. They have been used in high-power, 
high-frequency, and high-temperature devices due to their 
excellent thermal and electrical conductivity [153]. Even 

though they are hard, SiC semiconductors can have higher 
wear rates than other conventional abrasives [154].

SiC has different crystal plane orientations such as a-, 
m-, and c- planes, each differing in their properties related 
to the etching, thermal oxidations, and bulk growth [78, 
155–158]. The oxide growth using an AFM tip over differ-
ent planes of 4H-SiC was studied by Ahn et al. [78], who 
found that oxides can be grown as high as 6.5 and 13 nm, 
respectively, for a- and m- planes, while 30-nm oxide height 
can be achieved over the c-plane. These authors have used a 
conductive Si tip and a humidity of ~ 40%, with a scan speed 
of 0.5 μm/s to scratch over the substrate. However, these 
oxide structures were not treated with any solutions to find 
the possibilities of material removal from the SiC surface.

Similarly, Lorrenzoni and Torre [79] achieved oxide pat-
terns over 6H-SiC (0001) by field induced oxidation (FIO). 
They have adjusted the oxide height and thickness by vary-
ing the voltage and pulse duration. On the contrary to Ref. 
[78], they have treated the substrate with HF solution to 
remove the oxide deposits from the surface. On the con-
trary to Ref. [78], they have treated the substrate with HF 
solution to remove the oxide deposits from the surface. In 
their experiment, a humidity range of 20%–45% and nega-
tive bias to the tip were provided. The lines were achieved 
between 5 and 15 V, with a scratching speed of 1 μm/s, as 
shown in Fig. 11. They obtained a lateral feature of ~ 50 nm 
and a full width at half maximum (FWHM) ~ 350 nm. Fig-
ure 11a shows the patterns formed over SiC when a 10-V 
bias and a scratching speed of 1 μm/s were implemented. 
When these patterns were treated in 5% aqueous HF for 30 s, 
depressions of ~ 3 nm were obtained, as shown in Fig. 11b. 
The height profile of the untreated SiC and the HF-treated 

Fig. 10   Material removal over 
Au. a The material removal 
obtained for different applied 
forces over Au and b the 
increasing wear depth corre-
sponding to the force applied 
over Au. Reproduced from Ref. 
[148]. Copyright Elsevier



178	 Nanomanufacturing and Metrology (2020) 3:167–186

1 3

surface is shown in Fig. 11c. In the figure, h represents the 
oxide height and d represents the HF etched depth.

Since SiC is a hard material with extreme stiffness and 
micro hardness, machining the surface with atomic precision 
is a difficult task [159–161], even though scratching with 
a Berkovich indenter has been performed by Zhang et al. 
[162]. However, an effective AFM-based machining of SiC 
is still lacking, though nanopatterning of epitaxial graphene 
grown on SiC(0001) has been reported by Alaboson et al. 
[22] using c-AFM. Recently, a molecular model showing the 
different aspects of tip-based machining over single-crystal 
SiC has been performed by Meng et al. [163].

The material properties of SiC and Si differ in many 
ways; this can be referred from Table 1. SiC is much harder 
than Si, with a Mohs hardness of 9–10. The fracture tough-
ness and tensile strength are also much harder for SiC than 
Si. Owing to these factors, limited research on AFM-based 
material removal is performed on SiC. Apart from this, SiC 
is very brittle and diamond grinding techniques are well 
favored for proper machining. In the studies performed so 
far, as shown in Table 2, Pt-coated AFM probes are used. 
Hence, SiC needs to be explored further for the applications 
in atomic-scale device fabrication. As mentioned above, 
limited research has been conducted using SiC as a sample 
material for AFM-based machining for the above-mentioned 
reasons. Si probes have been used to test their durability over 
SiC [97] but a consistent material removal method should 
be developed and tested to expand the research possibilities 
with this material. In addition, SiC has a standard etching 

procedure that provides an atomically flat surface, with 
atomic step edges, and hence finding the parameter space 
to achieve this locally should be the goal of future research.

3 � Research Trends and Future Outlook

From the works conducted so far, researchers are on the 
verge of making a breakthrough by enabling the mass pro-
duction of atomic-scale devices to improve the efficiency 
and access to the technology. The next generation of manu-
facturing is known as Manufacturing III, which is at the 
atomic scale [164, 165]. Currently, molecular dynamics 
simulations are best suited for studying the possibilities 
of material removal mechanisms [166–170]. These simu-
lations help to visually analyze the interactions occurring 
at the atomic scale. Once the fundamentals are developed 
and properly simulated, experimental realities are possible, 
which can eventually lead to the fabrication and integration 
of these devices in IC chips. The most advanced AFM-based 
manufacturing is performed with the help of artificial intel-
ligence (AI) technology [35]. Machine learning can bring 
about drastic innovations since automation is a key factor in 
achieving atomic fabrication with precision.

The mechanical material removal over Si has achieved 
a removal thickness of merely 1.4 ± 0.3 Å, which is very 
close to a single layer of monocrystalline Si. However, con-
sistent and stable removal has not yet been achieved. Apart 
from this, the formation of oxide deposits can be considered 

Fig. 11   Patterns over SiC. a 
The oxide patterns formed over 
6H-SiC at different bias voltage 
and the line profile showing the 
height of each deposits in nm. 
b The 3D structures fabricated 
over SiC. c The depressions 
obtained when the same surface 
was treated with HF solution. 
d The height profile for the 
surface before and after treating 
with HF solution. Reproduced 
from Ref. [71]. Copyright AIP 
Publishing
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a possibility in controlling the depth of Si removal. From 
the papers mentioned above, many factors such as voltage, 
scratching speed, and so on can influence this deposition. 
Finding optimal parameters to remove the thinnest possi-
ble layers electrochemically from the substrate is still an 
open field of research. The tip material can also be selected 
appropriately to achieve maximum removal with less wear. 
Currently, diamond tips are the most favored, as diamond 
is much harder than other materials. To solve the high-
cost problem, DLC-coated tips are also successively used, 
which is almost as hard as diamond but less expensive at the 
expense of a larger tip size. In addition, metal-doped tips 
are also used, which are cheap and durable for academic 
research purposes. For future works based on electrochemi-
cal AFM-based etching, conductive tips are best suited, as 
they require a strong electric field to overcome the activation 
energy required for the oxidation reactions to take place. 
Si probes with PtIr5 coatings are commonly used for this 
purpose.

In the case of HOPG, Au, and SiC substrates, there is 
much more research to be explored to find the possibilities 
of atomic manufacturing. In the future, a large area deposi-
tion of few layers of graphene could be implemented, from 
which a single layer can be removed. Even though etching 
has been achieved, AFM-based machining is still lacking, 
and if a successful removal methodology is achieved, many 

applications in moletronics and molecular electronic device 
fabrication can be made possible. Towards the future, a sin-
gle atomic protrusion from the electrode should be fabri-
cated for connecting with the terminal of a molecule. This 
is a tedious task, but possible with a systematic and careful 
approach.

The theoretical thickness of a monolayer of Si  (100) 
is ~ 1.36 Å [6]. Likewise, a single layer of HOPG corresponds 
to 3.40 Å [132]. This should be the target layer thickness to 
achieve ACSM on these materials. Table 2 shows a summary 
of the etch depth achieved, including the major parameters 
used by different researchers to achieve ACSM on Si, HOPG, 
and SiC. From the table, it is evident that p-type Si (100) is 
mostly used as the substrate for the experiments. Also, dia-
mond tips are the most favored due to their hardness, durabil-
ity, and less tip wear. The minimum layer removed on Si is 
claimed to be 0.14 nm, which is almost close to a monolayer 
thickness, as mentioned earlier. The force applied depends 
mostly on the tip used. For diamond- and DLC-coated tips, 
higher forces are required, ranging from 10 to 160 μN, even 
though low forces on orientations such as Si (110) have been 
reported [113], whereas low loading forces can be applied for 
metal-coated tips. NC-AFM also finds its application in ACSM 
of ~ 0.3 nm material removal. Hence, Si and Si-like materials 
can be machined efficiently by using hard tips such as diamond 

Table 2   Summarized results from the selected papers mentioned in this review along with some of the parameters used in etching over Si, 
HOPG, and SiC

a The tip is grounded and the sample is given positive bias
b Etched depth
c NC—non contact; (–) Information not available from the manuscript

Substrate Tip Biasa (V) Loading force (μN) EDb (nm) RH Refs.

P-type Si(100) DLC – 10–20 0.68–3.35 Room cond. [86]
Bare Si surface Diamond – 31.11–155.55 6.09–36.1 Room cond. [112]
Si(100) Diamond-coated tip – 10–110 18 Room cond. [120]
p-type Si(110) Single-crystal diamond tip – 2.80 5.1 Room cond. [113]
p-type Si(100) NSC18/Ti–Pt-coated probe 8 NCc (0.1 and 0.2 μm gap) 0.3 70%–75% [93]
Boron doped p-type (100) 

silicon on insulator wafer
Au-coated and Cr/Pt-coated tips 8–9 0.1–0.2 N 44.71 50%–80% [110]

Boron-doped p-type Si(100) Pt/Ti-coated Si probe 0–2 2 0.8 In DI water [48]
Si(100) Silica microsphere probe – 0.3 0.14 75% ± 2% [6]
HOPG Cr/Au-coated Si tip 10 0.8 0.34 Room cond. [132]
HOPG NSC21/Ti–Pt tip 0–10 – 17.5 30% [76]
HOPG Pt/Ir-coated Si tip 0–12 0.25 1.5 30%–50% [134]
HOPG SCM-PIT (Pt/Ir) tip 8 15 15 58% [133]
HOPG Conductive TiN-coated Si probe 0–10 0.1–0.2 0.9 50%–55% [131]
HOPG Conductive Rh coated 8 – 0.576 60% [50]
Epitaxial graphene on SiC cAFM tip 0–10 – 1. 2 35% [22]
4H-SiC Pt/Ir-coated conductive Si 6–10 0.1 – 40% [78]
6H-SiC (0001) Pt-coated probe 5–13 – 3 20%–45% [79]
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with higher loading force, with voltages ranging from 1 to 
10 V and by providing RH ranging between 50% and 80%.

In the case of HOPG, due to its soft surface compared to Si, 
diamond tips can be replaced with metal-coated tips such as Pt/
Ir, Cr/Au, or TiN. Experiments can be performed in room con-
ditions, however, a humid environment with humidity ranging 
between 30% and 60% is optimal. Apart from this, less load-
ing force ranging between 0.1 and 1 μN is mostly sufficient to 
scratch the HOPG surface. Further research is yet to be con-
ducted over SiC and Au, however, from the research performed 
so far, Pt-coated tips with applied bias between 6 and 13 V and 
humidity conditions ranging between 20% and ~ 50% can be 
used for machining SiC.

For the electrochemical approach, no special electrolytes 
are needed, since the water meniscus formed between the 
tip and the substrate serves the purpose. However, different 
electrolytes could be explored for achieving selectivity and 
reducing byproducts or oxidation deposition. Humidity is 
maintained between 20% and 80% in most of the research. 
Based on the previous studies, a humid environment is much 
more favored for electrochemical etching process by AFM 
tip. Also, voltage should be provided to enhance the electric 
field between the tip and sample. Hence, optimum param-
eters can work towards achieving atomic-scale manufactur-
ing over these substrates.

Optical excitation is another area to be explored to 
enhance the etching of materials. The photogenerated carri-
ers in a plasmonic structure could facilitate reactions which 
could aid the material removal mechanism. Optical exci-
tations are proved to alter the structure and properties of 
materials [171]. As a matter of fact, conventional classical 
mechanical theory is insufficient to deal with interactions 
at the atomic scale. As small-scale manufacturing is very 
sensitive, a well-defined quantum mechanical approach is 
required since the tunneling effect and the possible underly-
ing damage which occurs can hinder the machining. With-
out confining only to silicon, further materials such as cop-
per should be explored for this approach [172]. The major 
problem lies in the mass production of these manufactured 
products. AFM is a medium to perform the analysis and 
research, but it is not a proper machining platform for the 
mentioned purpose, even in a millipede configuration [173]. 
Machines capable of performing small-scale manufacturing 
should be developed with proper supervision of the quality 
and performance of machined components through surface 
integrity research and development [174].

4 � Conclusions

In this review, we have come across different aspects of 
research performed to achieve atomic-scale manufacturing 
using AFM-based machining, emphasizing the past decade. 

Four typical materials having potential applications in the 
semiconductor industry have been selected: these are Si, 
HOPG, Au, and SiC. Out of these, most of the research, 
based on AFM machining, has been conducted on Si. The 
formation of oxide deposits over Si and SiC and the forma-
tion of grooves on HOPG and Au are described in detail with 
the reactions taking place at the tip–substrate junction. Since 
many reviews have reported on tip-based manufacturing, 
we have only concentrated on limited and much mention-
able works on electrochemical and some mechanical works 
with the application of AFM over the mentioned substrates. 
In conclusion, we could state that a stable and continuous 
atomic-scale manufacturing on Si, exploring much more 
possibilities on HOPG, Au, and SiC, should be the aim, 
leading towards ACSM in the future.
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