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Abstract
In this paper, we prove the existence and uniqueness of entropy solutions for the fol-
lowing equations in Orlicz spaces: 

where f  is an element of L1(QT ) , the term − div

(
a(x,∇u(x, t))

)
 is a Leray-Lions 

operator on W1,x

0
LM(Ω) , with M(.) does not satisfy the Δ2 condition and � is a con-

tinuous non decreasing real function defined on ℝ with �(0) = 0 . The investigation 
is made by approximation of the Rothe method which is based on a semi-discretiza-
tion of the given problem with respect to the time variable.
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1 Introduction

The study of variational problems where the operator associated to a PDEs satis-
fies the non-polynomial growth conditions instead of having the usual p-structure 
arouses much interest with the development of applications to electro-rheological 
fluids as an important class of non-Newtonian fluids (sometimes referred to as smart 
fluids). The electro-rheological fluids are characterized by their ability to drastically 
change the mechanical properties under the influence of an external electromagnetic 
field. A mathematical model of electro-rheological fluids was proposed by Rajago-
pal and Ruzicka (we refer to [31, 33] for more details). Another important applica-
tion is related to image processing [29] where this kind of the diffusion operator is 
used to underline the borders of the distorted image and to eliminate the noise.

Let Ω be a bounded open subset of ℝd , d ≥ 2 , with segment property and 
A(u) = −div

(
a(x,∇u(x, t))

)
 is a Leray-Lions operator defined on W1,x

0
LM(QT ) , 

where M is an N-function without assuming a Δ2-condition on M.
We consider the following nonlinear parabolic problem:

where the data f ∈ L1(QT ) and � is taken as continuous non decreasing real function 
everywhere defined on ℝ with �(0) = 0.

Under these assumptions, the above problem does not admit, in general, a weak 
solution since the fields a(x,∇u(x, t)) do not belong to (L1

loc
(QT ))

d . To overcome this 
difficulty we use the framework of entropy solutions was introduced by Benilan and 
al.  [4] for the nonlinear elliptic problems. The concept of entropy solution in the 
case parabolic problem was obtained in [28], At the same the equivalent notion of 
renormalized solution has been introduced by Lions and Di Perna [6] for the study 
of Boltzmann equation, this notion was then adapted to elliptic vesion by Boccardo, 
J.-L. Diaz, D. Giachetti, F. Murat [5].

Note that in the case of classical Sobolev spaces W1,p J. Droniou and A. Prignet 
in [7] demonstrated the equivalence between entropy and renormalized solutions for 
parabolic equations (see also [21]), however in our opinion in the case of Orlicz 
spaces that this result is not known.

Recently, Gwiazda and al. studied the problem 1.1 in the Musielak Orlicz space 
in [18] but they assumed more restrained conditions on the N-function M and M∗ 
namely M(x, �)� ≥ �|�|1+� and M∗ ∈ Δ2 . In [11] and [17] the authors have studied 
a problem of the type 1.1 by using the Galerkin classical method to demonstrate the 
existence of the solution, contrary to our strategy which consists of using the Rothe 
method to approche the problem 1.1 with a sequences of elliptic problems.

Precisely in this work we use the Rothe’s method as a mean ingredient to prove our 
principal result. Rothe’s method introduced by E. Rothe in 1930 and it has been used 
and developed by many authors, e.g P.P. Mosolov, K. Rektorys in linear and quasilinear 

(2)

⎧⎪⎨⎪⎩

�u

�t
− div

�
a(x,∇u(x, t))

�
+ �(u) = f in QT =]0.T[×Ω

u = 0 on ΣT =]0.T[×�Ω

u(0, .) = 0 in Ω,
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parabolic problems. Nonlinear and abstract parabolic problems have been studied by 
Kaũr et al., using similar technique to that of Rothe’s method. For the more complete 
references we refer the reader to [2, 8, 9, 16–18, 20] and [32].

Our aim is to prove the existence and uniqueness of an entropy solution for the prob-
lem 1.1 in Orlicz spaces using Rothe time-discretization method, which is based on a 
semidiscretization of the given problem with respect to the time variable.

We will approximate the parabolic problem 1.1 by a sequence of the following ellip-
tic problems:

We will get our results by a semi discretization process, then we prove uniqueness 
and stability results for the semi-discretized problem. Within the proof we use trun-
cation methods, monotonicity arguments techniques, the integration by parts for-
mula, Young inequality which have been adapted to non-reflexive Orlicz spaces.

This paper is divided into four sections. In the next one, we recall some well-known 
preliminaries, properties, and results of Orlicz-Sobolev spaces. Section (3) contains the 
basic assumptions and the main result. Finally, in Sect. (4) we prove the existence and 
uniqueness of entropy solution to the nonlinear parabolic equation 1.

2  Preliminaries

Let M ∶ ℝ
+
→ ℝ

+ be an N-function, i.e., M is continuous, convex, with M(t) > 0 for 
t > 0 , M(t)

t
→ 0 as t → 0 and M(t)

t
→ ∞ as t → ∞ . Equivalently, M admits the represen-

tation: M(t) = ∫
t

0

a(�)d� where a ∶ ℝ
+
→ ℝ

+ is non-decreasing, right continuous, 

with a(0) = 0 , a(t) > 0 for t > 0 and a(t) → ∞ as t → ∞ . The N-function M∗ conju-

gate to M is defined by M∗(t) = ∫
t

0

a(�)d� , where a ∶ ℝ
+
→ ℝ

+ is given by 

a(t) = sup{s ∶ a(s) ≤ t}.
The N-function M is said to satisfy the Δ2 condition if, for some k > 0,

When this inequality holds only for t ≥ t0 > 0 , M is said to satisfy the Δ2 condition 
near infinity.

Young’s inequality

Let Ω be an open subset of ℝd . The Orlicz class M(Ω) (resp. the Orlicz space 
LM(Ω) ) is defined as the set of (equivalence classes of) real-valued measurable func-
tions u on Ω such that:

(3)

⎧
⎪⎨⎪⎩

un − �div
�
a(x,∇un)

�
+ ��(un) = �fn + un−1in Ω

un = 0 on �Ω

u0 = 0 in Ω.

(4)M(2t) ≤ kM(t) for all t ≥ 0.

(5)a.b ≤ M(a) +M∗(b) for all a, b ≥ 0.



72 L. Essafi et al.

1 3

Note that LM(Ω) is a Banach space under the norm:

and M(Ω) is a convex subset of LM(Ω) . The closure in LM(Ω) of the set of bounded 
measurable functions with compact support in Ω is denoted by EM(Ω) . The equal-
ity EM(Ω) = LM(Ω) holds if and only if M satisfies the Δ2 condition, for all t or for t 
large according to whether Ω has infinite measure or not.

The dual of EM(Ω) can be identified with LM∗ (Ω) by means of the pairing 

∫
Ω

u(x)v(x)dx , and the dual norm on LM∗ (Ω) is equivalent to ‖.‖M∗,Ω.

The space LM(Ω) is reflexive if and only if M and M∗ satisfy the Δ2 condition, for all 
t or for t large, according to whether Ω has infinite measure or not.

We now turn to the Orlicz-Sobolev space. W1LM(Ω) (resp. W1EM(Ω) ) is the space 
of all functions u such that u and its distributional derivatives up to order 1 lie in LM(Ω) 
(resp. EM(Ω) ). This is a Banach space under the norm:

Thus W1LM(Ω) and W1EM(Ω) can be identified with subspaces of the product of 
d + 1 copies of LM(Ω) . Denoting this product by ΠLM , we will use the weak topolo-
gies �(ΠLM ,ΠEM∗ ) and �(ΠLM ,ΠLM∗ ) . The space W1

0
EM(Ω) is defined as the (norm) 

closure of the Schwartz space (Ω) in W1EM(Ω) and the space W1
0
LM(Ω) as the 

�(ΠLM ,ΠEM∗ ) closure of (Ω) in W1LM(Ω) . We say that un converges to u for the 
modular convergence in W1LM(Ω) if for some 𝜆 > 0 , ∫

Ω

M(
D�un − D�u

�
)dx → 0 for 

all |�| ≤ 1 . This implies convergence for �(ΠLM ,ΠLM∗ ) . If M satisfies the Δ2 condi-
tion on ℝ+(near infinity only when Ω has finite measure), then modular convergence 
coincides with norm convergence.

Let W−1LM∗ (Ω) (resp. W−1EM∗ (Ω) ) denote the space of distributions on Ω which can 
be written as sums of derivatives of order ≤ 1 of functions in LM∗ (Ω) (resp. EM∗ (Ω) ). It 
is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space (Ω) is dense in 
W1

0
LM(Ω) for the modular convergence and for the topology �(ΠLM ,ΠLM∗ ) (cf.[13]). 

Consequently, the action of a distribution in W−1LM∗ (Ω) on an element of W1
0
LM(Ω) is 

well defined. For more details, see [1, 22].
For k > 0 , we define the truncation at height k, Tk ∶ ℝ → ℝ by

and its primitive by

∫
Ω

M(u(x))dx < +∞

(
resp. ∫

Ω

M

(
u(x)

𝜆

)
dx < +∞ for some𝜆 > 0

)
.

‖u‖M,Ω = inf
�
𝜆 > 0 ∶ �

Ω

M

�
u(x)

𝜆

�
dx ≤ 1

�

‖u‖1,M,Ω =
�
���≤1

‖D�u‖M,Ω.

(6)Tk(s) =

{
s if |s| ≤ k
ks

|s| if |s| < k
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it is pretty obvious that Jk(s) ≥ 0 and Jk(s) ≤ k|s|.
We have as in the paper [3],

where v ∈ W
1,x

0
LM(QT ) ∩ L∞(QT ).

Lemma 2.1 [13] Let F ∶ ℝ ⟶ ℝ be uniformly lipschitzian, with F(0) = 0. Let M 
be an N-function and let u ∈ W1LM(Ω) (resp. W1EM(Ω)). Then F(u) ∈ W1LM(Ω) 
(resp. W1EM(Ω)). Moreover, if the set D of discontinuity points of F′ is finite, then

Lemma 2.2 [13] Let F ∶ ℝ → ℝ be uniformly lipschitzian, with F(0) = 0. We sup-
pose that the set of discontinuity points of F′ is finite. Let M be an N-function, then 
the mapping F ∶ W1LM(Ω) → W1LM(Ω) is sequentially continuous with respect to 
the weak* topology �(ΠLM ,ΠEM∗ ).

Let Ω be a bounded open subset of ℝd , T > 0 and set QT = Ω×]0,T[ . M be an 
N-function. For each � ∈ ℕ

d , denote by D�
x
 the distributional derivative on Q of order 

� with respect to the variable x ∈ ℕ
d . The inhomogeneous Orlicz-Sobolev spaces are 

defined as follows,

The last space is Banach spaces under the norm,

We can easily show that they form a complementary system when Ω satisfies the 
segment property. These spaces are considered as subspaces of the product space 
ΠLM(QT ) which have as many copies as there is �-order derivatives, |�| ≤ 1 . We 
shall also consider the weak topologies �(ΠLM ,ΠEM∗ ) and �(ΠLM ,ΠLM∗ ) . If 
u ∈ W1,xLM(QT ) then the function ∶ t ⟼ u(t) = u(t, .) is defined on [0,  T] with 
values in W1LM(Ω) . If, further, u ∈ W1,xEM(QT ) then the concerned function is a 
W1EM(Ω)-valued and is strongly measurable. Furthermore the following imbedding 
holds: W1,xEM(QT ) ⊂ L1(0, T;W1EM(Ω)) . The space W1,xLM(QT ) is not in general 
separable, if u ∈ W1,xLM(QT ) , we can not conclude that the function u(t) is measur-
able on [0, T]. However, the scalar function t ↦ ‖u(t)‖M,Ω is in L1(0, T) . The space 
W

1,x

0
EM(QT ) is defined as the (norm) closure in W1,xEM(QT ) of (QT ) . We can easily 

(7)Jk(s) = �
s

0

Tk(t)dt =

{
s2

2
if |s| ≤ k

k|s| − k2

2
if |s| > k

(8)
⟨
�v

�t
, Tk(v)

⟩
QT

= ∫
Ω

Jk(v(t))dx − ∫
Ω

Jk(v(0))dx

(9)
�

�xi
F(u) =

{
F�(u)

�u

�xi
a.e. in {x ∈ Ω ∶ u(x) ∉ D}

0 a.e. in {x ∈ Ω ∶ u(x) ∈ D}

(10)W1,xLM(QT ) = {u ∈ LM(QT ) ∶ D�
x
u ∈ LM(QT ) ∀ |�| ≤ 1}.

‖u‖ =
�
���≤1

‖D�

x
u‖M,QT

.
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show as in [14] that when Ω has the segment property, then each element u of the 
closure of (QT ) with respect of the weak * topology �(ΠLM ,ΠEM∗ ) is a limit, in 
W1,xLM(QT ) , of some subsequence (ui) ⊂ (QT ) for the modular convergence; i.e., 
there exists 𝜆 > 0 such that for all |�| ≤ 1,

This implies that (ui) converges to u in W1,xLM(QT ) for the weak topology 
�(ΠLM ,ΠLM∗ ) . Consequently,

This space will be denoted by W
1,x

0
LM(QT ) . Furthermore, 

W
1,x

0
EM(QT ) = W

1,x

0
LM(QT ) ∩ ΠEM . Poincaré’s inequality also holds in W1,x

0
LM(QT ) , 

i.e., there is a constant C > 0 such that for all u ∈ W
1,x

0
LM(QT ) one has,

Thus both sides of the last inequality are equivalent norms on W1,x

0
LM(QT ) . We have 

then the following complementary system

F being the dual space of W1,x

0
EM(QT ) . It is also, except for an isomorphism, 

the quotient of ΠLM∗ by the polar set W1,x

0
EM(QT )

⊥ , and will be denoted by 
F = W−1,xLM∗ (QT ) and it is shown that,

This space will be equipped with the usual quotient norm

where the infimum is taken on all possible decompositions

The space F0 is then given by,

and is denoted by F0 = W−1,xEM∗ (QT ).

∫Q

M

(
D�

x
ui − D�

x
u

�

)
dx dt → 0 as i → ∞.

(QT )
�(ΠLM ,ΠEM∗ )

= (QT )
�(ΠLM ,ΠLM∗ )

.

�
���≤1

‖D�

x
u‖M,QT

≤ C
�
���=1

‖D�

x
u‖M,QT

.

(
W

1,x

0
LM(QT ) F

W
1,x

0
EM(QT ) F0

)

W−1,xLM∗ (QT ) =

{
f =

∑
|�|≤1

D�

x
f� ∶ f� ∈ LM∗ (QT )

}
.

‖f‖ = inf
�
���≤1

‖f�‖M∗,Q

f =
∑
|�|≤1

D�

x
f� , f� ∈ LM∗ (QT ).

F0 =

{
f =

∑
|�|≤1

D�

x
f� ∶ f� ∈ EM∗ (QT )

}
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Remark 2.3 We can easily check, using lemma 2.1, that each uniformly lipschitz-
ian mapping F, with F(0) = 0 , acts in inhomogeneous Orlicz-Sobolev spaces 
W1,xLM(QT ) and W1,x

0
LM(QT ).

In the sequel we have to use the following results which concern mollification 
with respect to time and space variable and some trace results.

Thus we define, for all 𝜇 > 0 and all (x, t) ∈ QT

Lemma 2.4 [12] 

1. If u ∈ LM(QT ) then u� → u as � → +∞ in LM(QT ) for the modular convergence.
2. If u ∈ W1,xLM(QT ) then u� → u as � → +∞ in W1,xLM(QT ) for the modular con-

vergence.
3. If u ∈ W1,xLM(QT ) then �u�

�t
= �(u − u�).

Lemma 2.5 [12] Let M be an  N-function. Let (un) be a sequence of   W1,xLM(QT )  such that, 
un ⇀ u weakly in W1,xLM(QT ) for �(ΠLM ,ΠEM∗ ) and

�un

�t
= hn + kn in D�(QT ) 

with hn is bounded in W−1,xLM∗ (QT ) and kn is bounded in the space L1(QT ).
Then, un → u strongly in L1

Loc
(QT ).

If further, un ∈ W
1,x

0
LM∗ (QT ), then un → u strongly in L1(QT ).

Lemma 2.6 [11] Let Ω be a bounded open subset of ℝd with the segment property. 
Then,

Remark 2.7 . 

1. The statement of lemma 2.5 generalizes that of Simon in Orlicz-Sobolev Spaces.
2. While lemma 2.6 generalizes the trace theorem in this general setting.
3. Let us mention that the following trace result, hold true: D(QT ) is dense in 

{u ∈ W
1,x

0
LM∗ (Q) ∩ L2(QT ) ∶

�u

�t
∈ W−1,xLM∗ (QT ) + L2(QT )} for the modular 

convergence,(see [11]), such trace result generalizes the following classical result, 
i.e., {u ∈ L2(0, T ,H1

0
(Ω)) ∶

𝜕u

𝜕t
∈ L2(0, T ,H−1(Ω)) ⊂ C([0, T], L2(Ω)}.

Let Ω be a bounded open subset of ℝd and let M be an N-function. Consider a 
second-order partial differential operator A ∶ D(A) ⊂ W1

0
LM(Ω) → W−1LM∗ (Ω) in 

divergence form

where a ∶ Ω ×ℝ
d
→ ℝ

d is a Caratheodory function satisfying for almost every 
x ∈ Ω, and for every v, v∗ ∈ D(A) , such that ∇v ≠ ∇v∗, we have

u𝜇(x, t) = 𝜇 ∫
t

−∞

ũ(x, s) exp (𝜇(s − t)) ds.

{
u ∈ W

1,x

0
LM∗ (QT ) ∶

𝜕u

𝜕t
∈ W−1,xLM∗ (QT ) + L1(QT )

}
⊂ C([0, T], L1(Ω)).

A(v) = −div(a(x,∇v)),

(11)|a(x,∇v)| ≤ �
[
c(x) +M∗−1M(|∇v|)]
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where c(x) ∈ EM∗ (Ω) , 𝛼, 𝛾 > 0 are a real numbers.
We have the following lemma:

Lemma 2.8 [26] Under assumptions (10–12), and let (zn) be a sequence in 
W

1,x

0
LM(Ω) such that,

as n and s tend to +∞, and where �s is the characteristic function of

Then,

Consider the following non-linear elliptic problem:

where

Proposition 2.9 Assume that (10–12) and (20–21) hold true, then the following 
problem

(12)
[
a(x,∇v) − a(x,∇v∗)

][
∇v − ∇v∗

]
> 0

(13)a(x,∇v)∇v > 𝛼M(|∇v|),

(14)zn ⇀ z in W
1,x

0
LM(Ω) for �(ΠLM(Ω),ΠEM∗ (Ω)),

(15)(a(x,∇zn))n is bounded in (LM∗ (Ω))
d,

(16)∫
Ω

[
a(x,∇zn) − a(x,∇z�s)

][
∇zn − ∇z�s

]
dx ⟶ 0,

Ωs =

{
x ∈ Ω ; |∇z| ≤ s

}
.

(17)∇zn →∇z a.e. in Ω.

(18)lim
n→∞∫

Ω

a(x,∇zn)∇zn dx =∫
Ω

a(x,∇z)∇z dx

(19)M(|∇zn|) →M(|∇z|) in L1(Ω).

(20)
{

− div (a(x,∇u)) + g(u) = F in Ω

u = 0 on �Ω

(21)g is a continuous and non-decreasing function on ℝ such that g(0) = 0.

(22)F ∈ L1(Ω).
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has at least one solution u.

Proof Consider the following approximate problems:

where (Fn)n ⊂ W−1EM(Ω) is a sequence of smooth functions such that Fn ⟶ F in 
L1(Ω) and gn(s) = Tn(g(s)).

Note that gn(s)s ≥ 0 , |gn(s)| ≤ n and |gn(s)| ≤ |g(s)|.
Since gn is bounded for any fixed n > 0 , there exists at least one solution un of the 

problem (2.21) (see Proposition 13 in [15]).
Using the same technics and the same steps as in the paper [10], we deduce that 

the problem (2.17) has at least one solution.   □

3  Assumptions and main result

3.1  Assumptions

Let Ω be a bounded open set of ℝd (d ≥ 2) with the segment property, T > 0 is given 
real number and QT =]0.T[×Ω.

Consider a second order partial differential operator 

A ∶ D(A) ⊂ W1,xLM(QT ) → W−1,xLM∗ (QT ) in divergence A(u) = −div

(
a(x,∇u(x, t))

)
 , 

where M is an N-function without assuming a Δ2-condition on M.
We consider the following nonlinear parabolic problem:

where a ∶ Ω ×ℝ
d
→ ℝ

d Caratheodory function satisfying for almost every 
(x, t) ∈ QT , and for every v, v∗ ∈ D(A) , such that ∇v(x, t) ≠ ∇v∗(x, t) in ℝd,

(23)

⎧
⎪⎨⎪⎩

Tk(u) ∈ W1
0
LM(Ω) for all k ≥ 0, g(u) ∈ L1(Ω)

�
Ω

a((x,∇u))∇Tk(u − �)dx + �
Ω

g(u)Tk(u − �)dx ≤ �
Ω

FTk(u − �)dx

for all � ∈ W1
0
LM(Ω) ∩ L∞(Ω)

(24)

⎧
⎪⎨⎪⎩

un ∈ W1
0
LM(Ω)

∫
Ω

a((x,∇un))∇v dx + ∫
Ω

gn(un)v dx = ∫
Ω

Fn v dx

for all v ∈ W1
0
LM(Ω)

⎧⎪⎨⎪⎩

�u

�t
− div

�
a(x,∇u(x, t))

�
+ �(u) = f in QT =]0.T[×Ω

u = 0 on ΣT =]0.T[×�Ω

u(0, .) = 0 in Ω,

(25)|a(x,∇v(x, t))| ≤ �
[
c(x, t) +M∗−1M(|∇v(x, t)|)]
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where c(x, t) ∈ EM∗ (QT ) , 𝛼, 𝛾 > 0 are a real numbers.

Remark 3.1 We can take u(0, .) = u0 such that u0 ∈ L1(Ω) and we use regularization 
as in [25]

Throughout this paper ⟨. , .⟩ means for either the pairing between 
W1

0
LM(QT ) ∩ L∞(QT ) and W−1LM∗ (QT ) + L1(Q) or between W1

0
LM(QT ) and 

W−1LM∗ (QT ). And also for simplicity, we write a(x,∇u) instead of a(x,∇u(x, t)).

Lemma 3.2 Under assumptions (24–26), and let (zn) be a sequence in W1,x

0
LM(QT ) 

such that,

as n and s tend to +∞, and where �s is the characteristic function of

Then,

Proof Using the same argument in [3] we get the result.   □

(26)
[
a(x,∇v(x, t)) − a(x,∇v∗(x, t))

][
∇v(x, t) − ∇v∗(x, t)

]
> 0

(27)a(x,∇v(x, t))∇v(x, t) > 𝛼M(|∇v(x, t)|),

(28)The data f ∈ L1(QT ),

(29)� is non decreasing continuous functions on ℝ such that �(0) = 0.

(30)zn ⇀ z in W
1,x

0
LM(QT ) for �(ΠLM(QT ),ΠEM∗ (QT )),

(31)(a(x, t,∇zn))n is bounded in (LM∗ (QT ))
d,

(32)∫QT

[
a(x, t,∇zn) − a(x, t,∇z�s)

][
∇zn − ∇z�s

]
dx dt ⟶ 0,

Qs =

{
(x, t) ∈ QT ; |∇z| ≤ s

}
.

(33)∇zn → ∇z a.e. in QT .

(34)lim
n→∞∫QT

a(x, t,∇zn)∇zn dx dt = ∫QT

a(x, t,∇z)∇z dx dt,

(35)M(|∇zn|) → M(|∇z|) in L1(QT ),



79

1 3

Rothe time‑discretization method for a nonlinear parabolic…

3.2  The semi‑discrete problem

By using the semi-discretization in time by the implicit Euler method for the par-
abolic problem (1) we get,

where N� = T  , 1 ≤ n ≤ N and fn(.) =
1

� ∫
n�

(n−1)�

f (s, .)ds.

We will sometimes use the shorter notation ‖ . ‖1 instead of ‖ . ‖L1(Ω).

Definition 3.3 An entropy solution to the discretized problems (35) is a sequence 
of measurable functions (un)0≤n≤N such that u0 = 0 and un is defined by induction as 
an entropy solution of the problem

i.e for all 1 ≤ n ≤ N and k > 0 we have Tk(u
n) ∈ W1

0
LM(Ω) and for all 

� ∈ W1
0
LM(Ω) ∩ L∞(Ω) we have

Lemma 3.4 Let (un)0≤n≤N, N ∈ ℕ be an entropy solution of the approximate prob-
lem (35), then for all n = 1, ...,N, we have un ∈ L1(Ω).

Proof Let us take � = 0 as test function in ( 37) in case of n = 1 , we get

from the definition (3.3), we have u0 = 0 , this implies

(36)

{
un − �div

(
a(x,∇un)

)
+ ��(un) = �fn + un−1 in Ω

un = 0 on �Ω,

(37)

{
un − �div

(
a(x,∇un)

)
+ ��(un) = �fn + un−1in Ω

un = 0 on �Ω.

(38)

�
Ω

unTk(u
n − �)dx + � �

Ω

a(x,∇un)∇Tk(u
n − �)dx + �

Ω

��(un)Tk(u
n − �)dx

≤ �
Ω

(�fn + un−1)Tk(u
n − �)dx.

(39)
�
Ω

(��(u1) + u1Tk(u
1)dx + � �

Ω

a(x,∇u1)∇Tk(u
1)dx ≤ �

Ω

(�f1 + u0)Tk(u
1)dx,

(40)
�
Ω

(��(u1)Tk(u
1) dx + �

Ω

u1Tk(u
1) dx + � �

Ω

a(x,∇u1)∇Tk(u
1)dx

≤ �
Ω

�f1Tk(u
1)dx.
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By assumption (28) and the properties of Tk , we obtain

From the assumption (26), we obtain

On the other hand, for all 1 ≤ n ≤ N , we have �fn(.) = ∫
n�

(n−1)�

f (t, .)dt in Ω , this 

implies that

Thus, we remark that

By combining the results (39–40) and (43), we obtain

this implies that

Since u1 Tk(u
1)

k
≥ 0, and by using the Fatou’s lemma with k → 0 , we deduce that

with C not depending on k.

(41)�
Ω

��(u1)Tk(u
1)dx ≥ 0.

(42)�
Ω

a(x,∇u1)∇Tk(u
1)dx ≥ 0.

(43)

�
Ω

�f1(x)Tk(u
1) dx = �

Ω
�

�

0

f (t, x)Tk(u
1) dt dx

≤ �
Ω
�

T

0

|f (t, x)||Tk(u1)| dt dx

≤ k �QT

|f (t, x)| dt dx
≤ k||f ||L1(QT )

.

(44)u1Tk(u
1) ≥ 0.

(45)0 ≤ �
Ω

u1Tk(u
1) dx ≤ k||f ||L1(QT )

,

(46)0 ≤ �
Ω

u1
Tk(u

1)

k
dx ≤ ||f ||L1(QT )

.

(47)‖u1‖1 ≤ C,
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Hence, by induction, in the same techniques used in n = 1 , we obtain

We suppose that un−1 ∈ L1(Ω) , then �
Ω

un−1Tk(u
n) dx ≤ kC.

Using the same manner as the case n = 1 , we deduce that un ∈ L1(Ω) .   □

Lemma 3.5 Let (un)0≤n≤N,N ∈ ℕ  be an entropy solution of the approximate prob-
lem (2), then for all k > 0, n = 1...N and h > 0, we have

Proof We take � = Th(u
n) as test function in ( 37), we obtain

Since Th(un) = un in {x ∈ Ω, |un| ≤ h} , we have

where sgn(s) = s

|s| .
For |un| ≥ h we have sgn(un) = sgn(un − h.sgn(un)) = sgn(Tk(u

n − h.sgn(un))) , 
this implies that

then

(48)
�
Ω

(��(un)Tk(u
n) dx + �

Ω

unTk(u
n) dx + � �

Ω

a(x,∇un)∇Tk(u
n)dx

≤ �
Ω

�fnTk(u
n)dx + �

Ω

un−1Tk(u
n) dx,

(49)� �
{h≤|un|≤h+k}

M(|∇un|)dx ≤ k �
{|un|≥h}

�||fn||dx + k �
{|un|≥h}

|||u
n−1|||dx.

(50)

�
Ω

unTk(u
n − Th(u

n))dx + � �
Ω

a(x,∇un)∇Tk(u
n − Th(u

n))dx

+ �
Ω

��(un)Tk(u
n − Th(u

n))dx

≤ �
Ω

(�fn + un−1)Tk(u
n − Th(u

n))dx.

(51)

�
{|un|≥h}

unTk(u
n − h.sgn(un)) dx + � �

{|un|≥h}
a(x,∇un)∇Tk(u

n − h.sgn(un))dx

+ �
{|un|≥h}

��(un)Tk(u
n − h.sgn(un))dx

≤ �
{|un|≥h}

(�fn + un−1)Tk(u
n − h.sgn(un))dx,

unTk(u
n − h.sgn(un)) ≥ 0,
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In the same way and using hypothesis (28), we obtain

Moreover, we have

From (50–53), we get

  □

Proposition 3.6 Under assumptions (24)-(28), for all N ∈ ℕ, the approximate 
problem (35) has a unique entropy solution un.

Proof Let n = 1, ...,N , we tike F = �fn + un−1 and g(s) = ��(s) + s, these functions 
satisfies the conditions of the proposition (2.9), then the problem (25) has an entropy 
solution (un)0≤n≤N.

Now let’s show the uniqueness: let (un) and (vn) be two entropy solutions of prob-
lems (35). For n = 1, we have

and

(52)�
Ω

unTk(u
n − Th(u

n)) dx ≥ 0.

(53)�
Ω

��(un)Tk(u
n − Th(u

n)) dx ≥ 0.

(54)�
Ω

a(x,∇un)∇Tk(u
n − Th(u

n)) dx = �
{h≤|un|≤h+k}

a(x,∇un)∇un dx.

(55)� �
{h≤|un|≤h+k}

a(x,∇un)∇undx ≤ k �
{|un|≥h}

�||fn||dx + k �
{|un|≥h}

|||u
n−1|||dx.

(56)

�
Ω

u1Tk(u
1 − �)dx + � �

Ω

a(x,∇u1)∇Tk(u
1 − �)dx + �

Ω

��(u1)Tk(u
1 − �)dx

≤ �
Ω

(�f1 + u0)Tk(u
1 − �)dx,

(57)

�
Ω

v1Tk(v
1 − �)dx + � �

Ω

a(x,∇v1)∇Tk(v
1 − �)dx + �

Ω

��(v1)Tk(v
1 − �)dx

≤ �
Ω

(�f1 + v0)Tk(v
1 − �)dx
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with v0 = u0 = 0.
For simplicity, we write u = u1 and v = v1.
Let h > k , for the solution u we take � = Th(v) as test function, and for the solu-

tion v we take � = Th(u) as test function.
By summing up the two inequalities, and letting h go to infinity, we find by apply-

ing Lebesque’s theorem that

where

and

By applying hypothesis (28), we get

Now, we show that lim
h→∞

Ik,h ≥ 0. We take

and we spilt

where

• We show that I1
k,h

≥ 0 : We have 

(58)�
Ω

(u − v)Tk(u − v)dx + � lim
h→∞

Ik,h + � lim
h→∞

Jk,h ≤ 0,

(59)Ik,h = ∫
Ω

a(x,∇u)∇Tk(u − Th(v))dx + ∫
Ω

a(x,∇v)∇Tk(v − Th(u))dx,

(60)Jk,h = ∫
Ω

�(u)Tk(u − Th(v))dx + ∫
Ω

�(v)Tk(v − Th(u))dx.

(61)lim
h→∞

Jk,h = �
Ω

(�(u) − �(v))Tk(u − v)dx ≥ 0.

Ω1 = {|u| < h, |v| < h};Ω2 = {|u| < h, |v| ≥ h}

Ω3 = {|u| ≥ h, |v| < h};Ω4 = {|u| ≥ h, |v| ≥ h},

Ik,h = I1
k,h

+ I2
k,h

+ I3
k,h

+ I4
k,h
,

Ii
k,h

= ∫
Ωi

a(x,∇u)∇Tk(u − Th(v))dx + ∫
Ωi

a(x,∇v)∇Tk(v − Th(u))dx, (i = 1, 2, 3, 4).
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 by using (3.2), we get 

• We show that limh→∞ I2
k,h

≥ 0 : We have 

 from (26), we have 

 On the other hand 

 Let 0 < 𝜃 < min(
1

2
,

1

2𝛾
) , we have 

then from (24) and the convexity of M∗,

(62)

I1
k,h

=�
Ω1

[
a(x,∇u)∇Tk(u − Th(v)) + a(x,∇v)∇Tk(v − Th(u))

]
dx

=�
Ω1

[
a(x,∇u)∇Tk(u − v) + a(x,∇v)∇Tk(v − u)

]
dx

=�
Ω1∩{|u−v|≤k}

(
a(x,∇u) − a(x,∇v)

)(
∇u − ∇v

)
dx,

(63)I1
k,h

≥ 0

(64)
I2
k,h

= ∫
Ω2

[
a(x,∇u)∇Tk(u − Th(v)) + a(x,∇v)∇Tk(v − Th(u))

]
dx,

(65)�
Ω2

a(x,∇u)∇Tk(u − Th(v))dx = �
Ω2∩{|u−Th(v)|≤k}

a(x,∇u)∇u dx ≥ 0.

(66)

�
Ω2

a(x,∇v)∇Tk(v − Th(u))dx =�
Ω2∩{|u−v|≤k}

a(x,∇v)(∇v − ∇u)dx

=�
Ω2∩{|u−v|≤k}

a(x,∇v)∇vdx − �
Ω2∩{|u−v|≤k}

a(x,∇v)∇udx.

(67)

1

� �
Ω2∩{|u−v|≤k}

�a(x,∇v)∇udx ≤1

� �
Ω2∩{|u−v|≤k}

M∗
(||�a(x,∇v)||

)
dx

+
1

� �
Ω2∩{|u−v|≤k}

M(|∇u|)dx,

(68)

1

� �
Ω2∩{|u−v|≤k}

M∗
(||�a(x,∇v)||

)
dx

≤ 1

� �
Ω2∩{|u−v|≤k}

M∗(��c(x)) + �M∗−1M(|∇v|)dx

≤ 1

� �
Ω2∩{|u−v|≤k}

1

2
M∗

(
2��c(x)

)
+

1

2
M∗(2�M∗−1M

(|∇v|)dx

≤ � �
Ω2∩{|u−v|≤k}

M∗
(
c(x)

)
+ �

Ω2∩{|u−v|≤k}
M
(|∇v|)dx,
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we deduce that

where Ω2.1 = {h ≤ |v| ≤ h + k} and Ω2.2 = {h − k ≤ |u| ≤ h}.

According to ( 48) , we have

and

since fn ∈ L1(Ω) , un ∈ L1(Ω) for all n ∈ ℕ , u0 = v0 = 0 and the fact that 
lim
h→∞

|{|v| > h}| = 0 , lim
h→∞

|{|u| > h − k}| = 0 and c(x) ∈ EM∗ , then

this implies that

Hence limh→∞ I2
k,h

≥ 0.

• We show that limh→∞ I3
k,h

≥ 0 : We have 

 and as 

(69)

|||||�Ω2

a(x,∇v)∇udx
|||||
≤� �

Ω2∩{|u−v|≤k}
M∗

(
c(x)

)
dx + �

Ω2.1

M(|∇v|)dx

+
1

� �
Ω2.2

M(|∇u|)dx,

(70)𝜏 �
Ω2.1

M(|∇v|)dx ≤ k �
{|v|>h}

𝜏||fn||dx + k �
{|v|>h}

|||v
0|||dx,

(71)𝜏 �
Ω2.2

M(|∇u|)dx ≤ k �
{|u|>h−k}

𝜏||fn||dx + k �
{|u|>h−k}

|||u
0|||dx,

(72)

lim
h→∞�

Ω2.1

M(|∇v|)dx = 0 , lim
h→∞�

Ω2.2

M(|∇u|)dx = 0

and lim
h→∞�

Ω2∩{|u−v|≤k}
M∗

(
c(x)

)
dx = 0,

lim
h→∞∫

Ω2

a(x,∇v)∇udx = 0.

(73)I3
k,h

= ∫
Ω3

a(x,∇u)∇Tk(u − Th(v)) + a(x,∇v)∇Tk(v − Th(u))dx,

(74)�
Ω3

a(x,∇v)∇Tk(v − Th(u))dx = �
Ω3∩{|v−Th(u)|≤k}

a(x,∇v)∇vdx ≥ 0,
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 and 

 by same way as used for (71), we deduce that 

 where Ω3.1 = {h ≤ |v| ≤ h + k} and Ω3.2 = {h − k ≤ |u| ≤ h}. Hence 
limh→∞ I3

k,h
≥ 0.

• We show that I4
k,h

≥ 0 ∶ We have 

 Hence Ik,h ≥ 0, and as 

 then 

 Since 

 by applying dominated convergence theorem, we get 

 We deduce in the same manner that for n = 1, ...,N , 

 Hence the uniqueness of the solution of the approximate problem (35).
  □

(75)�
Ω3

a(x,∇u)∇Tk(u − Th(v))dx = �
Ω3∩{|u−v|≤k}

a(x,∇u)(∇u − ∇v)dx

(76)lim
h→∞∫

Ω3.1

M(|∇v|)dx = 0 and lim
h→∞∫

Ω3.1

M(|∇u|)dx = 0,

I4
k,h

=�
Ω4

a(x,∇u)∇Tk(u − Th(v)) + a(x,∇v)∇Tk(v − Th(u))dx

=�
Ω2∩{|u−Th(v)|≤k}

a(x,∇u)∇udx + �
Ω4∩{|v−Th(u)|≤k}

a(x,∇v)∇vdx ≥ 0.

(77)�
Ω

(u − v)Tk(u − v)dx + �lim
h→0

Ik,h ≤ 0,

(78)�
Ω

(u − v)Tk(u − v)dx ≤ 0.

lim
k→0

1

k
Tk(u − v) = sgn(u − v),

(79)‖u − v‖1 ≤ 0.

‖un − vn‖1 ≤ 0
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3.3  Stability results

Proposition 3.7 Let (un)0≤n≤N , N ∈ ℕ be an entropy solution of the approximate 
problem (35), then there exists a positive constants C1(f ),C2(f )  and C(f, k) inde-
pendents on N,  such that for all n = 1, ...N, we have

where C1 = ‖f‖L1(QT )
, C2 = �

∑n

i=1
(‖fi‖1 + �

∑n

i=1
‖�(ui)‖1 and C(f , k) = �k

∑n

i=1‖fi‖1 + k
∑n

i=1
‖ui − ui−1‖1 + �k

∑n

i=1
‖�(ui)‖1.

Proof : Proof of (i) and (ii): We take � = 0 as test function in (37), we obtain

Since

then

thus implies that

(80)(i) ‖un‖1 ≤ C1(f ),

(81)(ii) �

n�
i=1

‖�(ui)‖1 ≤ C1(f ),

(82)(iii)

n�
i=1

‖ui − ui−1‖1 ≤ C2(f ),

(83)(iv)

n∑
i=1

� �
Ω

M
(|∇Tk(ui)|

)
dx ≤ C(f , k),

(84)
�
Ω

uiTk(u
i)dx + � �

Ω

a(x,∇ui)∇Tk(u
i)dx + �

Ω

��(ui)Tk(u
i)dx

≤ �
Ω

(�fi)Tk(u
i)dx + �

Ω

(ui−1)Tk(u
i)dx.

�
Ω

a(x,∇ui)∇Tk(u
i)dx ≥ 0,

(85)�
Ω

(��(ui) + ui)Tk(u
i)dx ≤ k� �

Ω

|fi |dx + k �
Ω

|ui−1 |dx,

(86)�
Ω

uiTk(u
i)

k
dx + � �

Ω

�(ui)Tk(u
i)

k
dx ≤ � �

Ω

|fi|dx + �
Ω

|ui−1|dx.
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Let k → 0, we get by the properties of Tk and the Fatou lemma, that

Summing (86) from i = 1 to i = n , we obtain

Proof of (iii): Taking � = Th(u
i) − sgn

(
Th(u

i) − Th(u
i−1)

)
 as test function in (37), we 

obtain

We have

and

(87)�‖�(ui)‖1 + ‖ui‖1 ≤ �‖fi‖1 + ‖ui−1‖1.

�

n�
i=1

‖�(ui)‖1 + ‖un‖1 ≤
n�
i=1

�‖fi‖1 ≤ ‖f‖L1(QT )
.

(88)

�
Ω

(ui − ui−1)Tk
(
ui − Th(u

i) + sgn
(
Th(u

i) − Th(u
i−1)

))
dx

+ � �
Ω

a(x,∇ui)∇Tk
(
ui − Th(u

i) + sgn
(
Th(u

i) − Th(u
i−1)

))
dx

+ � �
Ω

�(ui)Tk
(
ui − Th(u

i) + sgn
(
Th(u

i) − Th(u
i−1)

))
dx

≤ �
Ω

(�fi)Tk
(
ui − Th(u

i) + sgn
(
Th(u

i) − Th(u
i−1)

))
dx.

(89)∫
Ω2

k

a(x,∇ui)∇Tk
(
ui − Th(u

i) + sgn
(
Th(u

i) − Th(u
i−1)

))
dx = 0,

(90)∫
Ω1

k
∩Ω1

h

a(x,∇ui)∇Tk
(
ui − Th(u

i) + sgn
(
Th(u

i) − Th(u
i−1)

))
dx = 0

(91)
∫
Ω1

k
∩Ω2

h

a(x,∇ui)∇Tk
(
ui − Th(u

i) + sgn
(
Th(u

i) − Th(u
i−1)

))
dx

= ∫
Ω1

k
∩Ω2

h

a(x,∇ui)∇uidx.
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where

Then, by using (26), we deduce from the inequalities (88–90) that

From (87), (88) and taking k = 1 , we get

Then by applying the Lebesgue’s dominated convergence theorem as h → 0 , we 
obtain

Summing (94) from i = 1 to i = n , we have

Proof of (iv): We take � = 0 as test function in (37), we obtain

by using the assumption 3.3, we get

(92)

Ω1
k
=
{ |ui − Th

(
ui + sgn

(
Th(u

i) − Th(u
i−1)

)) | ≤ k
}
,

Ω2
k
=
{ |ui − Th

(
ui + sgn

(
Th(u

i) − Th(u
i−1)

)) | > k
}
,

Ω1
h
=
{ |ui | ≤ h

}
,Ω2

h
=
{ |ui| > h

}
.

(93)�
Ω

a(x,∇ui)∇Tk
(
ui − Th(u

i) + sgn
(
Th(u

i) − Th(u
i−1)

))
dx ≥ 0,

(94)
�
Ω

(ui − ui−1)T1
�
ui − Th(u

i) + sgn
�
Th(u

i) − Th(u
i−1)

��
dx ≤ �(‖fi‖1 + ‖�(ui)‖1).

(95)‖ui − ui−1‖1 ≤ �(‖fi‖1 + ‖�(ui)‖1).

n�
i=1

‖ui − ui−1‖1 ≤ �

n�
i=1

(‖fi‖1 + �

n�
i=1

‖�(ui)‖1..

�
Ω

(ui − ui−1)Tk(u
i) + � �

Ω

a(x,∇ui)∇Tk(u
i) + �

Ω

(��(ui))Tk(u
i) ≤ �

Ω

(�fi)Tk(u
i),

(96)
���

Ω

M(�Tk(ui)�)dx ≤ � �
Ω

a(x,∇Tk(u
i))∇Tk(u

i)dx

≤ �k‖fi‖1 + k‖ui − ui−1‖1 + �k‖�(ui)‖1.
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Summing (95) from i = 1 to i = n and applying the result (80) and (81), we obtain

  □

3.4  Existence result

In this section we give the notion of entropy solution for the nonlinear parabolic 
problem (1.1) and we state the main result of this paper.

Definition 3.8 A measurable function u ∶ Ω × (0, T) ⟶ ℝ is called an entropy 
solution of the parabolic problem ( 1) if u ∈ C([0, T], L1(Ω)), Tk(u) ∈ W1.x

0
LM(QT ) 

and

for every t ∈ [0, T], k > 0 and for all for all � ∈ L∞(QT ) ∩W1.x
0
LM(QT ), such that ��

�t
 

belongs to W−1.xLM∗ (QT ) + L1(QT ) and that Jk(x) = ∫
x

0

Tk(s)ds.

The main result is the following:

Theorem  3.9 Under assumption (24)-(28), the nonlinear parabolic problem (1)  
has a unique entropy solution.

4  Proof of theorem 3.7

The proof is divided into 6 steps.

• Step 1: The Rothe approximate problem and a priori estimites. We introduce a 
piecewise linear function, called Rothe function, by 

n∑
i=1

� �
Ω

M(|∇Tk(ui)|)dx ≤ C(f , T , k).

(97)

�
Ω

Jk(u − �)(t) dx + �QT

a(x,∇u)∇Tk(u − �) dx dt

+ �Q�

�(u)Tk(u − �) dx dt + �Q�

��

�t
Tk(u − �) dx dt

≤ �Q�

fTk(u − �) dx dt + �
Ω

Jk(u − �)(0) dx

(98)

{
UN(0) ∶= 0

UN(t) ∶= un−1 + (un − un−1)
(t−tn−1)

�

, for all t ∈]tn−1, tn], n = 1, ...,N in Ω,
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 and a piecewise constant function 

 where tn ∶= n� and un is unique solution of problem (35). We have for any 
t ∈]tn−1, tn], n = 1, ...,N that 

Remark 4.1 Using the Rothe’s approximations, we can write the problem approxi-
mated of (1) as follows:

where fN(t, x) = fn(x) for all t ∈]t
n−1, tn], n = 1, ...,N.

By using the stability results, we will prove the following a priori estimates.

Proposition 4.2 Under assumption (24)–(28), there exists a constant Ci(T , f ), 
(i = 1, ..., 6) not depending on N such that for all N ∈ ℕ, we have:

where C1(T , f ) =
T

2

∑N

n=1
‖un − un−1‖1 , C2(T , f ) =

T

2N

∑N

n=1
‖un−1‖1 + T

2N

∑N

n=1
‖un‖1,

(99)

{
U

N
(0) ∶= 0

U
N
(t) ∶= un, for all t ∈]tn−1, tn], n = 1, ...,N in Ω,

(100)�UN

�t
=

(un − un−1)

�
.

(101)

⎧
⎪⎨⎪⎩

�UN

�t
− div

�
a(x,∇U

N
)

�
+ �(U

N
) = fN in QT

UN = U
N
= 0 on (0, T) × �Ω

UN(0, .) = U
N
(0, .) = 0 in Ω.

(102)�UN
− UN‖L1(QT )

≤ 1

N
C1(T , f ).

(103)�UN‖L1(QT )
≤ C2(T , f ).

(104)�UN‖L1(QT )
≤ C3(T , f ).

(105)‖‖‖
�UN

�t

‖‖‖L1(QT )
≤ C4(T , f ).

(106)�QT

M(|∇Tk(U
N
)|)dx dt ≤ kC5(T , f ).

(107)��(UN
)‖L1(QT )

≤ C6(T , f ),
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Proof of (i): We have

then, by applying (80), we get

Proof of (ii): From (97), for all t ∈]tn−1, tn] we have

then

C3(T , f ) =
T

N

N�
n=1

‖un‖1,C4(T , f ) =
T

N

N�
n=1

‖fn‖1 + T

N

N�
n=1

‖�(un)‖1,

C5(T , f ) =
T

N

N�
n=1

‖un‖M.Ω and C6(T , f ) =
T

N

N�
n=1

‖�(un)‖1.

U
N
(t) − UN(t) = (un − un−1)

(
tn − t

�

)
and ∫

tn

tn−1

(
tn − t

�

)
dt =

�

2
,

‖UN
− UN‖L1(QT )

≤
N�
n=1

‖un − un−1‖1 �
tn

tn−1

�
tn − t

�

�
dt

≤�

2

N�
n=1

‖un − un−1‖1

≤ T

2N

N�
n=1

‖un − un−1‖1.

UN(t) = un−1 + (un − un−1)
(t − tn−1)

�

= un−1
(tn − tn−1 − t + tn−1)

�
+ un

(t − tn−1)

�

= un−1
(tn − t)

�
+ un

(t − tn−1)

�

,

��UN��L1(QT )
=�

T

0 �
Ω

�UN(t)� dt dx

=

N�
n=1

�
tn

tn−1 �Ω

�UN(t)� dt dx

≤
N�
n=1

�
tn

tn−1 �Ω

�un−1� (t
n − t)

�
dt dx +

N�
n=1

�
tn

tn−1 �Ω

�un� (t − tn−1)

�
dt dx.

≤�

2

N�
n=1

‖un−1‖1 + �

2

N�
n=1

‖un‖1

≤ T

2N

N�
n=1

‖un−1‖1 + T

2N

N�
n=1

‖un‖1.
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Proof of (iii): From (98) and (79), we have

then

Proof of (iv): For t ∈]tn−1, tn] , using (99) and (81) we get

Proof of (v): We have

then

Proof of (vi): Using the same technical as in the above, it is easy to show that

U
N
(t) ∶= un for all t ∈]tn−1, tn],

‖UN‖L1(QT )
=

N�
n=1

∫
tn

tn−1
‖un‖1dt

=
T

N

N�
n=1

‖un‖1.

���
�UN

�t

���L1(QT )
=

N�
n=1

�
tn

tn−1

1

�
‖un − un−1‖1dt

=

N�
n=1

‖un − un−1‖1

≤ T

N

N�
n=1

‖fn‖1 + T

N

N�
n=1

‖�(un)‖1

U
N
(t) ∶= un for all t ∈]tn−1, tn],

‖Tk(U
N
)‖1.M.Ω =

N�
n=1

∫
tn

tn−1
‖un‖M.Ωdt

=
T

N

N�
n=1

‖un‖M.Ω.

‖�(UN
)‖L1(QT )

=

N�
n=1

∫
tn

tn−1
‖�(un)‖1dt

=
T

N

N�
n=1

‖�(un)‖1.
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• Step 2: Convergence of the sequence (∇Tk(U
N
))N∈ℕ in LM(QT ). According to 

(102), (104) and using Aubin-Lions compactness lemma (see [19]), we deduce 
that the sequence (UN)N∈ℕ is relatively compact in L1(QT ) , then there exists u in 
L1(QT ) such that 

 Let k > 0 , by Markov inequality and (103), we deduce that 

 so that 

 Let � , k be positive real numbers and let N,N� ∈ ℕ, we have 

Since Tk(U
N
) is bounded in W1,x

0
LM(QT ) for every k > 0 , then there exists some 

vk ∈ W1.x
0
LM(QT ) , such that Tk(U

N
) ⇀ vk weakly in W1.x

0
LM(QT ).

Therefore, we can assume that Tk(U
N
) is a Cauchy sequence in measure in QT.

Let 𝜖 > 0 . By (108) there exists some k(𝜖) > 0 such that

This proves that (U
N
)N∈ℕ is a Cauchy sequence in measure in QT .

On the other hand, we have

Combining the estimates (79), (107) and (109), we obtain that

Which implies that

Hence

(108)UN
→ u in L1(QT ).

meas ({(x, t) ∈ QT ∶ �UN� > k}) ≤1

k
‖UN‖L1(QT )

,

≤1

k
C3(T , f , u0)

limk→∞( meas {(x, t) ∈ QT ∶ |UN| > k}) = 0 uniformly with respect to N.

(109)

meas ({ |UN
− U

N
�

| > 𝛾}) ≤ meas ({|UN| > k}) + meas ({|UN
�

| > k})

+ meas ({ |Tk(U
N
) − Tk(U

N
�

)| > 𝛾}).

meas ({ |UN
− U

N
�

| > 𝛾}) ≤ 𝜖, for all N,N
� ≤ h0(k(𝜖), 𝛾).

(110)‖UN
− u‖L1(QT )

≤ ‖UN
− UN‖L1(QT )

+ ‖UN − u‖L1(QT )
.

(111)U
N
→ u a.e. in QT

Tk(u) = v
k
.

Tk(U
N
) ⇀ Tk(u) weakly in W1.x

0
LM(QT ).
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• In this step we prove the almost everywhere convergence of the gradients and the 
modular convergence of the truncations.

Lemma 4.3 Let (U
N
)N∈ℕ be the sequence defined in (98), then for any k > 0,

Proof let � ∈
(
EM(QT

)
 such that ||�||M ≤ 1 . In view of (25), we have

Which gives

By using (24) and (105), we get

and

Combining (113–115) and the fact||�||M ≤ 1 , we deduce that

Hence, thanks the Banach-Steinhaus Theorem, the sequence

  □

Lemma 4.4 Let be the sequence defined in (98), then for any k > 0

(112)a
(
x,∇Tk(U

N
)
)
is bounded in (LM∗ (QT ))

d.

(113)�Q�

[
a(x,∇Tk(U

N
)) − a(x,�)

][
∇Tk(U

N
) − �

]
dxdt ≥ 0.

(114)
�Q�

a(x,∇Tk(U
N
))�dxdt ≤ �Q�

a(x,∇Tk(U
N
))∇Tk(U

N
)dxdt

+ �Q�

a(x,�)(� − ∇Tk(U
N
))dxdt.

(115)�Q�

a
(
x,∇Tk(U

N
)
)
∇Tk(U

N
)dxdt ≤ C1k,

(116)�Q�

|a(x,�)(� − ∇Tk(U
N
))dxdt | ≤ C2k.

(117)�Q�

a
(
x,∇Tk(U

N
)
)
�dxdt ≤ C3k.

(118)a
(
x,∇Tk(U

N
)
)
is bounded in (LM∗ (QT ))

d.
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as N tends to +∞.

Proof By using the same technics as in the proof of proposition (5.5) in paper [25], 
we can easily prove the desired result.   □

• Step 4: Convergence of the (UN)N∈ℕ in C([0, T], L1(Ω)) Let t ∈ [0, T] , using the 
Rothe’s approximations we can write (37) in the form 

where fN(t, x) = fn(x) for all t ∈]tn−1, tn]; n = 1...N. Let (tn = n�)N
n=1

, (tm = m�
�

)M
m=1

 
a partition of the interval [0,  T], let (UN(t),U

N
(t)) and (UM(t),U

M
(t)) the 

semi-discrete solutions defined by (97) and (98) corresponding to partitions 
(tn = n�)N

n=1
, (tm = m�

�

)M
m=1

.
Let h > 0 , for the solution (UN(t),U

N
(t)) , (resp. (UM(t),U

M
(t)) , we take 

� = Th(U
M
) (resp � = Th(U

N
) ) as a test function in (121), we get

and

(119)∇Tk(U
N
) → ∇Tk(u) a.e. in QT ,

(120)a
(
x,∇Tk(U

N
)
)
⇀ a

(
x,∇Tk(u)

)
weakly∗ in (LM∗ (QT ))

d,

(121)M
( |∇Tk(U

N
) |) → M

( |∇Tk(u) |
)
strongly in L1(QT ),

(122)

⟨
�UN

�t
, Tk(U

N
− �)

⟩

Q�

+ �Q�

a(x,∇U
N
)∇Tk(U

N
− �)dxdt

+ �Q�

�(U
N
)Tk(U

N
− �)dxdt ≤ �Q�

fNTk(U
N
− �)dxdt,

(123)

⟨
�UN

�t
, Tk(U

N
− Th(U

M
))

⟩

Q�

+ �Q�

a(x,∇U
N
)∇Tk(U

N
− Th(U

M
))dxdt

+ �Q�

�(U
N
)Tk(U

N
− Th(U

M
))dxdt ≤ �Q�

fNTk(U
N
− Th(U

M
))dxdt,

(124)

⟨
�UM

�t
, Tk(U

M
− Th(U

N
))

⟩

Q�

+ �Q�

a(x,∇U
M
)∇Tk(U

M
− Th(U

N
))dxdt

+ �Q�

�(U
M
)Tk(U

M
− Th(U

N
))dxdt ≤ �Q�

fMTk(U
M
− Th(U

N
))dxdt.
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Summing up the two inequalities (122, 123) and letting h → ∞ , we obtain

where

i.e

Since we have 
⟨

�v

�t
, Tk(v)

⟩
QT

=
�

�t ∫
Ω

J
K
(v)dx in L1(]0, T[), then the inequality (126) 

becomes

On the one hand, since Tk(U
N
− �) → Tk(U − �) weakly* in L∞(QT ) as N → ∞ and ‖‖‖

�(UN−UM)

�t

‖‖‖L1(QT )
≤ C(T , f ), we obtain

On the other hand, we have lim
N,M→∞

‖fN − fM‖1 = 0.

Using the same technique used in proof of the uniqueness theorem (3.6), we 
prove that lim

N,M→∞
lim
h→0

II
N,M

kh
≥ 0.

So the passage to the limit with N,M → ∞ implies

We deduce then that (see for instance, the proof of Theorem 1.1 of [30]),

(125)
⟨
�(UN − UM)

�t
, Tk(U

N
− U

M
)

⟩

Q�

+ lim
h→0

II
N,M

kh
≤ �Q�

||fN − fM
||dxdt,

(126)
II

N,M

kh
=∫Q�

a(x,∇U
N
)∇Tk(U

N
− Th(U

M
))

+ a(x,∇U
M
)∇Tk(U

M
− Th(U

N
))dxdt,

(127)

⟨
�(UN − UM)

�t
, Tk(U

N − UM)

⟩

Q�

+ lim
h→0

II
N,M

kh
≤ �Q�

||fN − fM
||dxdt

+

⟨
�(UN − UM)

�t
, Tk(U

N − UM) − Tk(U
N
− U

M
)

⟩

Q�

.

(128)
�
Ω

Jk(U
N(t) − UM(t))dx + lim

h→0
II

N,M

kh

≤ |||||

⟨
�(UN − UM)

�t
, Tk(U

N − UM) − Tk(U
N
− U

M
)

⟩

Q�

|||||
+ ||fN − fM

||1.

lim
N,M→∞

|||||

⟨
�(UN − UM)

�t
, Tk(U

N − UM) − Tk(U
N
− U

M
)

⟩

Q�

|||||
= 0.

(129)lim
N,M→∞∫

Ω

Jk(U
N(t) − UM(t))dx = 0.
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and thus the sequence(UN) is Cauchy in C([0, T], L1(Ω)).
Since UN

→ u a.e , then UN
→ u in C([0, T], L1(Ω)).

• Step 5: Passage to the limit. It remains to show that the function u is the entropy 
solution of problem ( 1). Let v ∈ W1,xLM(QT ) ∩ L∞ such that �v

�t
 belongs to 

W−1,xLM∗ (QT ) + L1(QT ) . By Lemma 5 and Theorem 3 in [12], there exists a pro-
longation v = v on QT , v ∈ W1,xLM(Ω ×ℝ) ∩ L1(Ω ×ℝ) ∩ L∞(Ω ×ℝ) , and 

 There exists also a sequence (𝜔j) ⊂ (Ω ×ℝ) such that 

Now, let take Tk(U
N
− �j)�(0,t)

 as a test function in (121), thus for every t ∈ [0, T] , we 
get

where fN(t, x) = fn(x) for all t ∈]t
n−1, tn], n = 1...N, and k = k + C‖�j‖∞,Q. Which 

implies,

Since

(130)lim
N,M→∞∫

Ω

|UN(t) − UM(t) |dx = 0,

�v

�t
∈ W−1,xLM∗ (Ω ×ℝ) + L1(Ω ×ℝ).

(131)
�j → v in W

1,x

0
LM(Ω ×ℝ), and

��j

�t
→

�v

�t
in W−1,xLM∗ (Ω ×ℝ) + L1(Ω ×ℝ).

(132)

⟨
�UN

�t
, Tk(U

N
− �j)

⟩

Q�

+ ∫Q�

a(x,∇T
k
(U

N
))∇Tk(U

N
− �j)dxdt

+ ∫Q�

�(U
N
)Tk(U

N
− �j)dxdt = ∫Q�

fNTk(U
N
− �j)dxdt,

(133)

⟨
�UN

�t
, Tk(U

N − �j)

⟩

Q�

+

⟨
�UN

�t
, Tk(U

N
− �j) − Tk(U

N − �j)

⟩

Q�

+ �Q�

a(x,∇T
k
(U

N
))∇Tk(U

N
− �j)dxdt + �Q�

�(U
N
)Tk(U

N
− �j)dxdt

≤ �Q�

fNTk(U
N
− �j)dxdt.

⟨
�UN

�t
, Tk(U

N − �j)

⟩

Q�

=

⟨
�(UN − �j)

�t
, Tk(U

N − �j)

⟩

Q�

+

⟨
��j

�t
, Tk(U

N − �j)

⟩

Q�
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and

Then, we deduce that

We have (UN)N∈ℕ converges to u in C([0, T], L1(Ω)) , then UN(t) → u(t) in L1(Ω) 
for all t ∈ [0, T]. Moreover, since |Jk(UN(t) − �j(t))| ≤ k |UN(t) | + k |�j(t) | , then 
we have by using Lebesgue theorem

Therefore we can pass to the limit in (133), we obtain

For the second term of the (131), since Tk(U
N
− �j) → Tk(u − �j) weakly* in 

L∞(QT ) as N → ∞ and ‖‖‖
�UN

�t

‖‖‖L1(QT )
≤ C(T), then

The third term of (131) reads as

where Q1.T = QT ∩ { |UN
− �j | ≤ k}.

Thanks to lemma (4.4), and by using Fatou’s lemma, we deduce that

⟨
�(UN − �j)

�t
, Tk(U

N − �j)

⟩

Q�

= ∫
Ω

Jk(U
N(t) − �j(t))dx − ∫

Ω

Jk(U
N(0) − �j(0))dx.

(134)

⟨
�UN

�t
, Tk(U

N − �j)

⟩

Q�

=∫
Ω

Jk(U
N(t) − �j(t))dx − ∫

Ω

Jk(U
N(0) − �j(0))dx

+

⟨
��j

�t
, Tk(U

N − �j)

⟩

Q�

.

(135)∫
Ω

Jk(U
N(t) − �j(t))dx → ∫

Ω

Jk(u(t) − �j(t))dx ��N → ∞.

(136)

lim
N→∞

⟨
�UN

�t
, Tk(U

N − �j)

⟩

Q�

= ∫
Ω

Jk(u − �j)dx − ∫
Ω

Jk(u0 − �j(0))dx

+

⟨
��j

�s
, Tk(u − �j)

⟩

Q�

.

(137)lim
N→∞

|||||

⟨
�UN

�t
, Tk(U

N
− �j) − Tk(U

N − �j)

⟩

QT

|||||
= 0.

(138)

∫Q�

a(x,∇T
k
(U

N
))∇Tk(U

N
− �j)dxdt = ∫Q1.T

a(x,∇T
k
(U

N
))∇(T

k
(U)N)dxdt

− ∫Q1.T

a(x,∇T
k
(U

N
))∇�jdxdt,
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and

Hence

Since Tk(U
N
− �j) → Tk(u − �j) weakly* in L∞(QT ) as N → ∞ , we have

And thus, using the above results (132, 136, 140, 141) and the continuity of � , we 
deduce that

By (130), as j tends to +∞ we have

Moreover, for every t ∈ [0, T] , we have ||�j − v(t)||L1(Ω) → 0 as j → +∞ . Therefore, 
we pass now to the limit as j → +∞ in (142), we get

(139)∫Q1.T

a(x,∇T
k
(U

N
))∇T

k
(U

N
)dxdt → ∫Q1.T

a(x,∇T
k
(u))∇T

k
(u)dxdt,

(140)∫Q1.T

a(x,∇T
k
(U

N
))∇�jdxdt → ∫Q1.T

a(x,∇T
k
(u))∇�jdxdt.

(141)∫Q�

a(x,∇U
N
)∇Tk(U

N
− �j)dx dt → ∫Q�

a(x,∇u)∇Tk(u − �j)dx dt.

(142)∫Q�

fNTk(U
N
− �j)dxdt → ∫Q�

fTk(u − �j)dxdt.

(143)

�
Ω

Jk(u − �j)dx − �
Ω

Jk(u0 − �j(0))dx +

⟨
��j

�t
, Tk(u − �j)

⟩

Q�

+ �Q�

a(x,∇u)∇Tk(u − �j)dxdt + �Q�

�(u)Tk(u − �j)dxdt

≤ �Q�

fTk(u − �j)dxdt.

⟨
��j

�t
, Tk(u − �j)

⟩

Q�

→

⟨
�v

�t
, Tk(u − v)

⟩
Q�

.

(144)

�
Ω

Jk(u − v)dx − �
Ω

Jk(u0 − v(0))dx +
⟨
�v

�t
, Tk(u − v)

⟩
Q�

+ �Q�

a(x,∇u)∇Tk(u − v)dxdt + �Q�

�(u)Tk(u − v)dxdt

≤ �Q�

fTk(u − v)dxdt,
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then u is an entropy solution of the nonlinear parabolic problem (1), and this com-
pletes the proof of existence of the entropy solution.

• Let v be another entropy solution of nonlinear parabolic problem (1) . We take 
� = Th(U

N) as test function. Passing to the limit with h → ∞ , we obtain 

 then 

 where 

On the other hand, taking � = Th(v) as test function in (121), and by letting h to ∞ , 
we obtain

and

(145)

�Q�

a(x,∇v)∇Tk(v − Th(U
N))dxdt + �Q�

�(v)Tk(v − Th(U
N))dxdt

≤ �Q�

fTk(v − Th(U
N))dxdt +�

Ω

Jk(v(0) − �(0))dx

− �
Ω

Jk(v(t) − �(t))dx −

⟨
��

�t
, Tk(v − Th(U

N))

⟩

Q�

,

(146)
�
Ω

Jk(v(t) − UN)dx +

⟨
�UN

�t
, Tk(v − UN)

⟩

Q�

+ lim
h→∞

IIN
1
(k, h)

+ �Q�

�(v)Tk(v − UN)dxdt ≤ �Q�

fTk(v − UN)dxdt,

IIN
1
(k, h) = ∫Q�

a(x,∇v)∇Tk(v − Th(U
N))dxdt.

(147)

⟨
�UN

�t
, Tk(U

N
− Th(v))

⟩

Q�

+ �Q�

a(x,∇U
N
)∇Tk(U

N
− Th(v))dxdt

+ �Q�

�(U
N
)Tk(U

N
− Th(v))dxdt ≤ �Q�

fNTk(U
N
− Th(v))dxdt,

(148)

⟨
�UN

�t
, Tk(U

N
− v)

⟩

Q�

+ lim
h→∞

IIN
2
(k, h) + �Q�

�(U
N
)Tk(U

N
− v)dxdt

≤ �Q�

fNTk(U
N
− v)dxdt
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where

Summing up the two inequalities ( 145, 147), we obtain

where IIN(k, h) = IIN
1
(k, h) + IIN

2
(k, h) . By using the results of convergence and the 

hypothesis (28), we get

and

Combining (148, 150), we deduce that

By applying the same technique used in the proof of the uniqueness theorem (3.6), 
we prove that

then

since limk→0
Jk(s)

k
= |s| , then limk→0

Jk(v(t)−u(t))

k
= |v(t) − u(t)|.

Therefore, according to Fatou’s lemma, we obtain

Hence the uniqueness of the entropy solution of the problem (1), and the proof of 
theorem (3.9) is complete.

IIN
2
(k, h) = ∫Q�

a(x,∇U
N
)∇Tk(U

N
− v)dxdt.

(149)

�
Ω

Jk(v(t) − UN(t))dx +

⟨
�UN

�t
, Tk(v − UN) + Tk(U

N
− v)

⟩

Q�

+ lim
h→∞

IIN(k, h) + �Q�

�(v)Tk(v − UN) + �(U
N
)Tk(U

N
− v)dxdt

≤ �Q�

fNTk(v − UN) + fNTk(U
N
− v)dxdt

(150)lim
N→∞

lim
h→∞

⟨
�UN

�t
, Tk(v − UN) + Tk(U

N
− v)

⟩

Q�

= 0,

(151)lim
N→∞

lim
h→∞∫Q�

fNTk(v − UN) + fNTk(U
N
− v)dxdt = 0.

�
Ω

Jk(v(t) − u(t))dx + lim
N→∞

lim
h→∞

IIN(k, h) ≤ 0.

lim
N→∞

lim
h→∞

IIN(k, h) ≥ 0

�
Ω

Jk(v(t) − u(t))dx ≤ 0,

‖v(t) − u(t)‖1 ≤ 0∀t ∈ [0, T].
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