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Abstract Numerous accidents and fatalities occur every 
year across the world as a result of the reckless driving of 
drivers and the ever-increasing number of vehicles on the 
road. Due to these factors, autonomous cars have attracted 
enormous attention as a potentially game-changing technol-
ogy to address a number of persistent problems in the trans-
portation industry. Autonomous vehicles need to be mod-
eled as intelligent agents with the capacity to observe, and 
perceive the complex and dynamic environment on the road, 
and decide an action with the highest priority to the lives of 
people in every scenarios. The proposed deep deterministic 
policy gradient-based sequential decision algorithm models 
the autonomous vehicle as a learning agent and trains it to 
drive on a lane, overtake a static and a moving vehicle, and 
avoid collisions with obstacles on the front and right side. 
The proposed work is simulated using a TORC simulator 
and has shown the expected performance under the above-
said scenarios.

Keywords Autonomous vehicles · Reinforcement 
learning · Smart city · Deep deterministic policy gradient · 
Obstacle detection

1 Introduction

Autonomous vehicles utilize multiple sensors such as 
LiDARs, RADARs, GPS-GNSS, cameras, etc. to perceive 
their surroundings and move with scant or no human inter-
action [1]. In the present world, many tasks are being auto-
mated to provide humans with more convenience and safety. 
There can be scenarios where the drivers are not in a good 
state to drive, and it may lead to accidents. Instead, if the 
task of driving is given to an adequately trained machine, 
it will perform its task with maximum efficiency every sin-
gle time. The cars became autonomous first in the 1920s 
and were called “Phantom Autos” [2]. They were called so 
because they were remote-controlled. Later in the 1980s 
self-managed autonomous vehicles were introduced by Mer-
cedes, which were not fully automatic. Many automobile 
companies like Tesla, Waymo, Baidu, Chevrolet Cruise, etc 
are working towards the development and commercializa-
tion of driverless self-driving vehicles. The advancements 
in automobiles, sensor technology, image and video process-
ing, information technology, and the increasing interest in 
designing autonomous vehicles by many young researchers 
will definitely result in low-cost, reliable, and efficient safe 
driverless vehicles on the road in the near future.

The Society of Autonomous Engineers (SAE) has defined 
five different levels of automation in SAE−J3016 as shown 
in Table 1 [3] [4]. Levels (0 to 2) still need drivers’ support 
and levels (3 to 5) are defined to have driverless automated 
features. The number of sensors, controlling functions, and 
computing cost increases with each level, and also the cost 
of the vehicle.

Figure 1 depicts the layer-wise components and func-
tions of an autonomous vehicle system [1, 5]. At layer 1, 
the autonomous vehicles are equipped with various multi-
modal sensors to detect surrounding objects, object size 
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or depth, road marking, and distance of the obstacles [1, 
6]. The localization devices like GPS are used to get the 
location. The cameras are used to detect depthless objects 
like traffic instructions [7]. Microphones may be used to 
identify the sound of an ambulance or fire engine and so 
on. Layer 2 processes the information received from dif-
ferent sources of layer 1 to create a map of the surrounding 
environment. Thus, layer 2 is referred to as the perception 
layer as it recognizes: the distance of the obstacle from 
the ego vehicle, the curve ahead, the lane, and so on [4, 
7]. Thus, the perception system needs to be precise and 
robust [6]. Even a small error in this system can give rise 
to deadly accidents. Next is the planning layer which plans 
for the next action based on the understanding derived 
from the previous layer. The last layer is the control layer 
which generates the control signals based on the decision 
taken at the planning layer.

Researchers and industrialists have explored various 
Machine Learning (ML) models to automate driving strate-
gies. In supervised learning algorithms, the model is trained 
beforehand using labeled data to perform a certain task [8] 
whereas in unsupervised learning the model is forced to 
learn from unlabelled data. Labeled data is a collection of 
information with one or more labels. These labels are use-
ful tags that help ML models to quickly interpret the data. 
Labeled data are the cornerstone of supervised learning [9] 
and require a large amount of labeled video data for training 
an autonomous vehicle. But, generating or creating a data 
set is a tedious and costly process. The third category is 
Reinforcement Learning (RL) which does not need a dataset 
and an agent improves its performance continuously through 
constant interaction with its surrounding environment.

For the process of autonomous driving which is a sequen-
tial decision problem, RL is the optimal choice as the vehi-
cle needs to actively interact with its environment to drive 
safely. It is impossible to train the vehicle for all possible 
scenarios beforehand thus ruling out supervised and unsu-
pervised learning approaches. There are a few challenges to, 
using RL though, such as bridging the gap between simula-
tion and reality, sample efficiency, etc. Research in applying 
RL for autonomous driving requires tremendous effort from 
academicians, researchers, and automotive industry experts 
from various fields to bring this idea into reality. The con-
tributions of the proposed work are:

– A Deep RL (DRL) -based sequential decision model is 
proposed to learn safe driving strategies.

– The proposed algorithm trains the agent to avoid or alle-
viate frontal and side collisions with minimum risk.

– The proposed algorithm is trained and verified using The 
Open Racing Car Simulator (TORCS) and outperforms 
under various scenarios.

The paper is organized as follows: The various RL algo-
rithms are discussed briefly in Sect. 2. Section 3 presents 
the state-of-the-art research in RL-based autonomous driv-
ing. Section 4.1 explains the proposed methodology and 
Sect. 4.3 presents the implementation of the proposed work 
using TORCS. Finally, the results obtained are discussed in 
Sects. 5 and 6 concludes the research work and future direc-
tions are presented in Sect. 7.

2  Preliminaries

In the RL model, an autonomous agent masters its perfor-
mance through persistent interaction with its environment 
[10]. The reward function is a performance criterion that is 
used to evaluate the RL agent [11]. The general scenario of 
RL is shown in Fig. 2. At any time instance t, the agent in 

Table 1  Automation levels

Levels Definition

Level 0 No or Zero automation
Level 1 Driver assistance for one or two features (steering or 

braking)
Level 2 Partial automation with continuous monitoring from the 

driver
Level 3 Advanced partial automation/ driver controls the vehicle 

only when there is a notice to intervene
Level 4 High automation with human driver
Level 5 Full automation and no human driver is required

Fig. 1  Layered architecture of autonomous driving system
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state st which belongs to the state space S, chooses an action 
at belonging to the action space A and receives a reward rt�R 
rom the environment based on the efficacy of its decision. 
The agent then moves to the next state st+1 and proceeds to 
choose an action for this state. The cycle continues until the 
agent has learned the task completely or reached the final 
state. The agent’s objective is to maximize the accumula-
tive rewards obtained during the entire lifetime of the task. 
Eventually, by exploiting the knowledge learned, an agent 
can increase the lifetime reward. It expands its knowledge 
by trial and error method [11].

The prime challenge in RL is to balance exploration 
and exploitation. To enhance the rewards, an agent should 
exploit the gained knowledge by choosing actions that prove 
to be highly rewarding. In contrast, to ascertain such favour-
able actions, it has to make certain risky decisions. This may 
or may not result in higher rewards [12]. The strategy used 
by the agent to choose an action for a given state is known 
as a policy � . If a particular policy gives a maximum reward, 
such a policy is termed as an optimal policy �∗ . RL can 
be used to solve many real-world problems but sometimes, 
there exists certain situations where conventional RL algo-
rithms fail to provide desirable results. This is mainly due 
to the fact that the state spaces and action spaces involved 
in these problems are very highly dimensional e.g. camera 
images, infrared images, etc. and it is impossible to store 
all state-action pairs. To solve such problems, Deep Learn-
ing (DL) is used along with RL and is referred to as DRL 
[13]. In DRL, the policy is represented using a neural net-
work. DRL is proven to be successful in many domains: 
game environments [14, 15], healthcare [16], communica-
tion networks [17], etc. without the need for a mathematical 
model or labeled data.

Deep Deterministic Policy Gradient (DDPG) and Deep 
Q-Network (DQN) are the two commonly used DRL algo-
rithms. DDPG is an off-policy and model-free algorithm 
that deals with continuous state spaces and DQN deals with 
discrete state spaces. Instead of representing the policy as 
a probability distribution, DDPG uses gradient descent to 
create a policy that is deterministic in nature. The main 
advantage of DDPG compared to other stochastic policy 
algorithms is that it is simpler and values can be computed 

more efficiently. The conventional Q-learning algorithm 
calculates the Q values for state-action pairs and stores it in 
tabular form. However, for huge state and action spaces, it 
becomes infeasible to create a table of Q values. Therefore, 
in DQN, neural networks are used because the memory and 
computation required would be less compared to DQN [18]. 
A deep Q-learning function approximator is used to solve 
this problem. The DDPG algorithm is used in our proposed 
work and the same is illustrated in Fig. 3.

The agent is the self-driving vehicle which is in a state 
s and sends its state information to the actor. The actor 
decides the best possible action a and sends it back to the 
agent. After implementing the action, an agent gets a reward 
r (which can be anything depending upon how good the 
action was) and progresses to a new state s′ . The entire tran-
sition comprising of (state s, action a, reward r, new state s�) 
is stored in a replay buffer R. From this buffer, random sam-
pling is done and a few transitions are stored in a mini-batch. 
The state s and action a are then sent to the critic to evaluate 
the action a taken by the actor. The critic generates a Q value 
for the state-action pair and this value shows how good the 
action was for that particular state. From the mini batch, 
the next state s′ is sent to the target actor. The target actor 
is expected to give the action a′ that is most suitable for the 
next state s′ . This next state s′ and next action a′ is then sent 
to the target critic. The role of the target critic is to evaluate 
the action a′ that was recommended by the target actor for 
the state s′ and generate a Q value for (s�, a�) pair. Using the 
Q values for both (s�, a�) and (s, a) pairs, the loss function 
is calculated. Equation 1 [18] gives the loss function and 
is used to update the critic network. This helps the critic 
evaluate the actor’s actions in a better way. Furthermore, 
the policy gradient is calculated using the Q value of (s, a) 
, which is then used to update the actor network. This helps 
the actor make better decisions.

Target networks are not updated with calculated values. 
Instead, a soft update is carried out after the actor and critic 
networks are updated. The soft update involves updating the 
target network by a very small factor called � with a typi-
cal value of 0.001. Once all these steps are carried out, the 
agent will have reached a new state, and the cycle continues. 
The actor uses a neural network to determine the desirable 
action, a whereas the critic employs a neural network to 
compute Q values.

3  Related works

Researchers have used different approaches like DDPG, 
DQN, imitation learning, transfer learning, etc. to build a 

(1)L =
1

N
Σi(yi − Q(si, ai|�

Q))2

Fig. 2  General scenario of RL [11]
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safe and efficient self-driving vehicles at various layers. An 
overview of the extant literature is provided in this section.

The work by Zhao et al. [19] aims to model the decision-
making and interactions between various vehicles that run on 
highways. The authors have used Double DQN (DDQN) to 
train the host vehicle, and the proposed work is implemented 
using an open-source simulation platform called "SUMO - 
Simulation of Urban Mobility". The driving environment is 
created by having three driving lanes and randomly distrib-
uting 20 cars on the highway. The host continuously gauges 
the distance between itself and the impediment (which could 
be a moving vehicle) in front of it as it travels. It starts to 
apply the brake to prevent a collision if there is a drop in the 
distance between successive measurements. The speed of the 
host is altered accordingly by the algorithm. The work by 
Zhang et al. [20] focuses on employing DDQN to regulate 
vehicle speed. In order to train the RL agent and teach it 
human cognitive behaviour, authors have gathered factual 
driving data from actual human driving. DDQN is seen to 
increase the DQN’s stability and dependability. According 
to the authors, the DDQN model scored significantly higher 
than the DQN model.

Chopra et al. [21] have aimed at steering the vehicle in 
its path with the help of the DQN algorithm. The model 
builds a Q-value approximator that regulates the car’s steer-
ing using unprocessed images, sensor inputs, and estimated 
rewards. Due to the longer trainig time, there is potential 
for future use of imitation learning, which initially trains 

the model using labelled data before applying the RL algo-
rithm to it. The survey by Elallid et al. [22] focuses on DL 
and RL-based approaches for the major functionalities of 
autonomous vehicles. This study examines research on 
DL/RL for autonomous cars from 2016 through 2021. The 
authors conduct a thorough comparison with regard to the 
aforementioned functionalities. One of the main challenges 
is the behavior of autonomous vehicles in different weather 
and lighting conditions.

Rasheed Hussain et al. [23] have focused on the outcomes 
achieved so far and the difficulties that researchers will face 
in the future. Over the past century, the car industry has 
made enormous advancements in the creation of depend-
able, safe, and efficient automobiles. Autonomous vehicles 
are becoming a reality due to enormous advancements in 
computer and communication technologies. The work by 
Zhu et al. [24] involves an agent learning to follow the lead 
vehicle that is being driven by a human in front of it. Only 
one sensor is utilized to determine the time for a collision, 
jerk in driving, etc. is the distance between the agent and 
the lead car. The reward function is developed by observ-
ing human driving data captured in real-time from the lead 
car and later combining it with driving-related features such 
as efficiency, comfort, and safety. Authors have used ’Next 
Generation Simulation’ software for the implementation.

The research paper by Omeiza et  al. [25] elucidates 
explainable autonomous driving. According to the authors, 
Explainability is an essential prerequisite for autonomous 

Fig. 3  Deep deterministic 
policy gradient block diagram
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vehicles. autonomous vehicles must be able to explicate 
what they see, do, and might do in the environments in 
which they interact. The reason for explanations, the speci-
fications for explanations for autonomous vehicles, a review 
of previous work on explanations for autonomous vehicles, 
and finally a conceptual framework for explainability of 
autonomous vehicles are the four key issues covered in this 
study. Grigorescu et al. [26] have discussed the major open 
challenges in the field of autonomous driving. Also, authors 
indicate that DL and Artificial Intelligence (AI) will play a 
phenomenal role in overcoming these challenges. Among the 
major areas they addressed, functional safety, real time com-
puting, and communication prove to be really challenging.

Yang et al. [27] elucidate about how AI is included into 
the development of the four key functions of autonomous 
driving: perception, localization, mapping, and decision-
making. It explores the recent approaches to comprehend 
how AI can be made use of and what are the issues linked 
with their implementation. Based on the survey of cur-
rent practices and advancement of the technologies, this 
paper further provides acumen into impending applications 
regarding the use of AI in juxtaposition with other emerg-
ing technologies. Cao et al. [28] discuss improving RL in a 
trustworthy manner (TiRL). Although RL algorithms have 
the capacity to continuously get better, it has been noted that 
there are times when they are unstable. The authors have cre-
ated a framework for generating decisions that combines RL 
and rule-based algorithms in order to achieve the best results 
from both worlds. By doing this, their final framework may 
learn more reliably on its own in the future. Simulations are 
conducted with more than 42,000 kms of driving, calibrated 
with data from actual driving. Authors have demonstrated 
the superior performance of TiRL above all other arbitrary 
model-based policies.

A Raspberry Pi 3 Model-B microprocessor and Pi Cam 
Rev. 1.3 were used to construct vision-based outdoor 

navigation by Kumar et al. [29]. The front camera captures 
a picture of the front lane, which is then pre-processed to 
enable automatic region-of-interest recognition. Instruc-
tions are sent to the actuator based on the lane direction. The 
authors made the virtually unrealistic assumption that there 
are no barriers along the road. Yasin et al. [30] detect the 
obstacle using a cost-efficient and easily available ultrasonic 
sensor and reduce the speed of the unmanned ground vehicle 
if the object detected is at a distance greater than 20 ms. If 
the object is at a distance of less than 20 ms, then the vehicle 
is stopped or rerouted based on the location and size of the 
obstacle. The proposed work may not be applicable for criti-
cal situations or even for a lane with multiple autonomous 
vehicles due to the limitations of the sonic sensor. Teli et al. 
[31] proposed a fuzzy method to avoid local minima in a 
mobile robot that uses artificial potential field based path 
planning. Li et al. [32] proposed mixed traffic model taking 
into account human vehicle drivers behavior and interaction 
between human vehicle and autonomous vehicles.

Wu et al. [33] presented a human intervention based train-
ing process in which humans intervene whenever a autono-
mous vehicle engages in a disobeying action. The presented 
method is observed to reduce the convergence time of the 
DRL algorithm. Baheri [34] aimed at the safety of the 
autonomous vehicle and incorporated an additional safety 
module that predicts the trajectory. The safety module is 
trained offline using historical data and the proposed method 
is simulated for a three-lane scenario in a high-way.

The feature of DRL to adapt itself to a new scenario 
makes it a best choice in designing the control system for 
autonomous vehicles as depicted in the Table 2. Most of the 
existing literature focuses on one or atmost two of the sce-
narios like the safety, lane keeping, obstacle detection under 
various weather or illumination conditions with minimum 
number of sensors, trajectory prediction, etc. Nevertheless, 
autonomous vehicle needs to be trained for all scenarios 

Table 2  Summary of related works

Work by Contribution Tool Algorithm/Platform 
used for implemen-
tation

Zhao et al., 2020 [19] Safe driving policy for a highway scenario with 20 vehicles 
distributed randomly

SUMO DDQN

Zhang et al., 2018 [20] Speed regulation by training the vehicle with acquired realistic 
data

Quadro M400 GPU DDQN

Chopra et al., 2020 [21] Automation of driving using raw pixel data along with sensor 
information

TORCS DQN

Zhu et al., 2022 [24] Safe driving policy to follow a leading vehicle by training using 
new generation simulation data set

Not mentioned DDPG

Cao et al., 2022 [28] Safe driving policy for a 3-lane highway Not mentioned RL
Kumar et al., 2022 [29] Vision based safe driving in a obstacle-free track set up using Pentium core i3 

CPU, Rasberry Pi arduino 
uno

C and Python script



3546 Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

before bringing it on to the road. The proposed work focuses 
on vehicle control under following scenarios: lane keeping 
in a two-lane road, driving control under obstacle detection, 
overtaking of a moving as well as static vehicle, vehicle 
control based on detected overtaking vehicle and all these 
are discussed in detail in the next section.

4  Proposed methodology

The primary objective of the proposed research is to drive 
the autonomous vehicle safely in single as well as multi-
agent scenarios with no or reduced collision with the 
detected static as well as moving objects. The components 
of DRL models and decision strategies are discussed below.

4.1  Reinforcement learning model

The elements of the proposed RL model which are state 
space, action space, and reward function as well as their 
interaction with surrounding environments is explained in 
the subsequent section.

4.1.1  State space

The sensor inputs decide the present state st of the autono-
mous vehicle. The present state at time t is decided by the 
current velocity of the agent: vt in km/h, tangential angle of 
the agent with respect to road in radians: �dt , the horizontal 
distance between the centre of the lane and the agent: �t in 
meters, distance between lane edge and agent: �t in meters, 
distance between the agent and vehicles or obstacle ahead: 
DistFt in meters, and the distance between the agent and 
obstacles on the right side of the agent: DistRt in meters, 
as summarized in Table 3. According to the agent state, the 
actor-network encodes a state to action at time t. This action 
is sent to the simulator through shared memory to control the 
agent and return to the next state, the reward for the same. 
In each iteration, the set ⟨state, action, reward, next_state⟩ is 
collected and stored in the replay buffer for network training.

The velocity vector of the agent is divided into three ori-
entations x, y, z �R3 . The offset ��R1 is the distance between 
the agent and the centre of the track which is normalized 

between ( − 1, 1)Ṫhe distance between the agent and the edge 
of the lane ��R19 is measured in ( −45, −19, −12, − 7, − 4, −
2.5, −1.7, − 1, −0.5, 0.5, 1, 1.7, 2.5, 4, 7, 12, 19, 45) degrees 
with respect to front of the agent. The parameter ��R1 is the 
angle between the direction of the track and the direction of 
the agent and is measured in radians between ( −�,� ). Four 
sensors are spread across the front of the agent and detect 
obstacles ahead up to a distance of 200 ms. Therefore, DistFt 
consists of a set of 4 values. DistRt consists of a set of 14 
values with a maximum range of 200 ms as 14 sensors are 
located on the right side of the agent and are used to detect 
obstacles on the right side.

4.1.2  Action space

Agent action space is at = (accelerate, brake, steer) . Accel-
eration value of 1 implies that the agent has applied full 
throttle i.e., in human driving terminology, it has pressed 
the accelerator pedal completely. If the acceleration value 
is 0, it implies that the agent has completely let go of the 
accelerator pedal and it is moving only due to its momentum. 
A brake value of 0 states that the brake pedal is not at all 
pressed and a value of 1 implies that it is completely pressed. 
The steering value of − 1 signifies a full right and +1 signi-
fies a full left turn.

4.1.3  Reward function

Designing a suitable reward function is one of the key 
tasks. This function needs to be correctly set so that the 
agent has a clear understanding of its priorities and learns 
to drive safely. To briefly explain a scenario, consider 
an autonomous agent X which is steadily going in its 
lane and is getting positive rewards. Suppose X detects 
some other vehicle, named Y, which is seemingly rushing 
towards X and it might end up crashing onto the vehicle 
X, then ego-vehicle (X) must receive higher rewards if it 
decides to take an action of applying brake and maneuver-
ing it away from Y. In order to achieve the objective of 
lane keep, the agent needs to be trained with an altered 
reward function wherein it must get a higher reward for 

Table 3  Factors that influence 
the present state

Symbol Symbol description Range

v(km/h) Agent velocity (0, 300)�R3

� Horizontal offset between centre of the lane and the agent (−1, 1)�R1

�d(radian) Departure angle between the lane and agent (−�,�)�R1

� (degree) Angle between edge of the lane and agent (−450, 450)�R19

DistF(m) Distance between the agent and obstacle(s) ahead of it (0, 200)�R4

DistR(m) Distance between the agent and obstacle(s) on the right side (0, 200)�R14
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staying in its lane and a lesser reward for swerving away 
from the required lane. Another possible approach here 
is to make use of the sensors to limit the agent to one 
lane thereby creating a pseudo boundary for the agent. 
The reward functions are given by Eq. 2, where �d is 
the departure angle, v is the speed of the agent and � is 
the offset between the agent and centre of the lane as 
Rlane−keep

 , Rfrontcollision
 , Rovertake and Rsidecollison

 are defined 
by Eqs. 3, 4, 5, and 6 respectively.

If the departure angle is less, then cos(�d) will be high while 
sin(�d) will be a minute value. If the agent is near the centre 
of the lane, only a small value will be subtracted. Suppose 
if the vehicle is near the edge of the lane, a higher value will 
be subtracted from the reward function.

The second part of the work involves overtaking, and 
collision avoidance with front and right-side obstacles. 
The reward function for the agent behavior during these 
scenarios is defined by 4, 5, and 6.

Two different sensors are used for the obstacle detection 
process, namely track and opponents. The track sensor rep-
resented by the � value consists of 19 sensors that provide 
the distance between the centre of the agent and the edge of 
the lane. These sensor values are stored in a python list in 
the implementation. The 36 range-finder values given by the 
opponents sensor are also stored in a Python-list. These are 
located throughout the vehicle at every 10 degrees and they 
have a maximum range of 200 ms. In the absence of other 
cars, this sensor outputs the maximum value i.e. 200 ms 
from each of the sensors. Otherwise, it sends the distance 
between the agent and other cars present on the track.

(2)
R =Rlane−keep

+ Rfront−collision

+ Rovertake + Rside−collison

(3)Rlane−keep
=vcos(�d) − vsin(�d) − v|�|

(4)R
overtake

=

⎧
⎪
⎨
⎪
⎩

5, if agent overtakes without collision

0, No overtake

−10, if agent overtakes and collides

(5)Rfront−collision
=

⎧
⎪
⎨
⎪
⎩

5, if agent avoids collision

0, No obstacle detected

−10, if collides with front obstacle

(6)

Rside−collision
=

⎧
⎪
⎨
⎪
⎩

5, if agent avoids collision

0, No obstacle detected

−10, if agent collides with side obstacle

4.2  Deep reinforcement learning model

In DRL, both actor and critic networks are represented 
by neural networks. Neural network is used as a function 
approximator to map the state to action. The values of the 
six parameters specified in Table 3 are the inputs to the 
fully-connected, 4-layered actor-network. The output at the 
output layer of the actor network specifies the action at to 
be taken, i.e., to brake, accelerate, or steer. Identical net-
work architectures are used for actor and target-actor net-
works. The critic network, which takes a state-action pair 
as input, is connected to two fully-connected layers: one 
to encode the state and the other to encode the action. The 
critic network’s output is the value of the Q(st, at) function.

4.3  Sequential decision making strategies

Carla, TORCS, Airsim, and SUMO are a few simulators 
that are considered for autonomous driving applications. 
Each of them has its own pros and cons. Carla and Air-
sim, being relatively new software, are more suitable for 
vision-based driving and are known for their photo-real-
istic driving scenes, which require higher graphic com-
putations. SUMO does not have its RL capabilities very 
well developed. On the other hand, TORCS satisfies the 
requirements to implement this project. Hence, TORCS −
1.3.7 in Ubuntu 16.04 operating system with Python 3.5, 
Tensorflow, and Keras DL framework is used. TORCS is 
an open-source, lightweight simulator software that is pre-
ferred due to its simplicity and variety of driving dynam-
ics. The server code to control the car is installed with 
the software during installation. The client code to com-
municate with the server is written in python language, 
which offers immense libraries to code RL algorithms. 
The simulator offers a plethora of sensors and readings. 
Only the required sensors need to be activated, lest they 
throw too many unwanted values during the race. Once 
these sensor readings are interpreted, they need to be fed 
into the client code to establish control over the car during 
execution. The proposed RL model is simulated using a 
TORCS for various scenarios, and each scenario is dis-
cussed in detail below.

4.3.1  Lane keep

In case the agent is driving on the left edge of the left lane, 
trackPos sensor outputs a value of +1 and and a value of 
− 1 if it is on the right edge of the left lane. If the car needs 
to be at the centre of the left lane, it must constantly main-
tain a value of around 0. Due to tight corners, the presence 
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of obstacles, or even during overtaking, the agent cannot 
maintain driving at the centre of the lane at all times. Two 
methods are implemented to enable lane keeping:

– The first one is a part of the reward function. The third 
term in the reward function is v|�| . If the agent is driv-
ing at the centre of the lane, � will be almost equal to 0. 
In case it has deviated a lot from the centre, v|�| a con-
siderably large value will be subtracted from the reward 
function. When the reward has been reduced, the agent 
learns that it is not the optimal path to follow and tries to 
increase it by diligently following the same path in the 
future. The first method is very efficient in teaching the 
agent to drive in the centre of its lane.

– However, the second approach is also implemented to 
leave no room for error. In this method, a pseudo bound-
ary is created between +0.2 and −0.2 corresponding 
to the trackPos sensor. If the agent’s trackPos value is 
greater than +0.2, it means that the agent is steering 
left from the centre of the lane. Hence the steer value is 
negated to enable the agent to steer back to the centre of 
the lane. If the value is lesser than −0.2, it signifies that 
the agent is steering right from the centre of the lane. Just 
like it was done earlier, the steer value is negated so that 
the agent can steer back to the centre of the lane.

4.3.2  Collision avoidance with front obstacles

Though the simulator gives the freedom of implementing 
both left-hand drive and right-hand drive, the former driving 
style was chosen as it is more common around the world. 
Four sensors out of the 36 opponents sensors are used for 
front obstacle detection. The obstacle can be a vehicle ahead, 
any object, or a pedestrian. Whenever the car enters a new 
state, it waits to receive instructions from the actor-network 
on how to proceed. During this time interval, all the sensor 
readings are collected and analyzed to see if any obstacles 
are present ahead of the vehicle. If any obstacle is detected 
beyond 50 ms ( DistF > 50) , it is not required to apply brakes 
as there is ample distance between the agent and the obsta-
cle. In case front opponents sensors detect a car within a 
range of 30–50 ms ahead, the agent stops accelerating i.e. 
directly sets its value to 0. Setting the value directly to zero 
is analogous to taking the foot off the accelerator pedal in 
real-world driving scenarios. At this point, the agent keeps 
moving due to its momentum and gradually slows down due 
to friction. After a few seconds, if the obstacle ahead is less 
than 30 ms, it applies the brakes slightly, i.e. it sets the brake 
value (in the range 0 to 1) to 0.3 as this is the ideal value to 
gradually slow down the vehicle. If the value is greater than 
0.3, the braking action will involve jerky motion, but if it 
is less than 0.3, it may not slow down at the desired rate. If 
the obstacle is less than 20 ms away, it applies brakes a tad 

bit stronger with a value of 0.7. At this value, the vehicle 
reduces its speed quickly as the obstacle is not very far, and 
if it does not apply brakes with this value, the agent might 
end up very close to the obstacle at a considerably higher 
speed, after which collision is inevitable. In case the obstacle 
is less than 10 ms away, it applies full brakes, i.e. sets the 
brake value to 1, so that it comes to a complete halt.

If the obstacle is detected early enough, braking action 
is taken in a step-by-step manner over a distance of 50 ms 
and the vehicle smoothly comes to a halt. In case, the obsta-
cle suddenly comes into the agent’s path with less distance 
between them, the agent applies full brakes to avoid a colli-
sion. In such a scenario, braking will not be smooth, but that 
is secondary since it is more important to avoid a collision.

4.3.3  Overtaking

This is interconnected with front obstacle detection. When 
driving in a lane and any obstacle appears suddenly, the only 
thing that comes to the mind of any driver is to apply the 
brake and stop swiftly, and that is exactly what the agent 
does too. On the other hand, if an obstacle is detected well in 
advance, the agent can plan to overtake it. When the distance 
between the agent and the vehicle ahead DistF is around 
20 ms, an agent takes another set of opponent sensor read-
ings to check if any vehicles are currently in the right lane. 
same set of sensors are used to detect the obstacles in the 
right lane as well as the obstacles ahead of it. If it is clear of 
any traffic, vehicle steers to the right lane by choosing the 
steer right action. After overtaking a vehicle, it checks if it 
can come back to its previous lane. If the path is again clear, 
it steers back to its lane and continues driving.

The agent’s speed is limited to 90 km per hour. While 
overtaking, imagine a scenario where the agent has com-
pleted half of the overtaking process by going to the right 
lane. At this point, if the vehicle that was being overtaken, 
suddenly increases its speed, and if this is equal to or greater 
than the speed of the agent, the agent decides to abort the 
overtaking procedure. The agent cannot measure the speed 
of other vehicles, instead, it knows that the other vehicle’s 
speed has increased when it senses that it is driving paral-
lelly at its maximum speed with the vehicle that it just tried 
to overtake. In such a scenario, it slows down a little by 
setting the acceleration value to zero and checks if it can go 
back to its previous lane. If the road is clear, it steers left and 
follows the car that it had intended to overtake.

4.4  Collision avoidance with side obstacles

To detect the obstacles at the sides of the agent, a total of 14 
sensors are utilized. If all the vehicles that are plying over a 
stretch of road meticulously follow their lane, then the agent 
takes no action. If the agent detects a vehicle approaching 
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from the sides with a continuously decreasing value of 
DistR, the agent lightly steers away to avoid a collision. The 
agent moves away from the approaching vehicle only if there 
is space left on the road. In case it was already driving on 
the edge of the road and if some vehicle approaches from 
the sides, then it slows down letting the other vehicle pass. 
If such a situation occurs in the real world, drivers first press 
the horns of their vehicles to alert the driver who is deviating 

from their lane. Since the simulator does not have that privi-
lege, it simply slows down, as that is the best the agent can 
do to avoid a side-ward collision.

The provision of having microphones at layer 1 to detect 
the horn sound from other vehicles can be a solution to this 
problem. The pseucode for overtaking and collision avoid-
ance algorithm is depicted in Algorithm 1.

Fig. 4  Track selection screen Fig. 5  Agent driving on the track
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5  Results

TORCS−1.3.7 is used along with all the python modules 
required to code RL algorithms. Then, a basic python cli-
ent code is written to communicate with the TORCS server 
which enables the user to establish control over the car. Fig-
ures 4, 5, 6, and 7 are the screenshots obtained during the 
execution of the program. Figure 4 shows one of the numer-
ous tracks which is available for selection. Figure 5 portrays 
a scenario where the agent is driving on the track. Since the 
agent is not perfectly trained, it sometimes deviates com-
pletely off the track, as shown in Fig. 6. However, as soon as 
it goes off track, its rewards begin to diminish. Hence it soon 
finds its way back to the track, as shown in Fig. 7.

Fig. 6  Agent goes off-track

Fig. 7  Agent slowly getting back on track

Fig. 8  Training of the actor

Fig. 9  Training of the critic

Fig. 10  Rewards vs speed, angle, and position (track 1)
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After the initial training comprising approximately 
8000 iterations, the agent learned to drive on the track but 
it was not at all moving in a straight line. It was swerving 
abruptly in its lane. As a solution to this, the learning rate 
of the actor and critic was altered from 0.001 and 0.002, 
to 0.0005 and 0.001 respectively to give more time for the 
agent to learn. The reduced learning rate makes the agent 
depend more on the past knowledge with less importance 
to the immediate reward as discussed in Sect. 2. Therefore, 
the agent takes more time to learn the environment but 
explores all possible actions. The reduced learning rate 
resulted in the agent taking around 14,000 iterations to 
completely re-learn driving from scratch. This is visual-
ized in Fig. 8 and 9. Rewards obtained in each episode of 
training are plotted against the episode number.

Figure 10 shows the variation of rewards with respect to 
speed (speedX), distance from lane centre (trackPos) and 
angle between lane and car ( �d value). At instances where 
the speed is less, the rewards follow suit. At times, there 
are instances where in spite of having sufficiently good 
speed, the rewards are less. This is due to the fact that the 
other parameters collectively bring down the rewards as 
the vehicle may have deviated from the centre of the lane 
and may have not aligned itself properly with respect to 
the direction of the lane. In case the rewards are higher 
than the speed, it shows that the agent has received some 
extra reward for avoiding some form of probable collision.

Figure 11 further explains the dependency of speed, 
angle, and distance from the center for rewards. Despite the 
agent aligning itself properly on the track, it swerved left and 
right owing to high-speed cornering. On careful observation 
of Fig. 12, it can be seen that trackPos (distance of the car 
from the center of the lane) is very large. In this case, it is 
larger than +1. This easily translates into the fact that the 
agent was not driving on the road but beside it. This scenario 

is created specifically for testing how the rewards would look 
if the agent is made to not drive on the road. Before the agent 
was trained with an improved learning rate, it was moving in 
a zig-zag manner in spite of maintaining its lane. Figure 13 
shows how the reward varies if the agent is not properly 
trained to drive itself smoothly.

In all the simulations, the agent successfully managed 
to drive itself smoothly on the track by constantly interact-
ing with the dynamic environment. It has learned to detect 
the twists and turns in the track and applies brake accord-
ingly. It efficiently detects obstacles and manages to take 
precautions or abrupt decisions to avoid collisions. Tesla 
autonomous cars have improved a lot over the years and 
have offered a full self driving functionality that drives 
itself from point A to point B with very little human inter-
vention. but, the car applies an emergency brake if the car 

Fig. 11  Rewards vs speed, angle, and position (track 2)

Fig. 12  Rewards vs speed, angle, and position (track 3)

Fig. 13  Rewards vs speed, angle, and position (track 4)
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detects any obstacle or have to avoid any collision. After 
which, the car requires immediate human intervention to 
proceed [35]. Also until now Tesla cars do not perform any 
overtaking maneuvers by themselves. If the driver wishes 
to change lanes over, then they need to first turn on the 
blinkers. That is when the car begins scanning the side 
lanes and only if it is free from any traffic, it switches 
lanes to overtake. In case the driver does not intervene, 
Teslas just drive in the same lane even though there is 
slow moving traffic ahead of it. In comparison with this, 
the proposed work does not require any human interven-
tion at all. When it detects slow moving traffic ahead in 
the current lane, it automatically begins scanning the side 
lanes to make a switch. In case, there is some traffic in the 
other lanes, it waits for them to clear and then switches 
lane. Unlike in the Tesla, the proposed model constantly 
keeps scanning the side lanes. Whenever it finds that there 
is chance to switch and move ahead, it does so giving 
utmost priority to safety - for the passengers in the car as 
well as other cars and pedestrians. The proposed work is 
an improvement even over the work proposed by Huang 
et. al [36] which focuses only on lane keep. Hence this 
technology will definitely help in improving autonomous 
driving and making it more reliable and safe.

6  Conclusion

Over the past few years, there has been a tremendous 
improvement in technology which is enabling the notion of 
autonomous vehicles into reality. Elderly people, patients on 
medication, and persons with disabilities depend on other 
persons for mobility and can now move around indepen-
dently. In addition, busy executives can attend to their work 
undisturbed while traveling and this saves their time. With 
more and more autonomous vehicles on the road, it can be 
hoped that traffic accidents can be reduced to a minimum 
since all these vehicles can be designed to strictly follow 
traffic rules.

Today, the self-driving vehicle is the need of an hour 
because of the increasing traffic on the roads. Having self-
driven vehicles with the highest possible efficiency, and reli-
ability is required very much for safe traveling. Even though 
many researchers work on this topic by making use of AI/
ML tools, still 100% efficiency has not been achieved. The 
proposed work uses DDPG for the controlled driving of a 
vehicle. In the second phase, object detection and collision 
avoidance are achieved with the help of various sensors pre-
sent in the vehicle. Thus, the agent can handle situations like 
front, and side obstacle detection, and overtaking and can 
maneuver itself to avoid collision.

7  Future scope

The proposed work does not account for variations in the 
weather, lighting levels, directions given by traffic lights, 
road conditions, etc. There can be some variations in the sen-
sor values if one or more of these change and it can hamper 
the performance. It needs to be checked if all these sensors 
give accurate values after changes in weather and light. If 
not, it needs to be calibrated accordingly. Since the simulator 
has no provision to include traffic signals, the same could not 
be implemented. Therefore, training the agent to recognise 
the signals and respond appropriately will therefore be a 
significant effort in the future.

The agent heavily relies on lane markings to detect 
lanes. In the real world, if the lane markings are erased off 
in certain areas or if the lane markings are not at all there, 
it struggles to maintain its lane and drive efficiently. In the 
future, the agent can be trained to use a camera to detect the 
edge of the road, and road conditions, and perform seamless 
smooth driving. The performance of the proposed work can 
be improved by reducing the training period. The DRL algo-
rithm requires a longer training period to learn all the driv-
ing scenarios. The training period can be decreased either 
by using supervised learning with variety of data along with 
RL or through human assisted training.
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