
Vol.:(0123456789)

Computing and Software for Big Science (2024) 8:8
https://doi.org/10.1007/s41781-024-00117-0

RESEARCH

Real‑Time Graph Building on FPGAs for Machine Learning Trigger
Applications in Particle Physics

Marc Neu1 · Jürgen Becker1 · Philipp Dorwarth2 · Torben Ferber2 · Lea Reuter2 · Slavomira Stefkova2 · Kai Unger1

Received: 14 July 2023 / Accepted: 11 March 2024
© The Author(s) 2024

Abstract
We present a design methodology that enables the semi-automatic generation of a hardware-accelerated graph building archi-
tectures for locally constrained graphs based on formally described detector definitions. In addition, we define a similarity
measure in order to compare our locally constrained graph building approaches with commonly used k-nearest neighbour
building approaches. To demonstrate the feasibility of our solution for particle physics applications, we implemented a real-
time graph building approach in a case study for the Belle II central drift chamber using Field-Programmable Gate Arrays
(FPGAs). Our presented solution adheres to all throughput and latency constraints currently present in the hardware-based
trigger of the Belle II experiment. We achieve constant time complexity at the expense of linear space complexity and thus
prove that our automated methodology generates online graph building designs suitable for a wide range of particle physics
applications. By enabling an hardware-accelerated preprocessing of graphs, we enable the deployment of novel Graph Neural
Networks (GNNs) in first-level triggers of particle physics experiments.

Keywords Graph building · Graph neural networks · Field programmable gate arrays · Particle physics · Machine learning ·
Nearest neighbour · Belle II

Introduction

Machine Learning is widely used in particle physics for
various reconstruction tasks and Graph Neural Networks
(GNNs) are recognised as one possible solution for irregu-
lar geometries in high energy physics. GNNs have proven
suitable for jet clustering [1], calorimeter clustering [2], par-
ticle track reconstruction [3–5], particle tagging [6, 7] and
particle flow reconstruction [8]. However, all applications
described above are implemented in an offline environment,
relying on high performance computing clusters utilising
Central Processing Units (CPUs) and Graphics Processing
Units (GPUs) to achieve the required throughput for the
analysis of collision events. Therefore, existing implemen-
tations are not suitable for real-time particle tracking and
reconstruction in trigger systems of particle detectors.

The realisation of GNNs on FPGAs for particle tracking
is an active area of research [4, 9–11]. Due to latency and
throughput constraints, a suitable implementation meeting
all requirements imposed by particle physics experiments
is yet to be developed. Especially the generation of input
graphs under latency constraints is a challenge that has not
received full attention so far in the evaluation of existing

 * Marc Neu
 marc.neu@kit.edu

 Jürgen Becker
 juergen.becker@kit.edu

 Philipp Dorwarth
 philipp.dorwarth@student.kit.edu

 Torben Ferber
 torben.ferber@kit.edu

 Lea Reuter
 lea.reuter@kit.edu

 Slavomira Stefkova
 slavomira.stefkova@kit.edu

 Kai Unger
 kai.unger@kit.edu

1 Institut fuer Technik der Informationsverarbeitung (ITIV),
Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe,
Germany

2 Institute of Experimental Particle Physics (ETP), Karlsruhe
Institute of Technology (KIT), 76131 Karlsruhe, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-024-00117-0&domain=pdf

 Computing and Software for Big Science (2024) 8:8 8 Page 2 of 15

prototypes. Current prototypes as described in [4, 9] are
trained on preprocessed graph datasets, taking into account
geometric properties of detectors. However, a holistic imple-
mentation of GNNs for triggers requires the consideration of
the entire data flow chain. This raises the question on how
to build graphs under latency constraints in high-throughput
particle physics applications.

In our work, we consider constraints from currently oper-
ating first level trigger systems [12–14]: event processing
rates in the order of 10 to 100 MHz and latencies in the
order of 1 to 10 � s render the utilisation of compound plat-
forms based on CPUs and Field Programmable Gate Arrays
(FPGAs) used in other research areas infeasible [15, 16]. For
example, the typical transmission latency between CPU and
FPGA on the same chip is already larger than 100ns, making
up a considerable processing time [17].

To overcome the research gap, our work comprises the
following contributions: first, we outline existing nearest
neighbour graph-building methods and evaluate their feasi-
bility for trigger applications. Second, we develop a meth-
odology to transform formal graph-building approaches to
hardware-accelerated processing elements in an automated
way. Third, we evaluate our proposed toolchain on the
Belle II central drift chamber (CDC), demonstrating the fea-
sibility of our solution to build graphs under the constraints
imposed by current trigger systems.

The paper is organised as follows: in sect "Related Work",
we give an overview of related work on FPGA-accelerated
graph building. The CDC, the event simulation and details
of the beam background simulation are described in sect
"Simulation and Dataset". The methodology for transform-
ing discrete sensor signals into a graphical representation
is discussed in sect. "Graph Building". The procedure
for implementing real-time graph building in hardware is
described in sect. "Toolchain". A concrete example of real-
time graph building for the Belle II CDC is provided in sec-
tion . We summarise our results in sect. "Conclusion".

Related Work

Previous work on FPGA-accelerated GNNs for particle
physics utilise input graphs based on synchronous sampled
collision events as input for training and inference of the
respective networks [4, 18]. Early studies made use of fully
connected graphs which lead to scalability challenges for
detectors with more than 10 individual sensors [19]. Typical
particle physics trigger systems have much higher number
of sensors though (see Table 1).

Aiming to significantly reduce the maximum size of input
graphs, the geometric arrangement of sensors in the detec-
tor has been considered recently [3, 5]. Nevertheless, input
graphs are currently generated offline, stored in the FPGA

memory and are accessed over AXI1-Mapped Memory inter-
faces in prototype implementations [9]. However, as sensors
in detectors are read out as individual channels without pro-
viding relational information, the processing of input graphs
must be considered as part of the critical path in online track
reconstruction and trigger algorithms.

While building suitable input graphs for neural networks
is a rather recent application, general nearest neighbour
(NN) graph building has been studied extensively in litera-
ture [23–25]. In order to reduce the computational demand
of NN graph-building algorithms, continuous efforts have
been made towards building approximate graphs making
use of local sensitive hashing [26, 27], backtracking [28],
or small world graphs [29]. Performance improvements
from these algorithms have been demonstrated for appli-
cations targeting high-dimensional graphs containing more
than 106 vertices such as database queries [30]. There are
two key challenges that limit the generalisation of these
techniques in the particle physics trigger context. First,
k-nearest neighbour (k-NN) algorithms inherently rely on
sequential processing and present challenges in efficient par-
allelisation. Second, while there is a wide range of graph-
processing frameworks available (see Ref. [31] for a survey
on graph processing accelerators), none of them meet the
stringent latency and throughput requirements of current
particle physics trigger systems: FFNG [32] focuses on the
domain of high-performance computing and therefore does
not impose hard real-time constraints. GraphGen [33] relies
on external memory controllers which introduce additional
latency into the system. GraphACT [16, 34] utilises pre-
processing techniques on CPU-FPGA compound structures
in order to optimise throughput and energy efficiency which
again introduces non-determinism and additional latency.
And lastly, current GNN accelerators like HyGCN [35] or
AWB-GCN [36] use the previously described techniques
to reduce the required system bandwidth and improve the

Table 1 Input parameters for the first-level trigger systems in three
current particle physics detectors

For CMS, 95 % quantiles for the number of sensor hits per event is
reported in [9], while for the Belle II CDC [20] and DUNE [21] the
number of sensors inputs is given

CMS Belle II DUNE
[9, 22] [20] [21]

Subsystem Muon CDC ProtoDune SP
Number of sensors 6500 14,336 15,360
Trigger data input rate 40 MHz 32 MHz 2 MHz

1 AXI: Advanced eXtensible Interface, is an on-chip communication
bus protocol.

Computing and Software for Big Science (2024) 8:8 Page 3 of 15 8

energy efficiency of the inference. They are therefore not
suitable for particle physics applications.

Simulation and Dataset

In this work, we use simulated Belle II events to bench-
mark the graph-building algorithms. The detector geometry
and interactions of final state particles with the material are
simulated using GEANT4 [37], which is combined with the
simulation of a detector response in the Belle II Analysis
Software Framework [38]. The Belle II detector consists
of several subdetectors arranged around the beam pipe in a
cylindrical structure that is described in detail in Refs. [39,
40]. The solenoid’s central axis is the z-axis of the laboratory
frame. The longitudinal direction, the transverse xy plane
with azimuthal angle � , and the polar angle � are defined
with respect to the detector’s solenoidal axis in the direc-
tion of the electron beam. The CDC consists of 14336 sense
wires surrounded by field wires which are arranged in nine
so-called superlayers of two types: axial and stereo superlay-
ers. The stereo superlayers are slightly angled, allowing for
3D reconstruction of the track. In the simulated events, we
only keep the detector response of the CDC.

We simulated two muons (�+,�−) per event with momen-
tum 0.5 < p < 5GeV/c , and direction 17◦ < 𝜃 < 150◦ and
0◦ < 𝜙 < 360◦ drawn randomly from independent uniform
distributions in p, � , and � . The generated polar angle range
corresponds to the full CDC acceptance. Each of the muons
is displaced from the interaction point between 20 cm and
100 cm, where the displacement is drawn randomly from
independent uniform distributions.

As part of the simulation, we overlay simulated beam
background events corresponding to instantaneous luminos-
ity of Lbeam = 6.5 × 1035 cm−2s−1 [41, 42]. The conditions
we simulate are similar to the conditions that we expect to
occur when the design of the experiment reaches its ultimate
luminosity.

An example of an event display for a physical event
e+e− → �+�−(�) is shown in Fig. 1. It is visible that the
overall hit distribution of the exemplary event is dominated
by the simulated beam background signal.

Graph Building

This work proposes a methodology for transforming dis-
crete sensor signals captured inside a particle detector into
a graphical representation under real-time constraints. Par-
ticular importance is given to the use-case of particle physics
trigger algorithms, adhering to tight latency constraints in
the sub-microsecond timescale.

Current large-scale particle detectors are composed of
various discrete sensors and often, due to technical limita-
tions, placed heterogeneously inside the system. For this rea-
son, signals from the sensors cannot be considered regularly
distributed, as it is the case with, for example, monolithic
image sensors. In the following, a detector D is defined as a
set of N discrete sensors {s⃗1, ..., s⃗N} , where each individual
sensor s⃗i is described by a feature vector of length f. Some
examples for described features are the euclidean location
inside the detector, the timing information of the received
signal, or a discrete hit identifier. To map relational con-
nections between individual sensors, a graph based on the
detector description is generated which contains the respec-
tive sensor features.

Formally described, a graph building algorithm gener-
ates an non-directional graph G(D, E), where D is the set of
vertices of the graph, and E ⊆ D × D is the set of edges. The
set of vertices is directly given by the previously described
set of sensors in a detector. Each edge eij = e(s⃗i, s⃗j) ∈ E
with s⃗i, s⃗j ∈ D in the graph connects two sensors based on
a building specification, that depends on sensor features. In
the following, we consider the case of building non-directed
graphs. We do not introduce any fundamental restrictions
that limit the generalisation of our concept to directed
graphs.

In general, graph building approaches are tailored to
the specific detector and physics case. We consider three
approaches that can be classified into two classes of nearest-
neighbour graph building: locally constrained graphs, and
locally unconstrained graphs.

Fig. 1 Typical event display showing the transverse plane of the
Belle II CDC. Hits generated by signal muon particles are shown
with purple markers and background hits by black markers

 Computing and Software for Big Science (2024) 8:8 8 Page 4 of 15

Figure 2 depicts an exemplary cut-out of a detector, in
which sensors are placed heterogeneously in two-dimen-
sional space. For simplicity, sensors are aligned in a grid-
like structure without restricting the generality of our graph-
building approach. A graph is built for a query vertex which
is depicted by a solid black circle. We use the exemplary
query vertex to illustrate NN-graph building on a single ver-
tex for simplicity. In the following, we compare the three
building approaches and explain their differences.

k‑NN

k-NN graph building is illustrated on a single query node in
Fig. 2a. Repeating the building algorithm sequentially leads
to a worst-case execution time complexity of O(k|D| log(|D|)
[23]. To reduce the execution time, parallelisation of the
algorithm has been studied in Ref. [24], achieving a lower
theoretical complexity. Based on the optimisation, a linear
O(|D|) time complexity is achieved in experimental evalua-
tion [25]. Nevertheless, substantial processing overhead and
limitations through exclusive-read, exclusive-write memory
interfaces limit the usability for trigger applications. To
achieve a higher degree of parallelisation, algorithms as
described in Refs. [27, 28] make use of locally constrained
approximate graphs.

ϵ‑NN

ϵ-NN graph building is illustrated on a single query node
in Fig. 2b. The parameter ϵ defines an upper bound for the

distance of a candidate vertex from the query vertex. All ver-
tices for which Eq. (1) holds true are connected in a graph,
yielding a locally constrained graph. Figuratively, a uniform
sphere is placed over a query point joining all edges which
are inside the sphere into the graph:

Since the ϵ-NN approach is controlled by only one param-
eter, it is a general approach to building location-constrained
graphs. However, variations between adjacent sensors in het-
erogeneous detectors are not well represented in the ϵ-NN
algorithm.

p‑NN

Pattern nearest-neighbour (p-NN) graph building is illus-
trated on a single query node in Fig. 2c. For building the
graph, every candidate sensor is checked and, if the pre-
defined condition p(x⃗i, x⃗j) in Eq. (2) is fulfilled, the edge
between candidate node and query node is included in the
graph:

Comparison

When comparing the k-NN, the ϵ-NN and the p-NN algo-
rithms, it is obvious that in general all three approaches yield
different graphs for the same input set of sensors. The p
-NN building and the ϵ-NN building can both be considered
locally constrained algorithms with differing degrees of free-
dom. While ϵ-NN building maps the locality into exactly one
parameter, the definition of the p-NN building offers more
flexibility. In contrast, the k-NN approach differs as outliers
far away from a query point might be included. Neverthe-
less it is noted in Ref. [43], that on a uniformly distributed
dataset a suitable upper bound ϵ* exists, for which the result-
ing ϵ-NN graph is a good approximation of corresponding
k-NN graph.

Toolchain

In the following, we leverage the described mathematical
property to demonstrate the feasibility of building approxi-
mate k-NN graphs for trigger applications. First, we provide
a methodology to evaluate the approximate equivalence of
k-NN, ϵ-NN and p-NN graph building approaches, provid-
ing a measure of generality for k-NN parameters chosen in
offline track reconstruction algorithms [3, 21]. Second, we
semi-automatically generate a generic hardware implemen-
tation for the p-NN graph building, thus demonstrating the

(1)d(x⃗i, x⃗j) = ‖x⃗i − x⃗j‖2 < 𝜖.

(2)p(x⃗i, x⃗j) ⇒ True.

Fig. 2 Example for the three different approaches of building nearest
neighbour graphs. Sensors inside a detector are depicted as circles. A
sensor which is hit by a particle is identified by a solid outline, those
without a hit by a dotted outline. The query vertices are depicted in
black. Edges connecting two nearest neighbours are indicated by a
solid line. Nodes filled with purple are considered candidate sensors,
which are part of the specified search pattern around the query vertex

Computing and Software for Big Science (2024) 8:8 Page 5 of 15 8

feasibility of graph-based signal processing in low-level
trigger systems.Since ϵ-NN graph building is a special case
of p-NN graph building, we have also covered this case in
our implementation. Third, we perform a case study on the
Belle II trigger system demonstrating achievable through-
put and latency measures in the environment of trigger
applications.

Hardware Generator Methodology

Algorithms that generate graphs by relating multiple signal
channels belong to the domain of digital signal processing.
As such they share characteristics of typical signal process-
ing applications like digital filters or neural networks. Both
applications are data-flow dominated and require a large
number of multiply-and-accumulate operators and opti-
misations for data throughput. Thus, implementing these
algorithms on FPGAs improves latency and throughput in
comparison to an implementation on general purpose pro-
cessors [44].

Various high-level synthesis (HLS) frameworks have
been developed to reduce the required design effort such as
FINN [45, 46] and HLS4ML [47, 48] with which the reali-
sation of the GarNet, a specific GNN architecture, is possi-
ble. Although these frameworks offer a low entry barrier for
the development of FPGA algorithms, they are unsuitable
for the implementation of our graph building concept.

Therefore, we propose a generator-based methodology
enabling to transform a graph building algorithm into an
actual firmware implementation, that grants us complete
design freedom at the register transfer level. Figure 3 illus-
trates our development flow for both the generation of an
intermediate representation of the circuit and an algorithmic
evaluation of the building approach. As an input a database
containing the formal definition of a detector is expected
alongside hyperparameters, e.g. ϵ for the ϵ-NN graph build-
ing. Based on the selected approach, an intermediate-graph
representation is generated, containing informationon how
the building approach is mapped onto the detector. The
intermediate-graph representation serves as an input for the
hardware generation and the algorithmic evaluation.

On one side, an intermediate-circuit representation is gen-
erated by combining the intermediate-graph representation
and parameterised hardware modules from our hardware
description language (HDL) template library. The template
library contains the elementary building blocks required
to implement online graph building, in particular the static
routing network, the edge processing elements and inter-
face definitions. We use Chisel3 [49] as hardware-design
language providing an entry point to register transfer-level
circuit designs in Scala.

On the other side, the intermediate-graph representation
is evaluated on a user-defined dataset and compared to a

generic k-NN graph-building approach. To achieve a quan-
titative comparison, we introduce similarity metrics for dif-
ferent operating conditions in the detector in section . This
result can be used to iteratively adapt hyperparameters in the
ϵ-NN or p-NN approach, improving the similarity to k-NN
graphs that are often used in offline track reconstruction.

Intermediate‑Graph Representation

The parameter ϵ in the ϵ-NN approach and the pattern func-
tion in the p-NN approach limit the dimensionality of the
graph under construction. In comparison to fully connected
graphs, the maximum number of edges is lowered by impos-
ing local constraints on the connectedness of sensors in the
detector. Local constraints are implemented by considering
the influence of static sensor features, like euclidean dis-
tances between sensors, during design time of the FPGA
firmware. Leveraging the a priori knowledge of the sensor
position, the computational effort required during online
inference of the algorithm is lowered.

Algorithm 1 describes the procedure to derive the inter-
mediate-graph representation of an arbitrary graph-building
procedure. As an input the formally described set of sen-
sors D is given. Iterating over every sensor in the detec-
tor, the locality of not yet visited sensors is checked by a

p-NN
building

Hardware generator

-NN
building

HDL
template

library

Intermediate-graph
representation

Similiarity metric

Algorithmic evaluation

Detector description
and hyperparameters Dataset

Intermediate-circuit
representation

k-NN
building

Fig. 3 Proposed generator-based methodology for our graph build-
ing approach. On the left side, the development flow for the hardware
implementation is depicted, yielding an intermediate hardware repre-
sentation. On the right side, flow for the algorithmic evaluation of the
algorithms is shown

 Computing and Software for Big Science (2024) 8:8 8 Page 6 of 15

user-defined metric describing the graph building approach.
If a sensor is considered to be in the neighbourhood of
another sensor, the connection is added to the resulting set of
edge candidates E. All edges in E must be checked for their
validity during the inference of the online graph building.

The combination of the formal detector description and
the set of candidate edges is sufficient to describe an arbi-
trary building approach on non-directed graphs. Accord-
ing to algorithm 1, the worst-case time complexity during
design-time amounts to O(|D|2) , which is higher than the
worst-case time-complexity of state-of-the-art k-NN build-
ing approaches. However, the worst-case time-complexity
during run-time is now only dependent on the number of
identified edges during design-time. Therefore, generating
a graph of low dimensionality by choosing a suitable metric
, e.g. a small ϵ in the ϵ-NN approach, considerably low-
ers the number of required comparisons at run-time. Such
an optimisation would not be possible when using a k-NN
approach, as even for a low dimensionality all possible edges
must be considered.

Algorithm 1 Design-time graph building

Full Toolchain Integration

Our methodology covers the conversion of an arbitrary
graph building algorithm into an intermediate-circuit repre-
sentation. The resulting intermediate-circuit representation,
implemented on the FPGA as a hardware module, exposes
multiple interfaces on the FPGA. On the input side, hetero-
geneous sensor data are supplied through a parallel inter-
face as defined in the detector description. On the output
side, graph features are accessible through a parallel register
interface to provide edge features to successive processing
modules.

Considering the application of our module in a latency-
sensitive, high-throughput environment like particle experi-
ments, direct access to graph data is required at the hardware

level. Therefore, bus architectures employed in general-pur-
pose processors, like AXI or AMBA, are not suitable for our
use case. For this reason, our graph building module is con-
nected to subsequent modules via buffered stream interfaces,
reducing the routing overhead in the final design.

Figure 4 depicts exemplary, how our Chisel3-based graph
building methodology is combined with state-of-the-art HLS
tools, such as HLS4ML [48], FINN [45, 46] or ScaleHLS
[51, 52] in order to enable the generation of hardware-accel-
erated neural networks. The left side of the figure depicts a
generic HLS flow converting, for example, a PyTorch [50]
neural network model into hardware modules.. The register
transfer level description of hardware modules generated by
HLS toolchains are composed of discrete registers, wires,
and synthesisable operations. In a similar way, the right side
of the figure depicts our proposed graph building procedure.
The formal detector description and the user-defined graph
building metric are used as an input to generate a register-
transfer level description of the hardware module. As both
toolchains are generating hardware descriptions in the reg-
ister transfer abstraction level, merging the two modules is
feasible. Last, a top level design combining both modules
in SystemVerilog [53] is generated for an FPGA-specific
implementation using commercially available toolchains, for
example Vivado ML [54].

Module Architecture

Utilising the generated intermediate graph description, avail-
able generator templates, and user-defined hyperparameters,
a hardware module is generated at the register-transfer level.
The system architecture of the module is depicted in Fig. 5.

Hardware module integration
on register transfer level

High-level
synthesis tools

Graph building
framework

Hardware
module

Hardware
module

Formal
description

PyTorch
frontend

SystemVerilog

Fig. 4 Exemplary integration of our graph building methodology into
a state-of-the-art HLS design flows

Computing and Software for Big Science (2024) 8:8 Page 7 of 15 8

The total number of graph edges |E| is factorised into M edge
processing elements and N graph edges per edge processing
element. Time variant readings from the detector sensors,
e.g. energy or timing information, are scattered to an array of
M edge processing elements via a static distribution network.
In this way, each edge processing element has conflict-free
access to the sensor data for classifying the respective edges.
Every edge processing element builds N graph edges in a
time-division multiplex. For each edge which is processed
in an edge processing element, data from two adjacent sen-
sors are required which are provided to the edge processing
element. Therefore, to process N edges data from 2N sen-
sors are required. Consequently, graph edges are built from
candidates identified at design time yielding a sparse array
of both active and inactive edges. In the described archi-
tecture, all generated edges are accessible through parallel
registers. In case a serial interface is required for successive
algorithms, an interface transformation is achieved by add-
ing FIFO modules.

Figure 6 illustrates the block level diagram of an edge
processing element in detail. During design-time, each
hardware module is allocated N edges which are built
sequentially. Static allocation allows a priori known sensor
and edge features, like euclidean distances, to be stored in

read-only registers. During run-time, the described module
loads static features from the registers, combines them with
variable input features, like the deposited energy, and classi-
fies the edge as active or inactive. The online graph building
is carried out in three steps. First, a pair of sensor readings
is loaded from the shift registers, and static sensor and edge
features are loaded from a static lookup table. Second, a
Boolean flag is generated based on a neighbourhood condi-
tion, e.g. a user-specified metric is fulfilled for two adjacent
sensors. Third, the resulting feature vector of the edge is
stored in the respective register. Feature vectors of all edge
processing elements are routed via a second static distribu-
tion network mapping each edge to a fixed position in the
output register.

The proposed architecture takes advantages of distrib-
uted lookup tables and registers on the FPGA in two ways.
First, due to the independence of the edge processing ele-
ments space-domain multiplexing is feasible on the FPGA
even for large graphs. Second, static features of the graph
edges and vertices are stored in distributed registers allow-
ing logic minimisation algorithms to reduce the required
memory [55].

To conclude, we developed an architecture for online
graph building which is well suited for the latency-con-
strained environment of low level trigger systems in particle
physics experiments. The variable output interface allows
for an easy integration of successive trigger algorithms and
leaves ample room for application-specific optimisation. The
number of output queues is controlled by the parameter N
which yields a flexible and efficient design supporting vari-
able degrees of time-domain multiplexing.

Case Study: Belle II Trigger

To demonstrate the working principle of our concept, we
adapt our graph building methodology for the first-level (L1)
trigger of the Belle II experiment. The implementation
focuses on the CDC (see sect. "Simulation and Dataset")
that is responsible for all track-based triggers.

Environment

The aim of the trigger system is to preselect collision events
based on their reconstructed event topologies. In order to
filter events, a multi-stage trigger system is employed. As a
result, the effective data rate and thus the processing load of
the data acquisition systems is reduced.

To give an overview of the constraints and requirements
imposed by the experiment, the existing system is briefly
described in the following. The L1 track triggers are shown
schematically in Fig. 7. They perform real-time filtering with
a strict latency requirement of 5 �s [20]. The sense wires

Edge
processing

element

Edge
processing

element

S
ta

tic
 d

is
tri

bu
tio

n
ne

tw
or

k

S
ta

tic
 d

is
tri

bu
tio

n
ne

tw
or

k

S
en

so
r s

ig
na

ls

G
ra

ph
 e

dg
es

M-1

0
N

N

N

N

N

N

Fig. 5 System architecture of the generated hardware module. Sensor
signals are received on the left side of the figure. The resulting graph
edges are shown on the right side

Edge
classifier

Lookup
table

Stream
converter

N:1

State machine

A
rr

ay
 o

f e
dg

es

ReadyValid

Sensors A

Sensors B

Fig. 6 The edge processing element consists of a stream converter, an
edge classifier, and a lookup table. Edge registers are made available
through a parallel interface

 Computing and Software for Big Science (2024) 8:8 8 Page 8 of 15

inside the CDC are sampled with 32MHz and wire hits are
accumulated for approximately 500ns. In order to process
all available input signals concurrently, a distributed FPGA-
based platform is employed.

To obtain a trigger decision, track segments are generated
from incoming events in parallel by performing space-divi-
sion multiplexing. Based on the output of the track segment
finder (TSF), multiple algorithms including conventional 2D
and 3D track finding algorithms as well as a Neural Network
Trigger [14] generate track objects of varying precision, effi-
ciency, and purity for a Global Decision Logic [56].

The integration of GNNs in the L1 trigger system requires
an online-graph building approach that is optimised for
both latency and throughput. In this case study, we employ
our proposed toolchain to generate an application-specific
graph-building module as described in the previous section
while adhering to constraints in the challenging environment
of the Belle II experiment.

Graph Building

The wire configuration of the CDC is mapped onto the for-
mal detector definition from sect. "Graph Building", using
wires as discrete sensors. These sensors are called nodes
or vertices in the following. Inside the L1 trigger system,
three signals are received per wire: a hit identifier, the TDC
readout and the ADC readout, where TDC is the output of a
time-to-digital converter measuring the drift time, and ADC
is the output of an analogue-to-digital converter measuring
the signal height that is proportional to the energy deposi-
tion in a drift cell. Cartesian coordinates of the wires inside
the detector are known during design time and used as static
sensor features. Additionally, the distance between two ver-
tices, which is also known during design-time, is considered
as an edge feature.

Illustrating the working principle our graph building
approaches, Fig. 8 depicts four cut-outs of the CDC in the
x-y plane for z = 0.

In sector Ⓐ, hit identifier received by the detector for an
exemplary event are indicated by black markers. The other
three sectors show one graph building approach each: Sector
Ⓑ depicts a k-NN graph for of k = 6 , as there are up to six
direct neighbours for each wire. The k-NN graphs connects
wires that are widely separated. Sector Ⓒ shows an ϵ-NN
graph for ϵ = 22 mm. The specific value for ϵ is chosen,
because 22 mm is in the range of one to two neighbour wires
inside the CDC. This graph building approach connects hits
in close proximity only, yielding multiple separated graphs.
In addition, more edges are detected in the inner rings com-
pared to the outer rings of the detector due to the higher wire
density in this region. Finally, sector Ⓓ shows a p-NN graph
using the pattern described in Fig. 9. The pattern extends the
existing pattern [57–59] of the currently implemented TSF
in the L1 trigger system by taking neighbours in the same
superlayers into account. When comparing the ϵ-NN graphs
and the p-NN graphs with each other, it is observed that the
degrees2 of p-NN vertices are more evenly distributed (see
inserts in Fig. 8).

CDC TSF

2D track
finder

Event time
finder

3D track
finder

Neural
network
trigger

To
 g

lo
ba

l d
ec

is
io

n
lo

gi
c

Fig. 7 Flowchart of the L1 trigger system at the Belle II experiment,
limited to systems that use the wire hit information from the CDC
[56]

Fig. 8 Typical event display of the CDC for various graph building
approaches. Quadrants show Ⓐ all hits, Ⓑ k-NN graph building (k=6),
Ⓒ ϵ-NN graph building (ϵ=22 mm), and Ⓓ p-NN graph building (see
Fig. 9). The inserts show zooms to a smaller section of the CDC

2 The degree of a vertex of a graph is the number of edges that are
connected to the vertex.

Computing and Software for Big Science (2024) 8:8 Page 9 of 15 8

Parameter Exploration

In general, k-NN, ϵ-NN and p-NN algorithms generate
different graphs for an identical input event. However, to
replace k-NN graph building with a locally constrained
graph building approach, the graphs should ideally be iden-
tical. As the generated graphs depend strongly on the chosen
hyperparameters, on the geometry of the detector, and on
the background distribution of the events under observa-
tion, a quantitative measure of the similarity of the gener-
ated graphs between k-NN graphs and locally constrained
graphs, such as ϵ-NN or p-NN graphs, is necessary. The
optimal choice of the hyperparameter ϵ* is the one that
maximises the similarity for any k. For this optimisation,
we use simulated events as described in sect. "Simulation
and Dataset". We generate both the k-NN graphs and the
locally constrained graphs on the dataset considering the
neighbourhood of wires inside the detector. Edges of the k
-NN graphs are labelled Ek , whereas the edges of observed
locally constrained graphs are labelled El . We measure the

similarity between the two graphs using the binary classifi-
cations metrics recall and precision defined as

To perform the evaluation, we automate the parameter
exploration using Python 3.10. We vary k between 1 and
6 and ϵ between 14 and 28 mm, as the minimal distance
between two wires in the CDC is approximately 10 mm.
Precision and recall scores are calculated for every pair of k
and ϵ parameters and show mean value over 2000 events in
Fig. 10. As expected, the precision score increases monoton-
ically when parameter k is increased. In addition, it increases
if the parameter ϵ is reduced. The recall score behaves in
the opposite way: It monotonically decreases when param-
eter k is increased. In addition, it decreases if the parameter
ϵ is decreased. Similarity is defined as the ratio between
recall and precision, where an optimal working point also
maximises recall and precision themselves. We observe that
we do not find high similarity for all values of k. Maximal
similarity is found for k = 3 and ϵ = 22mm , and k = 4 and
ϵ = 28mm , respectively. The corresponding precision and
recall on the underlying data set are around 65–70%.

The similarity between k-NN and ϵ-NN graphs can be
interpreted in relation to the mathematical statement from
Ref. [43] (compare sect. "Graph Building"). Based on the
background noise and the large number of hits per event,
we assume that the hit identifiers in the dataset are approxi-
mately uniformly distributed. Therefore, we expect that pairs
of k-NN and ϵ-NN graphs exist that exhibit a high degree
of similarity, e.g. precision and recall scores close to one.

(3)recall =
|Ek ∩ El|

|Ek|
,

(4)precision =
|Ek ∩ El|

|El|
.

Fig. 9 Two query vertices illustrate the neighbourhood pattern in
hourglass shape used for the Belle II detector case study. The super-
layer is rolled off radially and an exemplary cut-out is shown. Ver-
tices which are considered neighbour candidates of the respective
query vertex are shown as purple-filled markers

(a) Precision (b) Recall

Fig. 10 Precision and recall for the comparison of the k-NN and ϵ-NN graph building approaches

 Computing and Software for Big Science (2024) 8:8 8 Page 10 of 15

Our expectation is only partially met as the trade-off point
reaches only about 65–70 %. The achieved metrics indicate,
that the k-NN graph-building approach from high-level trig-
ger algorithms may be replaced by the ϵ-NN graph-building
approach in the first-level trigger and behave qualitatively
similar.

We perform the same comparison between the k-NN
and the p-NN graph building approach as shown in Fig. 11.
We achieve similar results in comparison to the ϵ-NN com-
parison: the recall score is monotonically decreasing for a
larger parameter k, and the precision score is monotonically
increasing for larger parameter k. For k between three and
four, precision and recall scores are approximately similar
and around 70 %.

Again, our expectation of a high degree of similarity is
only partially met. This similarity is to be expected, as the
chosen pattern is also locally constrained and approximately
ellipsoid.

Prototype Setup

For the implementation of the proposed algorithm into a
hardware prototype, the CDC is partitioned into 20 par-
tially overlapped, independent sectors in � and radial dis-
tance r for the L1 trigger. Each �-r-sector is processed
physically isolated by one FPGA platform, the overlapping
of the sectors ensures that no data is lost. The overlap-
ping sectors must be merged in subsequent reconstruction
steps that are not part of the graph-building stage. In the
following, the graph-building module is implemented on

the Belle II Universal Trigger Board 4 (UT4) featuring a
Xilinx Ultrascale XCVU160WE-2E. The UT4 board is cur-
rently used in the Belle II L1 Trigger and therefore serves as
a reference for for future upgrades of the L1 trigger system.

To implement the online graph building module, we
generate JSON databases for every �-sector of the CDC.
Each database represents a formal detector containing the
positions of the wires and information about sensor features
as described in sect. "Graph Building". Sensor features are
composed of 1bit for the binary hit identifier, 5bit for the
TDC readout, 4bit for the ADC readout, and the Cartesian
coordinates of the wires. Additional edge features contain-
ing information about the wire distances of two adjacent
vertices are included as well. The resolution of the euclidean
features can be arbitrarily chosen and is therefore considered
a hyperparameter of the module implementation.

The sector database and a function describing the pattern
as illustrated in Fig. 9 is provided as an input to our proposed
toolchain which is implemented in Python 3.10. An interme-
diate graph representation is generated as a JSON database,
containing a type definitions of all vertices, edges and their
respective features. In addition, features known at design-
time, such as Cartesian coordinates, are rounded down,
quantised equally spaced, and included in the intermediate
graph representation. By generating the databases for all 20
sectors, we identify the smallest and largest sector of the
CDC to provide a lower and an upper bound for our problem
size. The maximum number of edges in each sector is deter-
mined by the pattern from Fig. 9. The smallest sectors are
located in superlayer two containing 498 vertices and 2305
edges, while the largest sectors are located in superlayer six
containing 978 vertices and 4545 edges.

To demonstrate our graph building approach, we syn-
thesise the previously generated intermediate graph repre-
sentation into a hardware module targeting the architecture
of the UT4. We provide the JSON database as an input
for the hardware generator, which is a set of custom mod-
ules implemented in Chisel 3.6.0. In addition, we provide
a Scala function that performs the online classification of
edge candidates based on the hit identifier: an edge candi-
date is considered valid, if the hit identifiers of both adja-
cent vertices are hit. For the edge processing elements we
choose the number of edges per edge processing element
N of eight. Therefore, eight edges are processed sequen-
tially in every edge processing element as described in sect.
"Toolchain". Based on the required throughput of 32MHz, a
system frequency of at least 256MHz is required to achieve
the desired throughput. By starting the generator applica-
tion, edges and features are extracted from the intermediate
graph representation and scheduled on edge processing ele-
ments. After completion, the hardware generator produces a
SystemVerilog file containing the graph-building hardware
module [53].

Fig. 11 Precision and recall for the comparison between the p-NN
graphs (for the pattern see in Fig. 9) and the

k
-NN graphs

Computing and Software for Big Science (2024) 8:8 Page 11 of 15 8

Implementation Results

For further evaluation, the SystemVerilog module
implementing the presented p-NN graph building is
synthesised out-of-context for the UT4 board using
Xilinx Vivado 2022.2. During synthesis, the target fre-
quency fsys is set to 256MHz, for which no timing viola-
tions are reported by the tool. In addition, functional tests
are performed to validate the algorithmic correctness of the
module. In the following, we perform two series of measure-
ments to validate the feasibility of the proposed implementa-
tion on the Xilinx Ultrascale XCVU160WE-2E FPGA.

Figure 12 depicts the results of the two evaluation
series, reporting the utilisation on the UT4 board for the
respective resource types. The first series of three syn-
thesised versions is shown in Fig. 12a, varying the input
graph size in a suitable range between the 2305 and 4545
edges. The highest occupancy is reported for registers,

amounting up to 16.46 % for the largest input graph, as
opposed to 7.84 % for the smallest graph. For all other
resource types, the utilisation is lower than 5 %. In general,
it is observed that the resource utilisation scales linearly
with the number of edges in the input graph.

For the second series, a variation in resolution of the
underlying edge features is considered. An overview of
all utilised features is given in Table 2. The width of fea-
tures that are received as inputs from the CDC, namely hit
identifier, ADC readout, and TDC readout, are exemplary
chosen in a way which is supported by the current readout
system. As an example, the TDC readout quantisation of
5bit derives from the drift time resolution of 1ns at a trig-
ger data input rate of 32MHz. The resolution of euclidean
coordinates and distances can be optimised at design-time.

In the following, we choose a resolution between 4 to
16 bit which results in a quantisation error for the euclid-
ean coordinates in the range 34.4 to 0.017 mm. 4 bit per
coordinate result in a total edge width of 40bit, whereas
a resolution of 16bit per coordinate results in a total edge
width of 100bit.

The implementation utilisation of all three synthesised
modules is shown in Fig. 12b, varying the resolution
of euclidean coordinates and distances in the generated
edges.

Similar to the previous measurement, the highest utilisa-
tion is reported for registers, taking up between 11.1% and
26.1% depending on the width of the edges. It can be seen,
that the implementation size scales linearly with the width
of the graph edges. Increasing the resolution of a param-
eter, e.g. the TDC readout, therefore leads to a proportion-
ally higher utilisation of the corresponding resource on the

Table 2 Overview of the features of the sensors used to define the
edges

The occurrence indicates how often the respective feature is repre-
sented in an edge

Feature Type Occurrence Width

Hit identifier Dynamic 2 1 bit
ADC readout Dynamic 2 4 bit
TDC readout Dynamic 2 5 bit
X coordinate Static 2 4 to 16 bit
Y coordinate Static 2 4 to 16 bit
Distance Static 1 4 to 16 bit

(a) Utilization for a variable graph size |E|. The queue
length parameter is set to eight, each edge is composed
of 60 bits.

(b) Utilisation for a variable edge width. The queue
length parameter is set to eight, the input graph is
composed of 4545 edges.

Fig. 12 Resource utilisation reported after out-of-context synthe-
sis on the UT4 platform using Vivado 2022.2 for registers, lookup
tables (LUTs) and multiplexers (F7MUXes). Measurement are indi-

cated by dots and connected by lines through linear interpolation to
guide the eye. Unreported resource types are not utilised in the imple-
mentation

 Computing and Software for Big Science (2024) 8:8 8 Page 12 of 15

FPGA. For a better overview, the overall evaluation results
are also presented in Table 3.

Based on the presented results, the implementation of the
graph building module is considered feasible on the UT4
board. By experimental evaluation we show that our hard-
ware architecture can be implemented semi-automatically
for the L1 trigger of the Belle II experiment, enabling the
deployment of GNNs in the latency-constrained trigger
chain. The feature vectors of the edges are provided via a
parallel output register, where the address of every edge is
statically determined at design time. Depending on succes-
sive filtering algorithms, any number of output queues can
be provided. To conclude, our toolchain allows for a flex-
ible and resource efficient design of online graph building
modules for trigger applications. In the presented imple-
mentation, our module is able to achieve a throughput of
32 million samples per second at total latency of 39.06ns,
corresponding to ten clock cycles at fsys . As the reported
latency is well below the required O(1�s) , our graph build-
ing module leaves a large part of the latency and resource
budget on FPGAs to the demanding GNN solutions.

Conclusion

In our work, we analysed three graph building approaches
on their feasibility for the real-time environment of particle
physics machine-learning applications. As the k-NN algo-
rithm, which is favoured by state-of-the-art GNN-tracking
solutions, is unsuitable for the strict sub-microsecond
latency constraints imposed by trigger systems, we identify
two locally constrained nearest neighbour algorithms ϵ-NN
and p-NN as possible alternatives. In an effort to reduce the
number of design-iterations and time-consuming hardware
debugging, we develop a generator-based hardware design
methodology tailored specifically to online graph-building
algorithms. Our approach generalises graph-building algo-
rithms into an intermediate-graph representation based on a
formal detector description and user-specified metrics. The
semi-automated workflow enables the generation of FPGA-
accelerated hardware implementation of locally constrained

nearest neighbour algorithms. To demonstrate the capabili-
ties of our toolchain, we perform a case study on the trigger
system of the Belle II detector. We implement an online
graph-building algorithm which adapts the pattern of the
current track segment finder, demonstrating the feasibility
of our approach in the environment of particle physics trig-
ger applications. The code used for this research is available
open source under Ref. [60].

Nearest neighbour algorithms presented in this work
achieve a O(1) time complexity and a O(|E|) space com-
plexity, compared to a O(|D|) time complexity in approxi-
mate k-NN algorithms or a O(k|D| log(|D|) complexity in
the sequential case [23, 25]. As a result, our semi-automated
methodology may also be applied to other detectors with
heterogeneous sensor arrays to build graphs under latency
constraints, enabling the integration of GNN-tracking solu-
tions in particle physics.

During the evaluation of our similarity metric, we found a
non-negligible difference between k-NN graphs and locally
constrained NN-graphs. For the complete replacement of k
-NN graphs with our proposed ϵ-NN and p-NN graphs, the
differences must be taken into account to achieve optimal
performance when designing successive trigger stages. For
this reason, we consider the future development of methods
for algorithm co-design essential for integrating GNNs into
real-world trigger applications. Careful studies of possible
difference between simulated data are another main direction
of future work.

Acknowledgements The authors would like to thank the Belle II col-
laboration for useful discussions and suggestions on how to improve
this work. It is a great pleasure to thank (in alphabetical order)
Greta Heine, Jan Kieseler, Christian Kiesling and Elia Schmidt for
discussions, and Tanja Harbaum, Greta Heine, Taichiro Koga, Flo-
rian Schade, and Jing-Ge Shiu for feedback and comments on earlier
versions of the manuscript.

Author contributions M. N., J. B., P. D., T. F, L. R., S. S. and K. U.
contributed to the design and implementation of the research. M. N.
contributed to the analysis of the results. M. N. and T. F. contributed
to the writing of the manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Table 3 Utilisation for variable
graph size |E|, |V| and edge
width

Numerical implementation results are identical to the values shown in Fig. 12

No. of vertices No. of edges Width of edge Registers LUTs F7Muxes

Abs. % Abs. % Abs. %

498 2305 60 bit 145333 7.84 19370 2.09 5760 1.15
786 3649 60 bit 246511 13.30 31360 3.39 9120 1.81
978 4545 40 bit 206573 11.15 34252 3.70 11360 2.26
978 4545 60 bit 304919 16.46 38968 4.21 11360 2.26
978 4545 100 bit 485473 26.20 47642 5.14 11200 2.23

Computing and Software for Big Science (2024) 8:8 Page 13 of 15 8

Data availability The datasets generated during and analysed during
the current study are property of the Belle II collaboration and not
publicly available.

Code availability The code used for this research is available open
source under Ref. [59].

Declarations

 Competing interests The authors declare that they have no compet-
ing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Ju X, Nachman B (2020) Supervised jet clustering with graph
neural networks for Lorentz boosted bosons. Phys Rev D
102(7):075014. https:// doi. org/ 10. 1103/ PhysR evD. 102. 075014

 2. Wemmer F et al (2023) Photon reconstruction in the Belle II Calo-
rimeter using graph neural networks. arXiv: 2306. 04179 [hep-ex]

 3. DeZoort G, Thais S, Duarte J, Razavimaleki V, Atkinson M,
Ojalvo I, Neubauer M, Elmer P (2021) Charged particle tracking
via edge-classifying interaction networks. Comput Softw Big Sci
5(1):26. https:// doi. org/ 10. 1007/ s41781- 021- 00073-z

 4. Duarte J, Vlimant JR (2022) Graph neural networks for parti-
cle tracking and reconstruction. in: artificial intelligence for high
energy physics, Chap. 12, pp 387–436. https:// doi. org/ 10. 1142/
97898 11234 033_ 0012

 5. Ju X, Farrell S, Calafiura P, Murnane D, Prabhat Gray L, Klijnsma
T, Pedro K, Cerati G, Kowalkowski J (2020) Graph neural net-
works for particle reconstruction in high energy physics detectors.
In: 33rd Annual Conference on Neural Information Processing
Systems. https:// doi. org/ 10. 48550/ arXiv. 2003. 11603

 6. Mikuni V, Canelli F (2020) ABCNet: an attention-based method
for particle tagging. Eur Phys J Plus 135(6):463. https:// doi. org/
10. 1140/ epjp/ s13360- 020- 00497-3

 7. Qu H, Gouskos L (2020) ParticleNet: jet tagging via particle
clouds. Phys Rev D 101(5):056019. https:// doi. org/ 10. 1103/ PhysR
evD. 101. 056019

 8. Pata J, Duarte J, Vlimant J-R, Pierini M, Spiropulu M (2021)
MLPF: efficient machine-learned particle-flow reconstruction
using graph neural networks. Eur Phys J C 81(5):381. https:// doi.
org/ 10. 1140/ epjc/ s10052- 021- 09158-w

 9. Elabd A, Razavimaleki V, Huang S-Y, Duarte J, Atkinson M,
DeZoort G, Elmer P, Hauck S, Hu J-X, Hsu S-C (2022) Graph
neural networks for charged particle tracking on FPGAs. Front
Big Data 5:828666. https:// doi. org/ 10. 3389/ fdata. 2022. 828666

 10. Qasim SR, Kieseler J, Iiyama Y, Pierini M (2019) Learning
representations of irregular particle-detector geometry with

distance-weighted graph networks. Eur Phys J C 79(7):608.
https:// doi. org/ 10. 1140/ epjc/ s10052- 019- 7113-9

 11. Iiyama Y, Cerminara G, Gupta A, Kieseler J, Loncar V, Pierini M,
Qasim SR, Rieger M, Summers S, Onsem GV (2020) Distance-
weighted graph neural networks on FPGAs for real-time particle
reconstruction in high energy physics. Front Big Data 3:598927.
https:// doi. org/ 10. 3389/ fdata. 2020. 598927

 12. Aad G (2020) Operation of the ATLAS trigger system in Run 2.
JINST 15(10):10004. https:// doi. org/ 10. 1088/ 1748- 0221/ 15/ 10/
P10004

 13. Sirunyan AM (2020) Performance of the CMS Level-1 trigger in
proton-proton collisions at

√
s = 13 TeV. JINST 15(10):10017.

https:// doi. org/ 10. 1088/ 1748- 0221/ 15/ 10/ P10017
 14. Unger KL, Bähr S, Becker J, Knoll AC, Kiesling C, Meggendorfer

F, Skambraks S (2023) Operation of the neural z-vertex track
trigger for belle ii in 2021—a hardware perspective. J Phys Conf
Ser 2438(1):012056. https:// doi. org/ 10. 1088/ 1742- 6596/ 2438/1/
012056

 15. Liang S, Wang Y, Liu C, He L, Li H, Xu D, Li X (2021) Engn: a
high-throughput and energy-efficient accelerator for large graph
neural networks. IEEE Trans Computers 70(9):1511–1525.
https:// doi. org/ 10. 1109/ TC. 2020. 30146 32

 16. Zhang B, Kuppannagari SR, Kannan R, Prasanna V (2021) Effi-
cient neighbor-sampling-based GNN training on CPU-FPGA het-
erogeneous platform. In: 2021 IEEE High Performance Extreme
Computing Conference (HPEC), pp 1–7. https:// doi. org/ 10. 1109/
HPEC4 9654. 2021. 96228 22

 17. Karle CM, Kreutzer M, Pfau J, BeckerJ (2022) A hardware/soft-
ware co-design approach to prototype 6G mobile applications
inside the GNU radio SDR ecosystem using FPGA hardware
accelerators. In: International Symposium on Highly-Efficient
Accelerators and Reconfigurable Technologies. ACM, New York.
pp 33–44. https:// doi. org/ 10. 1145/ 35350 44. 35350 49

 18. Thais S, Calafiura P, Chachamis G, DeZoort G, Duarte J, Ganguly
S, Kagan M, Murnane D, Neubauer MS, Terao K (2022) Graph
neural networks in particle physics: implementations, innovations,
and challenges. arXiv. https:// doi. org/ 10. 48550/ arXiv. 2203. 12852

 19. Shlomi J, Battaglia P, Vlimant JR (2021) Graph neural networks
in particle physics. Mach Learn Sci Technol 2(2):021001. https://
doi. org/ 10. 1088/ 2632- 2153/ abbf9a

 20. Abe T et al (2010) Belle II technical design report. arXiv. https://
doi. org/ 10. 48550/ arXiv. 1011. 0352

 21. Rossi M, Vallecorsa S (2022) Deep learning strategies for Proto-
DUNE raw data denoising. Comput Softw Big Sci 6(1):2. https://
doi. org/ 10. 1007/ s41781- 021- 00077-9

 22. Hartmann F (2020) The phase-2 upgrade of the CMS level-1 trig-
ger. Technical report, CERN, Geneva. https:// cds. cern. ch/ record/
27148 92

 23. Vaidya PM (1989) AnO(n logn) algorithm for the all-nearest-
neighbors Problem. Discrete Comput Geom 4(2):101–115. https://
doi. org/ 10. 1007/ BF021 87718

 24. Callahan PB, Kosaraju SR (1995) A decomposition of multidi-
mensional point sets with applications to K-nearest-neighbors and
n-body potential fields. J ACM 42(1):67–90. https:// doi. org/ 10.
1145/ 200836. 200853

 25. Connor M, Kumar P (2008) Parallel construction of k-nearest
neighbor graphs for point clouds. In: IEEE/ EG Symposium on
Volume and Point-Based Graphics. https:// doi. org/ 10. 2312/ VG/
VG- PBG08/ 025- 031

 26. Gionis A, Indyk P, Motwani R (1999) Similarity search in high
dimensions via hashing. In: Proceedings of the 25th International
Conference on Very Large Data Bases. VLDB ’99, San Francisco,
CA, USA. pp 518–529

 27. Hajebi K, Abbasi-Yadkori Y, Shahbazi H, Zhang H (2011) Fast
approximate nearest-neighbor search with k-nearest neighbor
graph. In: Proceedings of the Twenty-Second International Joint

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.102.075014
http://arxiv.org/abs/2306.04179
https://doi.org/10.1007/s41781-021-00073-z
https://doi.org/10.1142/9789811234033_0012
https://doi.org/10.1142/9789811234033_0012
https://doi.org/10.48550/arXiv.2003.11603
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.3389/fdata.2022.828666
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://doi.org/10.3389/fdata.2020.598927
https://doi.org/10.1088/1748-0221/15/10/P10004
https://doi.org/10.1088/1748-0221/15/10/P10004
https://doi.org/10.1088/1748-0221/15/10/P10017
https://doi.org/10.1088/1742-6596/2438/1/012056
https://doi.org/10.1088/1742-6596/2438/1/012056
https://doi.org/10.1109/TC.2020.3014632
https://doi.org/10.1109/HPEC49654.2021.9622822
https://doi.org/10.1109/HPEC49654.2021.9622822
https://doi.org/10.1145/3535044.3535049
https://doi.org/10.48550/arXiv.2203.12852
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.48550/arXiv.1011.0352
https://doi.org/10.48550/arXiv.1011.0352
https://doi.org/10.1007/s41781-021-00077-9
https://doi.org/10.1007/s41781-021-00077-9
https://cds.cern.ch/record/2714892
https://cds.cern.ch/record/2714892
https://doi.org/10.1007/BF02187718
https://doi.org/10.1007/BF02187718
https://doi.org/10.1145/200836.200853
https://doi.org/10.1145/200836.200853
https://doi.org/10.2312/VG/VG-PBG08/025-031
https://doi.org/10.2312/VG/VG-PBG08/025-031

 Computing and Software for Big Science (2024) 8:8 8 Page 14 of 15

Conference on Artificial Intelligence, IJCAI-11, pp 1312–1317 .
https:// doi. org/ 10. 5591/ 978-1- 57735- 516-8/ IJCAI 11- 222

 28. Harwood B, Drummond T (2016) FANNG: fast approximate
nearest neighbour graphs. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp 5713–5722
https:// doi. org/ 10. 1109/ CVPR. 2016. 616

 29. Malkov YA, Yashunin DA (2020) Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small
world graphs. IEEE Trans Pattern Anal Mach Intell 42(4):824–
836. https:// doi. org/ 10. 1109/ TPAMI. 2018. 28894 73

 30. Besta M, Fischer M, Kalavri V, Kapralov M, Hoefler T (2021)
Practice of streaming processing of dynamic graphs: concepts,
models, and systems. IEEE Trans Parallel Distrib Syst. https://
doi. org/ 10. 1109/ TPDS. 2021. 31316 77

 31. Gui C-Y, Zheng L, He B, Liu C, Chen X-Y, Liao X-F, Jin H
(2019) A survey on graph processing accelerators: challenges
and opportunities. J Computer Sci Technol 34(2):339–371.
https:// doi. org/ 10. 1007/ s11390- 019- 1914-z

 32. Liu C, Liu H, Zheng L, Huang Y, Ye X, Liao X, Jin H (2023)
FNNG : a high-performance FPGA-based accelerator for k-near-
est neighbor graph construction. In: Ienne P, Zhang Z (eds) Pro-
ceedings of the 2023 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, ACM, New York. pp 67–77.
https:// doi. org/ 10. 1145/ 35436 22. 35731 89

 33. Nurvitadhi E, Weisz G, Wang Y, Hurkat S, Nguyen, M, Hoe JC,
Martinez JF, Guestrin C (2014) GraphGen: an FPGA framework
for vertex-centric graph computation. In: IEEE 22nd Annual
International Symposium on Field-Programmable Custom Com-
puting Machines. IEEE, Boston. pp 25–28. https:// doi. org/ 10.
1109/ FCCM. 2014. 15

 34. Zeng H, Prasanna, V Graphact (2020) In: Neuendorffer S, Shan-
non L (eds) Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, New
York, pp 255–265.https:// doi. org/ 10. 1145/ 33730 87. 33753 12

 35. Yan M, Deng L, Hu X, Liang L, Feng Y, Ye X, Zhang Z, Fan D,
Xie Y (2020) HYGCN: a GCN accelerator with hybrid architec-
ture. In: 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, San Diego, pp
15–29. https:// doi. org/ 10. 1109/ HPCA4 7549. 2020. 00012

 36. Geng T, Li A, Shi R, Wu C, Wang T, Li Y, Haghi P, Tumeo A,
Che S, Reinhardt S, Herbordt MC (2020) AWB-GCN: a graph
convolutional network accelerator with runtime workload
rebalancing. In: 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, Athens, pp
922–936. https:// doi. org/ 10. 1109/ MICRO 50266. 2020. 00079

 37. Agostinelli S (2003) GEANT4—a simulation toolkit. Nucl
Instrum Methods Phys Res A 506:250–303. https:// doi. org/ 10.
1016/ S0168- 9002(03) 01368-8

 38. Kuhr T, Pulvermacher C, Ritter M, Hauth T, Braun N (2019)
The Belle II core software. Comput Softw Big Sci 3(1):1.
https:// doi. org/ 10. 1007/ s41781- 018- 0017-9

 39. Kou E (2019) The Belle II Physics Book. PTEP 2019(12):123–
01 arXiv: 1808. 10567 [hep-ex]. https:// doi. org/ 10. 1093/ ptep/
ptz106

 40. Abe T et al (2010) Belle II technical design report. Technical
report, Belle-II. arXiv: 1011. 0352

 41. Liptak ZJ (2022) Measurements of beam backgrounds in
SuperKEKB Phase 2. Nucl Instrum Methods A 1040:167168
arXiv: 2112. 14537 [physics.ins-det]. https:// doi. org/ 10. 1016/j.
nima. 2022. 167168

 42. Natochii A (2022) Beam background expectations for Belle II
at SuperKEKB. In: Snowmass 2021

 43. Prokhorenkova L, Shekhovtsov A (2020) Graph-based nearest
neighbor search: from practice to theory. In: Proceedings of the
37th International Conference on Machine Learning, vol. 119,
pp 7803–7813 https:// doi. org/ 10. 48550/ arXiv. 1907. 00845

 44. Pfau J, Figuli SPD, Bähr S, Becker J (2018) Reconfigurable
FPGA-based channelization using polyphase filter banks for
quantum computing systems. In: Applied Reconfigurable Com-
puting. Architectures, Tools, and Applications. Lecture Notes
in Computer Science, vol. 10824, pp 615–626 . https:// doi. org/
10. 1007/ 978-3- 319- 78890-6_ 49

 45. Umuroglu Y, Fraser NJ, Gambardella G, Blott M, Leong P, Jahre
M, Vissers K (2017) FINN: a framework for fast, scalable bina-
rized neural network inference. In: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp 65–74. https:// doi. org/ 10. 1145/ 30200 78. 30217
44

 46. Blott M, Preußer TB, Fraser NJ, Gambardella G, O’Brien K,
Umuroglu Y, Leeser M, Vissers K (2018) FINN-R: an end-to-
end deep-learning framework for fast exploration of quantized
neural networks. ACM Trans Reconfig Technol Syst 11(3):1–23.
https:// doi. org/ 10. 1145/ 32428 97

 47. Duarte J, Han S, Harris P, Jindariani S, Kreinar E, Kreis B,
Ngadiuba J, Pierini M, Rivera R, Tran N (2018) Fast inference
of deep neural networks in FPGAs for particle physics. JINST
13(07):07027. https:// doi. org/ 10. 1088/ 1748- 0221/ 13/ 07/ P07027

 48. FastML Team (2023) hls4ml. Zenodo. https:// doi. org/ 10. 5281/
zenodo. 12015 49

 49. Bachrach J, Vo H, Richards B, Lee Y, Waterman A, Avižienis
R, Wawrzynek J, Asanović K (2012) Chisel: constructing Hard-
ware in a Scala Embedded Language. In: Proceedings of the
49th Annual Design Automation Conference, pp. 1216–1225.
https:// doi. org/ 10. 1145/ 22283 60. 22285 84

 50. Paszke A (2019) Pytorch: an imperative style, high-performance
deep learning library. In: NeurIPS 2019

 51. Li M, Liu Y, Liu X, Sun Q, You X, Yang H, Luan Z, Gan L,
Yang G, Qian D (2021) The deep learning compiler: a compre-
hensive survey. IEEE Trans Parallel Distrib Syst 32(3):708–727.
https:// doi. org/ 10. 1109/ TPDS. 2020. 30305 48

 52. Ye H, Jun H, Jeong H, Neuendorffer S, Chen D (2022) Scale-
HLS: a scalable high-level synthesis framework with multi-level
transformations and optimizations. In: Proceedings of the 59th
ACM/IEEE Design Automation Conference, New York. pp.
1355–1358. https:// doi. org/ 10. 1145/ 34895 17. 35306 31

 53. 1800-2017—IEEE standard for SystemVerilog–unified hard-
ware design, specification, and verification language (2018)
Technical report. https:// doi. org/ 10. 1109/ IEEES TD. 2018. 82995
95

 54. AMD Vivado ML. https:// www. xilinx. com/ produ cts/ design-
tools/ vivado. html. Accessed 10 July 2023.

 55. Harbaum T, Seboui M, Balzer M, Becker J, Weber M (2016)A
content adapted FPGA memory architecture with pattern rec-
ognition capability for L1 track triggering in the LHC environ-
ment. In: 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp
184–191. https:// doi. org/ 10. 1109/ FCCM. 2016. 52

 56. Lai Y-T, Bühr S, Chang M-C, Iwasaki Y, Kim J-B, Kim K-T,
Kiesling C, Koga T, Lu P-C, Liu S-M (2018) Level-1 track trig-
ger with central drift chamber detector in belle ii experiment. In:
2018 IEEE Nuclear Science Symposium and Medical Imaging
Conference, pp. 1–4. https:// doi. org/ 10. 1109/ NSSMIC. 2018.
88245 06

 57. Pohl S (2018) Track reconstruction at the first level trigger of
the Belle II experiment. PhD thesis, Ludwig-Maximilians-Uni-
versität München. https:// doi. org/ 10. 5282/ edoc. 22085

 58. Unger KL, Bähr S, Becker J, Iwasaki Y, Kim K, Lai Y-T (2020)
Realization of a state machine based detection for track seg-
ments in the trigger system of the belle ii experiment. In:
Proceedings of Topical Workshop on Electronics for Particle
Physics—PoS(TWEPP2019), vol. 370, p. 145. https:// doi. org/
10. 22323/1. 370. 0145

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-222
https://doi.org/10.1109/CVPR.2016.616
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPDS.2021.3131677
https://doi.org/10.1109/TPDS.2021.3131677
https://doi.org/10.1007/s11390-019-1914-z
https://doi.org/10.1145/3543622.3573189
https://doi.org/10.1109/FCCM.2014.15
https://doi.org/10.1109/FCCM.2014.15
https://doi.org/10.1145/3373087.3375312
https://doi.org/10.1109/HPCA47549.2020.00012
https://doi.org/10.1109/MICRO50266.2020.00079
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1007/s41781-018-0017-9
http://arxiv.org/abs/1808.10567
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptz106
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/2112.14537
https://doi.org/10.1016/j.nima.2022.167168
https://doi.org/10.1016/j.nima.2022.167168
https://doi.org/10.48550/arXiv.1907.00845
https://doi.org/10.1007/978-3-319-78890-6_49
https://doi.org/10.1007/978-3-319-78890-6_49
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3242897
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.5281/zenodo.1201549
https://doi.org/10.5281/zenodo.1201549
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/TPDS.2020.3030548
https://doi.org/10.1145/3489517.3530631
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2018.8299595
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://doi.org/10.1109/FCCM.2016.52
https://doi.org/10.1109/NSSMIC.2018.8824506
https://doi.org/10.1109/NSSMIC.2018.8824506
https://doi.org/10.5282/edoc.22085
https://doi.org/10.22323/1.370.0145
https://doi.org/10.22323/1.370.0145

Computing and Software for Big Science (2024) 8:8 Page 15 of 15 8

 59. Unger KL, Neu M, Becker J, Schmidt E, Kiesling C, Meggen-
dorfer F, Skambraks S (2023) Data-driven design of the Belle
II track segment finder. JINST 18(02):02001. https:// doi. org/ 10.
1088/ 1748- 0221/ 18/ 02/ C02001

 60. Neu M et al Online graph building on FPGAs for machine learning
trigger applications in particle physics. https:// github. com/ realt
ime- track ing/ graph build ing. Accessed 15 June 2023

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1088/1748-0221/18/02/C02001
https://doi.org/10.1088/1748-0221/18/02/C02001
https://github.com/realtime-tracking/graphbuilding
https://github.com/realtime-tracking/graphbuilding

	Real-Time Graph Building on FPGAs for Machine Learning Trigger Applications in Particle Physics
	Abstract
	Introduction
	Related Work
	Simulation and Dataset
	Graph Building
	-NN
	-NN
	-NN
	Comparison

	Toolchain
	Hardware Generator Methodology
	Intermediate-Graph Representation
	Full Toolchain Integration
	Module Architecture

	Case Study: Belle II Trigger
	Environment
	Graph Building
	Parameter Exploration
	Prototype Setup
	Implementation Results

	Conclusion
	Acknowledgements
	References

