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Abstract  Earthquakes, as intricate natural phenomena, 
profoundly impact lives, infrastructure, and the environ-
ment. While previous research has explored earthquake 
patterns through data analysis methods, there has been a 
gap in examining the time intervals between consecutive 
earthquakes across various magnitude categories. Given the 
complexity and vastness of seismic data, this study aims to 
provide comprehensive insights into global seismic activ-
ity by employing sophisticated data analysis methodologies 
on a century-long dataset of seismic events. The four-phase 
methodology encompasses exploratory data analysis (EDA), 
temporal dynamics exploration, spatial pattern analysis, and 
cluster analysis. The EDA serves as the foundational step, 
providing fundamental insights into the dataset’s attributes 
and laying the groundwork for subsequent analyses. Tempo-
ral dynamics exploration focuses on discerning variations in 
earthquake occurrences over time. Spatial analysis identifies 
geographic regions with heightened earthquake activity and 
uncovers patterns of seismic clustering. K-means cluster-
ing is employed to delineate distinct earthquake occurrence 
clusters or hotspots based on geographical coordinates. The 
study’s findings reveal a notable increase in recorded earth-
quakes since the 1960s, peaking in 2018. Distinct patterns 
in seismic activity are linked to factors such as time, human 
activities, and plate boundaries. The integrated approach 
enriches understanding of global earthquake trends and pat-
terns, contributing to improved seismic hazard assessments, 
early warning systems, and risk mitigation efforts.

Keywords  Earthquakes · Seismic data · Data science 
analysis · Spatiotemporal analysis · Clustering

1  Introduction

Earthquakes result from sudden rock fractures in the 
Earth’s crust, releasing significant energy. They can be 
categorized as major earthquakes, foreshocks, and after-
shocks. Major earthquakes are highly destructive and can 
predict future major events. Foreshocks occur before major 
earthquakes, aiding prediction and preventive measures. 
Aftershocks follow the mainshock, gradually decreasing 
in frequency and magnitude. Earthquake data represent 
time series data with location, time, depth, and magni-
tude information [1–4]. Throughout history, several major 
earthquakes have left a lasting impact on the affected 
regions, including the 1960 Great Chilean Earthquake, 
the 1964 Prince William Sound Earthquake in Alaska, 
the 2004 Sumatra—Andaman Islands Earthquake, the 
2011 Great Tohoku Earthquake in Japan, and the 1952 
earthquake near Petropavlovsk-Kamchatsky, Russia. These 
devastating events had magnitudes high magnitudes and 
caused widespread destruction, loss of lives, and signifi-
cant damage to infrastructure. In recent times, there has 
been a notable increase in the occurrence of both minor 
and major earthquakes across different regions of the globe 
and magnitudes, exemplified by recent events in Turkey 
and Syria [5–7]. These seismic events have garnered sig-
nificant attention due to their impact on human lives, infra-
structure, and the environment. These seismic events are 
among the most catastrophic natural disasters, resulting in 
significant casualties and imposing substantial economic 
burdens on affected communities. The impact of earth-
quakes extends beyond human lives and infrastructure, 
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often causing secondary environmental repercussions like 
surface ruptures, soil liquefaction, tsunamis, landslides, 
and fires [4, 8–17]. The researchers emphasized the devas-
tating consequences of earthquakes, including loss of life, 
injuries, displacement, and structural damage [18]

By forecasting earthquakes, individuals can take timely 
actions to protect themselves and reduce damage and eco-
nomic losses. Researchers tirelessly seek methods to predict 
earthquakes due to their destructive potential and far-reach-
ing consequences. Accurate forecasts could mitigate impact 
through preventive measures and public preparedness, focus-
ing on location, timing, and magnitude. Historical trends 
inform predictions, but the frequent and unpredictable nature 
of earthquakes presents ongoing challenges. Preparedness, 
research, and collaboration remain crucial in minimizing 
their devastating effects [19, 20]. The availability of exten-
sive seismic data and data science tools presents an unprec-
edented opportunity to gain deeper insights into earthquake 
dynamics. Traditional methods were limited by manual 
interpretation and small datasets, hindering accuracy. Data 
science techniques like machine learning enable research-
ers to analyse large-scale seismic data for valuable insights, 
leading to improved forecasting models, hazard assessments, 
and early warning systems, enhancing our preparedness and 
response strategies [4, 13, 19, 21–23]. Clustering, a core 
technique in data mining, emerges as a crucial aspect of this 
research, aiming to group similar seismic events for deeper 
insights into earthquake dynamics [24, 25]. K-means, a 
widely employed algorithm, exhibits speed and efficiency, 
although its drawbacks include the need for predefined cen-
troids and sensitivity to initial choices [25]. Data mining, 
emphasizing convenience and completeness, plays a pivotal 
role, with clustering as a fundamental operation, contribut-
ing to tasks such as image processing, sequence analysis, and 
pattern recognition [26]. As the volume of data increases, 
the necessity for data mining tools becomes paramount, and 
classification emerges as a vital technique for knowledge 
discovery [27].

The significance of the presented study lies in its pio-
neering integration of data science methodologies, spatial 
analysis, and comprehensive interoccurrence time analy-
sis, which collectively provide unprecedented insights into 
global seismic trends and earthquake behaviour for enhanced 
earthquake prediction, hazard assessment, and risk mitiga-
tion. The remainder of this paper is structured as follows: 
Sect. 2 provides a brief review of the previous work related 
to the analysis of global earthquake trends and patterns; 
Sect. 3 describes the dataset used in this study, along with 
an explanation of the proposed method; Sect. 4 presents the 
results obtained, while Sect. 5 presents the results and dis-
cussion of these results; Sect. 6 compares our findings with 
existing methods; Finally, Sect. 6 serves as the conclusion 
of the paper.

2 � Literature survey

Several articles have explored the analysis of global earth-
quake trends and patterns using data science techniques. 
The authors of [28] conducted a literature review on earth-
quake prediction and prevention, categorizing methods into 
machine learning, data mining, and seismic feature extrac-
tion. They highlighted the importance of reducing prediction 
errors for accurate earthquake predictions and identifying 
high-risk areas. In recent studies, researchers have explored 
various aspects of seismic activities and earthquake distri-
butions using data analysis techniques. In [29], the authors 
focused on analysing the spatial distribution of seismic 
activities in China by utilizing provincial seismic data. 
Through spatial autocorrelation analysis, they identified 
significant global autocorrelation characteristics, revealing 
a spatial agglomeration pattern of earthquakes in mainland 
China. Moreover, they observed a decreasing trend in the 
disparities of seismic activity among different regions over 
time. This suggests a potential convergence in seismic activ-
ity across China.

Another study presented in [30] delved into the spa-
tial–temporal characteristics of seismicity clusters, aim-
ing to understand their distribution and heterogeneity. By 
categorizing seismic clusters into persistent clusters and 
burst clusters based on duration, they analysed their spatial 
distributions. The findings indicated that plate interaction 
played a substantial role in shaping the distribution of per-
sistent clusters, while the burst clusters displayed less spatial 
heterogeneity. This suggests that different mechanisms may 
govern the formation and behaviour of these distinct types 
of seismic clusters. Additionally, [12] conducted spatiotem-
poral analyses to gain insights into earthquake distributions. 
Their investigation revealed intriguing findings related to 
the behaviour of earthquakes. Applying scaling relation-
ships resulted in data collapses, indicating critical behav-
iour within the seismological phenomenon. Furthermore, the 
presence of long-range spatiotemporal correlations between 
earthquakes and q-exponential distributions suggested the 
existence of self-organized criticality. These observations 
contribute to the understanding of the underlying dynam-
ics and mechanisms involved in seismic events. While the 
study conducted in [29] shed light on the spatial patterns 
and regional convergence of seismic activity in China, [30] 
explored the spatial–temporal characteristics of seismicity 
clusters, providing insights into their distribution and hetero-
geneity [12]. Moreover, understanding of the seismic nature 
is expanded by uncovering critical behaviour and long-range 
correlations in earthquake distributions [29].

The authors of [31] introduced a method for analysing 
earthquake time-series data, distinguishing clustered after-
shock sequences from regular background events. It uti-
lized inter-event time statistics and coefficient of variation 
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(COV), employing a sliding temporal window to filter out 
time-correlated events and model background events as a 
Poisson process. The research showed the approach’s com-
petitive performance in seismicity declustering, emphasiz-
ing the usefulness of inter-event time statistics and COV 
in assessing seismic risk. Shan et al. proposed a method 
to analyse temporal and spatial evolution trends in earth-
quakes in California and Nevada. The study finds a regu-
lar cycle of decreasing-rising frequency for earthquakes 
of magnitude 4.5 or above. The spatial concentration of 
earthquakes exhibits a conch movement pattern, indicating 
the epicentre moving closer to the study area’s centre. The 
spatial distribution pattern aligns with the direction of the 
San Andreas Fault Zone [8]. Furthermore, [32] emphasized 
the significance of understanding spatial distribution pat-
terns (SDPs) of natural disasters for effective risk mitigation. 
Their study analysed global disasters from 1980 to 2016 
using biclustering techniques, providing insights into dif-
ferent disaster types and their impact on fatality rates across 
regions. The findings revealed uneven SDPs of fatality rates 
compared to occurrence rates, classifying selected countries 
into four classes based on the occurrence of major disasters 
like storms, floods, epidemics, droughts, and earthquakes 
in specific regions.

Yousefzadeh et al. [19] demonstrated the effectiveness of 
Support Vector Machine (SVM) and Deep Neural Network 
(DNN) models in predicting high-magnitude earthquakes 
by introducing the novel parameter Fault Density. Moreo-
ver, [33] emphasized the importance of appropriate model 
selection and data preprocessing in leveraging time series 
data for earthquake risk analysis. Their findings highlighted 
the potential of advanced deep learning methods in enhanc-
ing understanding of earthquakes and improving prediction 
capabilities. Other researchers have also employed data min-
ing and statistical techniques to analyse earthquake patterns 
in different regions. [23] applied K-means neutrosophic 
clustering to Ecuador earthquake data, identifying patterns 
for predicting future earthquake behaviour and preventive 
measures. Similarly, [33] analysed the spatial distribution 
pattern of earthquakes in Iraq using statistical and data min-
ing techniques.

Despite these efforts, a detailed analysis of time intervals 
between successive earthquakes of different magnitudes is 
lacking. The present research aims to fill this gap by com-
prehensively analysing these time differences, leveraging 
data science tools and geospatial analyses to gain insights into 
the earthquake frequency, regularity, spatial distribution, and 
behaviour of seismic clusters. The conducted study aims to 
enhance seismic risk assessment and disaster preparedness, 
providing valuable insights for policymakers, researchers, and 
stakeholders involved in earthquake monitoring and mitigation 
efforts. By strengthening earthquake forecasting capabilities, 
this study contributes to the scientific community and ensures 

the protection of lives and infrastructure. The main contribu-
tions and advantages of this work are summarized as follows:

1.	 It contributes significantly to several areas by analys-
ing historical earthquake data to discern temporal fluc-
tuations and enduring patterns in seismic activity, it is 
imperative to conduct an analysis.

2.	 It attempts to contribute to the literature by describing 
the earthquake magnitude scale.

3.	 Mapping the spatial distribution helps identify regions 
with higher seismic activity, aiding disaster prepared-
ness and early warning systems.

4.	 Assessing earthquake frequency, magnitude, and inten-
sity informs resource allocation and risk reduction strat-
egies.

5.	 The application of cluster analysis identifies earthquake 
hotspots and potential future seismic events in clustered 
regions.

6.	 Overall, the presented study enhances earthquake fore-
casting, hazard assessments, and disaster management 
efforts.

3 � Materials and method

The developed method integrates diverse data analytical 
techniques to explore global earthquake patterns compre-
hensively. Prior to data analysis, the data underwent meticu-
lous data pre-processing, involving cleaning procedures to 
remove duplicates, errors, and inconsistencies, ensuring the 
dataset’s reliability. The Exploratory Data Analysis phase 
provides foundational insights into the dataset’s character-
istics, laying the groundwork for subsequent analyses. The 
exploration of temporal dynamics focused on understand-
ing how earthquake occurrences varied over time. Spatial 
analysis aimed to identify geographic hotspots of earthquake 
occurrences and reveal patterns of seismic clustering. The 
study applied K-means clustering to identify distinct clusters 
or hotspots of earthquake occurrences based on geographical 
coordinates. K-means is a clustering technique utilized to 
group data points into distinct clusters based on similarity, 
with the aim of identifying patterns and relationships within 
the dataset [34]. Figure 1 illustrates the composite workflow 
diagram of the adopted methodology in this research.

3.1 � Data Pre‑processing and exploratory analysis 
of earthquake dataset

To conduct the data analysis, a rich publicly available data-
set was sourced from the United States Geological Survey1 
(USGS). The USGS dataset is a comprehensive collection 
of earthquake data provided by the United States Geological 

1   https://​earth​quake.​usgs.​gov/​data/​comcat/

https://earthquake.usgs.gov/data/comcat/
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Survey (USGS). It includes information about earthquakes 
that have occurred worldwide and provides valuable insights 
into the characteristics and patterns of seismic activity. The 
USGS collects earthquake data from various sources, includ-
ing seismographs, seismic networks, and earthquake moni-
toring stations around the world. These instruments record 
ground motion and other seismic parameters during an earth-
quake event. The dataset has various features that provide a 
detailed and comprehensive description of each earthquake 
event recorded in the USGS dataset. It includes earthquake 
events recorded from 1904 to 2023, with 4,036,902 unique 
entries across 22 columns.

Data pre-processing involves systematically cleaning, 
transforming, and refining raw data to enhance its quality 
and suitability for analysis [35]. This process is fundamen-
tal for refining the seismic data, enhancing its quality, and 
preparing it for advanced data science methodologies, spa-
tial analysis, and interoccurrence time analysis, ultimately 
contributing to a more accurate understanding of global seis-
mic trends and behaviours. The analysis of the earthquake 
dataset began with a crucial data pre-processing step. By 
combining meticulous data pre-processing with insightful 
feature engineering, the analysis established a robust founda-
tion for further exploration and interpretation of earthquake 

occurrences, fostering a deeper understanding of the data-
set’s distribution, patterns, and relationships. Upon estab-
lishing the consolidated data frame, an in-depth analysis of 
missing values has been conducted. The information about 
the number of missing values in each column of the dataset 
has been determined. The columns are listed along with the 
count of missing values for each column:

•	 ’time’, ’date’, ’event_time’, ’latitude’, ’longitude’, ’depth’, 
’mag’, ’net’, ’id’, ’updated’, ’place’, ’type’, ’status’, ’loca-
tionSource’, ’magSource’: These columns were the key 
columns used in the the study and they have zero missing 
values, indicated by a count of 0. This means that there 
are no missing values in these columns.

•	 ’magType’: This column has 11,074 missing values. 
This suggests that some earthquakes may not have a 
recorded magnitude type. These columns were not 
included as it had no major contribution to the analysis 
carried out in the research. ’nst’, ’gap’, ’dmin’, ’rms’, 
’horizontalError’, ’depthError’, ’magError’, ’magNst’: 
These columns have a significant number of missing 
values. ’nst’ has 1,190,635 missing values, ’gap’ has 
1,077,681 missing values, ’dmin’ has 1,719,084 miss-
ing values, ’rms’ has 202,742 missing values, ’horizon-

Fig. 1   Block diagram of the developed method
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talError’ has 1,820,242 missing values, ’depthError’ 
has 499,182 missing values, ’magError’ has 1,937,267 
missing values, and ’magNst’ has 1,134,114 missing 
values. These missing values signify potential incon-
sistencies or incomplete information in this dataset and 
had no major contribution to the analysis carried out in 
this study.

Feature engineering played a pivotal role in enhanc-
ing the dataset. The feature engineering method employed 
in the research on analysing global earthquake trends 
involves the extraction and transformation of relevant 
data attributes to enhance the analytical accuracy of 
earthquake patterns. This process includes selecting sig-
nificant features from the raw earthquake data, such as 
magnitude, location coordinates, depth, and time of occur-
rence. Additionally, derived features like interoccurrence 
time intervals between successive earthquakes of differ-
ent magnitudes are calculated, providing insights into the 
temporal dynamics of seismic activity. These engineered 
features are then used as input variables for spatiotempo-
ral, interoccurrence time and statistical analyses, enabling 
a more comprehensive understanding of global seismic 
trends and patterns. Table 1: The Earthquake Magnitude 
Classification and Effects table categorizes the strength of 
earthquakes based on their magnitude and describes the 
typical effects experienced at each level and the estimated 
number each year.

Descriptive statistics were computed to summarize the 
magnitude and depth columns, providing measures like 
mean, standard deviation, minimum, maximum, and quar-
tiles. Value counts determined earthquake classification 
frequencies, highlighting the most common categories 
based on magnitude. Correlation analysis and statistical 
was conducted to explore relationships between variables.

3.2 � Temporal and spatial analyses of global 
earthquakes

Long-term trends are identified through time-trend analy-
sis, shedding light on seismic occurrences over the years. 
Seasonal analysis unearths recurring patterns linked to spe-
cific times of the year, while monthly analysis delves into 
shorter-term temporal variations. Examining seismic activity 
by the day of the week provides insights into weekly pat-
terns, and hourly analysis probes correlations with specific 
time periods. The interoccurrence time analysis, calculating 
intervals between consecutive earthquakes, offers valuable 
insights into temporal behaviors, forming a comprehensive 
understanding of the temporal intricacies of global earth-
quake events.

Simultaneously, the spatial aspect is meticulously ana-
lyzed, focusing on two key components: global spatial 
distribution and significant earthquakes within continents. 
Employing geospatial analysis techniques, including spatial 
joins and map visualizations, uncovers intricate spatiotem-
poral earthquake occurrences. The integration of advanced 
data science techniques and geospatial tools reveals mean-
ingful patterns and trends in global earthquake activity. This 
holistic approach leads to the identification of geographi-
cal hotspots, providing crucial insights into seismic events’ 
spatial distribution and intensity. Furthermore, a detailed 
analysis of significant earthquakes within continents is con-
ducted. By spatially joining earthquake data with continent 
boundaries, each earthquake point is associated with its cor-
responding continent. This process yields a dataset rich in 
information, offering valuable insights into the frequency 
and spatial patterns of significant earthquakes in different 
regions of the world.

3.3 � Cluster analysis

The primary objective here is to determine the optimal 
number of clusters for spatially grouping earthquakes and 
visualise these clusters on a map. According to [23], two 

Table 1   Earthquake magnitude classification and effects

https://​www.​mtu.​edu/​geo/​commu​nity/​seism​ology/​learn/​earth​quake-​measu​re/​magni​tude/

Magnitude Classification Earthquake effects Estimated number each year

2.5 or less Very minor Usually not felt but can be recorded by seismograph Millions
2.5 to 5.4 Minor Often felt, but only causes minor damage 500,000
5.5 to 6.0 Moderate Slight damage to buildings and other structures 350
6.1 to 6.9 Strong May cause a lot of damage in very populated areas 100
7.0 to 7.9 Major Major earthquake. Serious damage 10–15
8.0 or greater Great Great earthquake. Can totally destroy communities near the 

epicentre
One every year or two

https://www.mtu.edu/geo/community/seismology/learn/earthquake-measure/magnitude/


	 Int. j. inf. tecnol.

1 3

well-known methods with a decent performance is used to 
determine the optimal number of clusters: the elbow method 
and silhouette score analysis. The elbow method involves 
iterating over a range of k values (number of clusters) from 
2 to 10. Adopting the technique proposed by Ricardo et al. 
[23], For each k value, the K-means clustering algorithm is 
applied to the dataset, and the inertia (within-cluster sum 
of squared distances) is computed. The inertia measures 
how well data points are grouped within their clusters. The 
inertias for different k values are stored in the "inertias" 
list. The elbow method plot is used to identify the "elbow 
point," where the inertia starts decreasing at a slower rate. 
This point is indicative of the optimal number of clusters. 
Based on the plot, a k value of 5 seems reasonable for this 
dataset. Additionally, the silhouette score is calculated for 
each k value. The silhouette score assesses the similarity 
of a data point to its own cluster compared to other clus-
ters. A higher silhouette score indicates well-separated and 
well-defined clusters. The silhouette scores are stored in the 
"silhouette_scores" list. The elbow method and silhouette 

score plots were visualised to help determine the optimal 
number of clusters. In this case, both analyses suggest that 
five clusters would be appropriate for spatially grouping the 
earthquakes. With the optimal number of clusters identified 
(optimal_k = 5), the K-means clustering algorithm is applied 
again to the dataset. The "cluster" column in the DataFrame 
is updated with the cluster labels assigned to each earth-
quake based on the optimal k value. Finally, the clustered 
earthquakes are visualised on a map using scatter points.

4 � Results and discussion

4.1 � Temporal dynamics of global earthquake 
occurrences

Examining the overall trend of earthquake occurrences over 
time helps to identify any long-term patterns or changes. 
Figure 2 displays the temporal trend of global earthquake 
occurrences at different resolutions.

Fig. 2   Temporal trend of global earthquake occurrences
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The analysis reveals fluctuations in earthquake occur-
rences over time, with a relatively low number of recorded 
events before 1960. This can be attributed to limited moni-
toring stations, incomplete historical data, and lower popu-
lation density. However, from the 1960s onwards, there is 
a significant increase in recorded earthquakes, indicating 
improvements in monitoring networks and technology, and 
increased human presence in earthquake-prone regions. The 
dataset emphasizes the importance of continuous advance-
ments in seismic monitoring capabilities to accurately cap-
ture and document earthquake events.

The analysis reveals that the year 2018 had the highest 
number of recorded earthquakes, indicating a significant 
increase in seismic activity compared to previous years. 
The rise in earthquakes may be influenced by various fac-
tors, such as geological characteristics, tectonic plate move-
ments, or improved monitoring capabilities. This highlights 
the complex nature of earthquake occurrences, driven by 
geological, tectonic, and environmental factors. Under-
standing these patterns is essential for effective earthquake 
monitoring and response strategies. The findings empha-
size the importance of robust seismic monitoring systems 
and preparedness measures in earthquake-prone regions, as 
advancements in data collection and global collaboration 
have contributed to the increase in recorded earthquakes. 
Continued investment in monitoring infrastructure and com-
prehensive mitigation strategies are crucial to minimize the 
impact of earthquakes on affected populations.

In the early twentieth century, from the 1900s to the 
1910s, there was a notable cluster of "Great" earthquakes, 
with a total of 6 and 10 occurrences, respectively. This sug-
gests a period of heightened seismic activity during this 
time. The subsequent decades, from the 1920s to the 1940s, 
exhibited a relatively consistent level of "Great" earthquake 
occurrences, ranging from 6 to 10 events. This stability in 
seismic activity implies a relatively stable tectonic environ-
ment during this period. The analysis shows fluctuations in 
the occurrence of "Great" earthquakes over the decades. The 
1950s had 7 occurrences, followed by a resurgence in the 
1960s (10 events) and 1970s (6 events). The 1980s saw a 
decline (4 events), while the 1990s had a slight increase 
(6 events). The twenty-first century witnessed a significant 
rise, with 13 occurrences in the 2000s, 11 in the 2010s, and 
3 recorded in the 2020s so far. These variations indicate the 
dynamic nature of seismic activity and suggest periods of 
heightened tectonic activity.

Further analysis revealed distinct patterns across different 
months of the year, categorized into three groups based on 
mean earthquake counts. High seismic activity is notably 
observed during the summer months, particularly in July, 
aligning with the prevalent summer season in the Northern 
Hemisphere. These months exhibit a heightened seismic 
occurrence. Months including January, March, May, June, 

August, and December demonstrate a moderate level of seis-
mic activity, indicating relative stability without significant 
peaks or declines. Conversely, lower seismic activity char-
acterizes months like February, April, September, October, 
and November, suggesting a decrease in seismic occurrences 
compared to other periods. It’s important to note that while 
these months show comparatively fewer earthquakes, seis-
mic activity persists to some extent even during these times.

The analysis of the day of the week variation in earth-
quake occurrences reveals interesting insights into the dis-
tribution and patterns of seismic activity throughout the 
week. The analysis reveals the distribution of earthquakes 
throughout the week, with each day accounting for around 
14% of the total count. Weekdays (Monday to Thursday) 
show consistent earthquake counts, while Friday and Satur-
day exhibit slightly higher counts. Sunday stands out with 
the highest count, suggesting a peak in seismic activity at the 
end of the weekend. The uniform pattern of seismic activity 
during weekdays underscores the importance of considering 
seismic risks in everyday activities and urban planning. The 
higher counts on weekends may indicate a potential correla-
tion with human activities and energy consumption during 
these periods, emphasizing the need for increased awareness 
and preparedness.

Hourly analysis of earthquake occurrences provides valu-
able insights into the distribution and frequency of earth-
quakes throughout the day. The data reveals interesting pat-
terns and variations in the number of earthquakes across 
different magnitudes throughout the 24-h period. In gen-
eral, the analysis highlights the temporal aspect of seismic 
activity and helps us understand the dynamics of earthquake 
occurrences during different times of the day. One notable 
finding is the variation in the magnitude distribution of 
earthquakes throughout the day. When examining the hourly 
patterns of earthquake occurrences, distinct fluctuations are 
observed. The frequency of earthquakes tends to be higher 
during the early morning hours, typically between 2 and 6 
AM. Interestingly, there is a decrease in the occurrence of 
earthquakes during the daytime, with a relatively lower fre-
quency observed in the afternoon hours. However, the occur-
rence of earthquakes rises again during the evening hours, 
roughly between 5 and 9 PM. This observation suggests that 
seismic activity may exhibit diurnal patterns, influenced by 
factors such as temperature changes, stress accumulation, or 
human-induced activities during different times of the day.

Comparing the hourly occurrence of earthquakes across 
different magnitudes, we notice consistent patterns. "Very 
Minor" earthquakes consistently have the highest frequency 
throughout the day, indicating their prevalence in seismic 
records. The occurrence of "Minor," "Moderate," and 
"Strong" earthquakes follows a similar pattern, with rela-
tively lower frequencies compared to "Very Minor" earth-
quakes. On the other hand, "Major" earthquakes show a 
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consistent and relatively low occurrence throughout the day. 
The occurrence of "Great" earthquakes appears sporadic and 
less frequent during most hours. These findings emphasize 
the importance of considering the temporal aspect when ana-
lysing earthquake data. The observed patterns suggest that 
seismic activity exhibits temporal fluctuations and highlights 
the need to study the underlying causes and mechanisms 
driving these variations.

4.2 � Interoccurrence time analysis

The Interoccurrence Time Analysis (ITA) involves exam-
ining the time intervals or time gaps between consecutive 
earthquake events. This analysis is useful for understanding 
the patterns and behaviours of earthquake occurrences over 
time. Figure 3 shows the average time difference of succes-
sive earthquake occurrences for each class of earthquake.

Exploring the earthquake interoccurrence times reveals 
distinct patterns for different magnitudes. The analysis 
reveals that on average, there is an interval of approximately 
436 days and 12 h between successive Great earthquakes. 
These seismic events are of significant magnitude and tend 
to occur at relatively infrequent intervals, separated by sev-
eral months. Such extended periods between Great earth-
quakes indicate their potential to cause substantial damage 
and impact regions with prolonged seismic activity. For 
Major earthquakes, the average interoccurrence time is 
approximately 31 days and 11 h. This suggests a relatively 
shorter duration between successive Major earthquakes 
compared to Great earthquakes. Major earthquakes are 
powerful and can cause significant damage to buildings and 
structures, making their more frequent occurrence a concern 
for seismic hazard assessment and preparedness efforts. For 
Minor earthquakes, on average, have an interoccurrence time 

of approximately 22 min. This remarkably short duration 
indicates that Minor earthquakes occur in rapid succession, 
with very little time between individual events. While Minor 
earthquakes may not cause significant damage, their frequent 
occurrences contribute valuable seismic data for monitoring 
and research.

The moderate earthquakes have an average interoccur-
rence time of approximately 1 day and 9 h. This duration 
signifies a longer interval compared to Minor earthquakes 
but still suggests a relatively frequent occurrence. Moderate 
earthquakes can cause slight damage to buildings and struc-
tures, making their interoccurrence pattern crucial for seis-
mic risk assessment and mitigation planning. The analysis 
reveals that Strong earthquakes have an average interoccur-
rence time of approximately 4 days and 10 h. This duration 
indicates a less frequent occurrence compared to Minor and 
Moderate earthquakes. Strong earthquakes have the poten-
tial to cause significant damage in highly populated areas, 
and their interoccurrence patterns contribute to understand-
ing regional seismic activity. Very Minor earthquakes have 
an average interoccurrence time of approximately 3 min. 
This finding indicates that Very Minor earthquakes occur in 
rapid succession, with almost no time between individual 
events. While they may not be felt by humans, their frequent 
occurrences provide valuable data for seismic monitoring 
and research.

The earthquake interoccurrence time analysis by decade 
for different earthquake classifications reveals intriguing pat-
terns and trends in seismic activity over the past 13 decades 
(from 1900 to 2020s). The analysis of interoccurrence time 
between consecutive earthquake events reveals insightful 
patterns for each magnitude category. For Great earthquakes, 
the average time difference varied significantly over the dec-
ades. The 1920s witnessed longer intervals, around 661 days 

Fig. 3   Average time differ-
ence of successive earthquake 
occurrences
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and 11 h, while the 2020s had shorter intervals of approxi-
mately 80 days and 11 h, indicating a higher frequency in 
recent years. Major earthquakes generally showed shorter 
interoccurrence times compared to Great earthquakes. The 
1910s had the longest average time difference, about 41 days 
and 11 h, while the 1990s recorded the shortest, approxi-
mately 23 days and 12 h, indicating increased activity during 
that decade.

Furthermore, variations were also observed for Minor 
earthquakes. The 1920s had the longest average time dif-
ference, around 75 days and 13 h, whereas the 2020s saw a 
significant decrease to as short as 4 min, indicating a sub-
stantial increase in frequency. Moderate earthquakes showed 
a consistent average time difference, with the 1900s having 
the longest, around 35 days and 10 h, and later decades aver-
aging around 9 h, suggesting a consistent level of seismic 
activity. For Strong earthquakes, the interoccurrence time 
remained stable across decades, averaging approximately 3 
to 4 days and 10 h, indicating a consistent occurrence rate 
throughout the past 13 decades.

In general, the analysis of earthquake interoccurrence 
times indicates that earthquakes of different magnitudes 
exhibit distinct patterns in their occurrences. Great earth-
quakes, being of significant magnitude, tend to occur at 
relatively infrequent intervals, separated by several months. 
On the other hand, Minor earthquakes occur rapidly and 
successively, with very little time between individual events.

4.3 � Spatial patterns, hotspots and clusters in global 
earthquakes

The spatial distribution of global earthquakes from 1900 
to 2023 provides valuable insights into the occurrence and 
geographical patterns of seismic activity around the world 
over the years. Figure 4 reflects the distribution for all 
classes of earthquakes for significant earthquakes (magni-
tude ≥ 5.5). By visualizing the spatial distribution, we can 
identify regions that are more prone to seismic events and 
observe any potential trends or clustering of earthquakes in 
specific areas.

The global earthquake distribution reveals certain hot-
spots, with regions along the western coasts of North and 
South America, the central Atlantic Ocean, the Himalayan 
region, and Eastern Asian countries like Indonesia, Japan, 
and Korea being more susceptible to seismic activity. Cali-
fornia and Alaska record the highest earthquake counts 
across various magnitudes, with California showing sig-
nificant ’Minor’, ’Moderate’, and ’Strong’ earthquakes, 
while Alaska leads in ’Great’ and ’Major’ earthquakes. 
’Very Minor’ and ’Minor’ earthquakes dominate in many 
regions, providing valuable data for seismic monitoring. 
Meanwhile, Indonesia and Japan experience more signifi-
cant seismic events, including ’Moderate’, ’Strong’, and 

’Major’ earthquakes. Regions like Chile, Indonesia, Japan, 
and the USA also encounter ’Great’ earthquakes, emphasiz-
ing the need for monitoring and preparedness in high-risk 
areas. Certain regions, including Greece, Turkey, Iran, and 
Chile, exhibit a higher frequency of ’Moderate’ and ’Strong’ 
earthquakes, emphasizing the significance of seismic activ-
ity and the need for risk assessment and mitigation. The 
distribution of earthquake classes varies across regions, 
with some experiencing predominantly ’Very Minor’ and 
’Minor’ earthquakes, while others face more significant 
seismic events. Prioritizing regions for earthquake prepar-
edness and risk mitigation based on their seismic potential is 
crucial. Continuous monitoring and planning in seismically 
active regions like California and Alaska enhance commu-
nity safety and resilience.

The significant earthquake counts by continents provide 
valuable insights into the distribution of seismic activity 
across different regions of the world. The results reveal valu-
able insights into the distribution and relative seismicity of 
earthquakes across different continents. Asia emerges as the 
most seismically active continent with a substantial count of 
3971 earthquakes, representing approximately 47.81%. This 
high earthquake count in Asia is primarily influenced by the 
presence of multiple tectonic plate boundaries, including 
the collision of the Indian Plate with the Eurasian Plate and 
subduction zones in the Pacific Ring of Fire. The collision 
and subduction processes lead to frequent earthquakes in 
countries like India, China, Nepal, Japan, Indonesia, and 
the Philippines, making Asia a hotspot for seismic activity.

South America follows closely with 1548 significant 
earthquakes, constituting around 18.64% of the total. The 
western coast of South America, along the Peru–Chile 
Trench, experiences powerful earthquakes due to the sub-
duction of the Pacific Plate beneath the South American 
Plate. This subduction zone has historically produced dev-
astating earthquakes, such as the 1960 Valdivia earthquake. 
Additionally, the collision of the South American Plate with 
the Nazca Plate contributes to seismic activity in the Andes 
mountains. North America, with 1015 earthquakes, account-
ing for approximately 12.22% of the total, exhibits seismic 
activity along the western part, primarily along the San 
Andreas Fault system. The interaction of the Pacific Plate 
with the North American Plate creates a seismically active 
region, affecting areas like California. While not as active as 
Asia or South America, North America experiences moder-
ate to strong earthquakes due to these tectonic interactions.

Oceania, which includes Australia, New Zealand, and the 
Pacific islands, accounts for 925 significant earthquakes, 
representing about 11.14%. This region is situated along 
the Pacific Ring of Fire, characterized by numerous tectonic 
plate boundaries and subduction zones. The Tonga Trench 
and the Kermadec Trench are some of the subduction zones 
contributing to seismic activity in Oceania. In contrast, 
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Europe accounts for 613 earthquakes, making up approxi-
mately 7.38% of the total. While Europe is generally consid-
ered a seismically less active region compared to others, it 
still experiences notable seismicity, particularly around the 
Mediterranean region and the Alpine-Himalayan belt. The 
Mediterranean region, influenced by the interaction of the 
African Plate, Eurasian Plate, and Anatolian Plate, witness 
earthquake occurrences in countries like Turkey and Greece.

Africa, with 230 significant earthquakes, which consti-
tutes around 2.77% of the total, has relatively fewer seis-
mic events compared to other continents. Most of Africa is 
located on the stable African Plate, with fewer active plate 
boundaries. However, regions along the eastern edge of 
Africa, such as the East African Rift, experience seismic 
activity due to tectonic movement and rifting. Antarctica, 
with only 3 significant earthquakes, making up a mere 

Fig. 4   Global earthquake distribution (1900–2023)
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0.04% of the total, has the lowest seismic activity among 
the continents. This is not unexpected, given Antarctica’s 
ice-covered and relatively isolated nature, with minimal 
tectonic activity. Inferences drawn from the significant 
earthquake counts by continents reveal that regions situ-
ated near active plate boundaries, such as Asia and South 
America, exhibit higher earthquake counts. These areas 
are prone to powerful and potentially destructive seismic 
events. On the other hand, regions with fewer active plate 
boundaries, like Africa and Antarctica, have lower earth-
quake counts, indicating a lower frequency of seismic 
activity.

The cluster analysis revealed that the optimum number 
of clusters for the earthquake dataset was determined to be 
5 based on the elbow method and silhouette score analysis. 
Figure 5 shows the clustering analysis of significant global 
earthquakes. The figure presents the Elbow method silhou-
ette score plots and the corresponding spatial clustering map.

Hence, earthquakes in the dataset can be effectively 
grouped into 5 distinct clusters, each representing a specific 
pattern or characteristic in seismic activity. Upon examin-
ing the spatial distribution of the clustered earthquakes, a 
significant finding emerged: the clusters were predominantly 
cantered around the boundaries of various major tectonic 

Fig. 5   Clustering Analysis of Significant Global Earthquakes
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plates. The presence of earthquake clusters aligned with tec-
tonic plate boundaries further suggests a strong correlation 
between seismic activity and plate interactions. Earthquakes 
tend to be more frequent and intense in regions where tec-
tonic plates converge, diverge, or slide past one another. 
These interactions generate stress and strain in the Earth’s 
crust, leading to the release of energy in the form of seismic 
events. The distribution of earthquake clusters along tectonic 
plate boundaries is a significant confirmation of the tectonic 
theory of earthquakes, which posits that plate movements 
are a primary driving force behind seismic activity [36].

Inferences can be drawn from these results to enhance 
our understanding of earthquake patterns and their asso-
ciation with tectonic plate movements. By identifying and 
characterizing these clusters, seismologists and geologists 
can gain valuable insights into the geological processes driv-
ing seismicity. This information can be utilized to improve 
earthquake monitoring and hazard assessment, which is 
crucial for enhancing disaster preparedness and response. 
Moreover, the identification of seismic hotspots around tec-
tonic plate boundaries can aid in the assessment of seismic 
risk in regions prone to large earthquakes. Understanding 
the distribution and behaviour of earthquake clusters helps 
to prioritize resources and implement effective mitigation 
strategies in areas with higher seismic activity.

5 � Comparative with existing methods

The presented study employed a methodology consisting 
of exploratory data analysis, temporal dynamics explora-
tion, spatial pattern analysis, and K-means clustering. This 
approach allowed to gain insights into seismic trends and 
patterns at a global scale. In comparison to [23] while their 
focus was on Neutrosophic K-means clustering for predic-
tion, our study encompassed a broader analysis pipeline, 
including temporal and spatial exploration, offering com-
prehensive insights into earthquake trends and patterns. 
Similarly, compared to [33] who concentrated on spatial 
clustering techniques within a specific region, our research 
aimed to understand global earthquake patterns and trends.

The present research’s use of K-means clustering pro-
vided additional insights into distinct earthquake hotspots 
along tectonic plate boundaries, reinforcing the importance 
of plate interactions. In line with [32], our research also 
delved into spatial pattern analysis, identifying seismic 
clusters. However, the focus of the present study on ana-
lysing global earthquake trends further contributes to the 
understanding of seismic activity on a worldwide scale. The 
authors of [33] focused on earthquake patterns within Iraq 
and utilized various statistical techniques. Our study, on the 
other hand, employed a combination of data science tech-
niques to analyse a century-long dataset of global earthquake 

occurrences, encompassing temporal dynamics, spatial pat-
terns, and clustering behaviour worldwide.

From [29], the analysis of seismic spatial distribution in 
China underlines the importance of understanding regional 
seismic patterns, as demonstrated by the identification of 
positive spatial autocorrelation and agglomeration pat-
terns in specific time intervals. This aligns with the present 
research, which aims to analyse global earthquake trends and 
patterns, and emphasizes the significance of spatial patterns 
and agglomeration at both regional and global scales. Com-
paring with the study by [30] their classification of seismic 
clusters into persistent and burst types and the considera-
tion of multiple spatial factors highlights the complexity of 
earthquake clustering mechanisms.

This aligns with the present research’s approach of utiliz-
ing K-means clustering to reveal distinct earthquake hotspots 
and trends, albeit on a broader global scale. Their insights 
into spatial factors contributing to cluster characteristics 
complement our findings by offering a deeper understand-
ing of how seismic activity varies across different regions. 
The study presented by [12] introduced a modified model to 
study earthquake distributions, demonstrating the presence 
of self-organized criticality and long-range spatiotemporal 
correlations in seismic events. This complements the present 
research by showcasing different methodologies to analyse 
seismic patterns, and further strengthens the idea that critical 
behaviour and correlations play a significant role in earth-
quake occurrences.

In general, the research presented in this study expands 
beyond the scope of individual methodologies employed in 
these studies, presenting a holistic approach to understand-
ing global earthquake trends and patterns. The findings of 
the present study contribute to the broader understanding of 
seismic activity, reinforcing the importance of spatial pat-
terns, and temporal dynamics in earthquake occurrences.

6 � Conclusions

The present research has significantly advanced our under-
standing of global earthquake patterns through the inte-
gration of diverse data science methodologies and spatial 
analyses. By meticulously exploring a century-long data-
set from the USGS, we uncovered intricate spatiotemporal 
relationships, identified seismic hotspots, and delved into 
the temporal dynamics of earthquake occurrences through 
innovative Interoccurrence Time Analysis. These insights 
have profound implications for earthquake prediction, haz-
ard assessment, and disaster mitigation efforts worldwide. 
The findings underscore the importance of continuous moni-
toring and research to enhance our understanding of seis-
mic activity and inform robust disaster preparedness strate-
gies. Moreover, this study highlights the need for further 



Int. j. inf. tecnol.	

1 3

investigations focusing on the interplay between seismic 
events and external factors such as climate change, volcanic 
activity, and human-induced activities, to provide a more 
comprehensive understanding of earthquake dynamics. The 
future scope of this research lies in further advancing data 
science methodologies for a more nuanced analysis of global 
earthquake trends and patterns. Specifically, there is poten-
tial for refining existing spatial analyses, exploring advanced 
statistical approaches, and integrating emerging technologies 
to enhance the interpretability and accessibility of seismic 
data. Future investigations could delve into the develop-
ment of more sophisticated real time visualization tools and 
interactive platforms, providing researchers and stakeholders 
with comprehensive and user-friendly insights.
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