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Abstract
We consider a linearized fluid-structure interaction problem, namely the flow of an 
incompressible viscous fluid in the half space ℝn

+
 such that on the lower boundary a 

function h satisfying an undamped Kirchhoff-type plate equation is coupled to the 
flow field. Originally, h describes the height of an underlying nonlinear free sur-
face problem. Since the plate equation contains no damping term, this article uses 
L
2-theory yielding the existence of strong solutions on finite time intervals in the 

framework of homogeneous Bessel potential spaces. The proof is based on L2-Fou-
rier analysis and also deals with inhomogeneous boundary data of the velocity field 
on the “free boundary” x

n
= 0.

Keywords Undamped Kirchhoff-type plate equation · free surface flow · linearized 
model
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1  Fluid‑structure interaction

1.1  Introduction

We consider the following linear, coupled system
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where u denotes the velocity of an incompressible, viscous fluid in ℝn
+
 and p its pres-

sure coupled with a boundary function h satisfying an undamped Kirchhoff-type 
plate equation. This problem is a linearised version of the following more abstract 
system of equations

in a time-depending domain Ωt = {x = (x1, ..., xn) ∈ ℝ
n ∶ xn > h(x�, t)} , 

t ∈ (0, T) , with lower free boundary, Γt = {x = (x�, xn) ∶ xn = h(x�, t) . Here, 
D(u) =

1

2
(∇u + (∇u)⊤) is the deformation tensor, and

denotes the force exerted by the incompressible fluid in Ωt onto the free boundary Γt 
with exterior normal nt pointing downward. Moreover, at t = 0,

Additionally, a body force g2 exerts a force from the outside onto the boundary. 
Hence, the boundary is moving and its motion is tracked by the scalar function h 
describing the height of the boundary. On the boundary the fluid velocity, u, coin-
cides with the velocity of the boundary, i.e., we assume the no-slip condition for its 
tangential part whereas its normal component coincides with �th (kinematic bound-
ary condition); furthermore, for mathematical generality, we include an additional 
force g1 satisfying the compatibility condition g1|t=0 = 0 , which also models the 
phenomenon of leaking. In the domain Ωt , the motion of the fluid is described by the 
Navier-Stokes equations with constant viscosity 𝜇 > 0.

The linearised version with fixed boundary is obtained after transforming the 
equations to a problem in ℝn

+
 and ignoring all nonlinear terms appearing in this 

way as well as the convective term (u ⋅ ∇)u . The first part of the term F van-
ishes due to divu = 0 and u� = (u1,… , un−1) = 0 on �ℝn

+
 so that also �un∕�xn = 0 

(1.1)

�tu − �Δu + ∇p = f in ℝn
+
× (0, T)

divu = 0 in ℝn
+
× (0, T)

u|xn=0 = (0, ..., 0, �th + g1) on ℝn−1 × (0, T)

�2
t
h + Δ2h = −p + g2 on ℝn−1 × (0, T)

u|t=0 = u0 in ℝn
+

(h, �th)|t=0 = (h0, (u0)n) in ℝn−1,

�tu − div(2�D(u) − pI) = f − (u ⋅ ∇)u in Ωt × (0, T)

divu = 0 in Ωt × (0, T)

u = (0, ..., 0, �th + g1) on Γt × (0, T)

�2
t
h + Δ2h = F + g2 on Γt × (0, T)

u = u0 in Ω0

(h, �th)|t=0 = (h0, (u0)n) in Γ0

F ∶= ⟨(2�D(u) − pI)nt,−en⟩, nt =
(∇�h,−1)

√
1 + �∇�h�2

,

Ω0 ∶= {x ∈ ℝ
n ∶ xn > h0(x

�)}, Γ0 ∶= {x ∈ ℝ
n ∶ xn = h0(x

�)}.
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on �ℝn
+
 , and only the pressure term remains, see (1.1)4 . For more details on this 

transformation see [8, Chapter 2], [6] and [11].
There is a lot of literature concerning fluids interacting with an elastic plate. 

Often an additional damping term like −�tΔh is introduced. This term allows the 
equation to have maximal Lp−regularity as considered by Denk and Saal, see [8], 
and [5, Chapter 4] in a space-time periodic setting. Weak solutions in L2-spaces 
are constructed by Chambolle et al. [6] when adding a viscous damping term of 
either the form Δ2�th or −Δ�tth in the plate equation. Similar results have been 
shown by Grandmont [11] in the case of a three-dimensional cavity with one part 
of the boundary being elastic and the other one being rigid; weak solutions are 
shown to exist until a possible time where intersections of the two boundary parts 
occur. However, the focus in [11] is on the behavior of solutions in the limit of 
a vanishing damping term and on a uniform positive lower bound of the time of 
existence.

Fluid structure interaction problems with a classical nonlinear von Kármán 
shallow shell allowing for both transversal and lateral displacements are consid-
ered by Chueshov and Ryzhkova [7]. Lengeler and Růžička [13] discussed the 
case of a linearly elastic Koiter shell instead of a flat plate and hence replaced the 
operator Δ2 by an operator better suited for non-flat boundaries.

In the case of a bounded domain and no damping we still have the existence 
of a contraction semigroup, see Badra and Takahashi [1, Proposition 3.4]. In [4] 
Casanova, Grandmont and Hillairet construct weak solutions in a 2D periodic 
layer-type domain. For local-in-time strong solutions in this latter setting we refer 
to Beiraõ da Veiga [3]. Moreover, strong solutions are found by Badra and Taka-
hashi [2] using a non-analytic semigroup of Gevrey class. Finally, in [10] the pre-
sent authors construct weak solutions to the fluid-structure interaction problem of 
a viscous fluid coupled with a damped elastic plate under the nonlinear Coulomb 
boundary friction condition.

However, in our case of an unbounded domain even the existence of an L2
-semigroup is doubtful, which is why we will make more basic considerations 
to solve the equation in the case of non-vanishing initial data. The methods used 
here admit a solution in the case p = 2 only since the corresponding multipli-
ers are bounded but they are not Fourier multipliers for p ≠ 2 . Also note that 
although we show the existence of solutions on any finite time interval, we must 
exclude the case T = ∞ since the Fourier transform of a solution of the undamped 
plate equation, �2

t
h + Δ2h = 0 , is given by terms involving cosine and sine func-

tions which are not L2−integrable on (0,∞) . Adding a damping term as in [8], this 
issue is solved and allows the use of solution spaces with exponential weights. 
Additionally, in [8] the damping term also guarantees that the solution belongs to 
an inhomogeneous Sobolev space, which is not possible in the present undamped 
case.

This work is structured as follows: First we introduce the relevant solution 
spaces. Secondly, we show existence of solutions in the case of vanishing initial data 
using partial Fourier transforms. Finally, we reconstruct the initial data. Here we 
do not use abstract semigroup theory, as usually done, but the specific form of the 
undamped plate equation.
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1.2  Solution spaces

One drawback of working with an undamped plate equation is that - unlike in [8] - 
we no longer obtain solutions u ∈ L2(0, T;H2(ℝn

+
)) where H2(ℝn

+
)) denotes the usual 

inhomogeneous Sobolev space of order 2 over L2 ; rather, we have to work in homo-
geneous spaces, i.e., u ∈ L2(0, T;Ḣ2(ℝn

+
)) . Since there are non-equivalent definitions 

of homogeneous Sobolev spaces and Bessel potential spaces, we choose a notion 
that fits well with our method of choice to obtain solutions, namely via the partial 
Fourier transform.

Let F  and F−1 denote the Fourier transform and its inverse, respectively. Ele-
ments of ℝn are often written in the form x = (x�, xn) with x� ∈ ℝ

n−1 , xn ∈ ℝ , and the 
phase variable � as (��, �n) . Similarly, vector fields u = (u1,… , un) are splitted into 
u� = (u1,… , un−1) and un ; in particular, we write 0� = (0,… , 0) ∈ ℝ

n−1.

Definition 1.1 Given s ∈ ℝ we define the homogeneous Sobolev space Ḣs(ℝn) as

equipped with the norm

Here Z�(ℝn) ∶= S
�(ℝn)∕P(ℝn) where P(ℝn) denotes the space of all polynomials 

on ℝn and S�(ℝn) denotes the set of Schwartz distributions. For the domain ℝn
+
 we 

define the homogeneous Sobolev space Ḣs(ℝn
+
) via restriction:

We have the following useful properties that we will frequently use.

Proposition 1.2 Let s ∈ ℝ and let Λ = (−Δ)1∕2 denote the operator defined by  
Λu = F

−1(|�|Fu) . 

i) Ḣ0(ℝn) = L2(ℝn).

ii) The mapping Λ𝜔F ∶ Ḣs(ℝn) → Ḣs−𝜔(ℝn) is an isomorphism and maps Z�(ℝn) 
onto itself for all � ∈ ℝ.

iii) I f  s >
1

2
 t h e n  t h e r e  i s  a  b o u n d e d  l i n e a r  m a p p i n g 

tr ∶ Ḣs(ℝn
+
) → Ḣ

s−
1

2 (𝜕ℝn
+
) ≅ Ḣ

s−
1

2 (ℝn−1) , the trace operator, such that 
tr(�)(x�) = �(x�, 0) for all � ∈ S(ℝn) with 0 ∉ suppF(�).

For a proof of iii) see Theorem 2.1 in [12]. For i) and ii) as well as for more infor-
mation about homogeneous spaces see [14, Chapter 5].

Concerning Bochner spaces with respect to time over a Banach space X we 
write b ∈ Ḣk(0, T;X) meaning that �k

t
b ∈ L2(0, T;X) for k ∈ ℕ , T ∈ (0,∞] . In most 

Ḣs(ℝn) ∶= {u ∈ Z�(ℝn) ∶ |𝜉|sû ∈ L2(ℝn)},

‖u‖Ḣs(ℝn) = ‖F−1(�𝜉�sû)‖L2(ℝn).

Ḣs(ℝn
+
) ∶=

�
u�

ℝ
n
+
∶ u ∈ Ḣs(ℝn)

�
,

‖u‖Ḣs(ℝn
+)
∶= inf

�
‖v‖Ḣs(ℝn) ∶ v�

ℝ
n
+
= u

�
.
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cases, X will be a homogeneous Bessel potential space Ḣs(Ω) where Ω = ℝ
n,ℝn

+
 

or Γ ∶= ℝ
n−1 = �ℝn

+
 . Since the Fourier transform is used only on ℝn−1 , it will, 

for the sake of simplicity, be denoted by F  rather than F′ , its inverse by F−1 
rather than (F�)−1 . However, the phase variable still is �′. For the one-dimen-
sional Fourier transform with respect to time the phase variable will be called �.

1.3  Main results

Now we can formulate the main result on existence of solutions. Recall that 
Γ = ℝ

n−1 = �ℝn
+
.

Theorem 1.3 Let T ∈ (0,∞) and

be given. Then the system

admits a solution 

Furthermore, we have the estimate

Note that T ∈ (0,∞) is arbitrary, but that C in (1.3) is independent of T.

u0 ∈ Ḣ2
(
ℝ

n
+

)
, divu0 = 0, u�

0
|𝜕ℝn

+
= 0, f ∈ L2((0, T) ×ℝ

n
+
),

g1 ∈ L2(0, T;Ḣ3∕2(Γ)) ∩ Ḣ1(0, T;Ḣ−1∕2(Γ)), g1(0) = 0,

g2 ∈ L2(0, T;Ḣ1∕2(Γ)), h0 ∈ Ḣ7∕2(Γ)

(1.2)

�tu − �Δu + ∇p = f in ℝn
+
× (0, T)

divu = 0 in ℝn
+
× (0, T)

(u�, un)|xn=0 = (0�, �th + g1) on Γ × (0, T)

�2
t
h + Δ2h = − p + g2 on Γ × (0, T)

u(0) = u0 in ℝn
+

(h(0), �th(0)) = (h0, (u0)n) in Γ

u ∈ L2(0, T;Ḣ2(ℝn
+
)) ∩ Ḣ1(0, T;L2(ℝn

+
)),

p ∈ L2(0, T;Ḣ1(ℝn
+
)),

h ∈ Ḣ1(0, T;Ḣ3∕2(Γ)) ∩ Ḣ2(0, T;Ḣ−1∕2(Γ)).

(1.3)

‖u‖L2(0,T;Ḣ2(ℝn
+))∩Ḣ

1(0,T;L2(ℝn
+))

+ ‖p‖L2(0,T;Ḣ1(ℝn
+))

+ ‖h‖Ḣ1(0,T;Ḣ3∕2(Γ))∩Ḣ2(0,T;Ḣ−1∕2(Γ))

≤ C
�
‖f‖L2((0,T)×ℝn

+)
+ ‖g1‖L2(0,T;Ḣ3∕2(Γ))∩Ḣ1(0,T;Ḣ−1∕2(Γ))

+ ‖g2‖L2(0,T;Ḣ1∕2(Γ))

�
+ CT1∕2

�
‖u0‖Ḣ2(ℝn

+) + ‖h0‖Ḣ7∕2(Γ)

�
.
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2  Proofs

2.1  The case of vanishing initial data

First we assume f = 0 in (1.1)1 as well as homogeneous initial data 
in (1.1)5 , i.e., u(0) = u0 = 0 . Since g1(0) = 0 we extend the functions 
g1 ∈ L2(0,∞;Ḣ3∕2(Γ)) ∩ Ḣ1(0,∞;Ḣ−1∕2(Γ)) and g2 ∈ L2(0,∞;Ḣ1∕2(Γ)) in time by 
zero to corresponding functions defined on ℝ . Then we apply the Fourier transform 
with respect to time and x� ∈ ℝ

n−1 to get for v = û and ĥ the system

From (2.1)1,2,3 we deduce Δp = 0 or, in other words,

which is solved in S�(ℝn−1) by

with a function � = �(��, �) ∈ ℂ . Now we can solve (2.1)1 for v′ ; the generic solution 
is given by

Indeed,

Concerning �′ (2.1)4 implies that

So for now we have

Using this representation we consider (2.1)3 to determine �nvn:

(2.1)

(i𝜏 + 𝜇|𝜉�|2)v� − 𝜇𝜕2
n
v� + i𝜉�p̂ = 0 in ℝ ×ℝ

n
+

(i𝜏 + 𝜇|𝜉�|2)vn − 𝜇𝜕2
n
vn + 𝜕np̂ = 0 in ℝ ×ℝ

n
+

i𝜉� ⋅ v� + 𝜕nvn = 0 in ℝ ×ℝ
n
+

(v�, vn)|xn=0 = (0�, i𝜏ĥ + ĝ1) on ℝ × Γ

(−𝜏2 + |𝜉�|4)ĥ = −p̂|xn=0 + ĝ2 on ℝ × Γ.

𝜕2
n
p̂ − |𝜉�|2p̂ = 0,

(2.2)p̂ = 𝛾e−|𝜉
�|xn for a.a. xn > 0

(2.3)
v� = 𝛼�e−Bxn −

𝜉�𝛾

𝜏
e−Axn , 𝛼� ∈ ℂ

n−1,

A = �𝜉��, B ∶=
√
i𝜏𝜇−1 + �𝜉��2 (ReB > 0).

(i𝜏 + 𝜇|𝜉�|2)e−Bxn − 𝜇𝜕2
n
e−Bxn = (i𝜏 + 𝜇|𝜉�|2)e−Bxn − 𝜇B2e−Bxn = 0,

((i𝜏 + 𝜇|𝜉�|2) − 𝜇|𝜉�|2)−𝜉
�𝛾

𝜏
e−Axn = −i𝜉�𝛾e−Axn = −i𝜉�p̂.

�� =
���

�
.

(2.4)v� =
���

�
(e−Bxn − e−Axn ).
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This implies

We exploit this representation to solve (2.1)2 and get that

In particular, vn|xn=0 =
�A

i�
−

�

i�B
A2. Now we determine two identities for ĥ by using 

(2.1)4 and (2.1)5:

Combining these identities we solve for the still unknown term � and see that

We define

and use the identity

where −�2B

(B−A)A
= −

�2

A
+ �i�(A + B) . Now we conclude that

Summarizing (2.2), (2.4), (2.5), (2.6), (2.8) and (2.9) we obtain a solution p̂, v = û, ĥ 
in Fourier space by

�nvn = −i�� ⋅ v� = |��|2 �
i�
(e−Bxn − e−Axn ).

�2
n
vn = A2 �

i�
(−Be−Bxn + Ae−Axn ).

(2.5)vn =
1

i𝜏 + 𝜇A2
(−𝜕np̂ + 𝜇𝜕2

n
vn) = A

𝛾

i𝜏
e−Axn −

1

B

𝛾

i𝜏
A2e−Bxn .

(2.6)
ĥ =

1

i𝜏
(−ĝ1 + vn|xn=0) =

−ĝ1

i𝜏
−

𝛾A

𝜏2
+

𝛾A2

𝜏2B
,

ĥ =
−p̂|xn=0 + ĝ2

A4 − 𝜏2
=

−𝛾 + ĝ2

A4 − 𝜏2
.

𝛾

(
−
A

𝜏2
+

A2

B𝜏2
+

1

A4 − 𝜏2

)
=

ĝ2

A4 − 𝜏2
+

ĝ1

i𝜏
.

(2.7)N(A, �) ∶=

(
A4 − �2 −

�2

A
+ �i�A + �i�B

)−1

−�2B

(B−A)A
⋅ (A4 − �2)

({
−

A

�2
+

A2

B�2

}
+

1

A4−�2

)
= (A4 − �2) −

�2B

(B−A)A

(2.8)𝛾 = N(A, 𝜏)
−𝜏2B

(B − A)A

(
ĝ2 +

A4 − 𝜏2

i𝜏
ĝ1

)

(2.9)= N(A, 𝜏)

(
−𝜏2

A
+ 𝜇i𝜏A + 𝜇i𝜏B

)(
ĝ2 +

A4 − 𝜏2

i𝜏
ĝ1

)
.
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Lemma 2.1 The functions

are uniformly bounded with respect to (A, �) ∈ (0,∞) ×ℝ.

Proof We note that B = ReB +
i�

2�ReB
 with ReB > 0 and decompose N(A, �)−1 into 

its real and imaginary part:

First we prove that �AN(A, �) is bounded:

Next we consider �
2

A
N(A, �) . If |�| ≤ A2 , we use the imaginary part of N(A, �)−1 to 

get as above the estimate

However, if |�| ≥ A2 , we use the real part of N(A, �)−1 and are led to the estimate

(2.10)

p̂ = 𝛾e−Axn
(2.9)
=

(
−𝜏2

A
+ 𝜇i𝜏A + 𝜇i𝜏B

)
N(A, 𝜏)

(
ĝ2 +

A4 − 𝜏2

i𝜏
ĝ1

)
e−Axn ,

v� =
𝜉�𝛾

𝜏
(e−Bxn − e−Axn )

=
i𝜉�

A

i𝜏B

A
N(A, 𝜏)

(
ĝ2 +

A4 − 𝜏2

i𝜏
ĝ1

)
A
e−Bxn − e−Axn

B − A
,

vn = −
i𝜏B

A
N(A, 𝜏)

(
ĝ2 +

A4 − 𝜏2

i𝜏
ĝ1

)
A
e−Bxn − e−Axn

B − A

+ i𝜏N(A, 𝜏)

(
ĝ2 +

A4 − 𝜏2

i𝜏
ĝ1

)
e−Bxn ,

ĥ =
−ĝ1

i𝜏
−

𝛾A

𝜏2
+

𝛾A2

𝜏2B
= N(A, 𝜏)ĝ2 +

(
(A4 − 𝜏2)N(A, 𝜏) − 1

) 1
i𝜏
ĝ1.

�AN(A, �),
�2

A
N(A, �), �3∕2N(A, �), (A4 − �2)N(A, �), �BN(A, �)

N(A, �)−1 =A4 − �2 −
�2

A
+ �i�B + �i�A

=A4 − �2
(
1 +

1

A
+

1

2ReB

)
+ �i�(ReB + A).

|�AN(A, �)| ≤ |�|A
|Im(N(A, �)−1)|

≤ |�|A
|�|�(ReB + A)

≤ A

�A
=

1

�
.

�2

A
|N(A, �)| ≤ |�|A

|Im(N(A, �)−1)|
≤ 1

�
.



609

1 3

An L2 approach to viscous flow in the half space with free elas…

The function �3∕2N(A, �) is also bounded due to the previous considerations and 
Young’s inequality ��3∕2� = ��

�√
A

√
�A�� ≤ �2

2A
+

���A
2

.
Due to �B� ≤ �−1∕2

√
��� + A we deduce the boundedness of �BN(A, �) from 

the previous cases. Finally, the boundedness of (A4 − �2)N(A, �) follows from the 
identity

see (2.7), and the previous cases.   ◻

To simplify the analysis of the multiplier functions, we reduce the question of 
their boundedness to a problem in ℝn−1 rather than in ℝn

+
 by the following lemma.

Lemma 2.2 

i) Let f ∶ ℝ ×ℝ
n−1

→ ℂ be measurable, c > 0 and � ∈ {cA, cB} , see (2.3). Then 
we have the equivalence

with equivalent norms.
ii) There exists a constant C > 0 such that

for all xn,A > 0 and � ∈ ℝ�{0}.

Proof i) The claim follows from the calculation

where we used Tonelli’s theorem in the first identity.

�2

A
|N(A, �)| ≤ �2

A

1

|Re(N(A, �)−1)|

=
�2

A

1

�2
(
1 +

1

A
+

1

2ReB

)
− A4

≤ �2

A

1
�2

A

= 1.

(A4 − �2)N(A, �) = 1 −
(

−�2

A
+ �i�A + �i�B

)
N(A, �),

f (�, ��)e−�xn ∈ L2(ℝ ×ℝ
n
+
) ⟺

1√
Re�

f (�, ��) ∈ L2(ℝ ×ℝ
n−1)

A
||||
e−Bxn − e−Axn

B − A

||||
≤ Ce

−
1

2
Axn

∫
ℝ
∫
ℝ

n
+

|f (�, ��)e−�xn |2 d��dxnd�

= ∫
ℝ
∫
ℝn−1

(

∫
∞

0

|e−�xn |2dxn
)
|f (�, ��)|2 d��d�

=
1

2 ∫
ℝ
∫
ℝn−1

1

Re�
|f (�, ��)|2 d��d�,
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ii) We calculate

In the first inequality we used that Re((B − A)xn) > 0 .   ◻

Proposition 2.3 Let g1 ∈ L2(0,∞;Ḣ3∕2(Γ)) ∩ Ḣ1(0,∞;Ḣ−1∕2(Γ)) with g1(0) = 0 and 
g2 ∈ L2(0,∞;Ḣ1∕2(Γ)) be given. Then the system

together with initial conditions u(0) = 0 , h(0) = �th(0) = 0 has a solution

Furthermore, we have the estimate

The analogous statement holds if the time interval is replaced with (0, T).

Proof First consider the case g1 = 0 in which the solution (2.10) simplifies to

where by Lemma 2.1

is a bounded multiplier function. By the previous two lemmata, we now show the 
corresponding estimates.

A
||||
e−Bxn − e−Axn

B − A

||||
=
Ae−Axn

|B − A| |e
−(B−A)xn − 1| ≤ Ae−Axn

|B − A| |B − A|xn

=Axne
−Axn ≤ Ce

−
1

2
Axn .

�tu − �Δu + ∇p = 0 in ℝn
+
× (0,∞)

divu = 0 in ℝn
+
× (0,∞)

u|xn=0 = (0�, �th + g1) on Γ × (0,∞)

�2
t
h + Δ2h = −p + g2 on Γ × (0,∞)

u ∈ Ḣ1(0,∞;L2(ℝn
+
)) ∩ L2(0,∞;Ḣ2(ℝn

+
)),

p ∈ L2(0,∞;Ḣ1(ℝn
+
)),

h ∈ Ḣ1(0,∞;Ḣ3∕2(Γ)) ∩ Ḣ2(0,∞;Ḣ−1∕2(Γ)).

‖u‖Ḣ1(0,∞;L2(ℝn
+))∩L

2(0,∞;Ḣ2(ℝn
+))

+ ‖p‖L2(0,∞;Ḣ1(ℝn
+))

+ ‖h‖Ḣ1(0,∞;Ḣ3∕2(Γ))∩Ḣ2(0,∞;Ḣ−1∕2(Γ))

≤ C
�
‖g1‖L2(0,∞;Ḣ3∕2(Γ))∩Ḣ1(0,∞;Ḣ−1∕2(Γ)) + ‖g2‖L2(0,∞;Ḣ1∕2(Γ))

�
.

(2.11)

p̂ = (1 −M(A, 𝜏))ĝ2 e
−Axn ,

v� =
i𝜉�

A

i𝜏B

A
N(A, 𝜏)ĝ2 A

e−Bxn − e−Axn

B − A
,

vn =
i𝜏B

A
N(A, 𝜏)ĝ2 A

e−Bxn − e−Axn

B − A
+ i𝜏N(A, 𝜏)ĝ2 e

−Bxn ,

ĥ = N(A, 𝜏)ĝ2.

M(A, �) ∶= N(A, �)(A4 − �2)
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(i) u� ∈ L
2(0,∞;Ḣ

2(ℝn

+
)) : Concerning tangential derivatives �k�iuj , i, j, k ∈ {1, ..., n − 1} , 

we estimate as follows:

For the normal derivatives �2
n
u′ we have:

The second summand can be treated as above. Hence we only have to consider the 
first one:

For mixed derivatives �k�nuj , j, k ∈ {1, ..., n − 1} we have that

The first summand can be treated as in (2.13), the second one as in (2.12).
(ii) un ∈ L

2(0,∞;Ḣ
2(ℝn

+
)) : Since div u = 0 and thus �k�nun = −

∑n−1
j=1

�k�juj ∈ L2((0,∞) ×ℝ
n
+
) 

as shown in (i), it is left to consider �k�iun for i, k ≠ n . Moreover, the first summand 
of vn can be treated in the same way as v′ , see (2.11). Therefore, we only have to dis-
cuss the second one:

(iii) p ∈ L2(0,∞;Ḣ1(ℝn
+
)) : Since 𝜕np̂ = −Ap̂ , it suffices to consider the tangential 

derivatives ∇�p where, since M is bounded, we get that

(2.12)

‖𝜉k𝜉ivj(i𝜏)‖L2(ℝ×ℝn
+)
=
�����

�
𝜉k

A

𝜉i

A

i𝜉j

A

�
𝜏NAB ĝ2 A

e−Bxn − e−Axn

B − A

�����L2(ℝ×Γ)
≤ c��𝜏BNAĝ2e

−
1

2
Axn��L2(ℝ×ℝn

+)
≤ c��ĝ2

√
A��L2(ℝ×Γ)

≤ c��g2��L2(ℝ,Ḣ1∕2(Γ))
.

𝜕2
n
v� =

i𝜉�

A

i𝜏B

A
N ĝ2 A

B2e−Bxn − A2e−Axn

B − A

=
i𝜉�

A

i𝜏B

A
Nĝ2A

(B2 − A2)e−Bxn

B − A
+

i𝜉�

A
i𝜏BNA ĝ2 A

e−Bxn − e−Axn

B − A
.

(2.13)

����
i𝜉�

A
i𝜏BNĝ2(B + A)e−Bxn

����L2(ℝ×ℝn
+)

≤ c

������
𝜏BNĝ2B

1√
ReB

������L2(ℝ×Γ)

≤ c
����
𝜏B2N

A
ĝ2

√
A
����L2(ℝ×Γ)

= c
�����
N

�
−𝜏2𝜇−1

A
+ i𝜏A

�
(ĝ2

√
A)
�����L2(ℝ×Γ)

≤ c��g2��L2(ℝ,Ḣ1∕2(Γ))
.

i𝜉k𝜕nvj =
i𝜉k

A

i𝜉j

A
i𝜏BNĝ2A

−Be−Bxn + Ae−Axn

B − A

=
i𝜉k

A

i𝜉j

A
i𝜏BNĝ2A

(A − B)e−Bxn

B − A
−

i𝜉k

A

i𝜉j

A
i𝜏BANĝ2A

e−Bxn − e−Axn

B − A
.

‖𝜉k𝜉i𝜏Nĝ2e
−Bxn‖L2(ℝ×ℝn

+)
≤ c

������
𝜏A2Nĝ2

1√
ReB

������L2(ℝ×Γ)
≤ c��𝜏ANĝ2

√
A��L2(ℝ×Γ) ≤ c��g2��L2(ℝ,Ḣ1∕2(Γ))

.
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(iv) h ∈ Ḣ1(0,∞;Ḣ3∕2(Γ)) ∩ Ḣ2(0,∞;Ḣ−1∕2(Γ)) : This follows immediately from 
ĥ =

N√
A
(ĝ2

√
A) and the boundedness of �AN  and �

2

A
N .

(v) u ∈ Ḣ1(0,∞;L2(ℝn
+
)) : The estimate follows from �tu = Δu − ∇p ∈ L2((0,∞) ×ℝ

n
+
).

If on the other hand g2 = 0 , but

then we make use of the boundedness of M(A, �) ∶= N(A, �)(A4 − �2) , see Lemma 
2.1. Consider the set of solutions with g2 = 0 , see (2.10):

Although the following estimates are similar to the previous ones, we present some 
details for the convenience of the reader:

(i) u� ∈ L2(0,∞, Ḣ2(ℝn
+
)) : For tangential derivatives �k�iuj , 1 ≤ i, j, k ≤ n − 1 , we 

use the interpolation inequality

and that |B| ≤ ||
�

�
||
1∕2

+ |A| , and calculate as follows:

For the normal derivatives �2
n
u′ we compute:

‖𝜉�p̂‖L2(ℝ×ℝn
+)
=
���𝜉

�(1 −M)ĝ2e
−Axn���L2(ℝ×ℝn

+)

≤ c‖(ĝ2
√
A)‖L2(ℝ×Γ)

≤ c��g2��L2(ℝ,Ḣ1∕2(Γ))
.

0 ≠ g1 ∈ L2(0,∞;Ḣ3∕2(Γ)) ∩ Ḣ1(0,∞;Ḣ−1∕2(Γ)), g1(0) = 0,

p̂ =
(
i𝜏

A
+ 𝜇A + 𝜇B

)
M(A, 𝜏)ĝ1e

−Axn ,

v� =
i𝜉�

A

B

A
M(A, 𝜏)ĝ1A

e−Bxn − e−Axn

B − A
,

vn =
B

A
M(A, 𝜏)ĝ1A

e−Bxn − e−Axn

B − A
+M(A, 𝜏)ĝ1e

−Bxn ,

ĥ = (M(A, 𝜏) − 1)
1

i𝜏
ĝ1.

(2.14)‖g1‖Ḣ1∕2(ℝ;Ḣ1∕2(Γ)) ≤ ‖g1‖
1∕2

L2(ℝ;Ḣ3∕2(Γ))
‖g1‖

1∕2

Ḣ1(ℝ;Ḣ−1∕2(Γ))

(2.15)

‖𝜉k𝜉ivj‖L2(ℝ×ℝn
+)
=
�����

�
𝜉k

A

𝜉i

A

i𝜉j

A

�
MABĝ1

�
A
e−Bxn − e−Axn

B − A

������L2(ℝ×ℝn
+)

≤c
������
ABĝ1

1√
A

������L2(ℝ×Γ)
≤c�‖g1‖L2(ℝ,Ḣ3∕2(Γ)) + ‖g1‖Ḣ1∕2(ℝ;Ḣ1∕2(Γ))

�

≤c�‖g1‖L2(ℝ;Ḣ3∕2(Γ)) + ‖g1‖Ḣ1(ℝ;Ḣ−1∕2(Γ))

�
.
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The second summand can be treated as in (2.15). Hence we only have to consider 
the first one:

For mixed derivatives �k�nuj , k = 1, ..., n − 1 , there holds

The first summand can be treated as in (2.16), the second one as in (2.15).
(ii) un ∈ L2(0,∞;Ḣ2(ℝn

+
)) : Since �k�nun = −

∑n−1

j=1
�k�juj ∈ L2((0,∞) ×ℝ

n
+
) , it 

is only left to estimate the term �k�iun for i, k ≠ n . The first summand of vn can be 
treated in the same way as vj ; thus we only have to consider the second one:

(iii) p ∈ L2(0,∞;Ḣ1(ℝn
+
)) . For the tangential derivative ∇�p we have

for the last step we also use (2.15). Since 𝜕np̂ = −Ap̂ , we can show 
�np ∈ L2(0,∞;L2(ℝn

+
)) as above.

(iv) h ∈ Ḣ1(0,∞;Ḣ3∕2(Γ)) ∩ Ḣ2(0,∞;Ḣ−1∕2(Γ)) . This follows immediately from 
the boundedness of M(A, �) − 1.

𝜕2
n
v� =

i𝜉�

A

B

A
Mĝ1A

B2e−Bxn − A2e−Axn

B − A

=
i𝜉�

A

B

A
Mĝ1A

(B2 − A2)e−Bxn

B − A
+

i𝜉�

A
BAMĝ1A

e−Bxn − e−Axn

B − A
.

(2.16)

�����

i𝜉j

A
BMĝ1(B + A)e−Bxn

�����L2(ℝ×ℝn
+)

≤ c

������
B2ĝ1

1√
ReB

������L2(ℝ×Γ)

= c

������

�
i𝜏

𝜇
+ A2

�
ĝ1

1√
A

������L2(ℝ×Γ)
≤ c��g1��L2(ℝ,Ḣ3∕2(Γ))

+ ��g1��Ḣ1(ℝ,Ḣ−1∕2(Γ))
.

i𝜉k𝜕nvj =
i𝜉k

A

i𝜉j

A
BMĝ1A

−Be−Bxn + Ae−Axn

B − A

= −
i𝜉k

A

i𝜉j

A
BMĝ1Ae

−Bxn −
i𝜉k

A

i𝜉j

A
BAMĝ1A

e−Bxn − e−Axn

B − A
.

‖𝜉k𝜉iMĝ1e
−Bxn‖L2(ℝ×ℝn

+)
≤ c

������
A2ĝ1

1√
ReB

������L2(ℝ×ℝn
+)

≤ c
���A

3∕2ĝ1
���L2(ℝ×Γ) ≤ c��g1��L2(ℝ,Ḣ3∕2(Γ))

.

‖𝜉�p̂‖L2(ℝ×ℝn
+)
≤ ����

𝜉�
�
i𝜏

A
+ 𝜇A + 𝜇B

�
ĝ1e

−Axn
����L2(ℝ×ℝn

+)

≤ c

������

�
i𝜏

A
+ 𝜇A + 𝜇B

�
Aĝ1

1√
A

������L2(ℝ×Γ)
≤ c��g1��Ḣ1(ℝ,Ḣ−1∕2(Γ))

+ c‖g1‖L2(ℝ,Ḣ3∕2(Γ)));
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(v) u ∈ Ḣ1(0,∞;L2(ℝn
+
)) : Here we refer to �tu = Δu − ∇p ∈ L2((0,∞) ×ℝ

n
+
).

If g1 ∈ L2(0, T;Ḣ3∕2(Γ)) ∩ Ḣ1(0, T;Ḣ−1∕2(Γ)) and g2 ∈ L2(0, T;Ḣ1∕2(Γ)) we 
extend g2 by zero to an element in L2(0,∞;Ḣ1∕2(Γ)) and, since g1(0) = 0 , we 
extend g1 to an element in L2(0,∞;Ḣ3∕2(Γ)) ∩ Ḣ1(0,∞;Ḣ−1∕2(Γ)) by g1◦� where 
� ∈ C0([0,∞)) has compact support in [0, 2T] and

Then we apply the above case and restrict the result to the finite time interval.   ◻

2.2  The case of non‑vanishing initial data

Next we want to recover non-vanishing initial data starting with h0 ∈ Ḣ7∕2(Γ) . Con-
sider the classical plate equation

Applying the partial Fourier transform F  with respect to the spatial variable 
x� ∈ Γ = ℝ

n−1 we get a solution

Now the general idea is to replace h from Proposition 2.3 with h + �0 to satisfy the 
initial condition and to leave the plate equation unchanged. However this replace-
ment alters the equation un|xn=0 = �th which is why we need the following proposi-
tion on the Stokes system with inhomogeneous Dirichlet boundary data in the nth 
component.

Proposition 2.4 Let 0 < T < ∞ , h0 ∈ Ḣ7∕2(Γ) , and let �0 = F
−1(cos(A2t)Fh0) be the 

solution of the plate equation (2.17). Then the Stokes system

has a solution

Furthermore, there holds the estimate

� ∶ (0,∞) → ℝ, t ↦

{
t, if t ∈ (0, T),

2T − t, if t ∈ (T , 2T).

(2.17)
�2
t
�0 + Δ2�0 = 0 in Γ × (0, T)

(�0, �t�0)|t=0 = (h0, 0) on Γ.

(2.18)
𝜂0(t, 𝜉) = F

−1
(
cos(A2t)Fh0

)
∈ L∞(0, T;Ḣ7∕2(Γ)),

𝜕t𝜂0(t, 𝜉) = F
−1(− sin(A2t)A2Fh0) ∈ L∞(0, T;Ḣ3∕2(Γ)).

(2.19)

�tw0 − �Δw0 + ∇p0 = 0 in ℝ
n
+
× (0, T)

divw0 = 0 in ℝn
+
× (0, T)

(w�
0
, (w0)n)|xn=0 = (0�, �t�0) on Γ × (0, T)

w0|t=0 = 0 in ℝn
+

w0 ∈ L2(0, T;Ḣ2(ℝn
+
)) ∩ Ḣ1(0, T;L2(ℝn

+
)), p0 ∈ L2(0, T;Ḣ1(ℝn

+
)).
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Proof Choose � ∈ C1
c
([0,∞)) such that � = 1 on [0,  T], �(t) = 0 for t > 2T  and 

t|��(t)| ≤ c on ℝ with c > 0 independent of T. Obviously, we can replace �t�0(t, �) 
with �(t) �t�0(t, �) in (2.19)3 . We want to ensure that

For the first property we have

Concerning the space Ḣ1(0,∞;Ḣ−1∕2(Γ)) we use the estimate | sin s| ≤ |s| , s ∈ ℝ , to 
get that

Now it is easily seen that r satisfies (2.21).
Since �t�0(0, x�)�(0) = 0 , it is possible to extend r = �t�0(t, x

�)� by zero to a 
function in L2(ℝ;Ḣ3∕2(Γ)) ∩ Ḣ1(ℝ;Ḣ−1∕2(Γ)) still satisfying an estimate similar to 
(2.21)2 . Then we apply in (2.19) the Fourier transform with respect to time and the 
first n − 1 spatial variables to obtain that

The following calculations resemble those at the beginning of Sect. 2.1, see (2.3)-
(2.5). Since divw0 = 0 we get from (2.22) that Δp0 = 0 is solved by

for a function � = �(��, �) . Using this identity and (2.22)1 we deduce

Now using (2.22)3 we see that

(2.20)‖w0‖L2(0,T;Ḣ2(ℝn
+))∩Ḣ

1(0,T;L2(ℝn
+))

+ ‖p0‖L2(0,T;Ḣ1(ℝn
+))

≤ CT1∕2‖h0‖Ḣ7∕2(Γ).

(2.21)
r ∶= 𝜑𝜕t𝜂0 ∈ L2(0,∞;Ḣ3∕2(Γ)) ∩ Ḣ1(0,∞;Ḣ−1∕2(Γ)),

‖r‖L2(0,∞;Ḣ3∕2(Γ))∩Ḣ1(0,∞;Ḣ−1∕2(Γ)) ≤ cT1∕2‖h0‖Ḣ7∕2(Γ).

|𝜑𝜕t�̂�0 A
3∕2| = |A7∕2ĥ0 sin(A2t)𝜑| ≤ |A7∕2ĥ0𝜑| ∈ L2((0,∞) × Γ).

|A−1∕2𝜕t(𝜑 �̂�0)| = |A−1∕2𝜑𝜕2
t
�̂�0 + A−1∕2𝜑� 𝜕t�̂�0|

= | − A−1∕2A4ĥ0 cos(A
2t)𝜑 − A−1∕2A2ĥ0 sin (A

2t)𝜑�|
≤ |A7∕2ĥ0𝜑| + |A7∕2ĥ0t𝜑

�| ∈ L2((0,∞) × Γ).

(2.22)

(i𝜏 + 𝜇|𝜉�|2)ŵ�
0
− 𝜇𝜕2

n
ŵ�
0
+ i𝜉�p̂0 = 0 in ℝ ×ℝ

n
+

(i𝜏 + 𝜇|𝜉�|2)(ŵ0)n − 𝜇𝜕2
n
(ŵ0)n + 𝜕np̂0 = 0 in ℝ ×ℝ

n
+

i𝜉� ⋅ ŵ�
0
+ 𝜕n(ŵ0)n = 0 in ℝ ×ℝ

n
+

(ŵ�
0
, (ŵ0)n)|xn=0 = (0�, r̂) on ℝ × Γ.

p̂0 = 𝛾e−Axn

ŵ�
0
=

𝜉�𝛾

𝜏

(
e−Bxn − e−Axn

)
.
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Next, from (2.22)2 we conclude that

cf. (2.5). Finally, (2.22)4 implies r̂ = 𝛾

(
A

i𝜏
−

A2

i𝜏B

)
= 𝛾

A

i𝜏

B−A

B
. Hence

In summary, we obtain a solution

Now we can prove a priori estimates of this solution in L2:
(i) w�

0
∈ L2(0,∞;Ḣ2(ℝn

+
)) : Concerning tangential derivatives �k�i(w0)j , 

i, j, k ∈ {1, ..., n − 1} there holds, since |B| ≤ c|�|1∕2 + A,

For mixed derivatives �i�n(w0)j we see that

𝜕n(ŵ0)n = −i𝜉� ⋅ ŵ�
0
=

A2𝛾

i𝜏

(
e−Bxn − e−Axn

)
,

𝜕2
n
(ŵ0)n =

A2𝛾

i𝜏

(
−Be−Bxn + Ae−Axn

)
.

(ŵ0)n = 𝛾

(
A

i𝜏
e−Axn −

A2

Bi𝜏
e−Bxn

)
,

𝛾 = r̂
i𝜏

A

B

B − A
= r̂𝜇

B(B + A)

A
.

(2.23)

p̂0 =
𝜇B(B + A)

A
r̂e−Axn ,

ŵ�
0
=

i𝜉�

A

B

A
r̂

(
A
e−Bxn − e−Axn

B − A

)
,

(ŵ0)n = r̂
i𝜏

A

B

B − A

(
A

i𝜏
e−Axn −

A2

Bi𝜏
e−Bxn

)

= −
B

A
r̂

(
A
e−Bxn − e−Axn

B − A

)
+ r̂e−Bxn .

‖𝜉k𝜉i(ŵ0)j‖L2(ℝ×ℝn
+)
=
�����

𝜉k

A

𝜉i

A

𝜉j

A
BAr̂

�
A
e−Bxn − e−Axn

B − A

������L2(ℝ×ℝn
+)

≤c
������
BAr̂

1√
A

������L2(ℝ×Γ)
≤c‖r‖L2(ℝ,Ḣ3∕2(Γ)) + c‖r‖Ḣ1∕2(ℝ;Ḣ1∕2(Γ)).
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Finally, the normal derivative �2
n
(w0)j satisfies the estimate

since A ≤ |B| and |B|2 ≤ c|�| + A2.
(ii) (w0)n ∈ L2(0,∞;Ḣ2(ℝn

+
)) : Since �j�n(w0

)n = −
∑n−1

k=1
�k�j(w0

)k , j ∈ {1, ..., n − 1} , 
we have to consider only �k�i(w0)n for i, k ∈ {1, ..., n − 1} . The first summand in 
(2.23)4 can be treated as (ŵ0)j above; so we inspect the second one:

(iii) p0 ∈ L2(0,∞;Ḣ1(ℝn
+
)) : Since 𝜕np̂0 = −Ap̂0 , it suffices to consider the tangen-

tial gradient ∇�p0 . Here we get that

‖𝜉i𝜕n(ŵ0)j‖L2(ℝ×ℝn
+)

=
�����

𝜉i

A

𝜉j

A
Br̂

�
A
−Be−Bxn + Ae−Axn

B − A

������L2(ℝ×ℝn
+)

≤�����ABr̂
�
−e−Bxn − A

e−Bxn − e−Axn

B − A

������L2(ℝ×ℝn
+)

≤2c
������
ABr̂

1√
A

������L2(ℝ×Γ)
≤c‖r‖L2(ℝ,Ḣ3∕2(Γ)) + c‖r‖Ḣ1∕2(ℝ;Ḣ1∕2(Γ)).

‖𝜕2
n
(ŵ0)j‖L2(ℝ×ℝn

+)
≤�����

B

A
r̂

�
A
B2e−Bxn − A2e−Axn

B − A

������L2(ℝ×ℝn
+)

≤����
B

A
r̂A

B2 − A2

B − A
e−Bxn

����L2(ℝ×ℝn
+)

+
�����
B

A
r̂A2

�
A
e−Bxn − e−Axn

B − A

������L2(ℝ×ℝn
+)

≤c
������
Br̂

B + A√
A

������L2(ℝ×Γ)
+ c

������

B

A
r̂
A2

√
A

������L2(ℝ×Γ)

≤3c
������
B2r̂

1√
A

������L2(ℝ×Γ)
≤c‖r‖L2(ℝ;Ḣ3∕2(Γ)) + c‖r‖Ḣ1(ℝ;Ḣ−1∕2(Γ)),

‖𝜉i𝜉kr̂e−Bxn‖L2(ℝ×ℝn
+)
≤
������
A2r̂

1√
A

������L2(ℝ×Γ)
≤ ‖r‖L2(ℝ,Ḣ3∕2(Γ)).
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(iv) w0 ∈ Ḣ1(0,∞;L2(ℝn
+
)) : This is immediately implied by the identity 

�tw0 = �Δw0 − ∇p0 ∈ L2((0,∞) ×ℝ
n
+
).

Restricting ourselves to the time interval (0, T), recalling the interpolation ine-
quality (2.14) and also (2.21) we deduce the proposition.   ◻

Now we reconstruct the initial data u0 ∈ Ḣ2(ℝn
+
) with divu0 = 0 and u�

0
|xn=0 = 0 , 

as well as the right-hand side f ∈ L2((0, T) ×ℝ
n
+
).

Proposition 2.5 Let T ∈ (0,∞) , f ∈ L2((0, T) ×ℝ
n
+
) , and let u0 ∈ Ḣ2

(
ℝ

n
+

)
 satisfy 

divu0 = 0 , u�
0
|�ℝn

+
= 0 . Then the Stokes system

admits a solution

Furthermore, we have the estimate

Proof To get rid of the terms involving u0 define

which satisfies (2.24)2,3,4 . Moreover, since, in L2((0, T) ×ℝ
n
+
),

w2 can be estimated as z in (2.25) (with f = 0 , p1 = 0).
Next we consider the Stokes system

��𝜉�p̂0��L2(ℝ×ℝn
+)
=
����
𝜇
𝜉�

A
B(B + A)r̂e−Axn

����L2(ℝ×ℝn
+)

≤c
������
B(B + A)r̂

1√
A

������L2(ℝ×Γ)
≤c‖r‖L2(ℝ,Ḣ3∕2(Γ)) + c‖r‖Ḣ1(ℝ,Ḣ−1∕2(Γ)).

(2.24)

�tz − �Δz + ∇p1 = f in ℝn
+
× (0, T)

divz = 0 in ℝn
+
× (0, T)

(z�, zn)|xn=0 = (0�,F−1(cos(A2t)(Fu0)n)) on Γ × (0, T)

z(0) = u0 in ℝn
+

z ∈ L2(0, T;Ḣ2(ℝn
+
)) ∩ Ḣ1(0, T;L2(ℝn

+
)), p1 ∈ L2(0, T;Ḣ1(ℝn

+
)).

(2.25)
‖z‖L2(0,T;Ḣ2(ℝn

+))∩Ḣ
1(0,T;L2(ℝn

+))
+ ‖p1‖L2(0,T;Ḣ1(ℝn

+))

≤ C‖f‖L2((0,T)×ℝn
+)
+ CT1∕2‖u0‖Ḣ2(ℝn

+)
.

w2(t, x
�, xn) ∶= F

−1
(
cos(|𝜉�|2t) û0(𝜉�, xn)

)
∈ L2(0, T;Ḣ2(ℝn

+
))

𝜕tw2(t, x
�, xn) = F

−1
(
− sin(|𝜉�|2t)|𝜉�|2 û0(𝜉�, xn)

)
,

Δw2(t, x
�, xn) = F

−1
(
cos(|𝜉�|2t)(−|𝜉�|2û0 + 𝜕2

n
û0)

)
,
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Since the right-hand side lies in L2((0, T) ×ℝ
n
+
) , there exists a strong solution 

w1 ∈ L2(0, T;H2(ℝn
+
)) ∩ H1(0, T;L2(ℝn

+
)) and p1 ∈ L2(0, T;Ḣ1(ℝn

+
)) with the corre-

sponding maximal regularity estimate (see e.g. [9, Corollary 3.6]) with a constant 
C > 0 independent of T.

So we deduce that z ∶= w1 + w2 and p1 satisfy (2.24), (2.25).   ◻

Corollary 2.6 Let T ∈ (0,∞) , f ∈ L2((0, T) ×ℝ
n
+
) , h0 ∈ Ḣ7∕2(Γ) , u0 ∈ Ḣ2(ℝn

+
) with 

divu0 = 0 and u�
0
|�ℝn

+
= 0 . Then the Stokes system

together with the boundary condition

on Γ × (0, T) , has a solution

Furthermore, we have the corresponding estimate as in (2.25), including the term 
CT1∕2‖h0‖Ḣ7∕2(Γ).

Proof Let (w0, p0) be a solution of (2.19) and (z, p1) be a solution of (2.24). Then 
define

and q ∶= p0 + p1 ∈ L2(0, T;Ḣ1(ℝn
+
)) to get the desired solution.   ◻

2.3  Proof of Theorem 1.3

Let

be a solution of (2.26)-(2.27). Due to q|𝜕ℝn
+
∈ L2(0, T;Ḣ1∕2(Γ)) Proposition 2.3 

implies the existence of

�tw1 − �Δw1 + ∇p1 = f − (�t − �Δ)w2 in ℝn
+
× (0, T)

divw1 = 0 in ℝn
+
× (0, T)

w1|xn=0 = 0 on Γ × (0, T)

w1|t=0 = 0 in ℝn
+
.

(2.26)

�tz1 − �Δz1 + ∇q = f in ℝ
n
+
× (0, T)

divz1 = 0 in ℝ
n
+
× (0, T)

z1|t=0 = u0 in ℝn
+
,

(2.27)(z�
1
, (z1)n)|xn=0 =

(
0�,F−1(− sin(A2t)A2Fh0 + cos(A2t)(Fu0)n)

)

z1 ∈ L2(0, T;Ḣ2(ℝn
+
)) ∩ Ḣ1((0, T);L2(ℝn

+
)), q ∈ L2(0, T;Ḣ1(ℝn

+
)).

z1 ∶= z + w0 ∈ L2(0, T;Ḣ2(ℝn
+
)) ∩ Ḣ1(0, T;L2(ℝn

+
))

(z1, q) ∈ L2(0, T;Ḣ2(ℝn
+
)) ∩ Ḣ1(0, T;L2(ℝn

+
)) × L2(0, T;Ḣ1(ℝn

+
))
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such that

satisfying the initial conditions

To finish the proof define

where h ∈ Ḣ1(0, T;Ḣ3∕2(Γ)) ∩ Ḣ2(0, T;Ḣ−1∕2(Γ)), to get a solution to (1.2).   ◻

Remark 2.7 Despite h ∈ Ḣ2(0, T;Ḣ−1∕2(Γ)) we did not show that h is very regular 
with respect to space, let alone h(t) ∈ Ḣ7∕2(Γ) for almost all t ∈ (0, T) . This is due 
to the fact that while �3∕2N(A, �) is bounded, see Lemma 2.1, the multiplier function 
A3N(A, �) is not uniformly bounded in A, �.
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(u⋆, p⋆) ∈ L2(0, T;Ḣ2(ℝn
+
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+
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+
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𝜕tu
⋆ − 𝜇Δu⋆ + ∇p⋆ = 0 in ℝn

+
× (0, T)

divu⋆ = 0 in ℝn
+
× (0, T)

u⋆|xn=0 = (0�, 𝜕th
⋆ + g1) on Γ × (0, T)

𝜕2
t
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+
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)) ∩ Ḣ1(0, T;L2(ℝn

+
)),
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