
ORIGINAL RESEARCH

Assessing the impact of the density and sparsity of the network
on community detection using a Gaussian mixture random
partition graph generator

Ashani Wickramasinghe1
• Saman Muthukumarana1

Received: 16 August 2021 / Accepted: 5 January 2022 / Published online: 27 January 2022

� The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2022

Abstract Identification of sub-networks within a network

is essential to understand the functionality of a network.

This process is called as ’Community detection’. There are

various existing community detection algorithms, and the

performance of these algorithms can be varied based on the

network structure. In this paper, we introduce a novel

random graph generator using a mixture of Gaussian dis-

tributions. The community sizes of the generated network

depend on the given Gaussian distributions. We then

develop simulation studies to understand the impact of

density and sparsity of the network on community detec-

tion. We use Infomap, Label propagation, Spinglass, and

Louvain algorithms to detect communities. The similarity

between true communities and detected communities is

evaluated using Adjusted Rand Index, Adjusted Mutual

Information, and Normalized Mutual Information similar-

ity scores. We also develop a method to generate heatmaps

to compare those similarity score values. The results

indicate that the Louvain algorithm has the highest capacity

to detect perfect communities while Label Propagation has

the lowest capacity

Keywords Community detection � Similarity measures �
Random partition graphs generator � Mixture of Gaussian

distributions

1 Introduction

Community detection is an interesting area of social net-

work analysis. It helps us to identify hidden communities

within a network. Starting from the early 2000, many

community detection algorithms have been introduced and

studied in multidisciplinary areas. The main types of

applications of community detection in networks are rec-

ommendation systems [1, 2], link predictions [3, 4], and

anomaly detection in online social networks [5, 6]. How-

ever, different algorithms can generate significantly dif-

ferent communities based on their algorithms. In the

literature, the most common way to evaluate the commu-

nity detection algorithm is comparing the algorithm’s result

with the ground truth communities of that network [7–9].

One can also evaluate the community detection algorithms

using dynamic graphs with planted evolving community

structure, as a benchmark [10]. In another study [11] the

performance of the Community Density Rank (CDR)

algorithm against other community detection algorithms

were compared using synthetic data from Lancichinetti,

Fortunato and Radicchi (LFR) algorithm [12]. Dao and the

team also have done a study [13] to compare community

detection methods, based on computation time and com-

munity size distribution. However, these studies have not

considered about the change of community detection

ability with the change of features of networks. The main

similarity metrics which generally use to assess the simi-

larity are Adjusted Rank Index (ARI) [14], Normalized

Mutual Information (NMI) [15] and Adjusted Mutual

Information (AMI) [16].

In this paper, we focus on identifying the impact of

topological features on community detection results. We

conducted a comparative analysis using sparse and dense

networks. Dense networks have many connections with

& Ashani Wickramasinghe

wickrama@myumanitoba.ca

Saman Muthukumarana

saman.muthukumarana@umanitoba.ca

1 Department of Statistics, Faculty of Science, University of

Manitoba, Winnipeg, MB R3T 2N2, Canada

123

Int. j. inf. tecnol. (March 2022) 14(2):607–618

https://doi.org/10.1007/s41870-022-00873-5

http://orcid.org/0000-0002-8251-0658
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-022-00873-5&domain=pdf
https://doi.org/10.1007/s41870-022-00873-5

others, while sparse networks have fewer edges than the

possible maximum number of edges. We used Gaussian

Random Partition Graph [24] to generate dense networks

and our newly developed method, which uses the mixture

of Gaussians, to generate sparse networks. Then used those

networks as the benchmarks to evaluate community

detection methods. The following section will discuss both

network generation methods in detail and the main differ-

ence between those two methods.

2 Material and methods

In social network analysis, the community is defined as a

subset of nodes within the graph that have a higher prob-

ability of being connected to each other than to the rest of

the network. In our previous study [17]. The communities

were identified using community detection algorithms in

order to understand the nature of the spread of COVID-19.

Here, we consider directed networks for the simulations

and use Louvain algorithm [19], Infomap algorithm [20],

Label propagation algorithm [22], and Spinglass algo-

rithm [23] for community detection.

Most of the algorithms are developed based on modu-

larity. Because of that, understanding the meaning of

modularity is essential. It measures the strength of the

division of a network into groups. Modularity is defined as,

Q ¼ 1

4m

X

i;j in same module

Aij �
kikj
2m

� �
: ð1Þ

Here m is the number of edges of the graph, ki is the degree

of node i, and Aij is the adjacency matrix. The above

equation shows modularity for an undirected graph. [18]

developed a new modularity for a directed graph, is given

by,

Qd ¼
1

m

X

i;j in same module

Aij �
kini k

out
j

m

 !
: ð2Þ

When calculating directed modularity, both in-degrees and

out-degrees were considered, but when calculating undi-

rected modularity, only the degree centrality is considered.

In the following paragraphs we are discussing the different

methods we used for community detection.

The first algorithm that we are focusing on is, the

Louvain algorithm [19]. This is an unsupervised algo-

rithm for detecting communities in networks. This method

has two phases; Modularity Optimization and Community

Aggregation. These two phases are executing until there

are no more changes in the communities, and the maximum

modularity is achieved. At the Modularity Optimization

phase, each node is assigned to its own community. Then

node i is removing from its own community and moving it

into the neighbor community j. The change in modularity is

calculated using,

DQd ¼
dci
m

� douti :
Pin

tot þdini :
Pout

tot

m2

$ %
: ð3Þ

Here dci is the degree of i in community C and
Pin

tot shows

the number of incoming edges of community C, whilePout
tot shows number of outgoing edges of community C. If

no positive increase can be seen in modularity, the node

i remains in its current community. This sequence will be

repeatedly performed for all nodes until no increment in

modularity can be seen. The 1st phase stops when a local

maximum has been found.

In the community aggregation step, each communities

are considered as a single node. Then a new network is

built using these community nodes. When the new network

is created, the second phase has ended, and the first phase

can be re-applied to the new network. These phases are

carried out until there is no more change in the community,

and a maximum of modularity is achieved.

The Infomap algorithm repeats the two described

phases in Louvain until an objective function is optimized

[20]. Instead of modularity, this algorithm optimizes the

‘Map equation’. Infomap algorithm finds community

structure by minimizing the description length of a random

walker’s movements on a network. This random walker

randomly moves between each node of the network. The

random walker would like to move through the highly

weighted edges. Hence, the weights of the connections

within the community are greater than the weights of the

connections between nodes of different communities.

The definition of the map equation is based on Shan-

non’s Source Coding Theorem, from the field of Informa-

tion Theory [21]. Here each module has a ‘module

codebook’ and these module codebooks have ‘codewords’

for the nodes within each module, which are derived from

the node visit/exit frequencies of the random walker. The

‘index codebook’ has codewords for the modules, which

are derived from the module switch rates of the random

walker. The map equation shows that the average length of

the code (a step of the random walker) is equal to the

average length of codewords from the index codebook and

the module codebooks weighted by their rates of use.

LðMÞ ¼ qxHðQÞ þ
Xm

i¼1

pi�HðqiÞ ð4Þ

A network with n nodes and m clusters is shown by M, and

L(M) shows the per-step description length for module

608 Int. j. inf. tecnol. (March 2022) 14(2):607–618

123

partition of that. Note that qx and pi� show the rate of use

of index codebook and the rate of use of module codebook

respectively, while the H(Q) and HðqiÞ show the fre-

quency-weighted average length of codewords in the index

codebook and module codebook i respectively.

The next algorithm is Label Propagation (LPA) [22]

and it is one of the fast semi-supervised algorithms for

finding communities in a graph. The algorithm works as

follows; Every node is initialized with a unique community

label (an identifier), and these labels propagate through the

network. At the propagation step each node update the

label based on the labels of their neighbor’s. When there

are ties, labels are selected uniformly and randomly. This

algorithm converges when each node has the majority label

of its neighbors. And this stops if either convergence or the

use defined maximum number of iterations is achieved.

In LPA, the influence of a node’s label on other nodes is

determined by their respective closeness and the closeness

between nodes is measured by (5). Here the euclidean

distance between node i and j is shown by dij and r2 shows

the parameter to scale proximity. wijs are used to generate

weight matrix and to perform label propagation weight

matrix is converted into a transition matrix T using the tijs

by (6).

wij ¼ exp �
d2
ij

r2

 !
ð5Þ

tij ¼
wijP
k wkj

: ð6Þ

Spinglass is the last algorithm that we are discussing in this

study. This method minimizes the Hamiltonian of the

network [23]. Spinglass has the following four require-

ments, and they are considered to develop communities.

1. reward internal edges between nodes of the same group

(in the same spin state)

2. penalize missing edges between nodes in the same

group.

3. penalize existing edges between different groups

(nodes in different spin state)

4. reward non-links between different groups.

Hamiltonian for spinglass is given by the following equa-

tion. Here Aij is adjacency matrix of the graph. dðri; rjÞ is

known as Kronecker delta function, dri;rj = 1 if ri ¼ rj, and

0 otherwise. The spin state (or group index) of the node i is

showed by ri� 1; 2; :::; qf g. ai;j; bi;j; bi;j; di;j are the weights

of the individual contributions for the above requirements,

respectively.

HðrÞ ¼ �
X

i 6¼j

aijAijdðri; rjÞ þ
X

i 6¼j

bijð1 � AijÞdðri;rjÞ

þ
X

i 6¼j

bijð1 � AijÞdðri; rjÞ

�
X

i 6¼j

dijð1 � AijÞð1 � dðri; rjÞÞ

ð7Þ

This algorithm tries to minimizes the energy of spinglass

with the spin states being the community indices. Here

Modularity is rewritten using Hamiltonian as (8),

Q ¼ � 1

M
Hð rf gÞ: ð8Þ

It applies the simulated annealing optimization technique

on this model to optimize the modularity.

2.1 Random graph generation

We now discuss two methods to generate random directed

graphs with random partitions. Those methods are the

Gaussian random partition graph [24] and our newly

developed method. The main difference between these two

methods is that the Gaussian Random Partition graph draws

community size from a normal distribution. In contrast, our

newly developed method draws community size from a

mixture of Gaussian distributions. Since the existing

method uses normal distribution, most of the communities

will have a similar number of nodes. But in real life we

usually see communities with different number of nodes.

Hence we proposed this new method, which generates

communities in different sizes.

A Gaussian random partition graph [24] is created by

generating k clusters, each with a size drawn from a normal

distribution with mean (s) and standard deviation (s/v). The

size of the last cluster is possibly significantly smaller than

the others. Here v is the shape parameter. Nodes are con-

nected within clusters with probability Pin and between

clusters with probability Pout. To induce a more general

structure of a social network, we have updated the algo-

rithm of the Gaussian random partition graph with a mix-

ture of Gaussian distributions. Here we can use two normal

distributions; with a larger mean and a lower mean value.

As a result, this method will generate network graphs with

both larger and smaller communities.

In this novel method, for a given number of nodes (n),

cluster sizes will be drawn from a mixture of two Gaussian

distributions with means s1 and s2, and standard deviations

(s1/v1) and (s2/v2) respectively. Let the probability density

function (PDF) for the ith Gaussian distribution is fiðxÞ. In

the mixture of Gaussians, the probability of drawing from

the first distribution is p and from the second distribution is

Int. j. inf. tecnol. (March 2022) 14(2):607–618 609

123

ð1 � pÞ, where p is known as the mixing parameter. Then

the probability density function of the mixture of Gaussians

can be written as below:

fMðxÞ ¼ ðpÞN s1;
s1

v1

� �
þ ð1 � pÞN s2;

s2

v2

� �

¼ ðpÞ:f1ðxÞ þ ð1 � pÞ:f2ðxÞ:
ð9Þ

The mean of Gaussian mixture can be observed by

integrating:

lM ¼
Z 1

�1
xfMðxÞdx

¼
Z 1

�1
xp:f1ðxÞdxþ

Z 1

�1
xð1 � pÞ:f2ðxÞÞdx

¼ p

Z 1

�1
xf1ðxÞdxþ ð1 � pÞ

Z 1

�1
xf2ðxÞÞdx

¼ p:l1 þ ð1 � pÞl2:

ð10Þ

In order to find the variance, first of all we need to find the

second moment. Then using that we can find the variance

of Gaussian mixture.

E½M2� ¼
Z 1

�1
x2fMðxÞdx

¼
Z 1

�1
x2p:f1ðxÞdxþ

Z 1

�1
x2ð1 � pÞ:f2ðxÞÞdx

¼ p

Z 1

�1
x2f1ðxÞdxþ ð1 � pÞ

Z 1

�1
x2f2ðxÞÞdx

¼ p:Eðx2
1Þ þ ð1 � pÞ:Eðx2

2Þ
ð11Þ

r2
M ¼ E½M2� � l2

M ð12Þ

Hence using above equations we can calculate mean and

standard deviation values of mixture of two distributions

and generate networks with partitions.

2.2 Simulation study

In this section, we describe our simulation process, where

we consider various parameter values. The following flow

chart in Fig. 1 shows the process step by step. That illus-

trates the simulation process when changing the number of

nodes while all the other parameters are fixed. Based on

this flow chart, first, we are generating a network with the

number of nodes equal to 10. Next, this network will be

developed with community labels for each node, and we

consider those labels as actual labels. Then we use the

same generated network to find communities by applying

our four community detection algorithms (Louvain, Label

propagation, Spinglass, and Infomap). After that, we can

evaluate community results based on actual labels using

similarity matrices (ARI, NMI, and AMI). In this simula-

tion study, we generated all the synthetic networks using

the ’Networkx‘ package in python [25]. To calculate sim-

ilarity scores, we used the scikit-learn package in python

[26].

We developed another method to change two parameters

and understand the hidden truth of the results of different

community detection algorithms. This process explains the

steps to create a heat map for each community detection

algorithm, which shows the variation of similarity score

measure, with the change of Pin and Pout. Here rows and

columns will indicate Pin and Pout.

Figure 2 explains the process step by step. As the first

step, we fixed number of nodes (n), two mean values (s1,

s2), two standard deviance (r1, r2) values and changed Pin

and Pout values from 0.01 to 0.5 with 0.01 increment. Then

we generated a network using a random partition graph

with a mixture of two Gaussians and considered those

partitions as true communities. Next, we applied the

community detection algorithm to the network and iden-

tified the communities. Then we stored the similarity scores

between true and identified communities in a vector. We

repeated the same procedure 100 times and calculated the

mean of those similarity values to get the average simi-

larity score for the given Pin and Pout. This average simi-

larity score will be stored in the first cell of the matrix.

Then repeat the same procedure for different Pin and Pout

values and fill the matrix.

After creating the similarity score matrix, we could

easily convert it to a color heat map. Heat maps appeal to

the eyes, and visualization is generally easier to understand

than reading the values. Through the heat maps, we could

easily identify the capacity of the given algorithm to

identify correct communities.

3 Results

As we discussed in the introduction, we have considered

two main random network graph generators for this study.

Figure 3 shows four random network graphs which were

generated from Gaussian random network graphs. We can

see that most of the networks have communities of similar

size. But in reality, we would not always be able to find this

kind of communities. For example, there can be commu-

nities with a large number of nodes while some other

communities with few nodes. Hence, to generate more

practical networks, we developed our new network graph

generator using the mixture of Gaussians.

610 Int. j. inf. tecnol. (March 2022) 14(2):607–618

123

In Fig. 4 we can see sample network graphs that were

generated from our new method. In these networks, we can

observe that, some communities with a large number of

nodes and others with a small number of nodes.

Fig. 1 General simulation

process

Fig. 2 The process of creating a

similarity score value matrix

Fig. 3 Plots a–c: Some randomly generated graphs from Gaussian random partition graph. All graphs were generated using same parameters

Int. j. inf. tecnol. (March 2022) 14(2):607–618 611

123

3.1 Results of dense networks

In this simulation, we fixed all other parameters except the

parameter that we are interested in when creating networks.

We considered the number of nodes, probabilities of con-

necting between communities (intra probability) and within

communities (inter probability) as the parameters. Figure 5

shows similarity score variations with the increment of the

number of nodes. Based on these plots, we can see that

ARI, NMI, and AMI scores of communities based on

Louvain and Spinglass methods decrease when the number

of nodes increases. On the other hand, ARI, NMI, and AMI

scores for Infomap and Label-propagation methods are

constant with zero value. Thus, it shows that the number of

nodes does not affect the similarity score of those two

methods.

Figure 6 shows similarity score variations with the

increment of intra probability. Here we have changed that

probability from 0.1 to 0.9 with a 0.01 increment. Based on

these figures, it is clear that communities found from

Louvain and Spinglass methods show better agreement

with the actual labels for the networks which are created

with an intra probability greater than 0.3.

The variation of similarity score with the increment of

inter probability is plotted in Fig. 7. Same as the intra-

cluster probability, we used probabilities from 0.1 to 0.9

with 0.01 increment. All the above similarity score plots

illustrate that Louvain and Spinglass algorithms have

higher similarity scores with true clusters when the net-

works have lower inter-connection probability. The highest

similarity score is achieved when the inter probability is

0.1. After that score drastically drops down and remains

around zero. The results of Infomap and label propagation

Fig. 4 Plots a–c: Some randomly generated graphs from newly developed method using mixture of two Gaussians. All graphs were generated

using same parameters

Fig. 5 Variation of similarity scores with the increment of number of nodes. Plots a ARI score, b NMI score, c AMI score

612 Int. j. inf. tecnol. (March 2022) 14(2):607–618

123

algorithms always show zero similarity scores for all three

similarity scores.

3.2 Results of sparse networks

We now consider sparse networks using our new network

generation method. We conducted the same simulation

process for the sparse networks also. The behavior of the

similarity scores for the results of each community

detection algorithms, when increasing the number of

nodes, illustrate in Fig. 8. When generating random sparse

networks, some networks end up with isolated nodes.

Spinglass network does not work on networks that have

isolated nodes. Hence we removed Spinglass method from

this simulation study.

Based on the results shown in Fig. 8, it is clear that in

the sparse networks when the sample size is small, the

results of all three algorithms show a higher similarity with

Fig. 6 Variation of similarity scores with the increment of number of intra probability. Plots a ARI score, b NMI score, c AMI score

Fig. 7 Variation of similarity scores with the increment of number of inter probability. Plots a ARI score, b NMI score, c AMI score

Int. j. inf. tecnol. (March 2022) 14(2):607–618 613

123

true labels. Label propagation shows a rapid decline, while

Infomap and Louvain show a gradual decline with the

increase of frequency of nodes.

Then we changed intra probability from 0.1 to 0.9 with a

0.01 increment. We fixed inter probability to 0.02 and the

number of nodes to 50. Figures 9 shows the results of this

simulation. All three algorithms show a gradual increase of

Fig. 8 Variation of similarity scores with the increment of number of nodes in sparse networks. Plots a ARI score, b NMI score, c AMI score

Fig. 9 Variation of similarity scores with the increment of intra probability in sparse networks. Plots a ARI score, b NMI score, c AMI score

614 Int. j. inf. tecnol. (March 2022) 14(2):607–618

123

similarity score in these sparse networks with the rise of

intra probability. Here the results of Louvain and Infomap

show better and similar results than the Label propagation

algorithm.

Finally, we changed the inter-probability. We fixed the

intra probability to 0.3 and the number of nodes to 50. The

variation of similarity scores (ARI, NMI, and AMI) for the

results of each community detection algorithm was plotted

in Fig. 10. When the inter probability is lower than 0.1, we

can see higher similarity scores for all the community

detection algorithms.

3.3 Results of heat maps

According to the steps we described in Sect. 2.2 we gen-

erated heat maps for each community detection algorithm.

Since we are considering three similarity measures, ARI,

NMI, and AMI, we got three heat maps for each algorithm.

Figure 11 shows ARI similarity score heat maps for the

results of Infomap, Label propagation, and Louvain algo-

rithms. The color range from dark blue to yellow shows the

lowest similarity score to the highest similarity score. In

these heat maps, left bottom corners have higher intra

probabilities and lower inter probabilities. These left cor-

ners in yellow, indicate a high similarity score. Hence, it is

clear that the results of all the community detection algo-

rithms are acceptable if their community networks have

high intra probabilities and low inter probabilities. When

comparing these three heat maps, we can observe that plot

(b) has the smallest yellow color area, and plot (c) has the

largest yellow color area. It shows that Louvain has the

highest capacity to detect acceptable communities while

Label propagation has the lowest, based on different net-

work structures.

Figures 12 and 13 show NMI and AMI similarity score

heat maps, respectively. We can see yellow color areas

(high similarity scores) for higher intra probabilities and

lower inter probabilities in those heat maps as well. These

sets of heat maps also show that the Louvain algorithm has

the highest capacity to detect communities while Label

propagation has the lowest capacity.

4 Conclusion and future direction

Since the community detection is specially developed for

social network analysis which depends on edges, it is clear

that the results should depend on the network structure. Our

simulation study showed that most community detection

algorithms gave better results for sparse networks than

dense networks. However, even the community detection

algorithms struggling to detect communities in dense net-

works could detect communities up to some level in sparse

networks. In both sparse and dense networks, we observed

that the ability to detect communities of algorithms

increased with the increment of the probability of having

edges between nodes in the same community and the

increment of average community size. Conversely, the

Fig. 10 Variation of similarity scores with the increment of inter probability in sparse networks. Plots a ARI score, b NMI score, c AMI score

Int. j. inf. tecnol. (March 2022) 14(2):607–618 615

123

Fig. 11 ARI similarity score heat maps for a Infomap, b Label propagation, c Louvain. From dark blue color to yellow color indicates low to

high similarity score

Fig. 12 NMI similarity score heat maps for a Infomap, b Label propagation c Louvain. From dark blue color to yellow color indicates low to

high similarity score

616 Int. j. inf. tecnol. (March 2022) 14(2):607–618

123

detection ability decreased with the increment of the

probability of having edges between nodes in different

communities and the number of nodes.

Using the heat maps we generated, we could understand

the community detection capacities of different community

detection algorithms. Overall, the results of all the com-

munity detection methods are acceptable if the community

network has higher intra probabilities and lower inter

probabilities. Still, the Louvain algorithm has the highest

capacity, while label propagation has the smallest.

Throughout the study, we observed that the Louvain

algorithm could detect communities better than other

algorithms.

The Gaussian random partition graph generator is one of

the best methods to generate random networks with parti-

tions. It uses Gaussian distribution to draw the community

size, and because of that, the output networks contain

communities with a similar number of nodes. But in real

networks, we see communities with a different number of

nodes; large communities and small communities. Hence

we developed this novel method to generate networks

using a mixture of Gaussians and observed that it could

generate networks similar to the structure of real-world

disease transmission networks.

This study can be further expanded by updating the

network generator using a Dirichlet process with Gaussian

distribution as the base distribution. Then we can compare

the network structures of the networks generated from the

existing Gaussian random partition graph with the net-

works generated from the newly updated method with the

Dirichlet process. Furthermore, we can improve our

approach to evaluate temporal community detection in

real-world applications.

Acknowledgements The authors thank the editor and anonymous

reviewers whose comments/suggestions helped improve this

manuscript.

Availability of data and material Data used in this paper is avail-

ableupon request.

Code availability Code used in this paper is available upon request.

Declaration

Conflict of interest The authors declare that they have no conflict of

interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

1. Zanin M, Cano P, Buldu JM, Celma O (2008) Complex networks

in recommendation systems. In: Proceedings of the 2nd WSEAS

International Conference on Computer Engineering and Appli-

cations. Stevens Point, Wisconsin, USA, pp 120–124

2. Joydeep D, Partha M, Subhashis M, Prosenjit G (2014) Cluster-

ing-based recommender system using principles of voting theory.

In: Proceedings of 2014 International Conference on Contem-

porary Computing and Informatics, IC3I 2014, pp 230–235.

https://doi.org/10.1109/IC3I.2014.7019655

3. Hao J, Zhenjie L, Chunlong L, Yansen S, Xingyi Z (2020)

Community detection in complex networks with an ambiguous

structure using central node based link prediction. Knowl-Based

Syst. https://doi.org/10.1016/j.knosys.2020.105626

4. Tan F, Xia Y, Zhu B (2014) Link prediction in complex net-

works: a mutual information perspective. PLOS One. https://doi.

org/10.1371/journal.pone.0107056

5. Savage D, Zhang X et al (2014) Anomaly detection in online

social networks. Soc Netw. https://doi.org/10.1016/j.socnet.2014.

05.002

6. Manjunatha HC, Mohanasundaram R (2019) BMADSN: Big data

multi-community anomaly detection in social networks. Int J

Elect Eng Educ. https://doi.org/10.1177/0020720919891065

7. Jebabli M, Cherifi H, Cherifi C, Hamouda A (2018) Community

detection algorithm evaluation with ground-truth data. Physica A.

https://doi.org/10.1016/j.physa.2017.10.018

Fig. 13 AMI similarity score heat maps for a Infomap, b Label propagation, c Louvain. From dark blue color to yellow color indicates low to

high similarity score

Int. j. inf. tecnol. (March 2022) 14(2):607–618 617

123

https://doi.org/10.1109/IC3I.2014.7019655
https://doi.org/10.1016/j.knosys.2020.105626
https://doi.org/10.1371/journal.pone.0107056
https://doi.org/10.1371/journal.pone.0107056
https://doi.org/10.1016/j.socnet.2014.05.002
https://doi.org/10.1016/j.socnet.2014.05.002
https://doi.org/10.1177/0020720919891065
https://doi.org/10.1016/j.physa.2017.10.018

8. Rossetti G, Pappalardo L, Rinzivillo S (2016) A novel approach

to evaluate community detection algorithms on ground truth. In:

Complex Networks VII, studies in computational intelligence,

Springer, Cham, pp 133–144. https://doi.org/10.1007/978-3-319-

30569-1_10

9. Yang J, Leskovec J (2015) Defining and evaluating network

communities based on ground-truth. Knowl Inf Syst. https://doi.

org/10.1007/s10115-013-0693-z

10. Rémy C, Souâad B, Giulio R (2020) Evaluating community

detection algorithms for progressively evolving graphs. J Com-

plex Netw. https://doi.org/10.1093/comnet/cnaa027 (Oxford
University Press)

11. George R, Shujaee K, Kerwat M, Felfli Z, Gelenbe D, Ukuwu K

(2020) A comparative evaluation of community detection algo-

rithms in social networks. Procedia Comput Sci. https://doi.org/

10.1016/j.procs.2020.04.124

12. Zineb F, Rov G, Khalil S, Mohamed K (2018) Computing

ranking and dynamics in social networks. In: 2018 Fifth Inter-

national Conference on Social Networks Analysis, Management

and Security (SNAMS) 59-63. https://doi.org/10.1109/SNAMS.

2018.8554850

13. Dao V, Bothorel C, Lenca P (2020) Community structure: a

comparative evaluation of community detection methods. Netw

Sci. https://doi.org/10.1017/nws.2019.59 (Cambridge Univer-
sity Press (CUP))

14. William MR (1971) Objective criteria for the evaluation of

clustering methods. J Am Stat Assoc. https://doi.org/10.2307/

2284239

15. Zhang P (2015) Evaluating accuracy of community detection

using the relative normalized mutual information. J Stat Mech.

https://doi.org/10.1088/1742-5468/2015/11/P11006

16. Vinh NX, Epps J and Bailey J (2010) Information theoretic

measures for clusterings comparison: Variants, properties,

normalization and correction for chance. J Mach Learn Res

11:2837–2854

17. Wickramasinghe AN, Muthukumarana S (2021) Social network

analysis and community detection on spread of COVID-19.

Model Assist Stat Appl. https://doi.org/10.3233/MAS-210513

18. Nicolas D, Anthony P (2015) Directed Louvain: maximizing

modularityin directed networks. Research report, Universitée

d’Orl éeans

19. Blondel V, Guillaume JL et al (2008) Fast unfolding of com-

munities in large networks. J Stat Mech Theory Exp. https://doi.

org/10.1088/1742-5468/2008/10/P10008

20. Fang H, Liu Y (2015) A novel algorithm infomap-sa of detecting

communities in complex networks. J Commun. https://doi.org/10.

12720/jcm.10.7.503-511

21. Rosvall M, Axelsson D, Bergstrom CT (2009) The map equation.

Eur Phys J Special Topics. https://doi.org/10.1140/epjst/e2010-

01179-1

22. Raghavan UN, Albert R, Kumara S (2007) Near linear time

algorithm to detect community structures in large-scale networks.

Phys Rev. https://doi.org/10.1103/PhysRevE.76.036106

23. Reichardt J, Bornholdt S (2006) Statistical mechanics of com-

munity detection. Phys Rev E. https://doi.org/10.1103/PhysRevE.

74.016110

24. Brandes U, Gaertler M, Wagner D (2003) ESA 2003. LNCS

2832. Springer, Berlin, pp 568–57

25. Hagberg A, Swart S, Chult DS (2008) Exploring network struc-

ture, dynamics, and function using NetworkX. In: Proceedings of

the 7th Python in Science Conference. Pasadena, CA USA,

pp 11–15

26. Pedregosa F, Varoquaux G, Gramfort A, et al (2011) Scikit-learn:

machine learning in Python. J Mach Learn Res 12:2825–2830

618 Int. j. inf. tecnol. (March 2022) 14(2):607–618

123

https://doi.org/10.1007/978-3-319-30569-1_10
https://doi.org/10.1007/978-3-319-30569-1_10
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1093/comnet/cnaa027
https://doi.org/10.1016/j.procs.2020.04.124
https://doi.org/10.1016/j.procs.2020.04.124
https://doi.org/10.1109/SNAMS.2018.8554850
https://doi.org/10.1109/SNAMS.2018.8554850
https://doi.org/10.1017/nws.2019.59
https://doi.org/10.2307/2284239
https://doi.org/10.2307/2284239
https://doi.org/10.1088/1742-5468/2015/11/P11006
https://doi.org/10.3233/MAS-210513
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.12720/jcm.10.7.503-511
https://doi.org/10.12720/jcm.10.7.503-511
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110

	Assessing the impact of the density and sparsity of the network on community detection using a Gaussian mixture random partition graph generator
	Abstract
	Introduction
	Material and methods
	Random graph generation
	Simulation study

	Results
	Results of dense networks
	Results of sparse networks
	Results of heat maps

	Conclusion and future direction
	Code availability
	References

