
Vol.:(0123456789)1 3

Int. j. inf. tecnol. (October 2023) 15(7):3541–3553
https://doi.org/10.1007/s41870-023-01412-6

ORIGINAL RESEARCH

Deep reinforcement learning for autonomous vehicles: lane keep
and overtaking scenarios with collision avoidance

S. H. Ashwin1 · Rashmi Naveen Raj1

Received: 16 November 2022 / Accepted: 15 May 2023 / Published online: 2 September 2023
© The Author(s) 2023

Abstract Numerous accidents and fatalities occur every
year across the world as a result of the reckless driving of
drivers and the ever-increasing number of vehicles on the
road. Due to these factors, autonomous cars have attracted
enormous attention as a potentially game-changing technol-
ogy to address a number of persistent problems in the trans-
portation industry. Autonomous vehicles need to be mod-
eled as intelligent agents with the capacity to observe, and
perceive the complex and dynamic environment on the road,
and decide an action with the highest priority to the lives of
people in every scenarios. The proposed deep deterministic
policy gradient-based sequential decision algorithm models
the autonomous vehicle as a learning agent and trains it to
drive on a lane, overtake a static and a moving vehicle, and
avoid collisions with obstacles on the front and right side.
The proposed work is simulated using a TORC simulator
and has shown the expected performance under the above-
said scenarios.

Keywords Autonomous vehicles · Reinforcement
learning · Smart city · Deep deterministic policy gradient ·
Obstacle detection

1 Introduction

Autonomous vehicles utilize multiple sensors such as
LiDARs, RADARs, GPS-GNSS, cameras, etc. to perceive
their surroundings and move with scant or no human inter-
action [1]. In the present world, many tasks are being auto-
mated to provide humans with more convenience and safety.
There can be scenarios where the drivers are not in a good
state to drive, and it may lead to accidents. Instead, if the
task of driving is given to an adequately trained machine,
it will perform its task with maximum efficiency every sin-
gle time. The cars became autonomous first in the 1920s
and were called “Phantom Autos” [2]. They were called so
because they were remote-controlled. Later in the 1980s
self-managed autonomous vehicles were introduced by Mer-
cedes, which were not fully automatic. Many automobile
companies like Tesla, Waymo, Baidu, Chevrolet Cruise, etc
are working towards the development and commercializa-
tion of driverless self-driving vehicles. The advancements
in automobiles, sensor technology, image and video process-
ing, information technology, and the increasing interest in
designing autonomous vehicles by many young researchers
will definitely result in low-cost, reliable, and efficient safe
driverless vehicles on the road in the near future.

The Society of Autonomous Engineers (SAE) has defined
five different levels of automation in SAE−J3016 as shown
in Table 1 [3] [4]. Levels (0 to 2) still need drivers’ support
and levels (3 to 5) are defined to have driverless automated
features. The number of sensors, controlling functions, and
computing cost increases with each level, and also the cost
of the vehicle.

Figure 1 depicts the layer-wise components and func-
tions of an autonomous vehicle system [1, 5]. At layer 1,
the autonomous vehicles are equipped with various multi-
modal sensors to detect surrounding objects, object size

 * Rashmi Naveen Raj
 rashmi.naveen@manipal.edu

 S. H. Ashwin
 ashwin.h1@learner.manipal.edu

1 Department of Information and Communication Technology,
Manipal Institute of Technology, Manipal Academy
of Higher Education, Manipal, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-023-01412-6&domain=pdf
http://orcid.org/0000-0002-7683-4955

3542 Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

or depth, road marking, and distance of the obstacles [1,
6]. The localization devices like GPS are used to get the
location. The cameras are used to detect depthless objects
like traffic instructions [7]. Microphones may be used to
identify the sound of an ambulance or fire engine and so
on. Layer 2 processes the information received from dif-
ferent sources of layer 1 to create a map of the surrounding
environment. Thus, layer 2 is referred to as the perception
layer as it recognizes: the distance of the obstacle from
the ego vehicle, the curve ahead, the lane, and so on [4,
7]. Thus, the perception system needs to be precise and
robust [6]. Even a small error in this system can give rise
to deadly accidents. Next is the planning layer which plans
for the next action based on the understanding derived
from the previous layer. The last layer is the control layer
which generates the control signals based on the decision
taken at the planning layer.

Researchers and industrialists have explored various
Machine Learning (ML) models to automate driving strate-
gies. In supervised learning algorithms, the model is trained
beforehand using labeled data to perform a certain task [8]
whereas in unsupervised learning the model is forced to
learn from unlabelled data. Labeled data is a collection of
information with one or more labels. These labels are use-
ful tags that help ML models to quickly interpret the data.
Labeled data are the cornerstone of supervised learning [9]
and require a large amount of labeled video data for training
an autonomous vehicle. But, generating or creating a data
set is a tedious and costly process. The third category is
Reinforcement Learning (RL) which does not need a dataset
and an agent improves its performance continuously through
constant interaction with its surrounding environment.

For the process of autonomous driving which is a sequen-
tial decision problem, RL is the optimal choice as the vehi-
cle needs to actively interact with its environment to drive
safely. It is impossible to train the vehicle for all possible
scenarios beforehand thus ruling out supervised and unsu-
pervised learning approaches. There are a few challenges to,
using RL though, such as bridging the gap between simula-
tion and reality, sample efficiency, etc. Research in applying
RL for autonomous driving requires tremendous effort from
academicians, researchers, and automotive industry experts
from various fields to bring this idea into reality. The con-
tributions of the proposed work are:

– A Deep RL (DRL) -based sequential decision model is
proposed to learn safe driving strategies.

– The proposed algorithm trains the agent to avoid or alle-
viate frontal and side collisions with minimum risk.

– The proposed algorithm is trained and verified using The
Open Racing Car Simulator (TORCS) and outperforms
under various scenarios.

The paper is organized as follows: The various RL algo-
rithms are discussed briefly in Sect. 2. Section 3 presents
the state-of-the-art research in RL-based autonomous driv-
ing. Section 4.1 explains the proposed methodology and
Sect. 4.3 presents the implementation of the proposed work
using TORCS. Finally, the results obtained are discussed in
Sects. 5 and 6 concludes the research work and future direc-
tions are presented in Sect. 7.

2 Preliminaries

In the RL model, an autonomous agent masters its perfor-
mance through persistent interaction with its environment
[10]. The reward function is a performance criterion that is
used to evaluate the RL agent [11]. The general scenario of
RL is shown in Fig. 2. At any time instance t, the agent in

Table 1 Automation levels

Levels Definition

Level 0 No or Zero automation
Level 1 Driver assistance for one or two features (steering or

braking)
Level 2 Partial automation with continuous monitoring from the

driver
Level 3 Advanced partial automation/ driver controls the vehicle

only when there is a notice to intervene
Level 4 High automation with human driver
Level 5 Full automation and no human driver is required

Fig. 1 Layered architecture of autonomous driving system

3543Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

state st which belongs to the state space S, chooses an action
at belonging to the action space A and receives a reward rt�R
rom the environment based on the efficacy of its decision.
The agent then moves to the next state st+1 and proceeds to
choose an action for this state. The cycle continues until the
agent has learned the task completely or reached the final
state. The agent’s objective is to maximize the accumula-
tive rewards obtained during the entire lifetime of the task.
Eventually, by exploiting the knowledge learned, an agent
can increase the lifetime reward. It expands its knowledge
by trial and error method [11].

The prime challenge in RL is to balance exploration
and exploitation. To enhance the rewards, an agent should
exploit the gained knowledge by choosing actions that prove
to be highly rewarding. In contrast, to ascertain such favour-
able actions, it has to make certain risky decisions. This may
or may not result in higher rewards [12]. The strategy used
by the agent to choose an action for a given state is known
as a policy � . If a particular policy gives a maximum reward,
such a policy is termed as an optimal policy �∗ . RL can
be used to solve many real-world problems but sometimes,
there exists certain situations where conventional RL algo-
rithms fail to provide desirable results. This is mainly due
to the fact that the state spaces and action spaces involved
in these problems are very highly dimensional e.g. camera
images, infrared images, etc. and it is impossible to store
all state-action pairs. To solve such problems, Deep Learn-
ing (DL) is used along with RL and is referred to as DRL
[13]. In DRL, the policy is represented using a neural net-
work. DRL is proven to be successful in many domains:
game environments [14, 15], healthcare [16], communica-
tion networks [17], etc. without the need for a mathematical
model or labeled data.

Deep Deterministic Policy Gradient (DDPG) and Deep
Q-Network (DQN) are the two commonly used DRL algo-
rithms. DDPG is an off-policy and model-free algorithm
that deals with continuous state spaces and DQN deals with
discrete state spaces. Instead of representing the policy as
a probability distribution, DDPG uses gradient descent to
create a policy that is deterministic in nature. The main
advantage of DDPG compared to other stochastic policy
algorithms is that it is simpler and values can be computed

more efficiently. The conventional Q-learning algorithm
calculates the Q values for state-action pairs and stores it in
tabular form. However, for huge state and action spaces, it
becomes infeasible to create a table of Q values. Therefore,
in DQN, neural networks are used because the memory and
computation required would be less compared to DQN [18].
A deep Q-learning function approximator is used to solve
this problem. The DDPG algorithm is used in our proposed
work and the same is illustrated in Fig. 3.

The agent is the self-driving vehicle which is in a state
s and sends its state information to the actor. The actor
decides the best possible action a and sends it back to the
agent. After implementing the action, an agent gets a reward
r (which can be anything depending upon how good the
action was) and progresses to a new state s′ . The entire tran-
sition comprising of (state s, action a, reward r, new state s�)
is stored in a replay buffer R. From this buffer, random sam-
pling is done and a few transitions are stored in a mini-batch.
The state s and action a are then sent to the critic to evaluate
the action a taken by the actor. The critic generates a Q value
for the state-action pair and this value shows how good the
action was for that particular state. From the mini batch,
the next state s′ is sent to the target actor. The target actor
is expected to give the action a′ that is most suitable for the
next state s′ . This next state s′ and next action a′ is then sent
to the target critic. The role of the target critic is to evaluate
the action a′ that was recommended by the target actor for
the state s′ and generate a Q value for (s�, a�) pair. Using the
Q values for both (s�, a�) and (s, a) pairs, the loss function
is calculated. Equation 1 [18] gives the loss function and
is used to update the critic network. This helps the critic
evaluate the actor’s actions in a better way. Furthermore,
the policy gradient is calculated using the Q value of (s, a)
, which is then used to update the actor network. This helps
the actor make better decisions.

Target networks are not updated with calculated values.
Instead, a soft update is carried out after the actor and critic
networks are updated. The soft update involves updating the
target network by a very small factor called � with a typi-
cal value of 0.001. Once all these steps are carried out, the
agent will have reached a new state, and the cycle continues.
The actor uses a neural network to determine the desirable
action, a whereas the critic employs a neural network to
compute Q values.

3 Related works

Researchers have used different approaches like DDPG,
DQN, imitation learning, transfer learning, etc. to build a

(1)L =
1

N
Σi(yi − Q(si, ai|�

Q))2

Fig. 2 General scenario of RL [11]

3544 Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

safe and efficient self-driving vehicles at various layers. An
overview of the extant literature is provided in this section.

The work by Zhao et al. [19] aims to model the decision-
making and interactions between various vehicles that run on
highways. The authors have used Double DQN (DDQN) to
train the host vehicle, and the proposed work is implemented
using an open-source simulation platform called "SUMO -
Simulation of Urban Mobility". The driving environment is
created by having three driving lanes and randomly distrib-
uting 20 cars on the highway. The host continuously gauges
the distance between itself and the impediment (which could
be a moving vehicle) in front of it as it travels. It starts to
apply the brake to prevent a collision if there is a drop in the
distance between successive measurements. The speed of the
host is altered accordingly by the algorithm. The work by
Zhang et al. [20] focuses on employing DDQN to regulate
vehicle speed. In order to train the RL agent and teach it
human cognitive behaviour, authors have gathered factual
driving data from actual human driving. DDQN is seen to
increase the DQN’s stability and dependability. According
to the authors, the DDQN model scored significantly higher
than the DQN model.

Chopra et al. [21] have aimed at steering the vehicle in
its path with the help of the DQN algorithm. The model
builds a Q-value approximator that regulates the car’s steer-
ing using unprocessed images, sensor inputs, and estimated
rewards. Due to the longer trainig time, there is potential
for future use of imitation learning, which initially trains

the model using labelled data before applying the RL algo-
rithm to it. The survey by Elallid et al. [22] focuses on DL
and RL-based approaches for the major functionalities of
autonomous vehicles. This study examines research on
DL/RL for autonomous cars from 2016 through 2021. The
authors conduct a thorough comparison with regard to the
aforementioned functionalities. One of the main challenges
is the behavior of autonomous vehicles in different weather
and lighting conditions.

Rasheed Hussain et al. [23] have focused on the outcomes
achieved so far and the difficulties that researchers will face
in the future. Over the past century, the car industry has
made enormous advancements in the creation of depend-
able, safe, and efficient automobiles. Autonomous vehicles
are becoming a reality due to enormous advancements in
computer and communication technologies. The work by
Zhu et al. [24] involves an agent learning to follow the lead
vehicle that is being driven by a human in front of it. Only
one sensor is utilized to determine the time for a collision,
jerk in driving, etc. is the distance between the agent and
the lead car. The reward function is developed by observ-
ing human driving data captured in real-time from the lead
car and later combining it with driving-related features such
as efficiency, comfort, and safety. Authors have used ’Next
Generation Simulation’ software for the implementation.

The research paper by Omeiza et al. [25] elucidates
explainable autonomous driving. According to the authors,
Explainability is an essential prerequisite for autonomous

Fig. 3 Deep deterministic
policy gradient block diagram

3545Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

vehicles. autonomous vehicles must be able to explicate
what they see, do, and might do in the environments in
which they interact. The reason for explanations, the speci-
fications for explanations for autonomous vehicles, a review
of previous work on explanations for autonomous vehicles,
and finally a conceptual framework for explainability of
autonomous vehicles are the four key issues covered in this
study. Grigorescu et al. [26] have discussed the major open
challenges in the field of autonomous driving. Also, authors
indicate that DL and Artificial Intelligence (AI) will play a
phenomenal role in overcoming these challenges. Among the
major areas they addressed, functional safety, real time com-
puting, and communication prove to be really challenging.

Yang et al. [27] elucidate about how AI is included into
the development of the four key functions of autonomous
driving: perception, localization, mapping, and decision-
making. It explores the recent approaches to comprehend
how AI can be made use of and what are the issues linked
with their implementation. Based on the survey of cur-
rent practices and advancement of the technologies, this
paper further provides acumen into impending applications
regarding the use of AI in juxtaposition with other emerg-
ing technologies. Cao et al. [28] discuss improving RL in a
trustworthy manner (TiRL). Although RL algorithms have
the capacity to continuously get better, it has been noted that
there are times when they are unstable. The authors have cre-
ated a framework for generating decisions that combines RL
and rule-based algorithms in order to achieve the best results
from both worlds. By doing this, their final framework may
learn more reliably on its own in the future. Simulations are
conducted with more than 42,000 kms of driving, calibrated
with data from actual driving. Authors have demonstrated
the superior performance of TiRL above all other arbitrary
model-based policies.

A Raspberry Pi 3 Model-B microprocessor and Pi Cam
Rev. 1.3 were used to construct vision-based outdoor

navigation by Kumar et al. [29]. The front camera captures
a picture of the front lane, which is then pre-processed to
enable automatic region-of-interest recognition. Instruc-
tions are sent to the actuator based on the lane direction. The
authors made the virtually unrealistic assumption that there
are no barriers along the road. Yasin et al. [30] detect the
obstacle using a cost-efficient and easily available ultrasonic
sensor and reduce the speed of the unmanned ground vehicle
if the object detected is at a distance greater than 20 ms. If
the object is at a distance of less than 20 ms, then the vehicle
is stopped or rerouted based on the location and size of the
obstacle. The proposed work may not be applicable for criti-
cal situations or even for a lane with multiple autonomous
vehicles due to the limitations of the sonic sensor. Teli et al.
[31] proposed a fuzzy method to avoid local minima in a
mobile robot that uses artificial potential field based path
planning. Li et al. [32] proposed mixed traffic model taking
into account human vehicle drivers behavior and interaction
between human vehicle and autonomous vehicles.

Wu et al. [33] presented a human intervention based train-
ing process in which humans intervene whenever a autono-
mous vehicle engages in a disobeying action. The presented
method is observed to reduce the convergence time of the
DRL algorithm. Baheri [34] aimed at the safety of the
autonomous vehicle and incorporated an additional safety
module that predicts the trajectory. The safety module is
trained offline using historical data and the proposed method
is simulated for a three-lane scenario in a high-way.

The feature of DRL to adapt itself to a new scenario
makes it a best choice in designing the control system for
autonomous vehicles as depicted in the Table 2. Most of the
existing literature focuses on one or atmost two of the sce-
narios like the safety, lane keeping, obstacle detection under
various weather or illumination conditions with minimum
number of sensors, trajectory prediction, etc. Nevertheless,
autonomous vehicle needs to be trained for all scenarios

Table 2 Summary of related works

Work by Contribution Tool Algorithm/Platform
used for implemen-
tation

Zhao et al., 2020 [19] Safe driving policy for a highway scenario with 20 vehicles
distributed randomly

SUMO DDQN

Zhang et al., 2018 [20] Speed regulation by training the vehicle with acquired realistic
data

Quadro M400 GPU DDQN

Chopra et al., 2020 [21] Automation of driving using raw pixel data along with sensor
information

TORCS DQN

Zhu et al., 2022 [24] Safe driving policy to follow a leading vehicle by training using
new generation simulation data set

Not mentioned DDPG

Cao et al., 2022 [28] Safe driving policy for a 3-lane highway Not mentioned RL
Kumar et al., 2022 [29] Vision based safe driving in a obstacle-free track set up using Pentium core i3

CPU, Rasberry Pi arduino
uno

C and Python script

3546 Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

before bringing it on to the road. The proposed work focuses
on vehicle control under following scenarios: lane keeping
in a two-lane road, driving control under obstacle detection,
overtaking of a moving as well as static vehicle, vehicle
control based on detected overtaking vehicle and all these
are discussed in detail in the next section.

4 Proposed methodology

The primary objective of the proposed research is to drive
the autonomous vehicle safely in single as well as multi-
agent scenarios with no or reduced collision with the
detected static as well as moving objects. The components
of DRL models and decision strategies are discussed below.

4.1 Reinforcement learning model

The elements of the proposed RL model which are state
space, action space, and reward function as well as their
interaction with surrounding environments is explained in
the subsequent section.

4.1.1 State space

The sensor inputs decide the present state st of the autono-
mous vehicle. The present state at time t is decided by the
current velocity of the agent: vt in km/h, tangential angle of
the agent with respect to road in radians: �dt , the horizontal
distance between the centre of the lane and the agent: �t in
meters, distance between lane edge and agent: �t in meters,
distance between the agent and vehicles or obstacle ahead:
DistFt in meters, and the distance between the agent and
obstacles on the right side of the agent: DistRt in meters,
as summarized in Table 3. According to the agent state, the
actor-network encodes a state to action at time t. This action
is sent to the simulator through shared memory to control the
agent and return to the next state, the reward for the same.
In each iteration, the set ⟨state, action, reward, next_state⟩ is
collected and stored in the replay buffer for network training.

The velocity vector of the agent is divided into three ori-
entations x, y, z �R3 . The offset ��R1 is the distance between
the agent and the centre of the track which is normalized

between (− 1, 1)Ṫhe distance between the agent and the edge
of the lane ��R19 is measured in (−45, −19, −12, − 7, − 4, −
2.5, −1.7, − 1, −0.5, 0.5, 1, 1.7, 2.5, 4, 7, 12, 19, 45) degrees
with respect to front of the agent. The parameter ��R1 is the
angle between the direction of the track and the direction of
the agent and is measured in radians between (−�,�). Four
sensors are spread across the front of the agent and detect
obstacles ahead up to a distance of 200 ms. Therefore, DistFt
consists of a set of 4 values. DistRt consists of a set of 14
values with a maximum range of 200 ms as 14 sensors are
located on the right side of the agent and are used to detect
obstacles on the right side.

4.1.2 Action space

Agent action space is at = (accelerate, brake, steer) . Accel-
eration value of 1 implies that the agent has applied full
throttle i.e., in human driving terminology, it has pressed
the accelerator pedal completely. If the acceleration value
is 0, it implies that the agent has completely let go of the
accelerator pedal and it is moving only due to its momentum.
A brake value of 0 states that the brake pedal is not at all
pressed and a value of 1 implies that it is completely pressed.
The steering value of − 1 signifies a full right and +1 signi-
fies a full left turn.

4.1.3 Reward function

Designing a suitable reward function is one of the key
tasks. This function needs to be correctly set so that the
agent has a clear understanding of its priorities and learns
to drive safely. To briefly explain a scenario, consider
an autonomous agent X which is steadily going in its
lane and is getting positive rewards. Suppose X detects
some other vehicle, named Y, which is seemingly rushing
towards X and it might end up crashing onto the vehicle
X, then ego-vehicle (X) must receive higher rewards if it
decides to take an action of applying brake and maneuver-
ing it away from Y. In order to achieve the objective of
lane keep, the agent needs to be trained with an altered
reward function wherein it must get a higher reward for

Table 3 Factors that influence
the present state

Symbol Symbol description Range

v(km/h) Agent velocity (0, 300)�R3

� Horizontal offset between centre of the lane and the agent (−1, 1)�R1

�d(radian) Departure angle between the lane and agent (−�,�)�R1

� (degree) Angle between edge of the lane and agent (−450, 450)�R19

DistF(m) Distance between the agent and obstacle(s) ahead of it (0, 200)�R4

DistR(m) Distance between the agent and obstacle(s) on the right side (0, 200)�R14

3547Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

staying in its lane and a lesser reward for swerving away
from the required lane. Another possible approach here
is to make use of the sensors to limit the agent to one
lane thereby creating a pseudo boundary for the agent.
The reward functions are given by Eq. 2, where �d is
the departure angle, v is the speed of the agent and � is
the offset between the agent and centre of the lane as
Rlane−keep

 , Rfrontcollision
 , Rovertake and Rsidecollison

 are defined
by Eqs. 3, 4, 5, and 6 respectively.

If the departure angle is less, then cos(�d) will be high while
sin(�d) will be a minute value. If the agent is near the centre
of the lane, only a small value will be subtracted. Suppose
if the vehicle is near the edge of the lane, a higher value will
be subtracted from the reward function.

The second part of the work involves overtaking, and
collision avoidance with front and right-side obstacles.
The reward function for the agent behavior during these
scenarios is defined by 4, 5, and 6.

Two different sensors are used for the obstacle detection
process, namely track and opponents. The track sensor rep-
resented by the � value consists of 19 sensors that provide
the distance between the centre of the agent and the edge of
the lane. These sensor values are stored in a python list in
the implementation. The 36 range-finder values given by the
opponents sensor are also stored in a Python-list. These are
located throughout the vehicle at every 10 degrees and they
have a maximum range of 200 ms. In the absence of other
cars, this sensor outputs the maximum value i.e. 200 ms
from each of the sensors. Otherwise, it sends the distance
between the agent and other cars present on the track.

(2)
R =Rlane−keep

+ Rfront−collision

+ Rovertake + Rside−collison

(3)Rlane−keep
=vcos(�d) − vsin(�d) − v|�|

(4)R
overtake

=

⎧
⎪
⎨
⎪
⎩

5, if agent overtakes without collision

0, No overtake

−10, if agent overtakes and collides

(5)Rfront−collision
=

⎧
⎪
⎨
⎪
⎩

5, if agent avoids collision

0, No obstacle detected

−10, if collides with front obstacle

(6)

Rside−collision
=

⎧
⎪
⎨
⎪
⎩

5, if agent avoids collision

0, No obstacle detected

−10, if agent collides with side obstacle

4.2 Deep reinforcement learning model

In DRL, both actor and critic networks are represented
by neural networks. Neural network is used as a function
approximator to map the state to action. The values of the
six parameters specified in Table 3 are the inputs to the
fully-connected, 4-layered actor-network. The output at the
output layer of the actor network specifies the action at to
be taken, i.e., to brake, accelerate, or steer. Identical net-
work architectures are used for actor and target-actor net-
works. The critic network, which takes a state-action pair
as input, is connected to two fully-connected layers: one
to encode the state and the other to encode the action. The
critic network’s output is the value of the Q(st, at) function.

4.3 Sequential decision making strategies

Carla, TORCS, Airsim, and SUMO are a few simulators
that are considered for autonomous driving applications.
Each of them has its own pros and cons. Carla and Air-
sim, being relatively new software, are more suitable for
vision-based driving and are known for their photo-real-
istic driving scenes, which require higher graphic com-
putations. SUMO does not have its RL capabilities very
well developed. On the other hand, TORCS satisfies the
requirements to implement this project. Hence, TORCS −
1.3.7 in Ubuntu 16.04 operating system with Python 3.5,
Tensorflow, and Keras DL framework is used. TORCS is
an open-source, lightweight simulator software that is pre-
ferred due to its simplicity and variety of driving dynam-
ics. The server code to control the car is installed with
the software during installation. The client code to com-
municate with the server is written in python language,
which offers immense libraries to code RL algorithms.
The simulator offers a plethora of sensors and readings.
Only the required sensors need to be activated, lest they
throw too many unwanted values during the race. Once
these sensor readings are interpreted, they need to be fed
into the client code to establish control over the car during
execution. The proposed RL model is simulated using a
TORCS for various scenarios, and each scenario is dis-
cussed in detail below.

4.3.1 Lane keep

In case the agent is driving on the left edge of the left lane,
trackPos sensor outputs a value of +1 and and a value of
− 1 if it is on the right edge of the left lane. If the car needs
to be at the centre of the left lane, it must constantly main-
tain a value of around 0. Due to tight corners, the presence

3548 Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

of obstacles, or even during overtaking, the agent cannot
maintain driving at the centre of the lane at all times. Two
methods are implemented to enable lane keeping:

– The first one is a part of the reward function. The third
term in the reward function is v|�| . If the agent is driv-
ing at the centre of the lane, � will be almost equal to 0.
In case it has deviated a lot from the centre, v|�| a con-
siderably large value will be subtracted from the reward
function. When the reward has been reduced, the agent
learns that it is not the optimal path to follow and tries to
increase it by diligently following the same path in the
future. The first method is very efficient in teaching the
agent to drive in the centre of its lane.

– However, the second approach is also implemented to
leave no room for error. In this method, a pseudo bound-
ary is created between +0.2 and −0.2 corresponding
to the trackPos sensor. If the agent’s trackPos value is
greater than +0.2, it means that the agent is steering
left from the centre of the lane. Hence the steer value is
negated to enable the agent to steer back to the centre of
the lane. If the value is lesser than −0.2, it signifies that
the agent is steering right from the centre of the lane. Just
like it was done earlier, the steer value is negated so that
the agent can steer back to the centre of the lane.

4.3.2 Collision avoidance with front obstacles

Though the simulator gives the freedom of implementing
both left-hand drive and right-hand drive, the former driving
style was chosen as it is more common around the world.
Four sensors out of the 36 opponents sensors are used for
front obstacle detection. The obstacle can be a vehicle ahead,
any object, or a pedestrian. Whenever the car enters a new
state, it waits to receive instructions from the actor-network
on how to proceed. During this time interval, all the sensor
readings are collected and analyzed to see if any obstacles
are present ahead of the vehicle. If any obstacle is detected
beyond 50 ms (DistF > 50) , it is not required to apply brakes
as there is ample distance between the agent and the obsta-
cle. In case front opponents sensors detect a car within a
range of 30–50 ms ahead, the agent stops accelerating i.e.
directly sets its value to 0. Setting the value directly to zero
is analogous to taking the foot off the accelerator pedal in
real-world driving scenarios. At this point, the agent keeps
moving due to its momentum and gradually slows down due
to friction. After a few seconds, if the obstacle ahead is less
than 30 ms, it applies the brakes slightly, i.e. it sets the brake
value (in the range 0 to 1) to 0.3 as this is the ideal value to
gradually slow down the vehicle. If the value is greater than
0.3, the braking action will involve jerky motion, but if it
is less than 0.3, it may not slow down at the desired rate. If
the obstacle is less than 20 ms away, it applies brakes a tad

bit stronger with a value of 0.7. At this value, the vehicle
reduces its speed quickly as the obstacle is not very far, and
if it does not apply brakes with this value, the agent might
end up very close to the obstacle at a considerably higher
speed, after which collision is inevitable. In case the obstacle
is less than 10 ms away, it applies full brakes, i.e. sets the
brake value to 1, so that it comes to a complete halt.

If the obstacle is detected early enough, braking action
is taken in a step-by-step manner over a distance of 50 ms
and the vehicle smoothly comes to a halt. In case, the obsta-
cle suddenly comes into the agent’s path with less distance
between them, the agent applies full brakes to avoid a colli-
sion. In such a scenario, braking will not be smooth, but that
is secondary since it is more important to avoid a collision.

4.3.3 Overtaking

This is interconnected with front obstacle detection. When
driving in a lane and any obstacle appears suddenly, the only
thing that comes to the mind of any driver is to apply the
brake and stop swiftly, and that is exactly what the agent
does too. On the other hand, if an obstacle is detected well in
advance, the agent can plan to overtake it. When the distance
between the agent and the vehicle ahead DistF is around
20 ms, an agent takes another set of opponent sensor read-
ings to check if any vehicles are currently in the right lane.
same set of sensors are used to detect the obstacles in the
right lane as well as the obstacles ahead of it. If it is clear of
any traffic, vehicle steers to the right lane by choosing the
steer right action. After overtaking a vehicle, it checks if it
can come back to its previous lane. If the path is again clear,
it steers back to its lane and continues driving.

The agent’s speed is limited to 90 km per hour. While
overtaking, imagine a scenario where the agent has com-
pleted half of the overtaking process by going to the right
lane. At this point, if the vehicle that was being overtaken,
suddenly increases its speed, and if this is equal to or greater
than the speed of the agent, the agent decides to abort the
overtaking procedure. The agent cannot measure the speed
of other vehicles, instead, it knows that the other vehicle’s
speed has increased when it senses that it is driving paral-
lelly at its maximum speed with the vehicle that it just tried
to overtake. In such a scenario, it slows down a little by
setting the acceleration value to zero and checks if it can go
back to its previous lane. If the road is clear, it steers left and
follows the car that it had intended to overtake.

4.4 Collision avoidance with side obstacles

To detect the obstacles at the sides of the agent, a total of 14
sensors are utilized. If all the vehicles that are plying over a
stretch of road meticulously follow their lane, then the agent
takes no action. If the agent detects a vehicle approaching

3549Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

from the sides with a continuously decreasing value of
DistR, the agent lightly steers away to avoid a collision. The
agent moves away from the approaching vehicle only if there
is space left on the road. In case it was already driving on
the edge of the road and if some vehicle approaches from
the sides, then it slows down letting the other vehicle pass.
If such a situation occurs in the real world, drivers first press
the horns of their vehicles to alert the driver who is deviating

from their lane. Since the simulator does not have that privi-
lege, it simply slows down, as that is the best the agent can
do to avoid a side-ward collision.

The provision of having microphones at layer 1 to detect
the horn sound from other vehicles can be a solution to this
problem. The pseucode for overtaking and collision avoid-
ance algorithm is depicted in Algorithm 1.

Fig. 4 Track selection screen Fig. 5 Agent driving on the track

3550 Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

5 Results

TORCS−1.3.7 is used along with all the python modules
required to code RL algorithms. Then, a basic python cli-
ent code is written to communicate with the TORCS server
which enables the user to establish control over the car. Fig-
ures 4, 5, 6, and 7 are the screenshots obtained during the
execution of the program. Figure 4 shows one of the numer-
ous tracks which is available for selection. Figure 5 portrays
a scenario where the agent is driving on the track. Since the
agent is not perfectly trained, it sometimes deviates com-
pletely off the track, as shown in Fig. 6. However, as soon as
it goes off track, its rewards begin to diminish. Hence it soon
finds its way back to the track, as shown in Fig. 7.

Fig. 6 Agent goes off-track

Fig. 7 Agent slowly getting back on track

Fig. 8 Training of the actor

Fig. 9 Training of the critic

Fig. 10 Rewards vs speed, angle, and position (track 1)

3551Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

After the initial training comprising approximately
8000 iterations, the agent learned to drive on the track but
it was not at all moving in a straight line. It was swerving
abruptly in its lane. As a solution to this, the learning rate
of the actor and critic was altered from 0.001 and 0.002,
to 0.0005 and 0.001 respectively to give more time for the
agent to learn. The reduced learning rate makes the agent
depend more on the past knowledge with less importance
to the immediate reward as discussed in Sect. 2. Therefore,
the agent takes more time to learn the environment but
explores all possible actions. The reduced learning rate
resulted in the agent taking around 14,000 iterations to
completely re-learn driving from scratch. This is visual-
ized in Fig. 8 and 9. Rewards obtained in each episode of
training are plotted against the episode number.

Figure 10 shows the variation of rewards with respect to
speed (speedX), distance from lane centre (trackPos) and
angle between lane and car (�d value). At instances where
the speed is less, the rewards follow suit. At times, there
are instances where in spite of having sufficiently good
speed, the rewards are less. This is due to the fact that the
other parameters collectively bring down the rewards as
the vehicle may have deviated from the centre of the lane
and may have not aligned itself properly with respect to
the direction of the lane. In case the rewards are higher
than the speed, it shows that the agent has received some
extra reward for avoiding some form of probable collision.

Figure 11 further explains the dependency of speed,
angle, and distance from the center for rewards. Despite the
agent aligning itself properly on the track, it swerved left and
right owing to high-speed cornering. On careful observation
of Fig. 12, it can be seen that trackPos (distance of the car
from the center of the lane) is very large. In this case, it is
larger than +1. This easily translates into the fact that the
agent was not driving on the road but beside it. This scenario

is created specifically for testing how the rewards would look
if the agent is made to not drive on the road. Before the agent
was trained with an improved learning rate, it was moving in
a zig-zag manner in spite of maintaining its lane. Figure 13
shows how the reward varies if the agent is not properly
trained to drive itself smoothly.

In all the simulations, the agent successfully managed
to drive itself smoothly on the track by constantly interact-
ing with the dynamic environment. It has learned to detect
the twists and turns in the track and applies brake accord-
ingly. It efficiently detects obstacles and manages to take
precautions or abrupt decisions to avoid collisions. Tesla
autonomous cars have improved a lot over the years and
have offered a full self driving functionality that drives
itself from point A to point B with very little human inter-
vention. but, the car applies an emergency brake if the car

Fig. 11 Rewards vs speed, angle, and position (track 2)

Fig. 12 Rewards vs speed, angle, and position (track 3)

Fig. 13 Rewards vs speed, angle, and position (track 4)

3552 Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

detects any obstacle or have to avoid any collision. After
which, the car requires immediate human intervention to
proceed [35]. Also until now Tesla cars do not perform any
overtaking maneuvers by themselves. If the driver wishes
to change lanes over, then they need to first turn on the
blinkers. That is when the car begins scanning the side
lanes and only if it is free from any traffic, it switches
lanes to overtake. In case the driver does not intervene,
Teslas just drive in the same lane even though there is
slow moving traffic ahead of it. In comparison with this,
the proposed work does not require any human interven-
tion at all. When it detects slow moving traffic ahead in
the current lane, it automatically begins scanning the side
lanes to make a switch. In case, there is some traffic in the
other lanes, it waits for them to clear and then switches
lane. Unlike in the Tesla, the proposed model constantly
keeps scanning the side lanes. Whenever it finds that there
is chance to switch and move ahead, it does so giving
utmost priority to safety - for the passengers in the car as
well as other cars and pedestrians. The proposed work is
an improvement even over the work proposed by Huang
et. al [36] which focuses only on lane keep. Hence this
technology will definitely help in improving autonomous
driving and making it more reliable and safe.

6 Conclusion

Over the past few years, there has been a tremendous
improvement in technology which is enabling the notion of
autonomous vehicles into reality. Elderly people, patients on
medication, and persons with disabilities depend on other
persons for mobility and can now move around indepen-
dently. In addition, busy executives can attend to their work
undisturbed while traveling and this saves their time. With
more and more autonomous vehicles on the road, it can be
hoped that traffic accidents can be reduced to a minimum
since all these vehicles can be designed to strictly follow
traffic rules.

Today, the self-driving vehicle is the need of an hour
because of the increasing traffic on the roads. Having self-
driven vehicles with the highest possible efficiency, and reli-
ability is required very much for safe traveling. Even though
many researchers work on this topic by making use of AI/
ML tools, still 100% efficiency has not been achieved. The
proposed work uses DDPG for the controlled driving of a
vehicle. In the second phase, object detection and collision
avoidance are achieved with the help of various sensors pre-
sent in the vehicle. Thus, the agent can handle situations like
front, and side obstacle detection, and overtaking and can
maneuver itself to avoid collision.

7 Future scope

The proposed work does not account for variations in the
weather, lighting levels, directions given by traffic lights,
road conditions, etc. There can be some variations in the sen-
sor values if one or more of these change and it can hamper
the performance. It needs to be checked if all these sensors
give accurate values after changes in weather and light. If
not, it needs to be calibrated accordingly. Since the simulator
has no provision to include traffic signals, the same could not
be implemented. Therefore, training the agent to recognise
the signals and respond appropriately will therefore be a
significant effort in the future.

The agent heavily relies on lane markings to detect
lanes. In the real world, if the lane markings are erased off
in certain areas or if the lane markings are not at all there,
it struggles to maintain its lane and drive efficiently. In the
future, the agent can be trained to use a camera to detect the
edge of the road, and road conditions, and perform seamless
smooth driving. The performance of the proposed work can
be improved by reducing the training period. The DRL algo-
rithm requires a longer training period to learn all the driv-
ing scenarios. The training period can be decreased either
by using supervised learning with variety of data along with
RL or through human assisted training.

Funding Open access funding provided by Manipal Academy of
Higher Education, Manipal.

Data availability We have not used any data set in our work.

Declarations

Conflict of interest The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Kiran BR, Sobh I, Talpaert V, Mannion P, Sallab AAA, Yogamani
S, Perez P (2022) Deep reinforcement learning for autonomous
driving: A survey. IEEE Transactions on Intelligent Transporta-
tion Systems 23(6):4909–4926

http://creativecommons.org/licenses/by/4.0/

3553Int. j. inf. tecnol. (October 2023) 15(7):3541–3553

1 3

 2. “The Atlantic,” https:// www. theat lantic. com/ techn ology/ archi ve/
2016/ 06/ beep- beep/ 489029/, accessed: 2023-01-11

 3. “Taxonomy and definitions for terms related to driving automa-
tion systems for on-road motor vehicles,” On Road Automated-
Driving-Committee, Tech. Rep., jun 2018

 4. Gupta A, Anpalagan A, Guan L, Khwaja AS (2021) “Deep learn-
ing for object detection and scene perception in self-driving
cars: Survey, challenges, and open issues,” Array, vol. 10, p.
100057[Online]. Available: https:// www. scien cedir ect. com/ scien
ce/ artic le/ pii/ S2590 00562 10000 59

 5. Khan MA, Sayed HE, Malik S, Zia T, Khan J, Alkaabi N, Igna-
tious H (2022) “Level-5 autonomous driving-are we there yet? a
review of research literature,” ACM Comput. Surv., vol. 55, no. 2,
jan. [Online]. Available: https:// doi. org/ 10. 1145/ 34857 67

 6. Feng D, Haase-Schütz C, Rosenbaum L, Hertlein H, Gläser C,
Timm F, Wiesbeck W, Dietmayer K (2021) Deep multi-modal
object detection and semantic segmentation for autonomous driv-
ing: Datasets, methods, and challenges. IEEE Transactions on
Intelligent Transportation Systems 22(3):1341–1360

 7. Rajagopal BG (2022) Intelligent traffic analysis system for indian
road conditions. International Journal of Information Technology
14(4):1733–1745

 8. Bojarski M, Testa DD, Dworakowski D, Firner B, Flepp B, Goyal
P, Jackel LD, Monfort M, Muller U, Zhang J, Zhang X, Zhao J,
Zieba K (2016) “End to end learning for self-driving cars,” CoRR,
vol. abs/1604.07316

 9. Fredriksson T, Mattos DI, Bosch J, Olsson HH (2020) “Data
labeling: an empirical investigation into industrial challenges and
mitigation strategies,” in International Conference on Product-
Focused Software Process Improvement. Springer, pp. 202–216

 10. Sutton RS, Barto AG (1998) Introduction to Reinforcement Learn-
ing, 1st edn. MIT Press, Cambridge, MA, USA

 11. Naveen Raj R, Nayak A, Kumar MS (2020) “A survey and perfor-
mance evaluation of reinforcement learning based spectrum aware
routing in cognitive radio ad hoc networks,” International Journal
of Wireless Information Networks, vol. 27, no. 1, pp. 144–163

 12. Rahmati M, Nadeem M, Sadhu V, Pompili D (2019) “Uw-marl:
Multi-agent reinforcement learning for underwater adaptive sam-
pling using autonomous vehicles,” in Proceedings of the Interna-
tional Conference on Underwater Networks & Systems, pp. 1–5

 13. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017)
Deep reinforcement learning: A brief survey. IEEE Signal Pro-
cessing Magazine 34(6):26–38

 14. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Belle-
mare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G,
Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control
through deep reinforcement learning. Nature 518:529–533

 15. Rani G, Pandey U, Wagde AA, Dhaka VS (2022) “A deep rein-
forcement learning technique for bug detection in video games,”
International Journal of Information Technology

 16. Coronato A, Naeem M, De Pietro G, Paragliola G (2020) Rein-
forcement learning for intelligent healthcare applications: A sur-
vey. Artificial Intelligence in Medicine 109:101964

 17. Luong NC, Hoang DT, Gong S, Niyato D, Wang P, Liang Y-C,
Kim DI (2019) Applications of deep reinforcement learning in
communications and networking: A survey. IEEE Communica-
tions Surveys and Tutorials 21(4):3133–3174

 18. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver
D, Wierstra D (2015) “Continuous control with deep reinforce-
ment learning,” arXiv preprintarXiv:1509.02971

 19. Zhao J, Qu T, Xu F (2020) A deep reinforcement learning
approach for autonomous highway driving. IFAC-PapersOnLine
53(5):542–546

 20. Zhang Y, Sun P, Yin Y, Lin L, Wang X (2018)“Human-like
autonomous vehicle speed control by deep reinforcement learning
with double q-learning,” in, IEEE Intelligent Vehicles Symposium
(IV). IEEE 2018:1251–1256

 21. Chopra R, Roy SS (2020) “End-to-end reinforcement learning for
self-driving car,” in Advanced computing and intelligent engineer-
ing. Springer, pp. 53–61

 22. Elallid BB, Benamar N, Hafid AS, Rachidi T, Mrani N (2022) “A
comprehensive survey on the application of deep and reinforce-
ment learning approaches in autonomous driving,” Journal of
King Saud University-Computer and Information Sciences

 23. Hussain R, Zeadally S (2018) Autonomous cars: Research results,
issues, and future challenges. IEEE Communications Surveys and
Tutorials 21(2):1275–1313

 24. Zhu M, Wang Y, Pu Z, Hu J, Wang X, Ke R (2020) Safe, efficient,
and comfortable velocity control based on reinforcement learning
for autonomous driving. Transportation Research Part C: Emerg-
ing Technologies 117:102662

 25. Omeiza D, Webb H, Jirotka M, Kunze L (2021) “Explanations in
autonomous driving: A survey,” IEEE Transactions on Intelligent
Transportation Systems

 26. Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey
of deep learning techniques for autonomous driving. Journal of
Field Robotics 37(3):362–386

 27. Ma Y, Wang Z, Yang H, Yang L (2020) Artificial intelligence
applications in the development of autonomous vehicles: a survey.
IEEE/CAA Journal of Automatica Sinica 7(2):315–329

 28. Cao Z, Xu S, Jiao X, Peng H, Yang D (2022) Trustworthy safety
improvement for autonomous driving using reinforcement learn-
ing. Transportation research part C: emerging technologies
138:103656

 29. Kumar A, Saini T, Pandey PB, Agarwal A, Agrawal A, Agarwal B
(2022) Vision-based outdoor navigation of self-driving car using
lane detection. International Journal of Information Technology
14(1):215–227

 30. Yasin JN, Mohammed SAS, Haghayan M, Heikkown J, Tenhumen
H, Plosila J (2022) Low-cost ultrasonic based object detection and
collision avoidance method for autonomous robots. International
Journal of Information Technology 13(1):97–107

 31. Teli TA, Wani MA (2021) A fuzzy based local minima avoid-
ance path planning in autonomous robots. International Journal
of Information Technology 13(1):33–40

 32. Li X, Xiao Y, Zhao X, Ma X, Wang X (2023) Modeling mixed
traffic flows of human-driving vehicles and connected and autono-
mous vehicles considering human drivers’ cognitive character-
istics and driving behavior interaction. Physica A: Statistical
Mechanics and its Applications 609:128368

 33. Wu J, Huang Z, Hu Z, Lv C (2022) “Toward human-in-the-loop
AI: Enhancing deep reinforcement learning via real-time human
guidance for autonomous driving,” Engineering

 34. Baheri A (2022) Safe reinforcement learning with mixture den-
sity network, with application to autonomous driving. Results in
Control and Optimization 6:100095

 35. Dikmen M, Burns C (2017) “Trust in autonomous vehicles: The
case of tesla autopilot and summon,” in 2017 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC), pp.
1093–1098

 36. Huang Z, Zhang J, Tian R, Zhang Y (2019) “End-to-end autono-
mous driving decision based on deep reinforcement learning,” in
2019 5th International Conference on Control, Automation and
Robotics (ICCAR). IEEE, pp. 658–662

https://www.theatlantic.com/technology/archive/2016/06/beep-beep/489029/
https://www.theatlantic.com/technology/archive/2016/06/beep-beep/489029/
https://www.sciencedirect.com/science/article/pii/S2590005621000059
https://www.sciencedirect.com/science/article/pii/S2590005621000059
https://doi.org/10.1145/3485767

	Deep reinforcement learning for autonomous vehicles: lane keep and overtaking scenarios with collision avoidance
	Abstract
	1 Introduction
	2 Preliminaries
	3 Related works
	4 Proposed methodology
	4.1 Reinforcement learning model
	4.1.1 State space
	4.1.2 Action space
	4.1.3 Reward function

	4.2 Deep reinforcement learning model
	4.3 Sequential decision making strategies
	4.3.1 Lane keep
	4.3.2 Collision avoidance with front obstacles
	4.3.3 Overtaking

	4.4 Collision avoidance with side obstacles

	5 Results
	6 Conclusion
	7 Future scope
	References

