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Abstract
This paper presents a complementary multi-probe method for measurement of radial and tilt error motions of a spindle. Nei-
ther indexing of artefact nor rotating of spindle housing is required and thus make it suitable for in situ evaluation of spindle 
performance effectively. In order to minimize the harmonic suppression problems commonly encountered in the multi-probe 
measurement approach, three sets of probe angle combinations were optimized and the harmonics of the three measure-
ments were extracted and composed to reveal the true artefact errors in a complementary way. The exact probe angles were 
identified by the correlation function of the probe signals after the sensors are mounted onto the fixture and the requirement 
of high-precision fixtures was alleviated. The evaluation of measurement results showed that the erroneous harmonics were 
greatly reduced by 70%. Using this method, the radial error motions of the precision air bearing spindle were measured at 
seven axial positions and then the synchronized tilts error motions were calculated. This demonstrated an effective approach 
for measuring four degree-of-freedom error motions in one setup with a small number of displacement sensor probes.
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1  Introduction

Rotary motions can be found in the majority of machine 
tools and the study of spindle error motions has always been 
a necessity for machine tool manufacturers [1, 2]. Usually, a 
precise cylinder datum is mounted on the spindle rotor and 
the circumferential shape of the datum is treated as a perfect 
circle. This cylinder datum part is also called artefact in spin-
dle metrology literature [3]. In ultra-precision machine tools, 
the spindle runout errors are as small as tens of nanometers, 
while the circularity error of the artefact can easily be larger. 
Therefore, the key issue of spindle metrology is to separate 
the true rotor error motions from the measured sensor data, 
which includes the circularity error of the artefact. Reversal, 
multi-probe and multi-step methods are the three most com-
monly used separation techniques for spindle metrology [4, 
5]. Reversal method typically involves the repositioning of 
both the artefact and probes, which will inevitably introduce 

extra measuring uncertainties. An improved reversal method 
has been proposed by Grejda [3], where the spindle is rotated 
instead of the probe. However, the artefact and spindle rotor 
still need to be repositioned. The authors tried to alleviate 
this problem by designing a dedicated fixture using a spheri-
cal pilot mated in a carbide socket to locate the artefact. The 
fixture is very complicated and costly to make. Lee et al. 
[6] applied the reversal method to measure the spindle error 
motion for a large-scale machine tool and obtained the full 
error map of the roll workpiece. Marsh et al. compared the 
reliability of three separation methods and it shows that the 
multi-probe method gives comparable results to the reversal 
method [3, 7].

The multi-probe and multi-step methods have the same 
problem of harmonic suppression, which derives from the 
algorithm used to separate the artefact profile [8]. Using 
more sensors can reduce these effects but will increase the 
number of error sources and the cost. Zhang et al. [9, 10] 
investigated four-point and multi-point error separation 
methods in roundness measurement by computer simula-
tion and concluded that measuring with more than four 
probes does not improve the measurement results much. 
Variations of the multi-point method have since been 
proposed. Chen et al. [11] proposed a novel three-probe 
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method by solving systems of multivariable equation 
(SSME) and verified it by both theoretical analysis and 
experiments. Linxiang et al. [12] modified the multi-step 
method by deploying three groups of equally angled index-
ations (7, 8, and 9) and claimed the full harmonic separa-
tion ability through simulation, but it has not been experi-
mentally proved. Cappa et al. [13, 14] achieved 0.455-nm 
repeatability using only one probe in the multi-probe 
method by rotating the spindle stator and this method cir-
cumvents the error source caused by the inconsistency of 
sensitivities between sensor probes. However, the spindle 
housing has to be rotated, which is not always feasible in 
industrial conditions. Shi et al. [15, 16] proposed a hybrid 
multi-probe method where the weighting function coef-
ficient is optimized from several measurements to reveal 
the spindle error motions and also studied the propaga-
tion of the measurement uncertainty but his experimental 
setup cannot achieve precise results due to sensor limi-
tations. Zhao et al. [17] developed a single-step rotation 
error separation technique (SEST) by rotating the artefact 
a small angle. This method can remove harmonics singu-
larity in the range of 1–100 UPR with only one rotation 
and thus saves measuring time. Tong proposed a two-step 
method different from the traditional multi-step method 
by applying Prony spectrum method and singular value 
decomposition to separate the errors [18].

New types of sensors are also used to gather as much 
information as possible. Gao et al. [19–21] proposed an 
enhanced configuration with the two-displacement-one-
angle (2D1A) mixed method. Liu et al. [22] tried to meas-
ure the spindle errors by a specially designed optical sensor 
setup. The new sensors can help the separation of circularity 
error of the artefact, but this also increases the number of 
error sources.

Apart from the studies on error separation algorithms, 
some other researchers focused on the measurement appa-
ratus design. Vissiere et al. [23] introduces the concept of 
dissociated metrological structure (DMT) for cylindricity 
measurement at a nanometric level of accuracy. Ashok et al. 
[24] carried out fixed sensitive radial error measurement of 
a high-speed spindle and the error sources are separated by 
DFT-based frequency domain filtering method. He used 
laser sensors to measure the errors but with limited resolu-
tion. Chen et al. [25] identified the spindle error motions 
through the evaluating the surface form of the machined 
parts with wavelet transform. However, the machined sur-
face is the result of many factors and the surface form cannot 
fully reflect the spindle error motions. Ma et al. [26] applied 
three-point error separation method in hydrostatic spindle 
error measurement, which features online finish turning. Shu 
et al. [27] studied the measuring uncertainties resulting from 
sensor alignment and non-linearity for Donaldson reversal 
and three-point techniques.

Some of the above researchers have achieved very good 
measurement repeatability. However, those measurements are 
conducted in a controlled lab on specially designed setups. In 
most cases, after the spindle is mounted on a machine tool, 
rotation of the spindle stator is impossible, and precision rever-
sal is not applicable. This paper presents a complementary 
multi-probe method which shows effective reduction of har-
monic errors without requirement of repositioning of the arte-
fact or the spindle, making it suitable for in situ measurement 
in production environments. The positions of the sensors still 
need to be changed but the true positions are detected through 
sensor signals after mounting, reducing the requirement on the 
fixture precision. Measurement experiments were conducted 
to verify this approach.

2 � Methodology

2.1 � Complementary Spindle Error Separation

In the complementary multi-probe setup as shown in Fig. 1, a 
cylindrical artefact is fixed to the spindle rotor and is rotated 
during the measurement cycle. A fixed probe fixture is used 
to position the sensor probes. The error motions of the spindle 
together with the imperfections of the artefact are detected 
by three displacement sensors. The artefact profile signal is 
imposed on the spindle error motion signals with different 
phases at different probe angles. The one-off measurement 
cannot separate the artefact errors effectively due to the har-
monic suppression problem [8]. Then the probes are relocated 
into a different angle combination and another measurement is 
done. One probe is kept unchanged in order to get a fixed angu-
lar reference. The measurement can be done multiple times.

In each measurement, the instantaneous rotating center of 
the spindle is denoted as (x, y) in the fixed Cartesian coor-
dinate, with the X-axis direction in line with the first probe. 
When the spindle rotates, this rotating center location keeps 
changing, which is observed to be the radial motion errors.s1
,s2 and s3 are displacements measured from three directions 
against the artefact, with relative angles of � and � from the X 
direction. a(�) is the profile of the artefact around the circum-
ference. In practice, the shape change of the artefact caused by 
thermal variation and centrifugal force is negligible. Thus, the 
circumference profile of the artefact is assumed to be constant 
throughout the measurement cycle. The relationships between 
the probe measurements and the errors are

Define the weighted summation of the probe signals m(�) 
as

(1)s1(�) = a(�) + x(�)

(2)s2(�) = a(� − �) + x(�) cos � + y(�) sin �

(3)s3(�) = a(� − �) + x(�) cos � + y(�) sin �
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The purpose is to make the value of m(�) independent of 
the rotating center (x, y) by properly selecting the two weight-
ing factors c1 and c2 . Solving the equations of (1) to (3) and 
eliminating the x(�) and y(�) , the following relationship holds:

By selecting the weighting factors as below

Then

Apply Fourier transform on both sides and the transmit 
function from artefact error to summed probe signal can be 
derived as

This transfer function is called harmonic weighting function 
and k is the harmonic order. Then the artefact circularity error 
can be calculated in the harmonic domain by

(4)m(�) = s1(�) + c1s2(�) + c2s3(�)

(5)
s
1(�) − s

2(�)
sin (�)

sin (� − �)
+ s

3

sin (�)

sin (� − �)
= a(�)

− a(� − �)
sin (�)

sin (� − �)
+ a(� − �)

sin (�)

sin (� − �)

(6)c1 =
− sin �

sin (� − �)

(7)c2 =
sin �

sin (� − �)

(8)m(�) = a(�) + c1a(� − �) + c2a(� − �)

(9)G(k) =
M(k)

A(k)
= 1 + c1e

−jk� + c2e
−jk�

(10)A(k) =
M(k)

G(k)

Since the weighting function appears in the denominator, 
a small value of G(k) will amplify the measurement noises in 
S(k) . This is called the harmonic suppression problem in multi-
probe method. The value of G(k) at each harmonic depends 
on the angles of � and � . Thus, in this paper, several different 
groups of the angles � and � are applied in the measurements.

Assume that the harmonic weighting functions for differ-
ent angle sets are Gi(k) respectively, where i is the angle set 
number. The corresponding harmonics of the summed probe 
signals are Mi(k) respectively. The summation and the weight-
ing functions are used to calculate the artefact circularity error 
according to Eq. (10), resulting in n Fourier series of the arte-
fact circularity error Ai(k) , where n is the total measurement 
number.

A complimentary processing approach is proposed in 
this paper to reconstruct the artefact circularity error from 
the multiple measurements. The different angles used in the 
measurements will result in harmonic suppressions at differ-
ent harmonics. The erroneous harmonics in one error separa-
tion procedure can be corrected by the other measurements in 
which the same harmonics are not suppressed. The harmonic 
with the minimum amplitude at each harmonic bin is picked 
and then combined into a new Fourier series. The rationale 
behind this method is that the low values of G will only result 
in an amplification of the separated artefact error. Thus, the 
smallest harmonics are the least amplified ones.

Then the harmonics function Acomp(k) is transformed into 
spatial artefact profile acomp(�) by inverse Fourier transform. 
Since each angle set result has its own corresponding phase 
values, the rearranged amplitudes can be used to obtain three 
results of the artefact form. The phase information is not 

(11)Acomp(k) = min
(
A1(k),A2(k),… ,An(k)

)
, k = 1 to∞

Fig. 1   Schematic diagram of the complementary multi-probe error separation method
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distorted by the low value of G and therefore all the meas-
urements are meaningful. By solving Eqs. (1) and (2) with 
the obtained artefact error, the spindle radial errors in X and 
Y directions are calculated by

2.2 � Selection of Probe Angles

In this experiment, three sets of probe angle combinations 
are selected to optimize the minimum value of |G| . The angle 
set #1 is selected according to Cappa’s research [14]. This 
angle set has been proven to be an optimal one for a single 
measurement. However, it still inevitably shows some small 
values. A MATLAB script is written to search for the other 
two angle values at which the three combinations do not 
compress the same harmonics. This is done by calculating 
the minimum G value at all the probe angles with angle step 
of 2°. The designed angle sets are listed in Table 1.

The absolute values of G(k) at different harmonic orders 
for the three designed sets of angles are shown in Fig. 2. 
The minimum value is found of 0.1613 at 88 UPR for the 
second angle set.

(12)x(�) = s1(�) − acomp(�)

(13)y(�) = [s2(�) − acomp(� − �) − x(�) cos (�)]∕ sin (�)

3 � Experimental Design

The spindle under test is a precision air-bearing spindle 
mounted on a diamond turning machine as shown in Fig. 3. 
An aluminium cylinder artefact is first turned with a dia-
mond tool on the machine, thus a small runout is guaranteed. 
A probe holder is designed with multiple square slots to 
position the capacitive probe as shown in Fig. 3. The probe 
mounting plate is adjusted perpendicular to the spindle rotat-
ing axis within 20 μm. The influences of probe positional 
error are analyzed in [28]. In order to reduce vibration, the 
air bearing slides are cut off from air supply and rested on 
the machine bed after positioning the probe holder. Three 
calibrated capacitive probes from Lion precision are used 
throughout the measurement. The bandwidth of the amplifier 
is adjusted to 1 kHz to achieve a resolution of 0.3 nm rms 
and the peak-to-peak resolution is expected to be ten times 
higher. A 16-bit eight-channel simultaneous sampling board 
is used to sample the displacement signal. The spindle is 
equipped with a 6000-line Heidenhain rotary encoder. The 
machine controller is configured to generate 10,000 pulses 
per revolution and these pulses are used to trigger the data 
acquisition device. Spindle speed is set to 60 rpm. Each test 
is started from the same spindle angular position from static 
and 200 consequent revolutions data are acquired. Because 
the spindle rotation is not stable during the start-up period, 
only the last 32 revolutions are used in the calculation.

Because the spindle also has tilt errors, which can be 
reflected by the radial error motions at different axial 
location, the measurement approach can be extended to 
measure the tilt error. The spindle error motion measure-
ments are carried out at seven positions spaced by 21 mm 
along the axial direction (Z direction), each with three 
angular arrangements as shown in Fig. 4. The spindle 

Table 1   Designed probe angles for the complementary method

Angle �(◦) Angle �(◦)

Angle set #1 100.4000 230.0333
Angle set #2 141.0333 270.7050
Angle set #3 139.3667 239.1200

Fig. 2   Absolute values of G(k) 
at different harmonic orders for 
the designed three sets of angles
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error motions at different locations are later used to cal-
culate spindle tilt errors by linear fitting.

4 � Results and Discussion

The exact angles between the three probes are critical 
for the correct separation of artefact circularity error and 
spindle error motion. Although much effort has been put 
into selecting the different angles, there will be position-
ing errors when the probes are mounted on the sensor 
holder. The angle deviations will not be so large as to 
affect the overall shape of the weighting function, so the 
design process is still necessary. The question is how to 
determine the actual angles after the probes are mounted.

4.1 � Determination of Probe Angles

In this experiment, a special mark on the artefact is used to 
determine the relative angle between probes. The outputs of 
the three probes pose the same profiles for the mark for every 
cycle with phase differences. Correlation function is used to 
find the relative phase angles. As the spindle error motion is 
superimposed onto the form profile including the designated 
mark, the mark feature has to be extracted before applying 
the correlation method. The extraction process is shown  in 
Fig. 5. Firstly, the sensor output is filtered at 50-UPR cut-off 
frequency with zero-phase forward and reverse IIR filter. 
Then, an 8th-order polynomial is subtracted from the curve 
to remove the large wavelength while keeping the narrow 
mark signal dominates. After that, mark features for each 
probe are extracted with the same height from the peak, 
and mutual correlation is calculated to determine phase 
differences.

The angles are calculated once a cycle and 96 cycles 
are calculated in total. The actual probe angles are listed in 
Table 2, together with the standard deviations. The results 
show good repeatability with standard deviations within 
0.03 degrees.

The three harmonic weighting functions calculated from 
the measured angles are shown in Fig. 6. Several unexpected 
small absolute values of G can be found at harmonics around 
35 UPR and 60 UPR, which is not desirable. This also dem-
onstrates the necessity for using more than one angle combi-
nation to recover components that are missed out in a single 
measurement.

4.2 � Measurement of Spindle Radial Error Motions

Firstly, the measurement is conducted at one location, 
approximately 100 mm from the spindle bearing, with 
different angle sets to verify the frequency-domain modi-
fication approach. The interested harmonic range is set 

Fig. 3   Experimental setup for 
the spindle error measurement

Fig. 4   Schematic diagram of the tilt error measurement method
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as from 2 to 100 UPR and the asynchronous errors are 
removed by averaging 32 revolutions.

Figure 7a shows the separated artefact profiles with the 
traditional method from three measurements. The profile 
measured by angle set #1 shows much larger variations 
than angle set #2 and #3, which is caused by the error 
amplification effect of low G value for angle set #1. The 
harmonics of the three profiles are shown in Fig. 7c. It can 
be seen that the artefact profile for the first angle set shows 
obvious peaks at the 35 UPR and 62 UPR, which agrees 
with the low values of the weighting function.

Fig. 5   Steps for calculation of actual probe angles with an ink mark

Table 2   Actual probe angles after probe mounting

Angle �(◦) Standard 
deviation (◦)

Angle �(◦) Standard 
deviation 
(◦)

Angle set #1 100.15 0.0052 230.12 0.0314
Angle set #2 140.90 0.0052 269.92 0.0173
Angle set #3 139.33 0.0131 238.31 0.0144
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Then the complementary method is applied to each curve 
to address this problem. The magnitude of the artefact pro-
file spectrum is scaled to be the smallest of the three. In this 

case, the phase of each separated profile is kept unchanged 
for each angle set. Thus three results for the artefact shape 
are obtained only with phase differences. The modified 

Fig. 6   Harmonic weighting 
functions after probe mounting

Fig. 7   Harmonic suppression problem and the improved results with the complimentary method
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Fig. 8   Comparison of X radial results with and without complementary method

Fig. 9   Fixed-sensitivity radial 
error motions (X and Y) meas-
ured at different axial locations
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artefact profiles are shown in Fig. 7b and the results show 
that the maximum differences between the three measure-
ments are reduced from 24.1 to 7.3 nm, thus the harmonic 
problem is effectively reduced by 70% in this case. The mod-
ified results possess greatly improved agreement between the 
three measurements. The averaged results of the three curves 
are deemed as the artefact profile error.

The fixed-sensitivity error motion along the X direction 
is calculated according to Eq. (12). Figure 8a, b shows the 
synchronous X radial error motions with and without the 
complementary method. Again, the revised results possess 
much improved agreement between the three measurements. 
The peak-to-peak synchronous X-axis radial error is meas-
ured to be 108.1, 112.1, and 101.1 nm, respectively.

4.3 � Measurement of Spindle Tilt Error Motions

Radial error motions at different axial locations (from 
Z = − 63 mm to Z = 60 mm for every 21 mm) are measured 
using the above method. The X and Y radial error motions 
are shown in Fig. 9. It can be seen that the major components 
of the radial errors are the twofold undulations. As the meas-
urement axial locations is further from the bearing location 
(Z = − 63 mm), the peak-to-peak X radial error gets larger 
and larger. The same trend also applies in the Y direction.

The rotating-sensitivity spindle error is calculated by 
the square root of the summed X and Y radial errors. The 
rotating-sensitivity spindle error indicates the trajectories of 
the rotating center in Cartesian coordinate. Linear curve fit 
is applied at each rotary position and the results are plotted 
in Fig. 10. The measured trajectories at different axial loca-
tions show good linear relationship and this further verified 
that the error separation method is reliable.

The fitted lines are then used to calculate the tilt errors 
of the spindle. The measured tilt errors are shown in 
Fig. 11. The angular deviations about the X and Y axis are 
within ± 0.1 arc-seconds for the full spindle revolution.

5 � Conclusions

In this paper, a complementary multi-probe method is pro-
posed for in situ measurements of spindle error motions 
with the reduction of harmonic suppression effects. Meas-
urements at three sets of optimized angles reveals different 
harmonic estimations of the artefact form profile. Both the 
separated artefact circularity error and the derived radial 
errors show good agreement for repeated measurements 
and the harmonic suppression effect is reduced by 70%. The 
influences of the erroneous harmonics at 35 and 62 UPR are 
successfully reduced. The tilt error motions of the spindle 
are obtained by measuring the radial error motions at seven 
axial locations. The amplitude of the radial error increases 
linearly with the axial location from the bearing point, which 
showed that the spindle errors are successfully separated 
from the artefact errors.
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Fig. 11   Calculated tilt errors about the X and Y axis in one full spin-
dle revolution
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