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Abstract The success of deep learning, a subfield of

Artificial Intelligence technologies in the field of image

analysis and computer can be leveraged for building better

decision support systems for clinical radiological settings.

Detecting and segmenting tumorous tissues in brain region

using deep learning and artificial intelligence is one such

scenario, where radiologists can benefit from the computer

based second opinion or decision support, for detecting the

severity of disease, and survival of the subject with an

accurate and timely clinical diagnosis. Gliomas are the

aggressive form of brain tumors having irregular shape and

ambiguous boundaries, making them one of the hardest

tumors to detect, and often require a combined analysis of

different types of radiological scans to make an accurate

detection. In this paper, we present a fully automatic deep

learning method for brain tumor segmentation in multi-

modal multi-contrast magnetic resonance image scans. The

proposed approach is based on light weight UNET archi-

tecture, consisting of a multimodal CNN encoder-decoder

based computational model. Using the publicly available

Brain Tumor Segmentation (BraTS) Challenge 2018 data-

set, available from the Medical Image Computing and

Computer Assisted Intervention (MICCAI) society, our

novel approach based on proposed light-weight UNet

model, with no data augmentation requirements and with-

out use of heavy computational resources, has resulted in

an improved performance, as compared to the previous

models in the challenge task that used heavy computational

architectures and resources and with different data aug-

mentation approaches. This makes the model proposed in

this work more suitable for remote, extreme and low

resource health care settings.

Keywords AI � Fusion � Deep learning � Multimodal �
Medical � Segmentation

1 Introduction

Segmenting brain tumours automatically from 3D mag-

netic resonance images (MRIs) is necessary for diagnosis,

monitoring and treatment planning of the disease. Manual

segmentation and delineation methods done in clinical

settings require expert anatomical knowledge, and are time

consuming, expensive and prone to human errors. Auto-

matic computer based semantic segmentation approached

for tumor subregion segmentation from 3D MRIs based on

deep learning architectures can lead to availability of

decision support tools that can help alleviate the manual

and laborious task of traditional segmentation approaches

in clinical settings, allowing radiologist to focus on more

important tasks of treatment planning and interventions for

the patients. Magnetic resonance imaging (MRI) is one of

the most efficient radiology scan technique for detecting

brain lesions and tumours, as it is an non-invasive detection

technique, and when used in conjunction with other sensor

modalities, such as computer tomography (CT), and posi-

tron emission tomography (PET), can provide better
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understanding of the lesion or tumour structure in the brain.

However, using several of these modalities concurrently

could be more expensive, and in some cases invasive (PET

for example). Therefore different MRI coils such T1, T1ce

(contrast enhanced), T2 and FLAIR (all being variants of

magnetic resonance imaging), can serve better for provid-

ing concurrent multimodal radiological imaging informa-

tion for analysis the deep and complex structure of the

lesions and tumours in the brain. These modalities (T1,

T1ce, T2 and FLAIR) capture brain images with varying

intensities, and can show different tissue contrasts through

different pulse sequences, and allow better visualization of

the regions of interest in the human brain. If some or all of

these MRI modalities (T1, T1ce, T2 and FLAIR) are

combined to produce multi-modal images, they can provide

better information about irregular shaped tumors and

lesions, which would have been difficult to localize with a

single modality. This multi-modal data, with modalities

including T1-weighted MRI (T1), T1-weighted MRI with

contrast enhancement (T1ce), T2-weighted MRI (T2) and

T2-weighted MRI with fluid attenuated inversion recovery

(T2-Flair) contain rich information for segmenting com-

plex irregular shaped structures and detect benign and

malignant tumours, and their severity, leading to improved

diagnosis in clinical settings. Rest of the paper is organized

as follows. Next section presents the background and

related work, and details of the proposed multimodal CNN

based 3D U-Net deep learning architecture in presented in

Section three. Experiment details are provided in section

four along with outcomes. The research presented in this

paper is concluded in section five. The conclusions include

a plan for further research.

2 Background and related work

One of the most promising industry currently for imple-

menting revolutionary data science solutions is medicine

and healthcare. Recently data science, machine learning

and AI approaches based on deep learning, radiological

imaging and natural language processing are growing very

fast. The area grew at an astronomical pace during the

Covid-19 pandemic, due the complex challenges associated

with disease, particularly the fast spread of different vari-

ants, low resource settings and availability of trained

workforce, and lack of efficient computer based decision

support technologies to assist the physicians. Recently,

several research works to address this short coming have

been addressed by several researchers [1–7]. As an old

adage goes, prevention is better than cure, and health care

systems based on some of these research works based on

AI can help in both prevention and cure, due to the ready

availability of these AI based health technologies. Having

this support can enable health care professionals to focus

on disease management and leave the job of running the

mathematical algorithms to AI. Also, for managing long

chronic side effects of Covid-19, and co-morbidities asso-

ciated with aggressive treatment regimens used during

pandemic. All this could be easily possible with AI as an

assistive technology, and the doctors could then focus on

working with the patients and focus on disease manage-

ment and control the after effects and side effects of

aggressive treatment regimen used to control the deadly

virus.

Medical images form a rich source of data for under-

standing the disease complexity, and when captured with

several radiological sensors, can contain a wealth of

information that can explain the patient health and disease

status. Medical images are often complex data sources and

require experts to unlock the mysterious information

embedded in the images, and to differentiate the healthy

tissue from diseased tissue. The first step is usually to

segment, or trace, important structures. Segmentation is the

most important step in medical image analysis, and one of

the biggest challenges facing researchers in the field of

medical imagin—and data science in general—how do we

define what is a ‘‘true’’ segmentation? It may appear as a

simple problem on the surface, but getting a ground truth,

or expert labels/annotation on which part of the tissue is

health and which part is diseased is easier said than done.

This is because, firstly, doctors are incredibly busy. Getting

an expert radiologist to trace out a few hundred (or even a

few dozen) scans is a big task. Secondly, if there are

multiple radiologists working on the same project, their

opinions differ. This is where AI can come to the rescue. If

we can build an AI based assistant, which is built using the

novel data science and machine learning algorithms and the

combined knowledge of several experts as the ground truth,

it can be used as a support tool by anyone in the health care

settings. The grand challenge tasks along with large data

sets along with ground truths currently being facilitated by

MICCAI society [12], is one of the ways that Artificial

Intelligence (AI) can help provide radiology support to

doctors and physicians in enhancing the state of the are in

AI enabled health care.

This article proposes a novel method for automatic

segmentation of tumorous tissue regions in the brain is

proposed, using a multimodal CNN based 3D U-Net deep

learning architecture, for segmentation of necrotic tumours

(NCR), enhancing and non-enhancing tumor (ET/NET),

edematous tissue (ET) and the whole tumor (WT) region.

The performance of the proposed approach was evaluated

on a publicly available benchmark MICCAI Brain Tumor

Segmentation (BraTS) 2018 challenge dataset [12] and has

resulted in exciting outcomes relevant to tumorous tissue

segmentation performance, when compared to other AI
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based approaches using the same dataset and same task, as

reported in challenge competition [8–10]. While the

method reported in the top performing method, and chal-

lenge winner, was based on an encoder-decoder architec-

ture for tumor subregion segmentation from 3D MRIs, and

used an approach based on variational auto-encoder strat-

egy to address the limited training data size. The second

place winning solution [8], used a generic U-net based

architecture with autoencoder regularization, and showed

that it is enough to achieve the competitive performance.

However, in this method additional training data sourced

from their own institution was used by the authors (not

publicly available). The third place winning model [9], was

based on DenseNet architecture [11] with dilated convo-

lutions embedded in a U-net-like network. Another third

place winning method [10], was based on multi-scale

context information modelling approach with an ensemble

of different networks, and involves cascade segmentation

of three tumor subregions, and an attention block with

shared backbone weights. While each of these top per-

forming methods are based on computationally heavy

architectures requiring data augmentation, additional pri-

vate data or ensemble of several networks, we propose a

lightweight computation model based on minimalist UNET

architecture, and rely on leveraging the complementarity

and full multimodality of heterogenous data sources, in

terms of using all four modalities T1, T1Gd, T2 and

FLAIR, and achieved an improved performance without

any additional data augmentation, computational heavy

architectures or ensemble models, or use of private (not

publicly available data sources).

Compared to the related works and previously proposed

models, our light-weight UNET model uses all MRI

modalities, with flattening of 3D volumes into two

dimensional images cropped to 128 9 128, and a patch

size ranging from 64 9 64 at the first CNN and batch

normalization stage through to 1024 9 1024 patches at the

5th CNN stage of the encoder leg in the UNET model. This

is followed by a stack of 5 deconvolution stages and con-

catenation with encode part to complete the decoder leg of

the UNET model, This light-weight architecture results in

the improved model performance. Also, there was no

additional training data used for model building, and only

the provided training set was used, nor did we use any data

augmentation, a traditional practice in most of the previ-

ously proposed deep learning models, making it an energy

efficient, low footprint deep learning model, suitable for

low resource, extreme environment settings, and can be

deployed on mobile, edge devices.

3 Proposed multimodal deep learning scheme

Our approach is based on fusion of multiple MRI modal-

ities, including FLAIR, T1, TGd, and T2 MRI modalities

and a novel light-weight deep learning architecture, for

multi-class segmentation of different tumor tissues

including necrotic tumor region (NCR), non-enhancing and

enhancing tumor regions (ET/NET), Edematous tissue

(ED) and whole tumor tissue (WT), using decomposition of

3D volumes into one dimensional tensors, being propa-

gated between CNN layers, making them computationally

light in the feature extraction and for processing of multiple

input modalities, and segmenting the regions correspond-

ing to each class. Figure 1 shows the method, and the

proposed low-resource and light weight CNN based 3D

U-Net deep learning model.

The proposed CNN based 3D U-Net architecture con-

sists of a 5 9 5 down sampling and an up-sampling pro-

cessing stack, as in the traditional 2D U-Net architecture

[7]. We resized the 3D input image volumes into

128 9 128 size image vectors from all four modalities. The

ReLU activation was used for all layers, except for the final

layer, where sigmoid activation was used, and a batch

normalization step was used for regularization after each

convolution layer [8]. For training the CNN 3D U-Net

model, batch size of 64, and a learning rate of 10–4 for the

adaptive moment estimation (ADAM) optimizer was used,

with dice coefficient loss minimization as the optimization

objective, and dice-coefficient as the performance metric

for assessing the performance of the model. This led to a

total of 31,055,873 parameters, with 31,044,097 Trainable

params and 11,776 Non-trainable params. Figure 2 show

the details of the model layers and organization.

The technology stack used for conducting the experi-

ments included free tier of Google co-laboratory which

uses a GPU: 1xTesla K80, compute 3.7, with 2496 CUDA

cores, 12 GB GDDR5 VRAM, and a CPU: 1xsingle core

hyper threaded Xeon Processors @2.3 GHz i.e. (1 core, 2

threads). Moreover, it must be noted that there was no data

augmentation step, and only 60% of the data was used for

model building, 20% for validation and hyper-parameter

tuning, and 20% of the data as the independent test set,

making it a very efficient model architecture suitable for

low-resource settings.

The details of the processing steps for multi-class seg-

mentation from different modalities of input image vol-

umes is outlined below:

• Image pre-processing:

This step involved 2D patch extraction from 3D

volumes, 2D convolution, batch normalization, max

pooling during down-sampling/decoding leg and con-

catenation of residual features steps from down
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sampling leg in the up-sampling/encoding leg. The

MRI volumes corresponding to modalities (T1, T1-

post, T2, FLAIR) were processing with intensity

normalization step to have zero mean and unit variance.

• Multi-class segmentation:

The multiclass segmentation task involved segmenting

the whole tumor region (WT), necrotic/non-enhancing

tumor core (NCR/NET), peri-tumoral edema (ED), and

enhancing tumor (ET) by combining all 4 MRI

modality images. This step involved downsampling of

pre-processed patches from the training set to isotropic

voxels of 2 mm size. By using the images from all 4

modalities (T1, Tgd, T2 and FLAIR), a U-Net model

was built, and network converges to a WT (Whole

Tumor) probability map at 2 mm resolution. This is

then thresholded further and up-sampled to 1 mm

resolution using naı̈ve nearest-neighbour interpolation,

to obtain separate label maps for each class.

• Post-processing step:

The post-processing requirements with the CNN based

U-Net architecture was minimal, as the model can learn

the label maps without any need for post-processing,

for segmenting different tumor tissues corresponding to

each class.

4 Experimental results and discussion

The dataset used for model building and evaluation com-

prised of LGG (Low Grade Glioma) subset of the BraTS

2018 challenge dataset. This subset contained data from 65

subjects, with each subject data containing 3 dimensional

volumes of image data from FLAIR, T1, T1Gd, T2 MRI

modalities, as well as the ground truth slices of size

155 9 240 9 240(155 slices of 240 9 240 images for

each modality. Figure 2 shows the 3D volume for one of

the subject in the data set, in terms of axial, coronal and

sagittal plane visualization, the multimodal image slices

corresponding to FLAIR, T1Gd, T1, and T2 modalities,

and segmentation ground truth/label maps for each of the

classes and overlay of segmentation map on the training

image for a subject.

The model building stage involved resizing of images to

128 9 128, with a data split of 60% training set, and 40%

validation and test set (20% validation, and 20% test set)

from a total of 4550 images, with 3185 images used for

training, 1365 images for validation, and 1365 images for

test set with each subset comprising data corresponding to

different subjects. The hyperparameters used for training

involved a batch size of 32, with 30 epochs, and ADAM

optimizer with dice loss as optimization function, and dice

coefficient as the performance metric (since dice

Fig. 1 The proposed light weight CNN 3D U-Net model
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coefficient is a common metric used to assess the seg-

mentation performance as compared to the classification

accuracy).

It must be noted, that there was no data augmentation

done, and to the best of our knowledge, this is the most

light-weight deep learning model for this problem, with

minimal overhead on computational resources require-

ments, as compared to other methods proposed in litera-

ture, and relies entirely on the power of light weight CNN

based 3D U-Net model proposed in this paper, for learning

the feature representations for pixel segmentation task.

Figure 3 shows the quantitative performance of the model

for segmentation of each class [enhancing tumor (ET),

whole tumor (WT) and tumor core (TC)], in terms of

training and validation dice coefficient and dice loss for 30

epochs. Tables 1 and 2 show the validation and indepen-

dent test set performances and compares with the previous

proposed three top performing challenge participants’

methods. The independent test set performance for our

method, was superior, with a dice coefficient of 0.9385

(* 94%), and dice loss of 0.0614 (* 6%). Figurew 4, 5, 6

and 7 show the qualitative assessment in terms of visual-

ization of the ground truth vs. predicted segmentation

labels for each class (ET, WT, and TC) for training set

(label 1) in Fig. 4, and validation and independent test set

performance for each label in Figs. 5, 6 and 7.

5 Conclusion and further plan

A novel low-resource and light weight CNN based 3D

U-Net architecture is proposed in this work for multi-class

tumor tissue segmentation. The proposed approach is a

light weight deep learning model requiring minimal com-

putational resources as compared to traditional large deep

learning architectures proposed for this problem in earlier

work. The fully automated pipeline with a stack of 5-CNN

down-sampling/decoding stages and 5-CNN up-sampling/

encoding stages of a UNet architecture along with multi-

modal inputs corresponding to Flair, T1Gd, T1 and T2

modalities, turns out to be a powerful architecture, does not

rely on intensive data augmentation as prevalent in other

models proposed for this task in the literature, and results

in improved performance as compared to previous other

participating teams in the challenge, making it suitable for

low resource, remote and extreme environment settings.

Further work will focus towards developing sparse data

models built with small dataset for segmentation of other

Fig. 2 3D image volumes, MRI

image data slices for each

modality, and segmentation

label maps/ground truth
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pathologies based on similar medical imaging data, which

is a requirement for low resource settings with limited

labelled data availability, lack of appropriate deep learning

models for imbalanced class distributions, and reliance on

heavy computational resource requirements, which had

been the focus of the research community in this area so

far.

Fig. 3 Proposed segmentation model performance (dice coefficient and dice loss) for label 1 [enhancing tumor (ET)], label 2 (whole tumor), and

label 3 (tumor core)

Table 1 Validation set

quantitative performance

comparison (dice coefficient

and dice loss) for multiple

classes (ET, WT, TC)

Segmentation method Performance metric 1

Dice coefficient

Performance metric 2

Dice loss

ET WT TC ET WT TC

Our method 0.8233 0.9337 0.8695 0.021 0.00914 0.0151

Method 1 (top ranked) [8] 0.7664 0.9100 0.8154 0.029 0.0603 0.0508

Method 2 (2nd ranked) [9] 0.7788 0.8781 0.8062 0.032 0.0612 0.0577

Method 13 (3rd ranked) [10] 0.8173 0.9068 0.8602 0.034 0.0687 0.0586

Fig. 4 Qualitative performance

comparison (predicted vs.

ground truth segmentation

maps) for training set [label

1/ET (enhancing tumor)]
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Table 2 Test set quantitative

performance comparison (dice

coefficient and dice loss) for

multiple classes (ET, WT, TC)

Segmentation method Performance metric 1

Dice coefficient

Performance metric 2

Dice loss

ET WT TC ET WT TC

Our method 0.8422 0.9412 0.8988 0.022 0.00913 0.0152

Method 1 (top ranked) [8] 0.7464 0.9010 0.8099 0.031 0.0692 0.0523

Method 2 (2nd ranked) [9] 0.7081 0.8892 0.8367 0.034 0.0645 0.0599

Method 13 (3rd ranked) [10] 0.8243 0.9001 0.8403 0.0331 0.0615 0.0525

Fig. 5 Qualitative performance

comparison (predicted vs.

ground truth segmentation

maps) for validation set (top)

and test set [bottom (label

1/ET)]
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Fig. 6 Qualitative performance

comparison (predicted vs.

ground truth segmentation

maps) for validation set (top)

and test set [bottom (label

2/WT)]

Fig. 7 Qualitative performance

comparison (predicted vs.

ground truth segmentation

maps) for validation set (top)

and test set [bottom (label

3/TC)]
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