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Abstract
This paper deals with the asymptotic behavior of solutions for the diffusive epidemic
model with logistic growth. In the first part, we consider the initial boundary value
problem on the bounded domain and derive the stabilization of the solutions of the
reaction–diffusion system to a constant equilibrium. In the second part, we consider
the initial value problem on R, and derive the stability of forced waves under certain
perturbations of a class of initial data.
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1 Introduction

In epidemiology, one of the most important questions is whether a disease spreads.
There are two typical classical epidemiology models, namely, the classical Kermack–
McKendrick model and the so-called endemic model (cf. [9, 11]). They are differen-
tiated by whether the vital dynamics (births and deaths) are taken into account. The
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spread of infectious diseases in populations has been studied extensively. We refer the
reader to, for example, [3, 9, 15] and the references therein.

We consider the following susceptible-infected-removed model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

St = dS�S − βSI + r S

(

1 − S

K

)

, x ∈ �, t > 0,

It = dI�I + βSI − λI , x ∈ �, t > 0,

Rt = dR�R + σ I − μR, x ∈ �, t > 0,
∂S

∂ν
= ∂ I

∂ν
= ∂R

∂ν
= 0, x ∈ ∂�, t > 0,

(1.1)

where � ⊂ R
N (N ∈ N) is a bounded domain with smooth boundary ∂�, ν denotes

the outward normal vector to ∂�. The parameters dS, dI , dR, K , r , β, λ, σ, μ are all
positive constants, in which dS, dI , dR are the diffusion rates of susceptible, infected
and recovered individuals, respectively; K represents the carrying capacity of sus-
ceptible population; r is the intrinsic growth rate of susceptible population; β is the
infective transmission rate; λ is the sum of the death rate and the recovery rate; σ is
the natural recovery rate of infected population; μ represents the natural death rate.
Furthermore, S0, I0 ∈ C(�) with S0, I0 ≥ 0. The unknown functions S(x, t), I (x, t)
and R(x, t) represent the number of susceptible-infected-removed, respectively, at
position x and time t .

Note that the simple model, the Kermack–McKendrick model in [11], is obtained
by regarding r = 0 and the so-called endemic model in [9] is obtained by regarding
K = ∞ in (1.1). It is natural to assume that the population of susceptible satisfies the
logistic type equation when there are no infected populations. This leads us to consider
the Eq. (1.1). See also [2, 4, 12] for this type of model.

Since the component R(x, t) does not appear in the first two equations, we omit
the third equation and focus on the following diffusive SI epidemic model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

St = dS�S − βSI + r S

(

1 − S

K

)

, x ∈ �, t > 0,

It = dI�I + βSI − λI , x ∈ �, t > 0,
∂S

∂ν
= ∂ I

∂ν
= 0, x ∈ ∂�, t > 0,

S(x, 0) = S0(x), I (x, 0) = I0(x), x ∈ �.

(1.2)

The first purpose of this paper is to establish global asymptotic stability of constant
equilibria in this model. The theorem reads as follows.

Theorem 1.1 Suppose that S0, I0 ∈ C(�̄), S0, I0 ≥ 0 and S0, I0 �≡ 0.

(1) Let R0 = Kβ
λ

≤ 1. Then the global classical solution (S, I ) of (1.2) fulfills

(S(·, t), I (·, t)) → (K , 0) in L∞(�) × L∞(�)

as t → ∞.
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(2) Let R0 = Kβ
λ

> 1. Then the global classical solution (S, I ) of (1.2) fulfills

(S(·, t), I (·, t)) → (S∗, I ∗) in L∞(�) × L∞(�)

as t → ∞, where

S∗ := λ

β
, I ∗ := r

β

(

1 − λ

Kβ

)

. (1.3)

The main idea of the proof of Theorem 1.1 is to find a suitable Lyapunov functional
for the reaction–diffusion system (1.2) from a Lyapunov functional of the correspond-
ing kinetic system:

⎧
⎨

⎩

ds
dt (t) = −βs(t)i(t) + rs(t)

(

1 − s(t)

K

)

, t ∈ R,

di
dt (t) = βs(t)i(t) − λi(t), t ∈ R.

(1.4)

For a reaction–diffusion system (1.2) on a bounded domainwith zeroNeumann bound-
ary condition, taking the integral of a Lyapunov functional for the kinetic system (1.4)
over the spatial domain yields a Lyapunov functional of the reaction–diffusion sys-
tem (1.2). See also [2, 4, 5, 12] for a similar calculation. Thus the typical Lyapunov
functionals of (1.2) are

V (S(·, t), I (·, t)) :=
∫

�

K L

(
S(x, t)

K

)

dx +
∫

�

I (x, t) dx,
Kβ

λ
≤ 1,

W (S(·, t), I (·, t)) :=
∫

�

S∗L
(
S(x, t)

S∗

)

dx +
∫

�

I ∗L
(
I (x, t)

I ∗

)

dx,
Kβ

λ
> 1,

where

L(z) := z − 1 − ln(z), z > 0. (1.5)

In order to apply the standard theory of the dynamical system, the trajectory of the
solution must be compact in a suitable function space, but this is not trivial for our
problem (1.2).

To clarify the technical difficulty of the problem, we shall compare (1.2) with
the related SI epidemic model with saturated incidence. The initial boundary value
problem for the diffusive SI epidemic model with saturated incidence and logistic
growth

St = dS�S − βSI

1 + α I
+ r S

(

1 − S

K

)

, It = dI�I + βSI

1 + α I
− λI ,

is studied by [2, 4], where α > 0 measures the saturation level [3, 15]. Their analysis
of the global asymptotic stability of the constant equilibria relies on the global bound-
edness of the infective population [4, Proposition 2.2], which is guaranteed by the
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condition α > 0 together with a comparison principle for a scalar reaction–diffusion
equation. On the other hand, when α = 0, it is impossible to derive the global bound-
edness of the infective population by the same comparison argument, which makes
the problem involved. To overcome this difficulty, we transform (1.2) into the integral
equation and apply the time exponential decay of the fundamental solution. Note that
a similar result like Theorem 1.1 is obtained in [12] for a little different equation. We
employ their technique to obtain our results.

Nowwe enter into the second part of this paper. In epidemiology, another important
question is whether a disease propagates. The study of traveling waves in reaction–
diffusion systems provides important insight into the spatial patterns of invading
diseases.Herewe consider the initial value problemof the following reaction–diffusion
system on a line:

⎧
⎪⎪⎨

⎪⎪⎩

St = dSSxx − βSI + r S

(

1 − S

K

)

, x ∈ R, t > 0,

It = dI Ixx + βSI − λI , x ∈ R, t > 0,

S(x, 0) = S0(x), I (x, 0) = I0(x), x ∈ R.

(1.6)

A traveling wave of (1.6) connecting (S∗, I ∗) and (K , 0) is a solution of the form
(S, I )(x, t) = (φ,ψ)(x − ct) for some constant c ∈ R, where a vector-valued wave
profile (φ,ψ) satisfies (φ,ψ)(−∞) = (S∗, I ∗) and (φ,ψ)(∞) = (K , 0). Then, the
wave profiles {φ,ψ} satisfy

⎧
⎪⎨

⎪⎩

dSφ′′ + cφ′ − βφψ + rφ (1 − φ/K ) = 0, z ∈ R,

dIψ ′′
2 + cψ ′ + βφψ − λψ = 0, z ∈ R,

(φ, ψ)(−∞) = (S∗, I ∗), (φ, ψ)(∞) = (K , 0).

(1.7)

The existence of the solution to the problem (1.7) is discussed in [6, 10].

Theorem 1.2 [6, 10] For each c ≥ 2
√
dI (βK − λ) the system (1.6) has a positive

traveling wave solution of the form (S, I )(x, t) = (φ,ψ)(x − ct), where (φ,ψ)

satisfies (1.7).

Let (S(x, t), I (x, t)) be a positive solution of (1.6). Then, using the moving coor-
dinate z = x − ct, (S, I ) = (S, I )(z, t) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

St = dSSzz + cSz − βSI + r S

(

1 − S

K

)

, z ∈ R, t > 0,

It = dI Izz + cIz + βSI − λI , z ∈ R, t > 0,

S(z, 0) = S0(z), I (z, 0) = I0(z), z ∈ R.

(1.8)

Note that a wave profile (φ,ψ) is a stationary solution of (1.8).
To prove the solution (S, I )(x, t) of the problem (1.6) converges to the traveling

wave (φ,ψ)(x − ct), we shall prove that the solution (S, I )(z, t) of the problem (1.8)
converges to (φ,ψ)(z).
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Now, we state the theorem on the asymptotic stability for traveling waves in the
corresponding diffusive SI model under certain perturbations of initial data.

Theorem 1.3 Assume dS = dI = 1. Suppose βK ≥ λ + r and c ≥ c∗ = 2
√

βK − λ.

Let (S, I ) be a solution of system (1.8) with positive initial data (S0, I0) such that

eμz
{

φL

(
S0
φ

)

+ ψL

(
I0
ψ

)}

∈ L1(R),

where μ := (c − √
c2 − 4(βK − λ))/2, and L(·) is a function defined by (1.5). Then

(S, I )(z, t) converges to (φ,ψ)(z) as t → +∞ locally uniformly for z in R, where
{c, (φ, ψ)} is a traveling wave obtained in [6, 10].

In most of the stability analysis, the researchers analyze the spectrum of the associ-
ated linearized operator at a given traveling wave. This approach has been widely used
in the literature (see, e.g., [1, 13, 14]). However, it requires a heavy and complicated
spectral analysis of the related operator. We managed to simplify this complicated
approach to an elementary way from the point of a relative entropy defined by (3.1).
The key significant idea is measuring the distance between the solution and a trav-
eling wave solution through relative entropy, the analysis reduces to that of a linear
heat equation, which makes the stability analysis elementary. The idea of the proof
is borrowed from the general theory of [8, Theorem 1.1]. See also [7] for another
application.

For the existence of traveling waves in [6, 10], the equal diffusivities condition
is not required here. However, our method of deriving the convergence to traveling
waves requires the equal diffusivities condition dS = dI .

The rest of this paper is organized as follows. In Sect. 2, we give the proof of
Theorem 1.1. Then the proof of Theorem 1.3 is given in Sect. 3.

2 Global asymptotic stability of constant equilibria

As a consequence of the standard well-posedness theory and the maximum principle,
we first obtain the positivity of the solutions for the system (1.2).

Lemma 2.1 Let S0, I0 ∈ C(�̄), S0, I0 ≥ 0 and S0, I0 �≡ 0. Let Tmax ∈ (0,∞] be the
maximum existence time of a classical solution (S, I ) ∈ C(�̄×[0, Tmax))

2∩C2,1(�×
(0, Tmax))

2. Then S(x, t), I (x, t) > 0 on � × (0, Tmax). In addition, if Tmax < ∞,

then

lim
t→Tmax

(‖S(·, t)‖L∞ + ‖I (·, t)‖L∞) = ∞.

Proof The claim can be obtained as in [2, Section 2], so we omit the proof here. ��
The next Lemma gives an L∞ bound for the component S(·, t).
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Lemma 2.2 There exists M1 > 0 such that

‖S(·, t)‖L∞ ≤ M1 for all t ∈ [0, Tmax).

Proof Define a function Ŝ(t) by a solution of

Ŝ′(t) = r Ŝ(t)
(
1 − Ŝ(t)

K

)
, t > 0, Ŝ(0) = ‖S0‖L∞ .

By the comparison principle, we conclude

S(x, t) ≤ Ŝ(t) ≤ max{‖S0‖L∞ , K } =: M1, x ∈ �̄, t ∈ [0, Tmax).

This proves the lemma. ��
Next, we establish an L∞ bound for the component I (·, t).

Proposition 2.3 The system (1.2) admits a global in time solution with Tmax = ∞.

Furthermore, there exists a constant C > 0 such that

‖S(·, t)‖L∞ + ‖I (·, t)‖L∞ ≤ C for all t ∈ [0,∞).

Proof From (1.2), we have

(S + I )t = dS�S + dI�I + r S

(

1 − S

K

)

− λI

≤ dS�S + dI�I + r S − λI

≤ dS�S + dI�I + (r + λ)M1 − λ(S + I ).

Now integrating this inequality on �, we obtain

d

dt

∫

�

(S + I )(x, t) dx ≤ (r + λ)M1|�| − λ

∫

�

(S + I )(x, t) dx,

which implies

∫

�

(S + I )(x, t) dx ≤ max

{∫

�

(S0 + I0)(x) dx,
(r + λ)M1|�|

λ

}

.

In particular,

∫

�

I (x, t) dx ≤ max

{∫

�

(S0 + I0)(x) dx,
(r + λ)M1|�|

λ

}

=: M2, t ≥ 0.

(2.1)
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Next, we improve the L1 bound to an L∞ bound for the component I (·, t). In the
following, the operator � is provided with the Neumann boundary condition. Let
et(dI�−λ) be the Neumann heat semigroup in �. Then the function I (x, t) satisfies

I (·, t) = et(dI�−λ) I0 +
∫ t

0
e(t−s)(dI�−λ)βS(·, s)I (·, s) ds, t ≥ 0.

It is known that there exists C > 0 such that

‖et(dI�−λ)‖L(L∞,L∞) ≤ Ce−λt , ‖et(dI�−λ)‖L(L1,L∞) ≤ Ce−λt , t ≥ 0.

See [12, Appendix]. Thus we see that

‖I (·, t)‖L∞ ≤ Ce−λt‖I0‖L∞ +
∫ t

0
‖e(t−s)(dI�−λ)βS(·, s)I (·, s)‖L∞ ds

≤ Ce−λt‖I0‖L∞ + C
∫ t

0
e−λ(t−s)‖βS(·, s)I (·, s)‖L1 ds

≤ Ce−λt‖I0‖L∞ + Cβ sup
t≥0

‖S(·, s)‖L∞
∫ t

0
e−λ(t−s)‖I (·, s)‖L1 ds

≤ Ce−λt‖I0‖L∞ + Cβ sup
t≥0

‖S(·, s)‖L∞ sup
t≥0

‖I (·, s)‖L1

∫ t

0
e−λ(t−s) ds.

Now we apply Lemma 2.2 and (2.1) to obtain

‖I (·, t)‖L∞ ≤ Ce−λt‖I0‖L∞ + CβM1M2
1 − e−λt

λ
.

Therefore, the proposition is proved. ��
Wewill now prove the global stability of the equilibrium (K , 0) for the case R0 ≤ 1.

Proposition 2.4 Let R0 ≤ 1. Then

lim
t→∞(‖S(·, t) − K‖L∞ + ‖I (·, t)‖L∞) = 0.

Proof By a simple calculation,

d

dt
V (S(·, t), I (·, t)) =

∫

�

(

1 − K

S

)

St +
∫

�

It

=
∫

�

(

1 − K

S

) [

dS�S − βSI + r S

(

1 − S

K

)]

+
∫

�

(βSI − λI )

= −KdS

∫

�

|∇S|2
S2

− r

K

∫

�

(K − S)2 − (λ − Kβ)

∫

�

I . (2.2)
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Since R0 = Kβ/λ ≤ 1 implies λ − Kβ ≥ 0, we have

d

dt
V (S(·, t), I (·, t)) ≤ 0.

Note that {(K , 0)} is the largest positive invariant set included in {(S, I ) | dV
dt (S, I ) =

0}. By the standard theory of Lyapunov functional with the LaSalle’s invariance prin-
ciple together with (2.2) and the standard parabolic regularity theory, we conclude that
(S(·, t), I (·, t)) → (K , 0) as t → ∞. This ends the proof of the proposition. ��

Similarly, we can obtain the following global stability of the equilibrium (S∗, I ∗)
for the case when R0 > 1.

Proposition 2.5 Let R0 > 1. Then

lim
t→∞(‖S(·, t) − S∗‖L∞ + ‖I (·, t) − I ∗‖L∞) = 0.

Proof By a simple calculation, we get

d

dt
W (S(·, t), I (·, t)) =

∫

�

(

1 − S∗

S

)

St +
∫

�

(

1 − I ∗

I

)

It

=
∫

�

(

1 − S∗

S

) [

dS�S − βSI + r S

(

1 − S

K

)]

+
∫

�

(

1 − I ∗

I

)
[
dI�I + βSI − λI

]

= −S∗dS
∫

�

|∇S|2
S2

− I ∗dI
∫

�

|∇ I |2
I 2

+
∫

�

[
βS∗ I − r

K
(S − S∗)(S − K )

]

+
∫

�

[−βSI ∗ − λI + λI ∗] .

Since the definition of S∗ in (1.3) implies βS∗ = λ, it follows that

d

dt
W (S(·, t), I (·, t)) = −S∗dS

∫

�

|∇S|2
S2

− I ∗dI
∫

�

|∇ I |2
I 2

−
∫

�

r

K
(S − S∗)(S − K ) −

∫

�

β I ∗(S − S∗).
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Moreover, the definitions of S∗ and I ∗ in (1.3) yieldβ I ∗ = (r/K )(K−S∗).Therefore,

d

dt
W (S(·, t), I (·, t)) = −S∗dS

∫

�

|∇S|2
S2

− I ∗dI
∫

�

|∇ I |2
I 2

−
∫

�

r

K
(S − S∗)(S − K ) −

∫

�

r

K
(S − S∗)(K − S∗)

= −S∗dS
∫

�

|∇S|2
S2

− I ∗dI
∫

�

|∇ I |2
I 2

− r

K

∫

�

(S − S∗)2 ≤ 0.

Note that {(S∗, I ∗)} is the largest positive invariant set included in {(S, I ) |
dW
dt (S, I ) = 0}. The result can be proved by a similar argument to that of the proof of
Proposition 2.4. See [5, Theorem 3.1] or [12, Theorem 3.2] for the detail. ��
Proof of Theorem 1.1 We only need to collect Propositions 2.4 and 2.5. ��

3 Stability of traveling wave

In this section, we prove Theorem 1.3. We apply the general theory of [8] to prove
Theorem 1.3. Here we write the detailed calculation for the reader’s convenience.

Proof First, we check that the solution is global in time and uniformly bounded. The
function U = S + I satisfies

Ut ≤ Uzz + cUz + r S
(
1 − S

K

)
− λI ≤ Uzz + cUz + (r + λ)S − λU

≤ Uzz + cUz + (r + λ)M1 − λU .

Hence by comparing the solution with the solution of the following ordinary differ-
ential equation

d

dt
P(t) = (r + λ)M1 − λP(t), P(0) = max

z∈R U (z, 0),

we obtain U (z, t) ≤ P(t) for all t ≥ 0. It is easy to check that P(t) is uniformly
bounded as t → ∞. Therefore, the solution (S, I ) exists globally in time. Define

F(z, t) := φ(z)L

(
S(z, t)

φ(z)

)

+ ψ(z)L

(
I (z, t)

ψ(z)

)

. (3.1)

By a simple calculation, we have

Ft = St

(

1 − φ

S

)

+ It

(

1 − ψ

I

)

,

Fz =
{

Sz

(

1 − φ

S

)

− φ′ ln S

φ

}

+
{

Iz

(

1 − ψ

I

)

− ψ ′ ln I

ψ

}

,
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and

Fzz =
{

Szz

(

1 − φ

S

)

− φ′′ ln S

φ
+

[√
φSz
S

− φ′
√

φ

]2
}

+
{

Izz

(

1 − ψ

I

)

− ψ ′′ ln I

ψ
+

[√
ψ Iz
I

− ψ ′
√

ψ

]2
}

.

Thus, by substituting (1.8), we obtain

Ft − Fzz − cFz ≤ (S − φ)
{

− β I + r

(

1 − S

K

) }
+ (I − ψ) (βS − λ)

+
[

βφψ − rφ

(

1 − φ

K

)]

ln
S

φ
+ [−βφψ + λψ] ln I

ψ

= (S − φ)
{

− β I + r

(

1 − S

K

)}
+ (I − ψ) (βS − λ)

+
[

βψ − r

(

1 − φ

K

)] (

(S − φ) − φL

(
S

φ

))

+ (−βφ + λ)

(

(I − ψ) − ψL

(
I

ψ

))

= − r

K
(S − φ)2 +

[

r

(

1 − φ

K

)

− βψ

]

φL

(
S

φ

)

+ (βφ − λ)ψL

(
I

ψ

)

.

From the construction of the traveling wave, it is known that φ(z) ≤ K holds for all
z ∈ R (see [6, Lemma 15]). Thus

Ft − Fzz − cFz ≤ − r

K
(S − φ)2 + rφL

(
S

φ

)

+ (βK − λ)ψL

(
I

ψ

)

.

Now we assume βK ≥ λ + r , then we conclude

Ft − Fzz − cFz ≤ (βK − λ)F − r

K
(S − φ)2 ≤ (βK − λ)F . (3.2)

Let us define

G(z, t) := eμz F(z, t), μ := c − √
c2 − 4(βK − λ)

2
.

Then the (3.2) is transformed to the equation

Gt ≤ Gzz + (c − 2μ)Gz .
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Hence we obtain

0 ≤ G(z, t) ≤ 1√
4π t

∫

R
exp

(
− (z+(c−2μ)t−y)2

4t

)
G(y, 0) dy

≤ ‖G(·,0)‖L1(R)√
4π t

→ 0

uniformly on R as t → ∞. Thus for any l > 0

lim
t→∞ ‖F(·, t)‖L∞(−l,l) = eμl lim

t→∞ ‖G(·, t)‖L∞(−l,l) = 0.

Hence the theorem is proved. ��
Remark 3.1 The boundedness of the solution to the Cauchy problem does not follow
immediatelywhen dS �= dI , sincewe can not apply the comparison argument as above.
We leave the problem of the uniform boundedness of the solution, and its convergence
to a traveling wave when dS �= dI , as an open problem.
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