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Abstract This paper discusses regression testing in soft-
ware maintenance, focusing on test case prioritization to 
verify modifications to software functionality efficiently. The 
primary goal is to rank test cases, prioritizing those cover-
ing more code or faults with minimal execution time. The 
challenge lies in prioritizing numerous test cases generated 
during development and maintenance. Various algorithms, 
including greedy approaches and meta-heuristic techniques, 
address this challenge. The paper introduces a ranking-based 
non-dominated sorting genetic algorithm (NSGA-2) for test 
case prioritization, emphasizing cases sensitive to faults 
caused by modifications or new functionality. Historical 
data is prioritized, with key objectives including the sensi-
tive index, execution cost, and average percentage of fault 
detection (APFD). The proposed model is tested on hand-
crafted and benchmark Java-based applications, comparing 
its performance to state-of-the-art algorithms in test case 
prioritization.

Keywords Regression testing · Test case prioritization · 
Multi-objective optimization · NSGA-2

1 Introduction

Testing is an integral part and plays a pivotal role in the 
software development process whether it is desktop appli-
cations or mobile applications [1]. The testing process 
enhances software reliability by eliminating faults and 
ensuring fault-free performance [2]. Software development 
modifications are a continuous process that needs regres-
sion testing that reports the effect on the software due to 
changes in one or more modules or adding additional func-
tionalities. Generally, the software testing and maintenance 
budget is very high, so running the whole test suite every 
time is not desirable as it is expensive. The best way is to 
choose the most critical and practical subset of test cases 
for re-testing. Regression testing is generally done in three 
ways: test case selection [3], test case reductions [4], and test 
case prioritization. Test case prioritization (TCP) is widely 
acknowledged as the most favored approach for regression 
testing. Following this, two additional methods, test case 
selection, and test case reduction, are commonly employed. 
The prioritization factors for test case selection include total 
coverage, mutant coverage, and fault detection [5]. The lit-
erature extensively compared several TCP solutions, such as 
firefly [6], genetic algorithm [7], Ant colony optimization, 
integer linear programming [8], greedy, and particle swarm 
optimization as mentioned in Table 1.

The manuscript focuses on regression testing and test 
case prioritization, exploring various algorithms, including 
greedy, meta-heuristic, and optimization techniques. The 
regression testing delves into the following steps: efficient 
selection of test cases, reduction in numbers to avoid com-
plexity, and prioritization to increase the rate of fault detec-
tion [9]. Multi-objective optimization techniques, particu-
larly in multi-objective test case prioritization (MOTCP), 
aim to optimize multiple objectives, such as code coverage 
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and execution time. While higher code coverage enhances 
fault detection, the paper emphasizes identifying test cases 
covering modified code or segments likely to impact func-
tionality. The main contribution is prioritizing test cases 
based on identified target points highlighting fault-prone 
code areas. In addition to code complexity, the paper con-
siders the historical behavior of test cases to determine their 
prioritized order.

2  Proposed methodology

The MOTCP task utilizing NSGA-2 necessitates care-
fully balancing conflicting objectives, requiring thoughtful 
consideration. Our objective is to maximize the values of 
APFD and sensitivity index (SI), prioritizing test cases with 
a higher potential for fault detection and coverage of critical 
code areas. This approach enhances the effectiveness and 
comprehensiveness of regression testing, ultimately lead-
ing to improved software quality. In addition, we strive to 
minimize the execution cost to optimize resource utiliza-
tion and reduce the time required for test case execution. 
Minimizing the execution cost ensures efficient allocation of 
testing resources and helps streamline the overall regression 
testing process.

We formulate and optimize three fitness functions: 
APFD, sensitivity index, and cost to accomplish these goals. 
Through a comprehensive discussion of these fitness func-
tions and their formulation, we provide insights into how 
they contribute to the overarching objective of effective and 
efficient test case prioritization. To illustrate our proposed 
methodology and the formulation of fitness functions, we 
employ a small-scale project named Project P as a case study 

[15]. This project comprises five modules and seven classes. 
It also contains two tables: the first is the test case vs. fault 
metrics, and the second is the test cases vs. class matrix, 
illustrating the relationship between test cases with faults 
and project classes, respectively. This small project is used 
in further sections to calculate various parameters for the 
proposed methodology.

2.1  Average percentage of fault detection (APFD)

The primary objective function measures the fault detection 
rate (0 to 100) by organizing test cases. A higher APFD 
value indicates a better fault detection rate. Equation 1 cal-
culates APFD, where TCi is the test case sequence, n is the 
number of test cases, and m is the total number of faults.

2.2  Sensitivity index (SI)

The objective of regression testing is to evaluate the impact 
of software modifications by giving priority to test cases 
that cover these changes. Fault sensitivity, assessed using 
weighted assignments, is critical in determining the priori-
ties. Key target points in this process involve prioritizing test 
cases that successfully detect a significant number of faults, 
newly created test cases, test cases that cover modified or 
newly generated code, test cases with a history of high fail-
ure rates, test cases dependent on fault-prone areas of code 
complexity, and test cases that cover highly complex code 
or classes. These considerations significantly enhance the 

(1)APFD = 1 −
TC

1
+ TC

2
+⋯ + TCm

nm
+

1

2n

Table 1  List of related work

References Techniques applied Dataset/subjects Result

[10] Learn to rank Extended finite state Machine’s Protocols APFD (mean) is 0.884
[11] Dependency structure Elite, GSM, CRM, MET, CZT APFD is 56–62%
[8] Integer linear prog. SIR Repository Reduced execution time and APFD value 

improved
[12] Lexicographical ordering Ant, Galileo, Jmeter, Jtopas, NanoXML 

(Nano), XML-Security (XML)
Fault detection rate enhanced

[13] NSGA-II, greedy and genetic algorithm SIR Repository The greedy approach performed better than 
the hybrid approach

[9] Greedy method Java open-source program Achieve high mean APFD value and 
increased bug detection capabilities

[14] Linear regression Camel 1.6.1 Weight has been calculated based on the 
relation between bugs and OO metrics

[6] Fire-fly SIR Repository APFD = 0.9517, and average time execu-
tion = 220 s

[7] Gravitational-search and Genetic algo-
rithm

UMD2005b APFD = 0.9827, and minimized suite size
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effectiveness of regression testing and ensure comprehensive 
coverage of critical areas within the software.

This paper justifies the points mentioned above by intro-
ducing the sensitivity index (SI) based on two crucial param-
eters: the code complexity of classes and the history/status 
of test cases. By incorporating these parameters, we derive 
two weight metrics:Wc , a weight matrix for classes, and Wt , a 
weight matrix for test cases. Computing the second objective 
function, SI, involves calculating the area under the curve, 
which offers valuable insights into the prioritization pro-
cess. The internal complexity of the code and its functional 
dependencies are utilized to identify critical test cases. As 
regression testing is conducted on Java applications, object-
oriented metrics such as McCabe’s Cyclomatic Complexity 
matrices and other custom metrics are employed to assess 
the code complexity [16–18].

2.2.1  Weight corresponding to classes ( Wc)

For regression testing, the software tester assigns weights 
to code complexity properties based on Table 2, focusing 
on Project P [15]. Wc is calculated using this weight matrix. 
Class-wise code complexity matrix values are computed, 
outliers are detected, and if found, marked as 1; otherwise, 
marked as 0. The Weight for each class is then calculated 
accordingly.

Example: If the coupling between objects (CBO) has a 
value ranging from 0 to 47, and the acceptable range falls 
within 15% or lower and upper limits (i.e., 15–85%), such 
that values between 7.5 and 39 are accepted, we can exam-
ine an example scenario. Suppose the CBO value for class 
C2 is 32, and the CBO value for C1 is 4. In this case, C1 is 
considered an outlier because its CBO value is below 15% 
(7.5). Therefore, the CBO value for class C1 is 0, while the 
CBO value for C2 is 1. Table 3 shows the class complexity 
metrics (CCM) value of class C1 after outlier detection; the 
same process is also performed for other classes.

After identifying outliers, the Weight of a class is deter-
mined by multiplying the Weight specified by the tester with 
the calculated value after outlier identification, using Eq. 2. 
For class C1 in the given Project P, the calculation of Wc is 
presented below:

Wc for C1 = 2 × 0 + 1 × 1 + 2 × 0 + 1 × 0 + 1 × 0 + 2 × 1 + 2 × 
0 + 1 × 1 + 2 × 1 = 6.

The Wc values for all classes are calculated and summed up 
to generate the total Weight Wtc for the test case corresponding 
to the covered classes in this test case [15].

2.2.2  Weight corresponding to test cases ( Wt)

Weighted test case ( Wt ) is determined by analyzing test case 
behaviour through historical and status data of the test case. 
The calculation involves modified class coverage, code cov-
erage, dependency, faults, cost, new functionality, and status 
history. The calculation of Wt employs the same outlier method 
(Eq. 3), utilizing a threshold of 15% to identify outliers.

Once the values of Wt and Wtc have been computed, their 
cumulative sums, CWt and CWtc , are calculated by the order of 
prioritized test cases. The area under the curve (AUC) between 
CWt and CWtc , is our sensitivity index [15]. The AUC is deter-
mined using the trapezoidal rule, as illustrated in Eq. 4.

2.3  Cost

The cost is the third objective function, defined as the execu-
tion time associated with the order of test cases. A straightfor-
ward cumulative sum is computed to determine the total cost 
of the test cases based on their execution order.

(2)Wc =
∑

m∈M
Wm × Vm

(3)Wt =
∑

m∈M
Wm × Vm

(4)
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(5)Cost =

n
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i=1

CumSum(ETi)

Table 2  Weights assigned to 
CCM by tester

Matrices CBO RFC LCOM DIT NOC MCN WMC LOC CCD

Weights 2 1 2 1 1 2 2 1 2

Table 3  CCM value of class 
C1 after outlier detection

Matrices CBO RFC LCOM DIT NOC MCN WMC LOC CCD

Value 0 1 0 0 0 1 0 1 1
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Based on the provided order  T0 [15] of test cases and the 
corresponding execution times presented in Table 4, the total 
cost, computed using Eq. 5, amounts to 735 s.

3  Experimental assessment

The Experimental Assessment section aims to assess the 
effectiveness and performance of the proposed MOTCP 
approach. Our experimental procedure consists of a series 
of steps shown below to evaluate the effectiveness of our 
proposed methodology for test case prioritization, as 
depicted in Fig. 1.

Step 1: Dataset (subjects): Utilizing custom Java appli-
cations [15] and three open-source Java projects from SIR 
[19], we create different versions of each custom applica-
tion and gather information about the size, lines of code, 
test cases, and faults for the open-source projects.

Step 2: Fault seeding: We employ fault seeding and 
mutation fault techniques to introduce artificial faults and 
simulate potential code mutations to evaluate our test case 
prioritization methods comprehensively.

Step 3: Test case generation: Test cases are explicitly 
generated and tailored for assessing module functionality, 
maintaining diverse test cases at two levels: test class and 
test method. No reduction or prioritization of test cases 
occurs during this phase.

Step 4: Software matrices generation: Various software 
metrics are generated, resulting in five data files: Test-
Cases_Faults.csv, TestCases_Classes.csv, Class_Weights.
csv, TestCases_Weights.csv, and TestCases.csv.

Step 5: Objective function optimization: Using the 
extracted data, we calculate three proposed objective func-
tions (APFD, cost, and sensitivity index) and optimize 

them using the NSGA-2 algorithm. Parameters include an 
initial population size equal to the number of test cases, 
iterations twice the number of test cases, and crossover/
mutation rates set to 0.5 and 0.25, respectively.

3.1  Evaluation of model

When assessing the performance of our proposed model, we 
rely on the APFD as the primary objective to determine the 
effectiveness of various models. APFD is a metric employed 
to gauge the efficacy of a software testing technique or 
strategy in fault detection. The evaluation determines the 
approach’s ability in test case prioritization and its impact 
on regression testing. To guide our evaluation, we address 
the following research questions.

(a) How does the performance of the proposed MOTCP 
approach compare to existing methods in terms of pri-
oritization effectiveness?

(b) What is the trade-off between maximizing APFD and 
SI and minimizing execution costs in MOTCP? How 
does this inclusion affect prioritization results?

4  Result analysis

This section provides a brief overview of the outcomes 
obtained from our proposed methodology. Here, the per-
formance of NSGA-2 is compared to various state-of-the-
art algorithms and recent publications related to TCP. This 
includes additional algorithms such as greedy [20], 2 Opt 
[20], genetic algorithm (GA) [21], TCP using Honey Bee 
optimization (HB) [22], MOTCP using African buffalo 
optimization (MOBF) [23], and Analytic hierarchy process 

Table 4  Execution cost of test 
cases used in projects P

Test cases T0 T1 T2 T3 T4 T5 T6 T7

Execution time 15 17 22 29 16 24 19 21

Fig. 1  Block diagram of proposed methodology
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(AHP) based TCP [24]. These algorithms were applied to 
the provided dataset, as presented in the previous section.

Table 5 shows the comparison of various models cor-
responding to the dataset provided. We can see that our 
NSGA-2 perform better compared to other algorithms. If 
we compare NSGA-2 with the MOBF algorithm, it is found 
that MOBF lacks performance. The reason behind this is that 
NSGA-2 take care of diversity preservation and provides 
balanced exploration and exploitation compared to other 
multi-objective algorithms. We can also see that MOBF is 
lagging behind HB and GA but performs much better than 
2-OptmAHP and Greedy. If we compare the single objec-
tive algorithm GA and HB with NSGA-2, it is found that 
HB performs better results for the medium type of problem 
when the number of tests is not significant and stuck in the 
local optimal solution for large test cases. Conversely, GA 
maintains its performance and gives good results for large 

problems compared to HB. If we compare 2-Opt, AHP and 
Greedy, it is found that Greedy performs worst while 2-Opt 
and AHP performance are mixed.

To conduct further statistical analysis on the perfor-
mance of different algorithms, we performed the Wil-
coxon–Mann–Whitney statistical test between NSGA-2 and 
other algorithms. The results of this analysis are presented in 
Table 6. In this test, a p value threshold of 0.05 was chosen. 
The test indicates significant differences between the per-
formance of NSGA-2 and the other algorithms. In response 
to our first research question, it has been determined that 
NSGA-2 outperforms other algorithms. Additionally, it also 
discovered that the proposed approach demonstrates superior 
performance for more extensive data sizes.

4.1  Three‑point analysis

In addressing the second research question concerning the 
trade-off between different objective functions in the context 
of MOTCP, which explores the impact of their inclusion on 
prioritization results, we generated two tables. Table 7 illus-
trates the effect on the performance of our model when each 
objective function is removed individually. It was observed 
that the proposed MOTCP exhibits the poorest performance 
when APFD is removed as an objective function, whereas 
the removal of Cost and SI yields comparatively better 
results.

Table 5  Comparison of APFD 
value calculated from different 
algorithms

NSGA-II HB (APFD) GA (APFD) MOBF 2-Opt AHP Greedy

P1 97.69 97.62 97.44 97.56 96.68 96.61 96.48
P2 97.71 97.45 97.40 97.41 96.86 96.89 96.40
P3 97.91 97.67 97.62 97.6 97.14 96.80 96.74
P4 97.75 97.53 97.48 97.40 96.74 96.57 96.48
P5 98.14 97.92 97.88 97.65 97.48 97.37 97.31
Ant 93.27 89.46 90.24 87.65 86.74 87.54 84.76
Jmeter 93.84 91.37 90.96 89.26 89.17 88.19 85.26
Jtopas 94.14 92.21 91.86 91.14 90. 25 89. 34 86. 54

Table 6  Wilcoxon–Mann–Whitney statistical test result

Group1 Group2 p value (0.05)

NSGA-II MOBF 0.0014
NSGA-II GA (APFD) 0.0074
NSGA-II HB (APFD) 0.013
NSGA-II AHP 6.23E-05
NSGA-II 2-Opt 8.27E-05
NSGA-II Greedy 1.34E-05

Table 7  APFD comparison 
while removing one objective 
at a time

NSGA-2 
(APFD + COST + SI)

NSGA-2 
(COST + APFD)

NSGA-2 
(SI + APFD)

NSGA-2 
(COST + SI)

P1 97.69 97.14 97.54 91.292
P2 97.71 96.60 97.66 90.165
P3 97.91 97.12 97.82 93.110
P4 97.75 96.92 97.53 93.477
P5 98.14 97.08 97.73 94.268
Ant 93.27 89.84 90.30 85.974
Jmeter 93.84 90.92 91.02 87.972
Jtopas 94.14 91.62 92.11 89.762
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The response is mixed when removing SI as one of the 
objective functions. This is because having a high SI value 
does not necessarily correspond to a high APFD value. 
The purpose of including SI is to ensure adequate cov-
erage of target points for effective regression testing. It 
is possible that test cases covering target points may not 
contain any faults to detect, resulting in their execution 
being delayed in the sequence. Consequently, for the same 
SI values, multiple APFD values can be obtained.

It can be observed that removing cost as an objective 
function has the most negligible impact on the proposed 
MOTCP. This is because there is very little likelihood that 
a test case with a lower execution cost would have a high 
APFD score. It is important to note that this cost refers to 
the cumulative sum of execution time rather than the total 
execution time. This cumulative sum is entirely dependent 
on the order of test cases. Table 8 also reveals that incor-
porating Cost or SI alongside APFD improves the model’s 
performance. There are instances where single-objective 
approaches get trapped in local optimization problems, 
and the inclusion of cost or SI acts as a catalyst to over-
come such issues. Furthermore, to ascertain the individual 
importance of each objective function, we conducted GA 
on each objective independently, as depicted in Table 8.

5  Conclusion and future scope

This paper employs NSGA-2 for multi-objective test case 
prioritization, emphasizing APFD, SI, and Cost as objective 
functions. SI, calculated with a focus on fault generation 
and identification, significantly contributes to our approach. 
Comparative analysis with state-of-the-art algorithms, using 
APFD as the criterion, demonstrates the effectiveness of our 
methodology. NSGA-2 outperforms other algorithms, pro-
viding balanced solutions across all objectives, and proves 
valuable in regression testing scenarios. However, future 
work should explore integrating SI and APFD into a unified 
objective to enhance control in test case prioritization.
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