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Abstract
The aim of this work is to prove the existence of a fundamental solution associated 
to the Kolmogorov equation Lu = f  in the dilation invariant case, with bounded 
measurable first order coefficients and bounded diffusion coefficients satisfying 
a sort of divergence free assumption. Finally, we prove Gaussian upper and lower 
bounds for the fundamental solution, and other related properties, under less restric-
tive assumptions on the coefficients.
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1 Introduction

The aim of this work is to prove the existence of a weak fundamental solution for a 
second order partial differential equation of Kolmogorov type with measurable coef-
ficients of the form
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where z = (x, t) = (x1,… , xN , t) ∈ ℝ
N+1 and 1 ≤ m0 ≤ N . In particular, the matri-

ces A0 = (aij(x, t))i,j=1,…,m0
 and B = (bij)i,j=1,…,N satisfy the following structural 

assumptions.

(H1) The matrix A0 is symmetric with real measurable entries, i.e. aij(x, t) = aji(x, t) , 
for every i, j = 1,… ,m0 . Moreover, there exist two positive constants � and Λ such 
that 

 for every (x, t) ∈ ℝ
N+1 and � ∈ ℝ

m0 . The matrix B has constant entries.

(H2) The principal part operator K  of L  is hypoelliptic, where K  is defined as 

 and it is dilation invariant with respect to the family of dilations (𝛿r)r>0 intro-
duced in (23).

Note that we allow operator L  to be strongly degenerate whenever m0 < N . However, 
it is known that the first order part of L  may induce a strong regularizing property. 
Indeed, under suitable assumptions on the matrix B, the operator K  is hypoelliptic, 
namely every distributional solution u to Ku = f  defined in some open set Ω ⊂ ℝ

N+1 
belongs to C∞(Ω) and it is a classical solution to Ku = f  , whenever f ∈ C∞(Ω) . We 
refer to Sect. 2 for further information on this matter. Eventually, we remark that when 
L  is uniformly parabolic (i.e. m0 = N and B ≡ � ), assumption (H2) is trivially satis-
fied. Indeed, in this case the principal part operator K  is simply the heat operator.

In order to expose our main results, we first need to introduce some preliminary 
notation. From now on, we consider the strip ST0T1 ∶= ℝ

N × (T0, T1) , and in accord-
ance with the scaling of the differential equation (see (23) below) we split the coordi-
nate x ∈ ℝ

N as

where every mj is a positive integer such that

(1)

Lu(x, t) ∶=

m0∑
i,j=1

�xi

(
aij(x, t)�xju(x, t)

)
+

m0∑
i=1

bi(x, t)�xiu(x, t)

+

N∑
i,j=1

bijxj�xiu(x, t) − �tu(x, t) + c(x, t)u(x, t) = 0,

�|�|2 ≤
m0∑
i,j=1

aij(x, t)�i�j ≤ Λ|�|2

Ku(x, t) ∶=

m0∑
i=1

�2
xi
u(x, t) +

N∑
i,j=1

bijxj�xiu(x, t) − �tu(x, t),

x =
(
x(0), x(1),… , x(�)

)
, x(j) ∈ ℝ

mj , j ∈ {0,… , �},

�∑
j=0

mj = N and N ≥ m0 ≥ m1 ≥ … ≥ m� ≥ 1.
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Thus, here and in the sequel we denote by

the gradient, the partial gradient in the first m0 components, the inner product and 
the divergence in ℝN , respectively. Moreover, we introduce the matrix

where aij , for every i, j = 1,… ,m0 , are the coefficients appearing in (1), while aij ≡ 0 
whenever i > m0 or j > m0 . Finally, we let

Now, we are in a position to rewrite the operator L  in the compact form

and we recall that its formal adjoint is defined as

where

We now introduce the natural framework for studying the weak regularity theory of 
solutions to Lu = 0 . We consider a domain Ω ⊂ ℝ

N+1 , where Ω = Ωm0
× ΩN−m0+1

 
with Ωm0

⊂ ℝ
m0 and ΩN−m0+1

⊂ ℝ
N−m0+1 . We denote by D(Ω) the set of C∞ func-

tions compactly supported in Ω and by D�(Ω) the set of distributions in Ω . From 
now on, H1

x(0)
 denotes the Sobolev space of functions u ∈ L2(Ωm0

) with distributional 
gradient Dm0

u lying in (L2(Ωm0
))m0 , i.e.

and we set

We let H1

c,x(0)
 denote the closure of C∞

c
(Ωm0

) in the norm of H1

x(0)
 and we recall that 

H1

c,x(0)
 is a reflexive Hilbert space and thus we may consider its dual space

D = (�x1 ,… , �xN ), Dm0
= (�x1 ,… , �xm0

), ⟨⋅, ⋅⟩, div,

A(x, t) =
(
aij(x, t)

)
1≤i,j≤N ,

(2)Y ∶=

N∑
i,j=1

bijxj�xiu(x, t) − �tu(x, t) and b ∶= (b1,… , bm0
, 0,… , 0).

Lu = div(ADu) + Yu + ⟨b,Du⟩ + cu

(3)
L

∗v(�, �) =

m0∑
i,j=1

��i

(
aij(�, �)��j v(�, �)

)
−

m0∑
i=1

��i(bi(�, �)v(�, �))

+ (c − Tr(B))v(�, �) + Y∗v(�, �)

Y∗v(�, �) ∶= −

N∑
i,j=1

bij�j��i v(�, �) + ��v(�, �).

H1

x(0)
∶=

{
u ∈ L2(Ωm0

) ∶ Dm0
u ∈ (L2(Ωm0

))m0

}
,

‖u‖2
H1

x(0)

∶= ‖u‖2
L2(Ωm0

)
+ ‖Dm0

u‖2
L2(Ωm0

)
.
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where the notation we consider is the classical one. Hence, from now on we denote 
by H−1

x(0)
 the dual of H1

c,x(0)
 acting on functions in H1

c,x(0)
 through the duality pairing 

⟨⋅, ⋅⟩H1

x(0)
,H1

c,x(0)
 . In a standard manner, see for instance [4, 5, 28], we let W(Ω) denote 

the closure of C∞
c
(Ω) in the norm

where the previous norm can explicitly be computed as follows:

where x = (x(1),… , x(�)) and x = (x(0), x) ∈ ℝ
N . In particular, W(Ω) is a Banach 

space, and it was firstly introduced in [4] as an extension of the natural functional 
setting that arises in the study of the weak regularity theory for the kinetic Kolmog-
orov–Fokker–Planck equation [5, 17–19]. For further properties of the space W , we 
refer the reader to [28], where the authors provide a characterization of this space in 
the kinetic Kolmogorov–Fokker–Planck setting, i.e. when � = 2 , m0 = m1 = d and 
N = m0 + m1.

Definition 1.1 A function u ∈ W(ST0T1) is a weak solution to (1) if for every non-
negative test function � ∈ D(ST0T1) , we have

In the sequel, we will also consider weak sub-solutions to (1), namely functions 
u ∈ W(ST0T1) that satisfy the following inequality

for every non-negative test function � ∈ D(ST0T1) . A function u is a weak super-
solution to (1) if −u is a sub-solution.

Finally, we recall the definition of weak fundamental solution for the operator 
L  , firstly introduced by Lanconelli et al. in [25, Definition 2.2].

Definition 1.2 A weak fundamental solution for L  is a continuous positive function 
ΓL = ΓL(x, t;�, �) defined for t ∈ ℝ , 0 ≤ T0 < 𝜏 < t < T1 and any x, � ∈ ℝ

N

such that: 

(
H1

c,x(0)

)∗

= H−1
x(0)

and
(
H−1

x(0)

)∗
= H1

c,x(0)
,

(4)‖u‖2
W(Ω)

= ‖u‖2
L2(ΩN−m0+1

;H1

x(0)
)
+ ‖Yu‖2

L2(ΩN−m0+1
;H−1

x(0)
)
,

‖u‖2
W(Ω)

= ∫ΩN−m0+1

‖u(⋅, x, t)‖2
H1

x(0)

dx dt + ∫ΩN−m0+1

‖Yu(⋅, x, t)‖2
H−1

x(0)

dx dt,

(5)∫ST0T1

−⟨ADu,D�⟩ − uY� + ⟨b,Du⟩� + cu� = 0.

(6)�ST0T1

−⟨ADu,D�⟩ − uY� + ⟨b,Du⟩� + cu� ≥ 0,
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1. ΓL = ΓL(⋅, ⋅;�, �) is a weak solution to Lu = 0 in ℝN × (�, T1) and ΓL = ΓL(x, t;⋅, ⋅) 
is a weak solution of L∗v = 0 in ℝN × (T0, t);

2. for any bounded function � ∈ C(ℝN) and any x, � ∈ ℝ
N we have 

 where the above equations need to be satisfied in the weak sense and 

Now, we are in a position to state our main results. Firstly, we give answer to [25, 
Remark 2.3] by proving the existence of a weak fundamental solution for the opera-
tor L  in the sense of Definition 1.2 under the following assumption for the coeffi-
cients of the operator L .

(H3A) The coefficients aij , bi , c ∈ L1(ST0T1) ∩ L∞
loc
(ST0T1) for i, j, k = 1,… ,N , i.e. 

for any given compact subset K of ST0T1 there exists a positive constant M such 
that 

 Moreover, the diffusion coefficients aij are such that 

where Aj

0
 denotes the jth-column of the matrix A0 introduced in assumption (H1).

Note that the diverge free assumption on the columns of the matrix A0 is required 
to address technical issues arising in the proof of the forthcoming Theorem 1.3. 
Indeed, the existence of the weak fundamental solution is achieved by combin-
ing a regularization procedure with a diagonal argument, that allows us to prove 
the existence of the fundamental solution by applying Theorem 2.5 to the con-
structed regularized operator L� under the assumption (C) listed in Sect. 2. It is 
our belief that this additional assumption can be dropped by considering more 
refined analytical techniques, such as the ones recently proposed in the pre-print 
[29] for the case of measurable in time and Hölder continuous in space diffusion 
coefficients. Lastly, we point out that it is possible to replace the diverge free 
assumption on the diffusion coefficients with the following, more restrictive, one: 
the coefficients aij are measurable, doubly (weakly) differentiable with respect to 

(7)

⎧⎪⎨⎪⎩

Lu(x, t) = 0 (x, t) ∈ ℝ
N × (𝜏, T1),

lim
(x, t) → (𝜉, 𝜏)

t > 𝜏

u(x, t) = 𝜑(𝜉) 𝜉 ∈ ℝ
N ,

⎧
⎪⎨⎪⎩

L
∗v(𝜉, 𝜏) = 0 (𝜉, 𝜏) ∈ ℝ

N × (T0, t),

lim
(𝜉, 𝜏) → (x, t)

t > 𝜏

v(𝜉, 𝜏) = 𝜑(x) x ∈ ℝ
N ,

u(x, t) ∶= ∫
ℝN

ΓL(x, t;�, �)�(�) d�, v(�, �) ∶= ∫
ℝN

ΓL(x, t;�, �)�(x) dx.

|aij(x, t)|, |bi(x, t)|, |c(x, t)|,≤ M, ∀(x, t) ∈ K, ∀i, j = 1,… ,N.

divA
j

0
= 0 ∀j = 1,… ,m0 in the distributional sense,



68 F. Anceschi, A. Rebucci 

1 3

the first m0 components and such that �2
lk
aij ∈ L∞

loc
(ST0T1) , for every l, k = 2,… ,m0 . 

Indeed, this last assumption is enough to ensure that also the first order deriva-
tives �kaij are Lipschitz continuous on ST0T1 , with a uniform modulus of continuity 
not depending on the set we are considering.

Theorem 1.3 (Existence of the weak fundamental solution) Let us consider operator 
L  under assumptions (H1)–(H2)–(H3A). Then there exists a fundamental solution 
ΓL of L  in the sense of Definition 1.2 and the following reproduction property holds. 
Indeed,

for every x, � ∈ ℝ
N and every t, � ∈ ℝ with 𝜏 < s < t such that �, t ∈ (T0, T1):

Moreover, the function ΓL∗(x, t;�, �) = ΓL(�, �;x, t) is the fundamental solution of L∗ 
and verifies the dual properties of this statement.

The existence of a classical fundamental solution is a problem that has been 
thoroughly addressed over the years. In particular, we refer to the works by Hör-
mander [20] and Kolmogorov [23] for the analysis of the case with constant, or 
smooth coefficients. Among others, we recall the paper [35] for the proof of the 
existence of a classical fundamental solution through the Levy parametrix method 
and we refer to the last part of Sect. 2 for further reference.

To our knowledge, Theorem  1.3 is the first existence result available for the 
weak fundamental solution to (1) in the sense of Definition  1.2. The proof we 
propose here is based on a limiting procedure combined with Schauder type esti-
mates and a diagonal argument. This procedure was firstly proposed in [3] to 
prove the existence of a classical fundamental solution when the coefficients of 
(1) are locally Hölder continuous. The main difficulties we encounter when adapt-
ing this argument to the weak case are given by the low regularity of the coeffi-
cients, hence a new regularizing procedure is introduced in Section 4.

We emphasize that the PDE approach adopted in this work improves the pre-
viously known results in that it allows us to consider differential operators with 
bounded measurable coefficients in both time and space, which is a milder 
assumption than the ones considered in the most recent literature. Indeed, on 
the one hand, in [9] the authors consider the case of bounded measurable time-
depending coefficients, with a proof that is based on explicit computations involv-
ing the fundamental solution. On the other hand, in [29] the case of Hölder con-
tinuous in space and bounded measurable in time coefficients is considered.

Secondly, we extend [25, Theorem  1.3] providing Gaussian upper and lower 
bounds for the weak fundamental solution Γ of L  under the following more gen-
eral assumption on the lower order coefficients b and c.

ΓL(x, t;�, �) = ∫
ℝN

ΓL(x, t;y, s) ΓL(y, s;�, �) dy.
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(H3B) The coefficients b ∈
(
L∞
loc
(ST0T1)

)m0 , c ∈ L
q

loc
(ST0T1) for some q >

Q+2

2
 . 

Moreover, c ≤ 0.

As far as we are concerned with Gaussian upper bounds for the fundamental solu-
tion Γ associated to L  with Hölder continuous coefficients, a first result dates 
back to [35], where the author proves Gaussian upper bounds depending on the 
Hölder norm of the coefficients a, b and c. Later on, Di Francesco and Pascucci 
[15], Di Francesco and Polidoro [16] prove upper and lower bounds for the clas-
sical fundamental solution, where also in this case the involved constants depend 
on the Hölder norm of the coefficients. A first result regarding Gaussian upper 
bounds independent of the Hölder norm of the coefficients is due to Pascucci and 
Polidoro, who studied operator (1) with b = c = 0 (see [34, Theorem 1.1]). Later 
on, Lanconelli and Pascucci [24] and Lanconelli et al. [25] extended Nash upper 
bounds to non-homogeneous operators of the form (1) with bounded measurable 
coefficients.

On the other hand, if we consider Gaussian lower bounds independent of 
the Hölder norm of the coefficients, a first result is due to Lanconelli, Pascucci 
and Polidoro [25, Theorem 1.3] for the particular case of the kinetic Kolmogo-
rov–Fokker–Planck equation. The proof of this result is based on the construction 
of a Harnack chain, alongside with the study of the control problem associated to 
the principal part operator K  . The authors of [25] already suggested this type of 
result could be extended to the general non-homogeneous Kolmogorov operator 
of step � in (1), once a suitable Harnack inequality is established. The present 
work is a first step in this direction as it handles the homogeneous case, the only 
one for which a Harnack inequality is available, see [4, Theorem 1.3].

Theorem  1.4 (Gaussian bounds) Let L  be an operator of the form (1) under 
assumptions (H1)–(H2)–(H3B). Let I = (T0, T1) be a bounded interval, then there 
exist four positive constants �+ , �− , C+ , C− such that

for every (x, t), (�, �) ∈ ℝ
N × (T0, T1) with 𝜏 < t . The constants �+ , �− , C+ , C− only 

depend on B, (T1 − T0) , ‖b‖q , ‖c‖q . Note that ΓK�
− and ΓK�

+ denote the fundamental 
solution of K�− and K�+ , where

and the explicit expression of ΓK�
± is given by

for every (x, t), (�, �) ∈ ℝ
N+1 , with (x, t) ≠ (�, �) and

(8)C− ΓK
�−(x, t;�, �) ≤ ΓL(x, t;�, �) ≤ C+ ΓK

�+(x, t;�, �)

(9)K
�u(x, t) ∶=

�

2

m0∑
i=1

�2
xi
u(x, t) +

N∑
i,j=1

bijxj�xiu(x, t) − �tu(x, t),

ΓK
�((x, t);(�, �)) = ΓK

�((�, �)−1◦(x, t);0, 0),
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Remark 1.5 Following the strategy proposed in Theorem  1.3, the existence of the 
weak fundamental solution to (1) is ensured under the more restrictive assump-
tions (H1)-(H2)-(H3A), i.e. when q = +∞ . In this case, the constants appearing in 
the statement will only depend on B, (T1 − T0),M . Nevertheless, in the same spirit 
of [24] we provide Gaussian upper and lower bounds in the most general frame-
work, that will hold true even if the existence of the fundamental solution is ensured 
through a different (and hopefully less resctrictive) procedure.

Remark 1.6 As pointed out in [4, Remark 1.7], we can replace assumption (H3B) 
with the one firstly considered by Wang and Zhang in [39, 40]: b ∈ L

q

loc
(ST0T1 ) for 

some q > (Q + 2) and c ∈ L
q

loc
(ST0T1) for some q >

Q+2

2
 , with the additional require-

ment of c ≤ 0 . Note that the last assumption on the sign of c is necessary to handle 
unbounded coefficients, and thus when q = +∞ , i.e. assumption (H3A) is in place, 
we are able to drop it.

Remark 1.7 Since the proof of the upper bound in (8) does not rely on the Harnack 
inequality stated in Theorem 3.1, the rightmost inequality of (8) holds true for the 
more general operator

with a ∈
(
L
q

loc
(ST )

)m0 and div a ≥ 0.

1.1  Motivation and background

Kolmogorov equations appear in the theory of stochastic processes as linear second 
order parabolic equations with non-negative characteristic form. In its simplest form, if (
Wt

)
t≥0 denotes a real Brownian motion, the density p = p(t, v, y, v0, y0) of the stochas-

tic process (Vt, Yt)t≥0

is a solution to one of the simplest strongly degenerate Kolmogorov equation, that is

(10)ΓK
𝜆(x, t;0, 0) =

�
(2𝜋𝜆)

−
N
2√

detC(t)
exp

�
−

1

2𝜆
⟨C−1(t)x, x⟩ − t tr(B)

�
, if t > 0,

0, if t ≤ 0.

(11)

L̃u(x, t) ∶=

m0∑
i,j=1

�xi

(
aij(x, t)�xju(x, t)

)
+

m0∑
i=1

bi(x, t)�xiu(x, t)

−

m0∑
i=1

�xiai(x, t) +

N∑
i,j=1

bijxj�xiu(x, t) − �tu(x, t) + c(x, t)u(x, t),

(12)
{

Vt = v0 + �Wt

Yt = y0 + ∫ t

0
Vs ds

(13)1

2
�2�vvp−v�yp = �tp, t ≥ 0, (v, y) ∈ ℝ

2.
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In 1934 Kolmogorov provided us with the explicit expression of the density 
p = p(t, v, y;v0, y0) of the above equation (see [23]) that, when (v0, y0) = (0, 0) , reads 
as

and pointed out it is a smooth function despite the strong degeneracy of (13). This 
immediately suggested that the operator L  associated to Eq. (13)

is hypoelliptic. Indeed, later on Hörmander considered this operator as a prototype 
for the family of hypoelliptic operators studied in his seminal work [20].

Kolmogorov equations find their application in different research fields. First 
of all, the process in (12) is the solution to the Langevin equation

and several mathematical models involving linear and non linear Kolmogorov type 
equations have also appeared in finance, see for instance [1, 6, 8, 14]. Indeed, equa-
tions of the form (13) appear in the Black–Scholes model for the pricing of geo-
metric averaged options (see for instance, [7, 33] and the references therein). For 
example, equation

arises in the Black and Scholes option pricing problem

where � is the volatility of the stock price S, r is the interest rate of a riskless bond 
and P = P(S,A, t) is the price of the Asian option depending on the price of the stock 
S, the geometric average A of the past price and the time to maturity t.

In this framework, knowing that the fundamental solution to the Kolmogorov 
equation exists is helpful for the study of the option pricing problem and allows 
us to have various advantages when dealing with numerical simulations. For fur-
ther information on this topic, we refer to [7]. It is worth noting that, when deal-
ing with the theory of stochastic processes, Kolmogorov equations arise either in 
non-divergence form (backward Kolmogorov) or in super-divergence form (for-
ward Kolmogorov). These models can be written as (1) only when the coefficients 
are regular enough, see assumption (C) below. Despite these limitations, our anal-
ysis is useful especially from the weak regularity theory point of view, where it 
is fundamental to lower the regularity assumptions on the coefficients as much as 
possible. As a byproduct, our results may find application in numerical analysis, 

p(t, v, y;0, 0) =
√
3

𝜋t2𝜎2
exp

�
−

2

𝜎2

�
v2

t
−3

vy

t2
+ 3

y2

t3

��
t > 0,

L ∶=
1

2
�2�vv−v�y − �t,

{
dVt = dWt

dYt = Vt dt,

𝜕tP +
1

2
𝜎2S2𝜕2

S
P + (log S)𝜕AP + r(S𝜕SP − P) = 0, S > 0, A, t ∈ ℝ,

{
dSt = �Stdt + �StdWt

dAt = St dt,
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for example when studying a priori well-posedness of a numerical method suit-
able for the analysis of the pricing problem.

Moreover, we recall that the Kolmogorov equation is the prototype for a family of 
evolution equations arising in kinetic theory of gas, which take the following general 
form

In this case, we have that u = u(v, y, t) is the density of particles with velocity 
v = (v1,… , vn) and position y = (y1,… , yn) at time t. Moreover,

is the so called total derivative with respect to time in the phase space ℝ2n+1 , and 
J(u) is the collision operator, which can be either linear or non-linear. For instance, 
in the usual Fokker–Planck equation (cf. [13, 37]) we have a linear collision opera-
tor of the form

where aij , ai and a are functions of (y, t); J(u) can also occur in divergence form

We also mention the following non-linear collision operator of the Fokker-Planck-
Landau type

where the coefficients aij and bi depend both on z ∈ ℝ
2n+1 and the unknown func-

tions u through some integral expression. Moreover, this last operator is studied as 
a simplified version of the Boltzmann collision operator (see for instance [11, 27]). 
For the description of wide classes of stochastic processes and kinetic models lead-
ing to equations of the previous type, we refer to the classical monographies [10, 11] 
and [12].

1.2  Plan of the paper

This work is organized as follows. In Sect. 2 we recall the properties of the geomet-
rical structure associated to operator L  . In Sect. 3 we prove Gaussian lower bounds 
for the fundamental solution associated to operator L  under the assumption (H3B). 
In Sect. 4 we prove the existence of a weak fundamental solution for operator L  
under the assumption (H3A).

(14)Yu = J(u).

Yu ∶=

n∑
j=1

vj�yju + �tu

J(u) =

n∑
i,j=1

aij �
2
vi,vj

u +

n∑
i=1

ai �viu + au

J(u) =

n∑
i,j=1

�vi (aij �vju + biu) +

n∑
i=1

ai�viu + au.

J(u) =

n∑
i,j=1

�vi

(
aij(z, u)�vju + bi(z, u)

)
,
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2  Preliminaries

In this section we recall some notation and known results about the non-Euclidean 
geometry underlying the operators L  and K  . We refer to the survey paper [2] and the 
references therein for a comprehensive treatment of this subject.

As first observed by Lanconelli and Polidoro in [26], the principal part operator 
K  is invariant with respect to left translations in the group 𝕂 = (ℝN+1, ◦) , where the 
group law is defined by

and

Then � is a non-commutative group with zero element (0, 0) and inverse

For a given � ∈ ℝ
N+1 we denote by �� the left translation on 𝕂 = (ℝN+1, ◦) defined 

as follows

Then the operator K  is left invariant with respect to the Lie product ◦ , that is

for every u sufficiently smooth.
We recall that, by [26] (Propositions 2.1 and 2.2), the dilation invariance in (H2) is 

equivalent to assume that, for some basis on ℝN , the matrix B takes the following form

where every Bj is a mj × mj−1 matrix of rank mj , j = 1, 2,… , � with

Hence, in the sequel we will assume that B has the canonical form (17). We remark 
that the first part of assumption (H2), i.e. the hypoellipticity of K  , implies the con-
dition introduced by Hörmander in [20] applied to K :

(15)(x, t)◦(�, �) = (� + E(�)x, t + �), (x, t), (�, �) ∈ ℝ
N+1,

(16)E(s) = exp(−sB), s ∈ ℝ.

(x, t)−1 = (−E(−t)x,−t).

𝓁� ∶ ℝ
N+1

→ ℝ
N+1, 𝓁� (z) = �◦z.

K◦𝓁� = 𝓁�◦K or, equivalently, K(u(�◦z)) = (Ku)(�◦z),

(17)B =

⎛
⎜⎜⎜⎜⎝

� � … � �

B1 � … � �

� B2 … � �

⋮ ⋮ ⋱ ⋮ ⋮

� � … B� �

⎞⎟⎟⎟⎟⎠

m0 ≥ m1 ≥ ⋯ ≥ m� ≥ 1 and

�∑
j=0

mj = N.

(18)rank Lie
(
�x1 ,… , �xm0

, Y
)
(x, t) = N + 1, ∀ (x, t) ∈ ℝ

N+1,
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where Lie
(
�x1 ,… , �xm0

, Y
)
 denotes the Lie algebra generated by the first order dif-

ferential operators 
(
�x1 ,… , �xm0

, Y
)
 computed at (x, t). Yet another condition equiva-

lent to (18), (see [26], Proposition A.1), is that

where

and E(⋅) is the matrix defined in (16). Lastly, we recall that Hörmander explicitely 
constructed in [20] the fundamental solution of K  as

where

In particular, condition (19) implies that ΓK is well-defined.
Let us now consider the second part of assumption (H2). We say that K  is invariant 

with respect to (𝛿r)r>0 if

for every function u sufficiently smooth. It is known (see Proposition 2.2 of [26]) 
that it is possible to read this dilation invariance property in the expression of the 
matrix B in (17). More precisely, K  satisfies (22) if and only if the matrix B takes 
the form (17). In this case, we have

where

Furthermore, we introduce the family of slanted cylinders on which we usually study 
the local properties of the Kolmogorov equation starting from the unit past cylinder

defined through the open balls

(19)C(t) > 0, for every t > 0,

(20)C(t) = ∫
t

0

E(s)A0 E
T (s) ds,

(21)ΓK(z, �) = ΓK(�
−1
◦z, 0), ∀z, � ∈ ℝ

N+1, z ≠ � ,

ΓK((x, t), (0, 0)) =

�
(4𝜋)

−
N
2√

detC(t)
exp

�
−

1

4
⟨C−1(t)x, x⟩ − t tr(B)

�
, if t > 0,

0, if t ≤ 0.

(22)K
(
u◦𝛿r

)
= r2𝛿r(Ku), for every r > 0,

(23)𝛿r = (𝛿0
r
, r2), r > 0,

(24)𝛿0
r
= diag(r�m0

, r3�m1
,… , r2𝜅+1�m𝜅

), r > 0.

(25)Q1 ∶= B1 × B1 ×⋯ × B1 × (−1, 0),

(26)B1 = {x(j) ∈ ℝ
mj ∶ |x| ≤ 1},
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where j = 0,… , � and | ⋅ | denotes the euclidean norm in ℝmj . Now, for every 
z0 ∈ ℝ

N+1 and r > 0 , we set

the cylinder centered at an arbitrary point z0 ∈ ℝ
N+1 and of radius r. We next intro-

duce a homogeneous norm of degree 1 with respect to the dilations (𝛿r)r>0 and a 
corresponding quasi-distance which is invariant with respect to the group operation 
(15).

Definition 2.1 (Homogeneous norm) Let

be the positive integers defined as in (24).
If ‖z‖ = 0 we set z = 0 while, if z ∈ ℝ

N+1⧵{0} we define ‖z‖ = r where r is the 
unique positive solution to the equation

Accordingly, we define the quasi-distance d by

As detE(t) = ettraceB = 1 , the Lebesgue measure is invariant with respect to the 
translation group associated to K  . Moreover, since det �r = rQ+2 , we also have

where Qr(z0) is defined as in (27) and

The natural number Q + 2 is called the homogeneous dimension of ℝN+1 with respect 
to (𝛿r)r>0 . This denomination is proper since the Jacobian determinant of �r equals 
to rQ+2.

Since K  is dilation invariant with respect to (𝛿r)r>0 , also its fundamental solu-
tion ΓK is a homogeneous function of degree −Q , namely

We now recall the definition of Hölder continuous function in this framework.

Definition 2.2 (Hölder continuity) Let � be a positive constant, � ∈ (0, 1] , and let Ω 
be an open subset of ℝN+1 . We say that a function f ∶ Ω ⟶ ℝ is Hölder continu-
ous with exponent � in Ω with respect to the group 𝕂 = (ℝN+1, ◦) , defined in (15), 
(in short: Hölder continuous with exponent � , f ∈ C�

K
(Ω) ) if there exists a positive 

constant C > 0 such that

(27)Qr(z0) ∶= z0◦
(
�r
(
Q1

))
= {z ∈ ℝ

N+1 ∶ z = z0◦�r(�), � ∈ Q1}

�1,… , �m0
= 1, �m0+1

,… , �m0+m1
= 3, �N−m�

,… , �N = 2� + 1

x2
1

r2�1
+

x2
2

r2�2
+⋯ +

x2
N

r2�N
+

t2

r4
= 1.

(28)d(z,w) = ‖z−1◦w‖, z,w ∈ ℝ
N+1.

meas
(
Qr(z0)

)
= rQ+2meas

(
Q1(z0)

)
, ∀ r > 0, z0 ∈ ℝ

N+1,

(29)Q = m0 + 3m1 +⋯ + (2� + 1)m� .

ΓK
(
𝛿r(z), 0

)
= r−Q ΓK(z, 0), ∀z ∈ ℝ

N+1⧵{0}, r > 0.
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where d is the distance defined in (28). Moreover, we associate to every bounded 
function f ∈ C�

K
(Ω) the semi-norm

Eventually, we say a function f is locally Hölder continuous, and we write 
f ∈ C�

K,loc
(Ω) , if f ∈ C�

K
(Ω�) for every compact subset Ω� of Ω.

We conclude this section by presenting an overview of results regarding the clas-
sical theory and the corresponding definition of fundamental solution for the opera-
tor L  under the following assumption on the coefficients a, b and c.

(C) The matrix A0 satisfies assumption (H1), while the matrix B has constant 
entries. The principal part operator K  satisfies assumption (H2). Finally, the 
coefficients aij , bi , c, and �xkaij , for i, j, k = 1,… ,N , are bounded and Hölder con-
tinuous of exponent � ∈ (0, 1].

Note that the Hölder continuity of the derivatives of aij , i, j = 1,… ,N , is required 
since the operator we consider in (1) is in divergence form, whereas the results 
we will present below (see Theorem 2.7) are proved for a trace form Kolmogorov 
operator.

First of all, let us recall the notion of Lie derivative Yu of a function u with respect 
to the vector field Y defined in (2). A function u is Lie differentiable with respect to 
Y at the point (x, t) if there exists and is finite

Note that � is the integral curve of Y, i.e. �̇�(s) = Y(𝛾(s)) . Clearly, if u ∈ C1(Ω) , with 
Ω open subset of ℝN+1 , then Yu(x,  y,  t) agrees with 

∑N

i,j=1
bijxj�xiu(x, t) − �tu(x, t) 

considered as a linear combination of the derivatives of u. Then we are in a position 
to introduce the notion of classical solution to Lu = 0 under the assumptions (C).

Definition 2.3 A function u is a classical solution to equation Lu = 0 in a domain Ω 
of ℝN+1 under the assumptions (C) if the derivatives �xiu, �

2
xixj

u , for i, j = 1,… ,m0 , 
and the Lie derivative Yu exist as continuous functions in Ω , and the equation 
Lu(x, t) = 0 is satisfied at any point (x, t) ∈ Ω . Finally, we say that u is a classical 
super-solution to Lu = 0 if Lu ≤ 0 . We say that u is a classical sub-solution if −u is 
a classical supersolution.

A fundamental tool in the classical regularity theory for PDEs are Schauder 
type estimates. In particular, when considering the case of bounded and Hölder 

|f (z) − f (�)| ≤ C d(z, �)� for every z, � ∈ Ω,

[f ]C� (Ω) = sup

z, � ∈ Ω

z ≠ �

|f (z) − f (�)|
d(z, �)�

.

(30)Yu(x, t) ∶= lim
s→0

u(�(s)) − u(�(0))

s
, �(s) = (E(−s)x, t − s).
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continuous coefficients, we recall the result proved by Manfredini in [31] (see Theo-
rem 1.4) for classical solutions to Lu = 0 , where the natural functional setting is

and C�(Ω) is given in Definition 2.2. Moreover, if u ∈ C2+�(Ω) then we define the 
norm

Clearly, the definition of C2+�
loc

(Ω) follows straightforwardly from the definition of 
C�
loc
(Ω) . Finally, we write u ∈ C2(Ω) if u, its derivatives �xiu, �

2
xixj

u , for 
i, j = 1,… ,m0 , and the Lie derivative Yu exist as continuous functions in Ω . In the 
framework of semigroups, Schauder estimates where proved by Lunardi in [30]. 
Moreover, a complete characterization of the intrinsic Hölder spaces is provided by 
Pagliarani, Pascucci and Pignotti in [32]. Finally, Schauder estimates for the Boltz-
mann fractional framework were recently proved by Imbert and Silvestre in [22]. For 
a comparison between the different types of Hölder spaces considered in literature 
we refer to [22, 32].

As we work with first order coefficients which are not Hölder continuous but 
only measurable, we now introduce the Schauder type estimates proved in [36]. 
First of all, we recall that the modulus of continuity of a function f on any set 
H ⊂ ℝ

N+1 is defined as follows

Definition 2.4 A function f is said to be Dini-continuous in H if

We are now in position to state the following result (see [36, Theorem 1.6]).

Theorem 2.5 Let L  be an operator in the form (1) satisfying hypothesis (H1)-(H2)-
(H3A). Let u be a classical solution to Lu = f  . Suppose that f is Dini continuous. 
Then there exists a positive constant c, only depending on the operator L  , such that:

(i) 

C2+�(Ω) =
{
u ∈ C�(Ω) ∣ �xiu, �

2
xixj

u, Yu ∈ C�(Ω), for i, j = 1,… ,m0

}
,

|u|2+�,Ω ∶= |u|�,Ω +

m0∑
i=1

|�xiu|�,Ω +

m0∑
i,j=1

|�2
xixj

u|�,Ω + |Yu|�,Ω.

𝜔f (r) ∶= sup

(x, t), (𝜉, 𝜏) ∈ H

d((x, t), (𝜉, 𝜏)) < r

|f (x, t) − f (𝜉, 𝜏)|.

∫
1

0

𝜔f (r)

r
dr < +∞.
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(ii) for any points (x, t) and (�, �) ∈ Q 1

4

(0, 0) we have 

 where d ∶= d((x, t), (�, �)) and �2 stands either for �2
xixj

 , with i, j = 1,… ,m , or for 
Y.

Remark 2.6 The proof of the above statement is derived applying the techniques of 
[36, Section 6] combined with the proof of the Dini continuity of the coefficients 
following the lines of Sect. 4, provided that (H3A) holds true.

Lastly, we recall that the existence of a fundamental solution Γ for the opera-
tor L  under the regularity assumptions (C) has widely been investigated over the 
years, and the Levy parametrix method provides us with a classic fundamental 
solution. Among the first results of this type we recall [21, 38, 41] and we remark 
that this method was firstly considered in this setting by Polidoro in [35], and then 
later on extended in the works [15, 16]. In particular, we report here the existence 
result for a classical fundamental solution for L  proved in [15, Theorem 1.4-1.5].

Theorem 2.7 Let us consider an operator L  of the form (1) under the assumption 
(C). Then there exists a fundamental solution Γ ∶ ℝ

N+1 ×ℝ
N+1

→ ℝ for L  with the 
following properties: 

1. Γ(⋅, ⋅;�, �) ∈ L1
loc
(ℝN+1) ∩ C(ℝN+1⧵{(�, �)} for every (�, �) ∈ ℝ

N+1;
2. Γ(⋅, ⋅;�, �) is a classical solution of Lu = 0 in ℝN+1⧵{(�, �)} for every (�, �) ∈ ℝ

N+1 
in the sense of Definition 2.3;

3. let � ∈ C(ℝN) such that for some positive constant c0 we have 

 then there exists 

4. let � ∈ C(ℝN) verifying (31). Then there exists T ∈ (T0, T1] such that the function 

|�2u(0, 0)| ≤ c

(
sup

Q1(0,0)

|u| + |f (0, 0)| + �
1

0

�f (r)

r
dr

)
;

|�2u(x, t) − �2u(�, �)|

≤ c

(
d sup
Q1(0,0)

|u| + d sup
Q1(0,0)

|f | + �
d

0

�f (r)

r
dr + d �

1

d

�f (r)

r2
dr

)
.

(31)|�(x)| ≤ c0e
c0|x|2 for every x ∈ ℝ

N ,

lim
(x, t) → (x0, 𝜏)

t > 𝜏

∫
ℝN

Γ(x, t;𝜉, 𝜏)𝜑(𝜉)d𝜉 = 𝜑(x0) for every x0 ∈ ℝ
N ;
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 is a classical solution to the Cauchy problem 

5. the reproduction property holds. Indeed, for every x, � ∈ ℝ
N and t, � ∈ ℝ with 

𝜏 < s < t : 

6. for every (x, t), (�, �) ∈ ℝ
N+1 with t ≤ � we have that Γ(x, t;�, �) = 0;

7. if c(x, t) = c is constant, then 

8. for every 𝜆+ > 𝜆 and for every positive 0 < T0 < T1 , there exists a constant C+ , 
only dependent on � , B and T such that 

for any i, j = 1,… ,m0 and (x, t), (�, �) ∈ ℝ
N × (T0, T1) , and where Γ+ denotes 

the fundamental solution of K�+ , defined in (10) and (9) respectively.
Moreover, there exists a fundamental solution Γ∗ to L∗ verifying the dual proper-
ties of this statement and Γ∗(x, t;�, �) = Γ(�, �;x, t) for every (x, t), (�, �) ∈ ℝ

N+1 , 
(x, t) ≠ (�, �).

We observe that in [15] the authors considered a Kolmogorov-type operator 
in trace form. As we work with operators in divergence form, we were forced to 
require in (C) an additional regularity assumption on the derivatives of the coef-
ficients aij , for i, j = 1,… ,N . This also reflects in (H3A).

(32)u(x, t) = ∫
ℝN

Γ(x, t;�, T0)�(�) d� d�

(33)
{

Lu = 0 in ST0,T ,

u(⋅, T0) = � in ℝ
N ;

Γ(x, t;�, �) = ∫
ℝN

Γ(x, t;y, s) Γ(y, s;�, �) dy;

∫
ℝN

Γ(x, t;𝜉, 𝜏) d𝜉 = e−c(t−𝜏), ∀x ∈ ℝ
N , 𝜏 < t;

(34)

Γ(x, t;�, �) ≤ C+ Γ+(x, t;�, �)

��xiΓ(x, t;�, �)� ≤ C+

√
t − �

Γ+(x, t;�, �)

��2
xixj

Γ(x, t;�, �)� ≤ C+

t − �
Γ+(x, t;�, �)

�YΓ(x, t;�, �)� ≤ C+

t − �
Γ+(x, t;�, �)
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3  Proof of Theorem 1.4

This section is devoted to the proof of Gaussian bounds (Theorem  1.4) for the 
weak fundamental solution defined in Definition 1.2. All the results proved in this 
section are obtained under the less restrictive assumption (H3B) and, when pos-
sible, for the more general operator L̃ .

Now, given the notation of (27), we introduce the upper and lower cylinders

and we introduce some preliminary results. Quite recently, there have been various 
developments in the study of weak solutions to Lu = 0 , and in particular the follow-
ing Harnack inequality proved in [4, Theorem 1.3], the first one in the weak frame-
work considered in this work, holds true in our setting.

Theorem  3.1 (Harnack inequality) Let Q1 ∶= B1 × B1 ×⋯ × B1 × (−1, 0] and let 
u be a non-negative weak solution to Lu = 0 in Ω ⊃ �Q1 under assumptions (H1)–
(H2)–(H3B). Then we have

where 0 < 𝜔 < 1 and 0 < 𝜌 <
𝜔√
2
 . Finally, the constants C, � , � only depend on the 

homogeneous dimension Q defined in (29), q and on the ellipticity constants � and Λ 
in (H1).

Remark 3.2 When considering assumption (H3A) the constants appearing in the 
above statement only depend on M, since we assume |b(x, t)| ≤ M , |c(x, t)| ≤ M for 
every (x, t) ∈ ℝ

N+1.

We recall the following result, which will be useful in the proof of the upcom-
ing Lemma 3.4.

Remark 3.3 Let u be a weak solution to Lu = 0 and r > 0 . Then v ∶= u◦�� solves 
equation L(r)v = 0 , where

with A(r) = A◦�r , a(r) = r(a◦�r) , b(r) = r(b◦�r) and c(r) = r2(c◦�r).
Moreover, if u is a solution to Lu = 0 , then, for any � ∈ ℝ

N+1 , v ∶= u◦𝓁z solves 
equation (L◦𝓁z)v = 0 , where L◦𝓁z is the operator obtained by L  via a �z-transla-
tion of the coefficients.

Q+ = ��

(
Q̃1

)
= B� × B�3 ×⋯ × B�2�+1 × (−�2, 0],

Q− = (0,… , 0,−1 + 2�2)◦��
(
Q1

)

= B� ×⋯ × B�2�+1 × (−1 + �2,−1 + 2�2),

(35)sup
Q−

u ≤ C inf
Q+

u,

L
(r)v ∶= div(A(r)Du) − div(a(r)v) + ⟨b(r),Dv⟩ + c(r)v + ⟨Bx,Dv⟩ − �tv
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For 𝛽, r,R > 0 and z0 ∈ ℝ
N+1 , we define the cones

and we set P�,r,R(z0) ∶= z0◦P�,r,R . We are now in a position to derive the following 
Lemma, which is a consequence of Theorem 3.1.

Lemma 3.4 Let z ∈ ℝ
N+1 and R ∈ (0, 1] . Moreover, let u be a continuous and non-

negative weak solution to Lu = 0 in QR(z) under the assumptions (H1)-(H2)-(H3B). 
Then we have

where C, R0 and � are the constants appearing in Theorem 3.1 and they only depend 
on Q, � , Λ and q.

Proof Let w ∈ P1,�,R(z) , i.e. w = z◦��(�, 1) for some � ∈ (0,R] and |𝜉| < 𝜔 . We now 
define the function uz,� ∶= u◦𝓁z◦�� , which is a continuous and non-negative solu-
tion to L(�)uz,� = 0 in QR0

(0, 0) ⊂ QR∕𝜎(0, 0) in virtue of Remark 3.3. Thus, we can 
apply the Harnack inequality (35) and infer

  ◻

We next state a global version of the Harnack inequality, which is a crucial step in 
proving the Gaussian lower bound (see Theorem 3.8 below).

Theorem 3.5 (Global Harnack inequality) Let t0 ∈ ℝ and � ∈ (0, 1] . If u is a con-
tinuous and non-negative weak solution to Lu = 0 in ℝN+1 × (� − t0, � + t0) under 
the assumptions (H1)-(H2)-(H3B), then we have

where t ∈ (t0, � + t0) , x, � ∈ ℝ
N , C is the matrix introduced in (20) and c0 is a posi-

tive constant only depending on Q, � , Λ and q.

The proof of Theorem  3.5 is based on a classical argument that makes use of 
the so-called Harnack chains, alongside with control theory. Moreover, the proof 
of this theorem follows the one of [25, Theorem 3.6], with the only difference that 
we here apply Theorem 3.1 and Lemma 3.4 instead of Theorem 3.1 and Lemma 3.5 
of [25]. Indeed, the method we rely on has the advantage of highlighting the geo-
metric structure of the operator L  and can be therefore automatically extended to 
more general operators. For this reason, we here do not show the derivation of Theo-
rem 3.5 and we refer the reader to [25] for the details.

P𝛽,r,R ∶= {z ∈ ℝ
N+1 ∶ z = 𝛿𝜌(𝜉, 𝛽), |𝜉| < r, 0 < 𝜌 ≤ R},

sup
P1,�,R∕R0

(z)

u ≤ Cu(z),

u(w) = uz,�(�, 1) ≤ sup
Q−

uz,� ≤ C inf
Q+

uz,� ≤ Cuz,�(0, 0) = Cu(z).

u(�, t) ≤ c0e
c0⟨C−1(t−t0)(�−e(t−t0 )Bx),�−e(t−t0 )Bx⟩u(x, t0),
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Moreover, in proving our main result Theorem 3.8, we will also make use of the 
following estimate, which provides an upper bound for the fundamental solution. 
Let us remark that in the upcoming theorem we consider operators of the form (11) 
satisfying the less restrictive assumptions (H1)–(H2)–(H3B).

Theorem 3.6 (Gaussian upper bound) Let L̃  be an operator of the form (11) satisfy-
ing assumptions (H1)–(H2)–(H3B). Then there exists a positive constant c1 , only 
dependent on Q, � , Λ and q, such that

for any 0 < t − t0 ≤ 1 and x, y ∈ ℝ
N.

Proof The Gaussian upper bound (36) was proved in [25, Theorem 4.1] under the 
stronger assumption that the coefficients ai , bi , with i = 1,… ,m0 , and c are bounded 
measurable functions of (x, t) and in [24, Theorem 1.4] under the additional hypoth-
esis that the coefficients bi , with i = 1,… ,m0 , are null. The more general case where 
the first order coefficients satisfy assumption (H3B) can be treated similarly. Thus, 
here we just sketch the few adjustments required to adapt the proof of [25] to the 
present case.

The argument relies on the combination of a Caccioppoli type inequality and a 
Sobolev type inequality. In order to handle the more general case, we need to replace 
the Caccioppoli and the Sobolev inequality contained in [24] (Theorem 2.3 and 2.5, 
respectively) with the ones given in [4]. More precisely, we consider the Cacciop-
poli inequality [4, Theorem 3.4] and we focus on the new term involving the coef-
ficient a ∈

(
L
q

loc
(Ω)

)m0 , which is handled as follows

where � =
q

q−1
 , and q is the integrability exponent introduced in (H3B). From this 

point, we obtain the Caccioppoli inequality reasoning as in the proof of [4, 
Theorem 3.4].

As far as the Sobolev inequality is concerned, we find two extra terms in the rep-
resentation formula of sub-solutions. More precisely, following the notation of [4, 
Theorem 3.3], the term I0(z) here becomes

(36)Γ(x, t;y, t0) ≤ c1(
t − t0

) Q

2

exp

(
−
1

c1
|�0

(t−t0)
−
1
2

(
y − e(t−t0)Bx

)|2
)

(2p − 1)

2 �
Qr

⟨a,Dm0
v2⟩�2 + 2p �

Qr

⟨av2,Dm0
�⟩�

= −
2p − 1

2 �
Qr

div ⋅ a v2�2 − (2p − 1)�
Qr

⟨a,Dm0
�⟩�v2 + 2p �

Qr

⟨av2,Dm0
�⟩�

≤ �2p − 1� �
Qr

�a�����Dm0
��v2 + 2�p� �

Qr

�a��Dm0
�����v2

≤ C�2p − 1�
(r − �)

∥ a ∥Lq(Qr)
∥ v ∥2

L2� (Qr)
+
��2p� c1
(r − �)

∥ a ∥Lq(Qr)
∥ v ∥2

L2� (Qr)
,
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Since

reasoning as in [4, Theorem 3.3] we infer

where

In addition, the term I3(z) here becomes

and can be treated exactly as the analogous one in [4]. The rest of the proof of the 
Sobolev inequality follows the one contained in [4, Theorem 3.3].

Lastly, when considering our case, the proof of inequality (3.4) in [24, Theo-
rem 3.3] needs to be treated slightly differently. In particular, inequality (3.2) in [24] 
becomes

Thus, inequality (3.4) in [24] can be rewritten as

I0(z) = ∫
Qr

�
−⟨a,D(�Γ(z, ⋅))⟩v�(�)d�

+ ∫
Qr

�⟨b,Dv⟩Γ(z, ⋅)��
(�)d� + ∫

Qr

[cvΓ(z, ⋅)�](�)d� .

⟨a,Dv⟩ ∈ L
2

q

q+2 for a ∈ Lq, q >
Q + 2

2
and v ∈ L2,

∥ I0(�) ∥L2� (Q�)
≤∥ Γ ∗

�⟨a,Dm0
v⟩��

+ Γ ∗
�⟨b,Dm0

v⟩��
+ Γ ∗ (cv�) ∥L2� (Q�)

≤ C ⋅ (∥ a ∥Lq(Q�)
+ ∥ b ∥Lq(Q�)

∥ Dm0
v ∥L2(Q�)

+ ∥ c ∥Lq(Q�)
∥ v ∥L2(Q�)

)),

� =
q(Q + 2)

q(Q − 2) + 2(Q + 2)
.

I3(z) = ∫
Qr

�⟨ADv,D(Γ(z, ⋅)�)⟩�(�)d� − ∫
Qr

[(Γ(z, ⋅)�)Yv](�)d�

+ ∫
Qr

�⟨a,D(Γ(z, ⋅)�)⟩v�(�)d� − ∫
Qr

�⟨b,Dv⟩Γ(z, ⋅)��
(�)d�

− ∫
Qr

[cvΓ(z, ⋅)�](�)d�

�
ℝN

u2�2
R
e2hu2 ∥t=� dx − 2� �[�,�]×ℝN

e2hu2�2
R
(3⟨ADm0

h,Dm0
h⟩ − Yh

− TrB + ⟨a,Dm0
h⟩ + ⟨b,Dm0

h⟩)dxdt
≤ �

ℝN

u2�2
R
e2hu2 ∥t=� dx + 2� �[�,�]×ℝN

e2hu2(3Λ�Dm0
�R� + �Y�R�2

− TrB + ⟨a,Dm0
�R⟩�R + ⟨b,Dm0

�R⟩�R)dxdt.



84 F. Anceschi, A. Rebucci 

1 3

where � −
�−s

k
≤ t ≤ �, x ∈ ℝ

N , h(x, t) = −
|x|2
�

+ �(� − t) , with 
� = 2(� − s) − k(� − t) . Hence, inequality (37) becomes

and therefore inequality (37) holds true provided that we choose 
� =

2

�

�‖a‖2
2
+ ‖b‖2

2

�
− TrB and k big enough. The rest of the proof follows the same 

lines of the one of [25, Theorem 4.1].   ◻

Lemma 3.7 Let L  be an operator of the form (1) satisfying assumptions (H1)–
(H2)–(H3B). Then there exist two positive constants R and c2 , only dependent on Q 
and B, such that

for any 0 < t − t0 ≤ 1 and y ∈ ℝ
N.

Proof We first notice that for a small enough constant c3 , which depends only on Q 
and B, the function

is a weak super-solution of the Cauchy problem

where L∗ is the adjoint operator defined in (3). Hence, in virtue of the maximum 
principle we infer v ≥ 0 , that is

We now observe that

(37)3⟨ADm0
h,Dm0

h⟩ − Yh − TrB + ⟨a,Dm0
h⟩ + ⟨b,Dm0

h⟩ ≤ 0,

3⟨ADm0
h,Dm0

h⟩ − Yh − TrB + ⟨a,Dm0
h⟩ + ⟨b,Dm0

h⟩
≤ 12Λ�x�2

�2
+

2‖B‖�x�2
�

−
k�x�2
�2

− � − TrB +
2

�

�‖a‖2
2
+ ‖b‖2

2

�
+

4�x�2
�

≤ �x�2
�2

(12Λ + 2�‖B‖ − k + 4�) − � − TrB +
2

�

�‖a‖2
2
+ ‖b‖2

2

�

≤ �x�2
�2

(12Λ + 4‖B‖ − k + 8) − � − TrB +
2

�

�‖a‖2
2
+ ‖b‖2

2

�

(38)���0
(
√
t−t0 )

(y−e(t−t0 )Bx)�≤R
Γ(x, t;y, t0)dx ≥ c2,

v(y, t0) ∶= ∫
ℝN

Γ(x, t;y, t0) − e−c3(t−t0), t > t0, y ∈ ℝ
N ,

{
L

∗v(y, t0) = −e−c(t−t0)(c − Tr(B) + c3) ≤ 0, t > t0, y ∈ ℝ
N ,

v(y, t) = 0, y ∈ ℝ
N ,

(39)�
ℝN

Γ(x, t;y, t0) ≥ e−c3(t−t0), t > t0, y ∈ ℝ
N .
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where in the second line we have used the upper bound (36) and in the third line we 
have performed the change of variables z = �0

(
√
t−t0)

�
y − e(t−t0)Bx

�
 . Combining (39) 

and (40) and choosing c3 small enough we obtain the thesis.   ◻

We are now in a position to state and prove the following result concerning the 
Gaussian lower bound of the fundamental solution.

Theorem 3.8 (Gaussian lower bound) Let L  be an operator of the form (1) satisfy-
ing assumptions (H1)–(H2)–(H3B). Then there exists a positive constant c4 , only 
dependent on Q, � , Λ and q, such that

for any 0 < t − t0 ≤ 1 and x, y ∈ ℝ
N.

Proof We restrict ourselves to the case where x = 0 , as the general statement can be 
obtained from the dilation and translation-invariance of the operator L  . Then, for 
every y ∈ ℝ

N and R > 0 , we set

and we compute

where the constant c5 only depends on B and R. We also note that the function 
⟨C−1(t − t0)

�
y − e(t−t0)Bx

�
, y − e(t−t0)Bx⟩ is bounded by a constant M in DR (see [26, 

Lemma 3.3]). Lastly, we now set � =
t−t0

2
 and apply to Γ the global Harnack inequal-

ity stated in Theorem 3.5, which yields

(40)

���0
(
√
t−t0 )

(y−e(t−t0 )Bx)�≥R
Γ(x, t;y, t0)dx

≤ c1�
t − t0

� Q

2
���0

(
√
t−t0 )

(y−e(t−t0 )Bx)�≥R
exp

�
−
1

c1
��0

(t−t0)
−
1
2

�
y − e(t−t0)Bx

��2
�
dx

= c1 ��z�≥R
exp

�
−
1

c1
�z�2

�
dz,

(41)Γ(x, t;y, t0) ≥ c4�
t − t0

� Q

2

e−c4⟨C−1(t−t0)(y−e(t−t0 )Bx),y−e(t−t0 )Bx⟩

DR ∶=
�
� ∈ ℝ

N ∶ ��0√
�
(y − e�B�)� ≤ R

�

meas(DR) = �DR

d� = RQ ���0√
�
(y−e�B�)�≤1

d� = RQ�Q∕2 ��(y−e�B�)�≤1
d�

= RQ�Q∕2 ����≤1
d� = RQ�Q∕2meas(B1(0)) = c5�

Q∕2,

(42)Γ(y, t;y, t0) ≥ c0e
−c0⟨C−1(�)(�−e�Bx),�−e�Bx⟩Γ(�, t + �;y, t0), y, � ∈ ℝ

N .
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Hence, integrating inequality (42) over DR , we infer

where the last inequality is a direct consequence of Lemma 3.7 and the constant c7 
only depends on Q, � , Λ , q and B.

Setting � =
3

4
(t − t0) and x = 0 , we apply once again Theorem 3.5 and we get

where the last inequality is a consequence of a property of the covariance matrix C 
(see [25, Remark 4.5]). This concludes the proof.   ◻

4  Proof of Theorem 1.3

This section is devoted to the proof of our existence result, Theorem  1.3, under 
assumptions (H1)–(H2)–(H3A). Our idea is to adapt the limiting procedure pro-
posed in [3] to the case of our interest.

Let us consider the operator L  under the assumption (H1)-(H3A). Our 
first aim is to build a sequence of operators 

(
L�

)
�
 satisfying the assumption (C) 

of Theorem  2.7. Without loss of generality we restrict ourselves to the case of 
(T0, T1) = (0, T) , with T > 1 and hence we denote ST ∶= S0T . Thus, we may consider 
� ∈ C∞

0
(ℝ) and � ∈ C∞

0
(ℝN) such that

where by abuse of notation B
(

T

2
,
T

4

)
 denotes the Euclidean ball on ℝ of radius T

4
 and 

center T
2
 of suitable dimension and B(0, 1) denotes the Euclidean ball of ℝN of radius 

Γ(y, t;y, t0) =
c6

�Q∕2 �DR

Γ(y, t;y, t0)d�

≥ c6 c0

�Q∕2 �DR

e−c0⟨C−1(�)(�−e�Bx),�−e�Bx⟩Γ(�, t + �;y, t0)d�

≥ c6 c0

�Q∕2 �DR

e−MΓ(�, t + �;y, t0)d�

≥ c7

(t − t0)
Q∕2

,

Γ(0, t;y, t0) ≥ c0e
−c0⟨C−1(�)y,y⟩Γ(y, t + �;y, t0)

≥ c8

(t − t0)
Q∕2

e−c0⟨C−1(�)y,y⟩ ≥ c9

(t − t0)
Q∕2

e−c9⟨C−1(t−t0)y,y⟩,

∫
ℝ

𝜌(t) dt = 1, supp 𝜌 ⊂ B
(
T

2
,
T

4

)
, and

∫
ℝN

𝜓(x) dx = 1, supp𝜓 ⊂ B(0, 1),
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1 and center 0 of suitable dimension. Then, for every � ∈ (0, 1] we classically con-
struct two families of mollifiers

Lastly, for every � ∈ (0, 1] , for every t ∈ (0, T) and x ∈ ℝ
N we define

These newly defined coefficients are smooth and such that (aij)� → aij , (bi)� → bi , 
(c)� → c in L1(ST ) . Hence, the L1 convergence implies the pointwise convergence 
a.e. Moreover, for every � ∈ (0, 1] the coefficients (aij)� , (bi)� and (c)� are bounded 
from above by the same constant appearing in assumption (H3A). Indeed, for every 
(x, t) ∈ K , with K ⊂ ℝ

N+1 compact,

for every i, j = 1,… ,N . The same statement holds true for the coefficients c� and 
(bi)� , with i = 1,… ,N and � ∈ (0, 1].

In addition, given assumption (H3A) and our definition of the family of mollifiers 
we have

for every i = 1,… ,m0 and for every k = 1,… ,m0 , where C1 is a constant depending 
on � . Indeed, for every y ∈ B(0, �) , we have

where C1 is a constant that does not dependent on �.
The same statement holds true also for �xk (aij)� and �xk c� , with k = 1,… ,m0 and 

� ∈ (0, 1] . Hence, thanks to the mean value theorem along the direction of the vector 

��(t) =
1

�
�

(
t −

T

2

�

)
, ��(x) =

1

�N
�
(
x

�

)
.

(aij)�(x, t) ∶= ∫
ℝ

∫
ℝN

aij(x − y, (1 − �)t + �)��(y) ��(�) dy d�, ∀i, j = 1,… ,N,

(bi)�(x, t) ∶= ∫
ℝ

∫
ℝN

bi(x − y, (1 − �)t + �)��(y) ��(�) dy d�, ∀i = 1,… ,N,

c�(x, t) ∶= ∫
ℝ

∫
ℝN

c(x − y, (1 − �)t + �)��(y) ��(�) dy d�.

|(aij)�(x, t)| ≤ sup
(x,t)∈K

|aij(x, t)| ≤ M,

|||
�

�xk
( bi)�(x, t)

||| =
|||||||
�
ℝ

�
ℝN

bi(y, (1 − �)t + �)
���

�xk
(x − y) ��(�) dy d�

|||||||
≤ M �

B(
T

2
,�)

|��(�)|d� �
B(0,�)

| ���

�xk
(x − y)| dy ≤ MC1

|||
���

�xk
(x − y)

||| ≤ 1

�N+1
‖‖‖
��

�xk

‖‖‖L∞(B(0,�))
≤ 1

�N+1

(
2

e

)2

sup
[−�,�]

|2y| ≤ C1

�N
,
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fields �xk , the coefficients (aij)�,c� and (bi)� , with i = 1,… ,N and � ∈ (0, 1] , are uni-
formly Lipschitz continuous (i.e. Hölder continuous of exponent � = 1 ), and there-
fore Dini continuous.

Hence, we can apply Theorem 2.5 to (ΓL�)� for every � ∈ (0, 1] . Thus, there exists 
a sequence of equibounded fundamental solutions (ΓL�)� , in the sense that each of 
them satisfies Theorem 1.4, i.e. for every (x, t), (�, �) ∈ ST , with 0 < 𝜏 < t < T

We point out that, since the coefficients of L� are uniformly bounded by M, the 
coefficients of Theorem 1.3 do not depend on �.

First of all, for every fixed (�, �) ∈ ST our aim is to show there exists a converg-
ing subsequence 

(
ΓL
�(⋅, ⋅;�, �)

)
�
 , from now on simply (ΓL�)� , in every compact subset 

of 
(
ℝ

N⧵{�}
)
× (�, T).

For this reason, we define a sequence of open subsets (Ωp)p∈ℕ of ST

Note that Ωp ⊂⊂ Ωp+1 for every p ∈ ℕ . Moreover, ∪+∞
p=1

Ωp =
(
ℝ

N⧵{�}
)
× (�, T) . 

Since ΓL�
+ is a bounded function in Ωp , we have that (ΓL�)� is an equibounded sequence 

in every Ωp . Then, as the sequence (ΓL�)� is equibounded in Ω2 , it is equicontinuous in 
Ω1 thanks to Theorem  2.5. Moreover, by Theorem  2.7 and Theorem  2.5, we also 
have that

are bounded sequences in C0(Ω1) , where Y is the Lie derivative defined in (30). Thus, 
there exists a subsequence (ΓL1,�1 )�1 that converges uniformly to some function Γ1 that 
satisfies (1.4) in Ω1 . Moreover, Γ1 ∈ C2(Ω1) and the function u(x, t) ∶= Γ1(x, t;�, �) 
is a.e. a classical solution to Lu = 0 in Ω1 , and hence a weak solution in the set Ω1.

We next apply the same argument to the sequence (ΓL1,�1 )�2 on the set Ω2 , and 
obtain a subsequence (ΓL2,�2 )�2 that converges in C2(Ω2) to some function Γ2 , that 
belongs to C2(Ω2) and satisfies the bounds of Theorem 1.4 in Ω2 . Moreover, the 
function u(x, t) ∶= Γ2(x, t;�, �) is a. e. a classical solution to Lu = 0 in the set Ω2 , 
and hence a weak solution, to Lu = 0 in the set Ω2.

We next proceed by induction. Let us assume that the sequence (ΓLq−1,�q−1)�q−1 on 
the set Ωq has been defined for some q ∈ ℕ . We extract from it a subsequence 
(ΓL

q,�q)�q converging in C2(Ωq) to some function Γq , satisfying Theorem 1.4 in Ωq 
and it agrees with Γq−1 on the set Ωq−1.

Next, we define a function ΓL in the following way: for every 
(
ℝ

N⧵{�}
)
× (�, T) 

we choose q ∈ ℕ such that (x, t) ∈ Ωq and we set ΓL(x, t;�, �) ∶= Γq(x, t;�, �).
This argument can be repeatedly applied to any choice of (�, �) ∈ ST . Hence, it 

provides us with a non ambiguous definition of ΓL . Indeed, for any given choice 
of (�, �) ∈ ST , if (x, t) ∈ Ωp , then Γp(x, t;�, �) = Γq(x, t;�, �) for every choice of 

C− ΓK
�−(x, t;y, �) ≤ ΓL

�(x, t;y, �) ≤ C+ ΓK
�+(x, t;y, �).

Ωp ∶=

{
x ∈ ℝ

N ∶ |x|2 < p2, |x − 𝜉|2 > 1

2p

}
×
(
𝜏 +

1

p
, T −

1

p

)
.

(
�ΓL

�

�x

)
�
,

(
�ΓL

�

��

)
�
,

(
�2ΓL

�

�x2

)
�
,

(
�2ΓL

�

��2

)
�
,

(
YΓL

�
)
�
,
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p, q ∈ ℕ . In particular, we proved that ΓL� converges compactly uniformly on ST to 
a function Γ on a compactly generated space. Hence, Γ(⋅, ⋅;�, �) is continuous on 
ℝ

N × (�, T)⧵{(�, �)} and a weak solution to Lu = 0 on ℝN × (�, T) . Finally, Theo-
rem 1.4 holds true for ΓL because it is a weak solution to (1) in the sense of Defi-
nition 1.1.

Secondly, we verify that for any bounded function � ∈ C(ℝN) and any x, � ∈ ℝ
N 

the function

verifies the corresponding weak Cauchy problem in (7), hence it is a weak solution 
to (1) in ℝN × (�, T) and takes the initial datum when t → � , with t > 𝜏 . Note that u 
is well-defined given the Gaussian bounds of Theorem 1.4 and property 7. of Theo-
rem 2.7. Then, considering that for every � ∈ (0, 1]

satisfies L�u� = 0 in the classical sense, see Theorem 2.7, thanks to the Dominated 
Lebesgue convergence theorem we get u defined in (43) is a weak solution to (1) in 
ℝ

N × (�, T).
Thus, we are left with the proof of the limiting property. By applying property 3. 

of Theorem 2.7 to the regularized operator L� , we have that for every � ∈ (0, 1] and 
for every (�, �) ∈ ℝ

N × (0, T) the following holds

where u� is defined as above in (44). Now, thanks to Theorem  1.4 we are able 
to apply the Lebesgue Dominated Convergence Theorem, and thus for every 
(�, �) ∈ ℝ

N × (0, T) we have

Finally, we are left with the proof the reproduction property listed in Theorem 1.3.
For every 𝜀 > 0 , x, � ∈ ℝ

N and 0 < 𝜏 < s < t < T  we get

where the right-most inequality is obtained by applying the Gaussian upper bound 
in Theorem 1.4 to the fundamental solution Γ� . Hence, by applying the reproduction 
property of the fundamental solution ΓL�

+ we get

(43)u(x, t) = ∫
ℝN

ΓL(x, t;�, �)�(�) d�

(44)u�(x, t) ∶= ∫
ℝN

ΓL
�(x, t;�, t0)�(�) d�.

lim
(x, t) → (𝜉, 𝜏)

t > 𝜏

u𝜀(x, t) = 𝜑(𝜉),

𝜑(𝜉) = lim
𝜀→0

lim
(x, t) → (𝜉, 𝜏)

t > 𝜏

u𝜀(x, t) = lim
(x, t) → (𝜉, 𝜏)

t > 𝜏

u(x, t).

ΓL
�(x, t; y, s)ΓL

�(y, s; �, �) ≤ C+ ΓL
�+(x, t; y, s)C+ ΓL

�+(y, s; �, �),
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which allows us to use the Lebesgue Dominated Convergence theorem. Thus, the 
property holds true.

We complete the proof by adapting these arguments to the adjoint operator L∗ 
when considering the function v.   ◻
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