Skip to main content
Log in

Singular limits of anisotropic Ginzburg-Landau functional

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We derive the asymptotic behavior of the minimizers of the anisotropic Ginzburg-Landau functional of superconductivity, as the ratio between the largest and smallest effective masses is very big, hence the effective mass tensor becomes very degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The anisotropic singular perturbation problems for elliptic equations have been studied by many authors, see for instance [1,2,3]. The anisotropic problems for superconductivity and for liquid crystals have been examined in [6,7,8].

  2. To prove \(\Psi ^{(1)}(\kappa A_1, \kappa A_2)\ne \emptyset \), it suffices to consider real single-valued functions \(g(x_3)\).

  3. We can modify the above discussions to get results on \(f^3_{1,2,H}\).

  4. When \(a(x')=b(x')\) holds in an open curve \(\Gamma \) on \(\partial U\), then the boundary condition does not hold on \(\Gamma \).

References

  1. Chipot, M.: On some anisotropic singular perturbation problems. Asymptotic Anal. 55(3), 125–144 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Chipot, M., Guesmia, S.: On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems. Comm. Pure Appl. Anal. 8(1), 179–193 (2009)

    Article  Google Scholar 

  3. Chipot, M., Guesmia, S., Sengouga, A.: Anisotropic singular perturbations of variational inequalities. Calc. Var. PDEs 57(1), 29 (2018)

    Article  MathSciNet  Google Scholar 

  4. Du, Q., Gunzburger, M., Peterson, J.: Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34(1), 54–81 (1992)

    Article  MathSciNet  Google Scholar 

  5. Kogan, V.: London approach to anisotropic type II superconductors. Phys. Rev. B 24(3), 1572–1575 (1981)

    Article  Google Scholar 

  6. Pan, X.B.: On a quasilinear system involving the operator Curl. Calc. Var. PDEs 36(3), 317–342 (2009)

    Article  MathSciNet  Google Scholar 

  7. Pan, X.B.: Partial Sobolev spaces and anisotropic smectic liquid crystals. Calc. Var. PDEs 51(3), 963–998 (2014)

    Article  MathSciNet  Google Scholar 

  8. Pan, X.B.: Directional curl spaces and applications to the Meissner states of anisotropic superconductors. J. Math. Phys. 58(1), 24 (2017)

    Article  MathSciNet  Google Scholar 

  9. Schneider, T., Singer, J.: Phase Transition Approach to High Temperature Superconductivity. Imperial College Press/World Scienific Pub. Co., Beijing (2004)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China grant no. 11671143.

Funding

This study was funded by the National Natural Science Foundation of China Grants no. 11671143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Bin Pan.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Dedicated to Professor Michel Chipot on the occasion of his $$70^{th}$$70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 6.5

Step 1. We use the notation \(F^a(x')=F(x',a(x'))\), \(F^b(x')=F(x',b(x'))\) and

$$\begin{aligned} L(\phi )(x')=\int _{a(x')}^{b(x')} \phi (x',x_3) dx_3. \end{aligned}$$

Let \(\psi \) be an eigenfunction of \(\beta =\beta ^{1,2}_3(\mathbf{A})\) and has the form of (6.4). We show that u is an eigenfunction of the following equation

$$\begin{aligned} \left\{ \begin{aligned}&\sum _{j=1}^2\lambda _j[\partial _{jj}u+(d_j-2ia_j)\partial _ju-(c_j+i\beta _j+ie_j) u]+\beta u=0\quad&\text {in }U,\\&\sum _{j=1}^2\lambda _j\nu _j(\partial _ju-ia_ju)=0\quad&\text {on }\partial U, \end{aligned}\right. \end{aligned}$$
(A.1)

where \(a_j, c_j, d_j\) were given in (6.5), and

$$\begin{aligned} \begin{aligned} \beta _j(x')&={1\over b(x')-a(x')}\int _{a(x')}^{b(x')}\partial _j B_j(x',x_3)dx_3,\\ e_j(x')&={1\over b(x')-a(x')}\{B_j^b(x')\partial _j b(x')-B_j^a(x')\partial _j a(x')\}. \end{aligned} \end{aligned}$$
(A.2)

By the variational character of eigenvalue \(\beta ^{1,2}_3\) we have, for any \(v\in H^1(U,\mathbb C)\),

$$\begin{aligned} \begin{aligned} 0&={d\over ds}\left| _{s=0}{\int _{\Omega }\sum _{j=1}^2\lambda _j|\partial _{B_j}(u+sv)|^2dx\over \int _{\Omega }|u+sv|^2dx}\right. \\&={2\over \int _\Omega |u|^2dx}\mathrm{\;Re\;}\left\{ \int _{U}dx'\sum _{j=1}^2\lambda _j\int _{a(x')}^{b(x')} \partial _j({\bar{v}}\partial _{B_j}u)dx_3-\int _\Omega \bar{v}[\sum _{j=1}^2\lambda _j\partial _{B_j}^2u+\beta u]dx\right\} . \end{aligned} \end{aligned}$$

We compute

$$\begin{aligned} \begin{aligned}&\int _{a(x')}^{b(x')} \partial _j({\bar{v}}\partial _{B_j}u)dx_3\\&\quad = \partial _j\int _{a(x')}^{b(x')}({\bar{v}}\partial _{B_j}u) dx_3-{\bar{v}}\partial _{B_j}u\left| _{x_3=b(x')}\partial _j b(x')+{\bar{v}}\partial _{B_j}u\right| _{x_3=a(x')}\partial _j a(x') \\&\quad =\partial _j\int _{a(x')}^{b(x')}({\bar{v}}\partial _{B_j}u) dx_3-\bar{v}\partial _ju(\partial _jb-\partial _ja)+i{\bar{v}} u\left( B_j^b\partial _j b-B_j^a\partial _j a\right) . \end{aligned} \end{aligned}$$

So we get

$$\begin{aligned}\begin{aligned}&\mathrm{\;Re\;}\left\{ \int _{\partial U}{\bar{v}} \sum _{j=1}^2\lambda _j\nu _j(\int _{a(x')}^{b(x')} \partial _{B_j}u dx_3)ds\right. \\&\qquad -\int _U{\bar{v}} \sum _{j=1}^2\lambda _j\left[ \partial _ju(\partial _jb-\partial _ja)-i u\left( B_j^b\partial _j b-B_j^a\partial _j a\right) \right] dx'\\&\qquad \left. -\int _U {\bar{v}}\left[ \int _{a(x')}^{b(x')} \sum _{j=1}^2\lambda _j\partial _{B_j}^2u dx_3+\beta (b-a)u\right] dx'\right\} =0. \end{aligned} \end{aligned}$$

Since v is an arbitrary smooth complex-valued function, we get

$$\begin{aligned} \begin{aligned}&\sum _{j=1}^2\lambda _j\left\{ \int _{a(x')}^{b(x')}\partial _{B_j}^2u dx_3+\partial _jf\partial _ju-ig_j u\right\} +\beta f u=0\quad&\text {for } x'\in U,\\&\sum _{j=1}^2\lambda _j\nu _j\int _{a(x')}^{b(x')}\partial _{B_j}u dx_3=0\quad&\text {for } x'\in \partial U, \end{aligned} \end{aligned}$$

where \(f=b-a\), \(g_j=B_j^b\partial _j b-B_j^a\partial _j a.\) For \(j=1,2\) we have

$$\begin{aligned} \begin{aligned} \int _{a(x')}^{b(x')}\partial _{B_j}u dx_3&=\int _{a(x')}^{b(x')}(\partial _j u-iB_j u)dx_3 =f\partial _ju-i{\tilde{B}}_ju,\\ \int _{a(x')}^{b(x')}\partial _{B_j}^2u dx_3&=f\partial _{jj}u-2iL(B_j)\partial _ju-iuL(\partial _j B_j)-uL(B_j^2), \end{aligned} \end{aligned}$$

hence

$$\begin{aligned} \begin{aligned}&\sum _{j=1}^2\lambda _j\left( \partial _{jj}u-2i{L(B_j)\over f}\partial _ju-iu{L(\partial _j B_j)\over f}-u{L(B_j^2)\over f}\right. \\&\quad \left. +{\partial _jf\over f}\partial _ju-i{g_j\over f}u\right) +\beta u=0&\text {in }U,\\&\sum _{j=1}^2\lambda _j\nu _j\left( \partial _ju-i{L(B_j)\over f}u\right) =0&\text {on }\partial U, \end{aligned} \end{aligned}$$

which is (A.1).

Step 2. We write (A.1) as follows:

$$\begin{aligned} \left\{ \begin{aligned}&-\sum _{j=1}^2\lambda _j\partial _{b_j}^2u-\sum _{j=1}^2\lambda _jd_j\partial _ju+\sum _{j=1}^2\lambda _j(U_j+iV_j)u=\beta u&\text {in }U,\\&\sum _{j=1}^2\lambda _j\nu _j\partial _{b_j}u=0\quad&\text {on }\partial U, \end{aligned}\right. \end{aligned}$$
(A.3)

where \(U_j=c_j-b_j^2\) and \(V_j=\beta _j+e_j-\partial _jb_j=d_jb_j\). (A.3) can be written as (6.6), because

$$\begin{aligned} -\sum _{j=1}^2\lambda _jd_j\partial _ju+iVu=-\sum _{j=1}^2\lambda _jd_j\partial _ju+i\sum _{j=1}^2\lambda _jd_jb_j u =-\sum _{j=1}^2\lambda _jd_j\partial _{b_j}u. \end{aligned}$$

\(\square \)

Appendix B: Notation

$$\begin{aligned} \begin{aligned}&d^{2,3}({\mathcal {X}}_1)&(2.6)\\&d^3({\mathcal {B}}_{1,2})&(3.9)\\&d^3({\mathcal {H}}^{1,2}),\quad {\mathcal {H}}^{1,2}&(3.4)\\&d^3({\mathcal {H}}^2_1),\quad {\mathcal {H}}^2_1&(3.16)\\&d^3({\mathcal {X}}_{1,2})&(3.14)\\&f^{1,2}_H&(3.3)\\&f^{1,2}_{3,H}&(5.1)\\&f^2_{1,H}&(3.15)\\&f^3_{1,2,A}&(4.3)\\&f^3_{1,2,{\hat{A}}}&(4.5)\\&f^3_{1,2,H}&(4.1)\\&{\mathcal {Z}}_0(\Omega )&(1.4)\\&{\mathcal {Z}}^1_1(\Omega )&(2.2)\\&{\mathcal {Z}}^1_{1,2}(\Omega )&(3.1)\\&\Psi _1(\kappa A_1),\quad \Psi _1^{(1)}(\kappa A_1)&(2.3)\\&\Psi _{1,2}(\kappa A_1,\kappa A_2),\quad \Psi _{1,2}^{(1)}(\kappa A_1,\kappa A_2)\qquad \;\;&(3.7)\\ \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, XB. Singular limits of anisotropic Ginzburg-Landau functional. J Elliptic Parabol Equ 6, 27–54 (2020). https://doi.org/10.1007/s41808-020-00057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-020-00057-x

Keywords

Mathematics Subject Classification

Navigation