
Vol.:(0123456789)1 3

Int. j. inf. tecnol.
https://doi.org/10.1007/s41870-024-01868-0

ORIGINAL RESEARCH

Test case prioritization based on fault sensitivity analysis using
ranked NSGA‑2

Kamal Garg1,2 · Shashi Shekhar2

Received: 5 January 2024 / Accepted: 8 April 2024
© The Author(s) 2024

Abstract This paper discusses regression testing in soft-
ware maintenance, focusing on test case prioritization to
verify modifications to software functionality efficiently. The
primary goal is to rank test cases, prioritizing those cover-
ing more code or faults with minimal execution time. The
challenge lies in prioritizing numerous test cases generated
during development and maintenance. Various algorithms,
including greedy approaches and meta-heuristic techniques,
address this challenge. The paper introduces a ranking-based
non-dominated sorting genetic algorithm (NSGA-2) for test
case prioritization, emphasizing cases sensitive to faults
caused by modifications or new functionality. Historical
data is prioritized, with key objectives including the sensi-
tive index, execution cost, and average percentage of fault
detection (APFD). The proposed model is tested on hand-
crafted and benchmark Java-based applications, comparing
its performance to state-of-the-art algorithms in test case
prioritization.

Keywords Regression testing · Test case prioritization ·
Multi-objective optimization · NSGA-2

1 Introduction

Testing is an integral part and plays a pivotal role in the
software development process whether it is desktop appli-
cations or mobile applications [1]. The testing process
enhances software reliability by eliminating faults and
ensuring fault-free performance [2]. Software development
modifications are a continuous process that needs regres-
sion testing that reports the effect on the software due to
changes in one or more modules or adding additional func-
tionalities. Generally, the software testing and maintenance
budget is very high, so running the whole test suite every
time is not desirable as it is expensive. The best way is to
choose the most critical and practical subset of test cases
for re-testing. Regression testing is generally done in three
ways: test case selection [3], test case reductions [4], and test
case prioritization. Test case prioritization (TCP) is widely
acknowledged as the most favored approach for regression
testing. Following this, two additional methods, test case
selection, and test case reduction, are commonly employed.
The prioritization factors for test case selection include total
coverage, mutant coverage, and fault detection [5]. The lit-
erature extensively compared several TCP solutions, such as
firefly [6], genetic algorithm [7], Ant colony optimization,
integer linear programming [8], greedy, and particle swarm
optimization as mentioned in Table 1.

The manuscript focuses on regression testing and test
case prioritization, exploring various algorithms, including
greedy, meta-heuristic, and optimization techniques. The
regression testing delves into the following steps: efficient
selection of test cases, reduction in numbers to avoid com-
plexity, and prioritization to increase the rate of fault detec-
tion [9]. Multi-objective optimization techniques, particu-
larly in multi-objective test case prioritization (MOTCP),
aim to optimize multiple objectives, such as code coverage

 * Kamal Garg
 kamal.garg_phd.cs21@gla.ac.in

 Shashi Shekhar
 Shashi.shekhar@gla.ac.in
1 Tata Consultancy Services, Mumbai, India
2 Department of Computer Engineering and Applications,

GLA University, Mathura, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-024-01868-0&domain=pdf

 Int. j. inf. tecnol.

1 3

and execution time. While higher code coverage enhances
fault detection, the paper emphasizes identifying test cases
covering modified code or segments likely to impact func-
tionality. The main contribution is prioritizing test cases
based on identified target points highlighting fault-prone
code areas. In addition to code complexity, the paper con-
siders the historical behavior of test cases to determine their
prioritized order.

2 Proposed methodology

The MOTCP task utilizing NSGA-2 necessitates care-
fully balancing conflicting objectives, requiring thoughtful
consideration. Our objective is to maximize the values of
APFD and sensitivity index (SI), prioritizing test cases with
a higher potential for fault detection and coverage of critical
code areas. This approach enhances the effectiveness and
comprehensiveness of regression testing, ultimately lead-
ing to improved software quality. In addition, we strive to
minimize the execution cost to optimize resource utiliza-
tion and reduce the time required for test case execution.
Minimizing the execution cost ensures efficient allocation of
testing resources and helps streamline the overall regression
testing process.

We formulate and optimize three fitness functions:
APFD, sensitivity index, and cost to accomplish these goals.
Through a comprehensive discussion of these fitness func-
tions and their formulation, we provide insights into how
they contribute to the overarching objective of effective and
efficient test case prioritization. To illustrate our proposed
methodology and the formulation of fitness functions, we
employ a small-scale project named Project P as a case study

[15]. This project comprises five modules and seven classes.
It also contains two tables: the first is the test case vs. fault
metrics, and the second is the test cases vs. class matrix,
illustrating the relationship between test cases with faults
and project classes, respectively. This small project is used
in further sections to calculate various parameters for the
proposed methodology.

2.1 Average percentage of fault detection (APFD)

The primary objective function measures the fault detection
rate (0 to 100) by organizing test cases. A higher APFD
value indicates a better fault detection rate. Equation 1 cal-
culates APFD, where TCi is the test case sequence, n is the
number of test cases, and m is the total number of faults.

2.2 Sensitivity index (SI)

The objective of regression testing is to evaluate the impact
of software modifications by giving priority to test cases
that cover these changes. Fault sensitivity, assessed using
weighted assignments, is critical in determining the priori-
ties. Key target points in this process involve prioritizing test
cases that successfully detect a significant number of faults,
newly created test cases, test cases that cover modified or
newly generated code, test cases with a history of high fail-
ure rates, test cases dependent on fault-prone areas of code
complexity, and test cases that cover highly complex code
or classes. These considerations significantly enhance the

(1)APFD = 1 −
TC

1
+ TC

2
+⋯ + TCm

nm
+

1

2n

Table 1 List of related work

References Techniques applied Dataset/subjects Result

[10] Learn to rank Extended finite state Machine’s Protocols APFD (mean) is 0.884
[11] Dependency structure Elite, GSM, CRM, MET, CZT APFD is 56–62%
[8] Integer linear prog. SIR Repository Reduced execution time and APFD value

improved
[12] Lexicographical ordering Ant, Galileo, Jmeter, Jtopas, NanoXML

(Nano), XML-Security (XML)
Fault detection rate enhanced

[13] NSGA-II, greedy and genetic algorithm SIR Repository The greedy approach performed better than
the hybrid approach

[9] Greedy method Java open-source program Achieve high mean APFD value and
increased bug detection capabilities

[14] Linear regression Camel 1.6.1 Weight has been calculated based on the
relation between bugs and OO metrics

[6] Fire-fly SIR Repository APFD = 0.9517, and average time execu-
tion = 220 s

[7] Gravitational-search and Genetic algo-
rithm

UMD2005b APFD = 0.9827, and minimized suite size

Int. j. inf. tecnol.

1 3

effectiveness of regression testing and ensure comprehensive
coverage of critical areas within the software.

This paper justifies the points mentioned above by intro-
ducing the sensitivity index (SI) based on two crucial param-
eters: the code complexity of classes and the history/status
of test cases. By incorporating these parameters, we derive
two weight metrics:Wc , a weight matrix for classes, and Wt , a
weight matrix for test cases. Computing the second objective
function, SI, involves calculating the area under the curve,
which offers valuable insights into the prioritization pro-
cess. The internal complexity of the code and its functional
dependencies are utilized to identify critical test cases. As
regression testing is conducted on Java applications, object-
oriented metrics such as McCabe’s Cyclomatic Complexity
matrices and other custom metrics are employed to assess
the code complexity [16–18].

2.2.1 Weight corresponding to classes (Wc)

For regression testing, the software tester assigns weights
to code complexity properties based on Table 2, focusing
on Project P [15]. Wc is calculated using this weight matrix.
Class-wise code complexity matrix values are computed,
outliers are detected, and if found, marked as 1; otherwise,
marked as 0. The Weight for each class is then calculated
accordingly.

Example: If the coupling between objects (CBO) has a
value ranging from 0 to 47, and the acceptable range falls
within 15% or lower and upper limits (i.e., 15–85%), such
that values between 7.5 and 39 are accepted, we can exam-
ine an example scenario. Suppose the CBO value for class
C2 is 32, and the CBO value for C1 is 4. In this case, C1 is
considered an outlier because its CBO value is below 15%
(7.5). Therefore, the CBO value for class C1 is 0, while the
CBO value for C2 is 1. Table 3 shows the class complexity
metrics (CCM) value of class C1 after outlier detection; the
same process is also performed for other classes.

After identifying outliers, the Weight of a class is deter-
mined by multiplying the Weight specified by the tester with
the calculated value after outlier identification, using Eq. 2.
For class C1 in the given Project P, the calculation of Wc is
presented below:

Wc for C1 = 2 × 0 + 1 × 1 + 2 × 0 + 1 × 0 + 1 × 0 + 2 × 1 + 2 ×
0 + 1 × 1 + 2 × 1 = 6.

The Wc values for all classes are calculated and summed up
to generate the total Weight Wtc for the test case corresponding
to the covered classes in this test case [15].

2.2.2 Weight corresponding to test cases (Wt)

Weighted test case (Wt) is determined by analyzing test case
behaviour through historical and status data of the test case.
The calculation involves modified class coverage, code cov-
erage, dependency, faults, cost, new functionality, and status
history. The calculation of Wt employs the same outlier method
(Eq. 3), utilizing a threshold of 15% to identify outliers.

Once the values of Wt and Wtc have been computed, their
cumulative sums, CWt and CWtc , are calculated by the order of
prioritized test cases. The area under the curve (AUC) between
CWt and CWtc , is our sensitivity index [15]. The AUC is deter-
mined using the trapezoidal rule, as illustrated in Eq. 4.

2.3 Cost

The cost is the third objective function, defined as the execu-
tion time associated with the order of test cases. A straightfor-
ward cumulative sum is computed to determine the total cost
of the test cases based on their execution order.

(2)Wc =
∑

m∈M
Wm × Vm

(3)Wt =
∑

m∈M
Wm × Vm

(4)

∫

xn

x1
f (x)dx =

(

x2 − x1
) f

(

x1
)

+ f
(

x2
)

2

+
(

x3 − x2
) f

(

x2
)

+ f
(

x3
)

2
+…

+
(

xn − xn−1
) f

(

xn−1
)

+ f
(

xn
)

2

(5)Cost =

n
∑

i=1

CumSum(ETi)

Table 2 Weights assigned to
CCM by tester

Matrices CBO RFC LCOM DIT NOC MCN WMC LOC CCD

Weights 2 1 2 1 1 2 2 1 2

Table 3 CCM value of class
C1 after outlier detection

Matrices CBO RFC LCOM DIT NOC MCN WMC LOC CCD

Value 0 1 0 0 0 1 0 1 1

 Int. j. inf. tecnol.

1 3

Based on the provided order T0 [15] of test cases and the
corresponding execution times presented in Table 4, the total
cost, computed using Eq. 5, amounts to 735 s.

3 Experimental assessment

The Experimental Assessment section aims to assess the
effectiveness and performance of the proposed MOTCP
approach. Our experimental procedure consists of a series
of steps shown below to evaluate the effectiveness of our
proposed methodology for test case prioritization, as
depicted in Fig. 1.

Step 1: Dataset (subjects): Utilizing custom Java appli-
cations [15] and three open-source Java projects from SIR
[19], we create different versions of each custom applica-
tion and gather information about the size, lines of code,
test cases, and faults for the open-source projects.

Step 2: Fault seeding: We employ fault seeding and
mutation fault techniques to introduce artificial faults and
simulate potential code mutations to evaluate our test case
prioritization methods comprehensively.

Step 3: Test case generation: Test cases are explicitly
generated and tailored for assessing module functionality,
maintaining diverse test cases at two levels: test class and
test method. No reduction or prioritization of test cases
occurs during this phase.

Step 4: Software matrices generation: Various software
metrics are generated, resulting in five data files: Test-
Cases_Faults.csv, TestCases_Classes.csv, Class_Weights.
csv, TestCases_Weights.csv, and TestCases.csv.

Step 5: Objective function optimization: Using the
extracted data, we calculate three proposed objective func-
tions (APFD, cost, and sensitivity index) and optimize

them using the NSGA-2 algorithm. Parameters include an
initial population size equal to the number of test cases,
iterations twice the number of test cases, and crossover/
mutation rates set to 0.5 and 0.25, respectively.

3.1 Evaluation of model

When assessing the performance of our proposed model, we
rely on the APFD as the primary objective to determine the
effectiveness of various models. APFD is a metric employed
to gauge the efficacy of a software testing technique or
strategy in fault detection. The evaluation determines the
approach’s ability in test case prioritization and its impact
on regression testing. To guide our evaluation, we address
the following research questions.

(a) How does the performance of the proposed MOTCP
approach compare to existing methods in terms of pri-
oritization effectiveness?

(b) What is the trade-off between maximizing APFD and
SI and minimizing execution costs in MOTCP? How
does this inclusion affect prioritization results?

4 Result analysis

This section provides a brief overview of the outcomes
obtained from our proposed methodology. Here, the per-
formance of NSGA-2 is compared to various state-of-the-
art algorithms and recent publications related to TCP. This
includes additional algorithms such as greedy [20], 2 Opt
[20], genetic algorithm (GA) [21], TCP using Honey Bee
optimization (HB) [22], MOTCP using African buffalo
optimization (MOBF) [23], and Analytic hierarchy process

Table 4 Execution cost of test
cases used in projects P

Test cases T0 T1 T2 T3 T4 T5 T6 T7

Execution time 15 17 22 29 16 24 19 21

Fig. 1 Block diagram of proposed methodology

Int. j. inf. tecnol.

1 3

(AHP) based TCP [24]. These algorithms were applied to
the provided dataset, as presented in the previous section.

Table 5 shows the comparison of various models cor-
responding to the dataset provided. We can see that our
NSGA-2 perform better compared to other algorithms. If
we compare NSGA-2 with the MOBF algorithm, it is found
that MOBF lacks performance. The reason behind this is that
NSGA-2 take care of diversity preservation and provides
balanced exploration and exploitation compared to other
multi-objective algorithms. We can also see that MOBF is
lagging behind HB and GA but performs much better than
2-OptmAHP and Greedy. If we compare the single objec-
tive algorithm GA and HB with NSGA-2, it is found that
HB performs better results for the medium type of problem
when the number of tests is not significant and stuck in the
local optimal solution for large test cases. Conversely, GA
maintains its performance and gives good results for large

problems compared to HB. If we compare 2-Opt, AHP and
Greedy, it is found that Greedy performs worst while 2-Opt
and AHP performance are mixed.

To conduct further statistical analysis on the perfor-
mance of different algorithms, we performed the Wil-
coxon–Mann–Whitney statistical test between NSGA-2 and
other algorithms. The results of this analysis are presented in
Table 6. In this test, a p value threshold of 0.05 was chosen.
The test indicates significant differences between the per-
formance of NSGA-2 and the other algorithms. In response
to our first research question, it has been determined that
NSGA-2 outperforms other algorithms. Additionally, it also
discovered that the proposed approach demonstrates superior
performance for more extensive data sizes.

4.1 Three‑point analysis

In addressing the second research question concerning the
trade-off between different objective functions in the context
of MOTCP, which explores the impact of their inclusion on
prioritization results, we generated two tables. Table 7 illus-
trates the effect on the performance of our model when each
objective function is removed individually. It was observed
that the proposed MOTCP exhibits the poorest performance
when APFD is removed as an objective function, whereas
the removal of Cost and SI yields comparatively better
results.

Table 5 Comparison of APFD
value calculated from different
algorithms

NSGA-II HB (APFD) GA (APFD) MOBF 2-Opt AHP Greedy

P1 97.69 97.62 97.44 97.56 96.68 96.61 96.48
P2 97.71 97.45 97.40 97.41 96.86 96.89 96.40
P3 97.91 97.67 97.62 97.6 97.14 96.80 96.74
P4 97.75 97.53 97.48 97.40 96.74 96.57 96.48
P5 98.14 97.92 97.88 97.65 97.48 97.37 97.31
Ant 93.27 89.46 90.24 87.65 86.74 87.54 84.76
Jmeter 93.84 91.37 90.96 89.26 89.17 88.19 85.26
Jtopas 94.14 92.21 91.86 91.14 90. 25 89. 34 86. 54

Table 6 Wilcoxon–Mann–Whitney statistical test result

Group1 Group2 p value (0.05)

NSGA-II MOBF 0.0014
NSGA-II GA (APFD) 0.0074
NSGA-II HB (APFD) 0.013
NSGA-II AHP 6.23E-05
NSGA-II 2-Opt 8.27E-05
NSGA-II Greedy 1.34E-05

Table 7 APFD comparison
while removing one objective
at a time

NSGA-2
(APFD + COST + SI)

NSGA-2
(COST + APFD)

NSGA-2
(SI + APFD)

NSGA-2
(COST + SI)

P1 97.69 97.14 97.54 91.292
P2 97.71 96.60 97.66 90.165
P3 97.91 97.12 97.82 93.110
P4 97.75 96.92 97.53 93.477
P5 98.14 97.08 97.73 94.268
Ant 93.27 89.84 90.30 85.974
Jmeter 93.84 90.92 91.02 87.972
Jtopas 94.14 91.62 92.11 89.762

 Int. j. inf. tecnol.

1 3

The response is mixed when removing SI as one of the
objective functions. This is because having a high SI value
does not necessarily correspond to a high APFD value.
The purpose of including SI is to ensure adequate cov-
erage of target points for effective regression testing. It
is possible that test cases covering target points may not
contain any faults to detect, resulting in their execution
being delayed in the sequence. Consequently, for the same
SI values, multiple APFD values can be obtained.

It can be observed that removing cost as an objective
function has the most negligible impact on the proposed
MOTCP. This is because there is very little likelihood that
a test case with a lower execution cost would have a high
APFD score. It is important to note that this cost refers to
the cumulative sum of execution time rather than the total
execution time. This cumulative sum is entirely dependent
on the order of test cases. Table 8 also reveals that incor-
porating Cost or SI alongside APFD improves the model’s
performance. There are instances where single-objective
approaches get trapped in local optimization problems,
and the inclusion of cost or SI acts as a catalyst to over-
come such issues. Furthermore, to ascertain the individual
importance of each objective function, we conducted GA
on each objective independently, as depicted in Table 8.

5 Conclusion and future scope

This paper employs NSGA-2 for multi-objective test case
prioritization, emphasizing APFD, SI, and Cost as objective
functions. SI, calculated with a focus on fault generation
and identification, significantly contributes to our approach.
Comparative analysis with state-of-the-art algorithms, using
APFD as the criterion, demonstrates the effectiveness of our
methodology. NSGA-2 outperforms other algorithms, pro-
viding balanced solutions across all objectives, and proves
valuable in regression testing scenarios. However, future
work should explore integrating SI and APFD into a unified
objective to enhance control in test case prioritization.

Funding No funding was obtained for this study.

Data availability Data can be made available on reasonable request.

Declarations

Conflict of interest There is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Samet S, Ishraque MT, Ghadamyari M, Kakadiya K, Mistry
Y, Nakkabi Y (2019) TouchMetric: a machine learning based
continuous authentication feature testing mobile applica-
tion. Int J Inf Technol 11(4):625–631. https:// doi. org/ 10. 1007/
s41870- 019- 00306-w

 2. Saraf I, Iqbal J (2019) Generalized software fault detection and
correction modeling framework through imperfect debugging,
error generation and change point. Int J Inf Technol 11(4):751–
757. https:// doi. org/ 10. 1007/ s41870- 019- 00321-x

 3. Verma AS, Choudhary A, Tiwari S (2023) A novel chaotic Archi-
medes optimization algorithm and its application for efficient
selection of regression test cases. Int J Inf Technol 15(2):1055–
1068. https:// doi. org/ 10. 1007/ s41870- 022- 01031-7

 4. Rehman Khan SU, Lee SP, Javaid N, Abdul W (2018) A sys-
tematic review on test suite reduction: approaches, experiment’s
quality evaluation, and guidelines. IEEE Access 6:11816–11841.
https:// doi. org/ 10. 1109/ ACCESS. 2018. 28096 00

 5. Mishra DB, Panda N, Mishra R, Acharya AA (2019) Total fault
exposing potential based test case prioritization using genetic
algorithm. Int J Inf Technol 11(4):633–637. https:// doi. org/ 10.
1007/ s41870- 018- 0117-0

 6. Khatibsyarbini M, Isa MA, Jawawi DNA, Hamed HNA, Mohamed
Suffian MD (2019) Test case prioritization using firefly algorithm
for software testing. IEEE Access 7:132360–132373. https:// doi.
org/ 10. 1109/ ACCESS. 2019. 29406 20

 7. Bajaj A, Sangwan OP (2021) Discrete and combinatorial gravi-
tational search algorithms for test case prioritization and minimi-
zation. Int J Inf Technol 13(2):817–823. https:// doi. org/ 10. 1007/
s41870- 021- 00628-8

 8. Hao D, Zhang L, Zang L, Wang Y, Wu X, Xie T (2016) To be
optimal or not in test-case prioritization. IEEE Trans Softw Eng
42(5):490–505. https:// doi. org/ 10. 1109/ TSE. 2015. 24969 39

 9. Chi J et al (2020) Relation-based test case prioritization for regres-
sion testing. J Syst Softw 163:110539. https:// doi. org/ 10. 1016/j.
jss. 2020. 110539

 10. Huang Y, Shu T, Ding Z (2021) A learn-to-rank method for
model-based regression test case prioritization. IEEE Access
9:16365–16382. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30531 63

Table 8 APFD comparison considering one objective at a time

GA (APFD) GA (COST) GA (SI)

P1 97.44 72.652 89.542
P2 97.40 74.392 88.145
P3 97.62 78.108 91.012
P4 97.48 76.915 91.447
P5 97.88 79.003 93.893
Ant 90.24 74.541 81.859
Jmeter 90.96 76.189 83.764
Jtopas 91.86 74.847 86.321

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s41870-019-00306-w
https://doi.org/10.1007/s41870-019-00306-w
https://doi.org/10.1007/s41870-019-00321-x
https://doi.org/10.1007/s41870-022-01031-7
https://doi.org/10.1109/ACCESS.2018.2809600
https://doi.org/10.1007/s41870-018-0117-0
https://doi.org/10.1007/s41870-018-0117-0
https://doi.org/10.1109/ACCESS.2019.2940620
https://doi.org/10.1109/ACCESS.2019.2940620
https://doi.org/10.1007/s41870-021-00628-8
https://doi.org/10.1007/s41870-021-00628-8
https://doi.org/10.1109/TSE.2015.2496939
https://doi.org/10.1016/j.jss.2020.110539
https://doi.org/10.1016/j.jss.2020.110539
https://doi.org/10.1109/ACCESS.2021.3053163

Int. j. inf. tecnol.

1 3

 11. Haidry S-Z, Miller T (2013) Using dependency structures for
prioritization of functional test suites. IEEE Trans Softw Eng
39(2):258–275. https:// doi. org/ 10. 1109/ TSE. 2012. 26

 12. Eghbali S, Tahvildari L (2016) Test case prioritization using lexi-
cographical ordering. IEEE Trans Softw Eng 42(12):1178–1195.
https:// doi. org/ 10. 1109/ TSE. 2016. 25504 41

 13. Yoo S, Harman M (2007) Pareto efficient multi-objective test case
selection. In: Proceedings of the 2007 international symposium on
software testing and analysis. ACM, London, pp 140–150. https://
doi. org/ 10. 1145/ 12734 63. 12734 83

 14. Taneja D, Singh R, Singh A, Malik H (2020) A Novel technique
for test case minimization in object oriented testing. Proc Comput
Sci 167:2221–2228. https:// doi. org/ 10. 1016/j. procs. 2020. 03. 274

 15. GitHub. Build software better, together. https:// github. com/ CodeR
eform er/ MOTCP. Accessed 20 Jan 2024

 16. Chhillar RS, Gahlot S (2017) An evolution of software met-
rics: a review. In: Proceedings of the international conference
on advances in image processing. ACM, Bangkok, pp 139–143.
https:// doi. org/ 10. 1145/ 31332 64. 31332 97

 17. Debbarma MK, Debbarma S, Debbarma N, Chakma K, Jamatia
A (2013) A review and analysis of software complexity metrics
in structural testing. Int J Comput Commun Eng. https:// doi. org/
10. 7763/ IJCCE. 2013. V2. 154

 18. Lincke R, Lundberg J, Löwe W (2008) Comparing software met-
rics tools. In: Proceedings of the 2008 international symposium on
Software testing and analysis, Seattle. ACM, pp 131–142. https://
doi. org/ 10. 1145/ 13906 30. 13906 48

 19. Software-artifact Infrastructure Repository: Home. [Online].
https:// sir. csc. ncsu. edu/ portal/ index. php. Accessed 20 Jan 2024

 20. Khanna M, Chaudhary A, Toofani A, Pawar A (2019) Perfor-
mance comparison of multi-objective algorithms for test case
prioritization during web application testing. Arab J Sci Eng
44(11):9599–9625. https:// doi. org/ 10. 1007/ s13369- 019- 03817-7

 21. Huang Y-C, Peng K-L, Huang C-Y (2012) A history-based cost-
cognizant test case prioritization technique in regression testing.
J Syst Softw 85(3):626–637. https:// doi. org/ 10. 1016/j. jss. 2011.
09. 063

 22. Nayak S, Kumar C, Tripathi S, Mohanty N, Baral V (2021)
Regression test optimization and prioritization using Honey
Bee optimization algorithm with fuzzy rule base. Soft Comput
25(15):9925–9942. https:// doi. org/ 10. 1007/ s00500- 020- 05428-z

 23. Singhal S, Suri B (2020) Multi objective test case selection and
prioritization using African buffalo optimization. J Inf Optim Sci
41(7):1705–1713. https:// doi. org/ 10. 1080/ 02522 667. 2020. 17995
14

 24. Nayak S, Kumar C, Tripathi S (2022) Analytic hierarchy process-
based regression test case prioritization technique enhancing the
fault detection rate. Soft Comput 26(15):6953–6968. https:// doi.
org/ 10. 1007/ s00500- 022- 07174-w

https://doi.org/10.1109/TSE.2012.26
https://doi.org/10.1109/TSE.2016.2550441
https://doi.org/10.1145/1273463.1273483
https://doi.org/10.1145/1273463.1273483
https://doi.org/10.1016/j.procs.2020.03.274
https://github.com/CodeReformer/MOTCP
https://github.com/CodeReformer/MOTCP
https://doi.org/10.1145/3133264.3133297
https://doi.org/10.7763/IJCCE.2013.V2.154
https://doi.org/10.7763/IJCCE.2013.V2.154
https://doi.org/10.1145/1390630.1390648
https://doi.org/10.1145/1390630.1390648
https://sir.csc.ncsu.edu/portal/index.php
https://doi.org/10.1007/s13369-019-03817-7
https://doi.org/10.1016/j.jss.2011.09.063
https://doi.org/10.1016/j.jss.2011.09.063
https://doi.org/10.1007/s00500-020-05428-z
https://doi.org/10.1080/02522667.2020.1799514
https://doi.org/10.1080/02522667.2020.1799514
https://doi.org/10.1007/s00500-022-07174-w
https://doi.org/10.1007/s00500-022-07174-w

	Test case prioritization based on fault sensitivity analysis using ranked NSGA-2
	Abstract
	1 Introduction
	2 Proposed methodology
	2.1 Average percentage of fault detection (APFD)
	2.2 Sensitivity index (SI)
	2.2.1 Weight corresponding to classes ( )
	2.2.2 Weight corresponding to test cases ( )

	2.3 Cost

	3 Experimental assessment
	3.1 Evaluation of model

	4 Result analysis
	4.1 Three-point analysis

	5 Conclusion and future scope
	References

