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Abstract
The offline software framework of the LHCb experiment has undergone a significant overhaul to tackle the data processing 
challenges that will arise in the upcoming Run 3 and Run 4 of the Large Hadron Collider. This paper introduces FunTu-
ple, a novel component developed for offline data processing within the LHCb experiment. This component enables the 
computation and storage of a diverse range of observables for both reconstructed and simulated events by leveraging on the 
tools initially developed for the trigger system. This feature is crucial for ensuring consistency between trigger-computed and 
offline-analysed observables. The component and its tool suite offer users flexibility to customise stored observables, and its 
reliability is validated through a full-coverage set of rigorous unit tests. This paper comprehensively explores FunTuple’s 
design, interface, interaction with other algorithms, and its role in facilitating offline data processing for the LHCb experi-
ment for the next decade and beyond.
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Introduction

The LHCb experiment, located at Point 8 of the Large Had-
ron Collider (LHC) [1] at CERN, is a forward-arm spec-
trometer designed to study the decays of beauty and charm 
hadrons [2, 3]. In the initial two runs of the LHC, during 
2010–2018, the experiment (mainly) collected proton–pro-
ton collision data corresponding to a total integrated lumi-
nosity of 9 fb−1 . As preparations intensify for Run 3,1 where 
the LHC’s instantaneous luminosity is anticipated to surge 
by a factor of 5 compared to the preceding runs, the LHCb 

experiment is poised to enhance its capabilities even fur-
ther. The upgraded detector [4] and data acquisition system 
will allow for improved vertexing and trigger efficiency [5]. 
This enhancement facilitates the exploration of exceedingly 
rare decays [6] while also facilitating the probing of devia-
tions from Standard Model predictions with unparalleled 
precision [7–9].

The advent of Run 3 data acquisition presents significant 
hurdles for the LHCb data processing framework. Notably, 
the data volume from LHCb ’s Run 3 is projected to surge 
by over 15 times compared to prior runs [10]. Consequently, 
management of petabytes of processed data and effectively 
incorporating distributed computing resources present sig-
nificant challenges [11, 12]. In light of these challenges, a 
comprehensive redesign of both the trigger and offline data 
processing pipelines is imperative [10, 11]. This paper con-
centrates on the offline data processing pipeline, specifically 
highlighting the development of a new component called 
FunTuple [13] facilitating analysis of Run 3 data and 
beyond.
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In the initial LHC runs, LHCb ’s trigger and offline 
reconstruction applications, Moore [14] and Brunel [15], 
operated independently from the DaVinci application [16] 
employed for offline data processing. Besides execut-
ing offline event selection, the DaVinci application was 
used to process and store data for subsequent analysis. This 
task was accomplished via the DecayTreeTuple algo-
rithm [17],2 which recorded a specific set of observables 
into output files. First, due to the segregation of trigger 
and offline frameworks, the equivalence between trigger-
computed observables and those analysed offline was not 
guaranteed. Second, users lacked the flexibility to customise 
the set of observables recorded, which is essential in light 
of the anticipated data volume surge for Run 3 and Run 4. 
Furthermore, as part of its strategy to tackle the forthcoming 
data processing challenges in Run 4 and beyond, the LHCb 
experiment plans to implement a new event model based on 
Structure of Arrays (SoA), which will facilitate vectorised 
processing of data [20]. Substantial enhancements were also 
made to the trigger reconstruction algorithms that facilitated 
retirement of the Brunel package, which was responsible 
for offline reconstruction [21–24]. Consequently, the devel-
opment of new offline algorithms becomes imperative to 
accommodate these changes.

To overcome these hurdles, a strategic choice was made 
to leverage tools developed for the trigger system within the 
offline software framework. This led to the development of 
a new component, FunTuple [13], short for Functional 

nTuple, which is tailored for processing Run 3 and Run 4 
data. The FunTuple component introduces enhancements 
to the previous workflow. First, it guarantees the consist-
ency between trigger-computed observables and those sub-
jected to offline analysis. Second, FunTuple, along with 
all its dependencies, is entirely templated in C++, allow-
ing it to support both legacy and upcoming event models 
planned for future LHC runs. The templated design along 
with the SoA event model enables the component to lev-
erage Single Instruction Multiple Data (SIMD) vectorisa-
tion. Last, it offers users the flexibility to efficiently tailor 
the list of recorded observables, an important feature given 
the expected surge in data volume for Run 3 and Run 4. 
This component is configured with a robust suite of tools 
designed for the second stage of the LHCb trigger system, 
known as Throughput Oriented (ThOr) functors [25–27]. 
These functors are designed to deliver high-speed in the 
trigger’s demanding throughput environment and are adept 
at computing topological and kinematic observables. Fun-
Tuple utilises these functors to compute a diverse range of 
observables and writes a TTree in the ROOT N-tuple for-
mat.3 The N-tuple format is widely used in the High Energy 
Physics community to store flattened data in a tabular for-
mat [29]. Furthermore, the component’s lightweight design 
ensures simplified maintenance and seamless knowledge 
transfer. As depicted in Fig. 1, the FunTuple component 
plays a central role, bridging the gap between the offline 

Fig. 1  Data flow diagram for Run 3 data processing showing the placement of the FunTuple component. Figure adapted from Ref. [30]

2 There were also alternative Python-based algorithms like 
Bender [18, 19] for Run 1/2 data processing.

3 There are plans in the future to write ROOT RNTuple, which has 
been designed to address performance bottlenecks and shortcomings 
of ROOT current state of the art TTree [28].
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data processing stage (Sprucing) and the subsequent user 
analysis stages [30]. In the Sprucing stage, the data are 
slimmed and skimmed before being saved to disk as part 
of the offline data processing workflow. The placement of 
FunTuple underscores its critical role in LHCb ’s analy-
sis productions [31], facilitating the storage of experiment-
acquired data in a format suitable for subsequent offline 
analysis.

Design and Interface

FunTuple is a novel component integral to the LHCb 
experiment’s data processing infrastructure. It is a c++ [32] 
class built upon the Gaudi functional framework [33], and 
it offers a user-friendly Python [34] interface. The flex-
ibility of the FunTuple component lies in its templated 
design, allowing it to accommodate various types of input 
data. As a result, for Run 3, it is available in the three distinct 
flavours FunTuple_Particles, FunTuple_MCPar-
ticles and FunTuple_Event hereafter described.

The FunTuple_Event component processes input 
data comprising reconstructed or simulated events, where 
each event represents a single LHC bunch crossing. It 
acquires event-level information (for example, the number of 
charged particles in the event), using thread-safe ThOr func-
tors that are specialised c++classes developed for utilisation 
in the second stage of the LHCb trigger system [25, 26, 
35]. The component then stores this extracted information 
from ThOr functors in an ROOT N-tuple file. The FunTu-
ple_Particles component functions on reconstructed 

events and identifies specific reconstructed decays by utilis-
ing the decay-finding tool DecayFinder [27] explained 
in Sect. 2.1. It further retrieves essential details regarding 
parent and children particles (for example magnitude of the 
transverse moment) through ThOr functors and records 
this information in an ROOT file. Similarly, the FunTu-
ple_MCParticles component shares similarities with 
FunTuple_Particles, but it processes simulated 
events instead, and captures information about simulated 
decays. For an illustrative representation of the data flow 
encompassing these three approaches, refer to Fig. 2. Each 

Fig. 2  Data flow diagram of the three flavours of FunTuple component

1 # import FunTuple to run over
reconstructed particles

2 from FunTuple import
FunTuple_Particles

3

4 # define instance of FunTuple
5 data_tuple = FunTuple_Particles(
6 name="TDirectoryName",
7 tuple_name="TTreeName",
8 fields=fields,
9 variables=variables,

10 event_variables=event_variables,
11 inputs=reco_data_TES_location)

Listing 1  FunTuple_Particles instance
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aspect of the data-flow diagram is further elaborated in the 
following sections.

The instantiation of the three flavours of the FunTuple 
component in Python is exemplified in Listings 1, 2, 3. 
As depicted, the user is required to provide the name and 
tuple_name attributes for all three flavours. The name 
attribute defines the component’s name and the name of the 
corresponding TDirectory in the output ROOT file. On 
the other hand, the tuple_name attribute defines the name 
of the TTree in the ROOT file. The fields attribute can 
only be defined for FunTuple_Particles and FunTu-
ple_MCParticles and is used to select specific decays 
within an event and define the corresponding TBranches 
in the output file. For a detailed exploration of this attribute, 
see Sect. "Finding Decays in an Event". The variables 
attribute is used to specify the observables to be computed 
for each event or decay. In the case of FunTuple_Event, 
only event-level observables can be defined. Conversely, for 

FunTuple_Particles and FunTuple_MCParti-
cles, both decay-level and event-level observables can 
be specified. The latter is achieved by defining an optional 
event_variables attribute. It is worth noting that the 
FunTuple component automatically writes certain event 
information, such as the run and event numbers,4 to the out-
put file by default. For a more comprehensive discussion on 
the variables attribute, refer to Sect. "Retrieve Event and 
Decay Information". Finally, the inputs attribute refers to 
the Transient Event Store (TES) location, indicating the data 
pertaining to a given event cycle that will be processed. Sub-
sequently, the processed information is stored in the output 
ROOT file, which is further elaborated on in Sect. "Writing 
of Retrieved Information".

The FunTuple component also incorporates several 
essential counters to monitor the data processing. These 
counters include tracking the number of processed events, 
the count of non-empty events for each selected particle, 
and the tally of events with multiple candidates for each 
chosen particle. Upon completing the data processing, the 
results of these counters are displayed to the users. To ensure 
effective error handling, the component employs a custom 
error handling class that inherits from the StatusCode 
class implemented in Gaudi. This custom implementation 
enables the component to raise specific exceptions in tar-
geted scenarios. For example, if a particular ThOr functor 
encounters difficulties and cannot compute an observable for 
a given event, the component raises an exception to promptly 
notify the user of the issue. Additionally, the FunTuple 
component takes measures to validate the input attributes 
both on the Python and c++sides, ensuring the correctness 
of the provided data. Moreover, the development process 
includes the creation of several tests and examples, see Sect. 
"Test Suite, Examples and Performance".

Finding Decays in an Event

Given the distinct event models for reconstructed and sim-
ulated events, the FunTuple component employs two 
separate Gaudi tools for decay identification. Specifically, 
FunTuple_Particles relies on the Gaudi tool [36] 
DecayFinder [37], while FunTuple_MCParticles 
utilises the MCDecayFinder tool [38]. Both of these tools 
utilise the boost library [39, 40] to parse decay descriptors. 
The names of particles used in the decay descriptor, along 
with their associated properties, are stored in the LHCb con-
ditions database (CondDB) [41], and are retrieved through 
the ParticlePropertySvc [42] service.

1 # import FunTuple to run over
simulated particles

2 from FunTuple import
FunTuple_MCParticles

3

4 # define instance of FunTuple
5 data_tuple = FunTuple_MCParticles(
6 name="TDirectoryName",
7 tuple_name="TTreeName",
8 fields=fields,
9 variables=variables,

10 event_variables=event_variables,
11 inputs=mc_data_TES_location)

Listing 2  FunTuple_MCParticles instance

1 # import FunTuple to run over
reconstructed or simulated event

2 from FunTuple import FunTuple_Event
3

4 # define instance of FunTuple
5 data_tuple = FunTuple_Event(
6 name="TDirectoryName",
7 tuple_name="TTreeName",
8 variables=event_variables)

Listing 3  FunTuple_Event instance

4 Both run and event numbers are used to uniquely identify an event 
in the LHC experiments.
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To isolate a particular decay process within an event and 
select a particle within the decay chain, the user is required 
to provide a fields attribute to either the FunTuple_
Particles or the FunTuple_MCParticles instance. 
The fields attribute takes the form of a string dictionary. 
Here, the key corresponds to the particle alias, serving as 
a prefix to label the TBranch in the resulting output file. 
On the other hand, the associated value denotes the decay 
descriptor employed to filter and select the particles partici-
pating in a distinct reconstructed or simulated decay process. 
A practical illustration of the fields attribute configuration 
is shown in Listing 4.

A correct syntax for the decay descriptor is crucial in 
the selection of the particles within a given decay process. 
A straightforward decay descriptor such as "B+ -> J/
psi(1 S) K+" is employed to select all decays of a B+ 
meson into a J∕�(1S) meson and a K+ meson. For the inclu-
sion of charge-conjugate decays, users can encapsulate the 
decay descriptor in square brackets and append the CC key-
word, such as "[B+ -> J/psi(1 S) K+]CC". This 
syntax covers both B+

→ J∕�(1S)K+ and B−
→ J∕�(1S)K− 

decays. Alternatively, the []CC notation can also be used 
around an individual particle, e.g., "B+ -> J/psi(1 S) 
[K+]CC" , encompassing both B+

→ J∕�(1S)K+ and 
B
+
→ J∕�(1S)K− decays.5 To target a specific particle within 

a decay, the caret symbol ( ̂  ) is employed. For instance, 
"B+ -> J/psi(1 S) ̂K+" selects the K+ meson, while 
excluding the caret symbol selects the parent particle. In 
cases of identical particles in the final state, the FunTuple 
component ensures distinct C++ objects for each identical 
particle instance. For example, "B+ -> ̂pi+ pi- pi+" 
and "B+ -> pi+ pi- ̂pi+" would choose two distinct 
instances of a �+ . In the context of simulations, the FunTu-
ple_MCParticles component utilises the LoKi decay 
finder [43]. This finder offers the flexibility to incorporate 
various arrow types within the decay descriptor syntax [43, 
44]. Each arrow type allows users to selectively include sim-
ulated particles based on distinct criteria. For instance, the 
=> arrow type signifies the inclusion of an arbitrary number 

of additional photons stemming from final state radiation of 
charged particles when matching the decay.

Retrieve Event and Decay Information

To extract essential information related to either the event or 
individual particles within a decay chain, users are required 
to furnish the variables or event_variables attrib-
ute to FunTuple. The variables attribute functions as 
a python dictionary in which the key corresponds to the 
particle name previously defined in the fields attribute. 
The corresponding value is an instance of a Functor-
Collection, which acts as a collection of ThOr func-
tors, effectively resembling a dictionary itself, with the key 
representing the variable name and the value denoting a 
ThOr functor. Within the context of the FunTuple com-
ponent, these ThOr functors are just-in-time (JIT) compiled 
and employed on the particle instance to retrieve the desired 
information. Notably, a key labelled ALL holds a special 
significance within the definition of the variables. Any 
FunctorCollection associated with the ALL key is 
applied to all particles specified in the fields attribute. In 
contrast, the event_variables attribute takes the form 
of an instance of FunctorCollection. The enclosed 
ThOr functors are designed to provide information at the 
event level. The specifics of how to define the varia-
bles and event_variables attributes are illustrated 
in Listing 5.

The FunTuple component utilises the flexibility inher-
ent in ThOr functors to extract a diverse array of informa-
tion from the event. These functors are adaptable enough to 
accept multiple reconstructed objects as input, enabling the 
computation of associated information. For instance, con-
sider the functor designed to calculate the flight distance of 
a particle. To achieve this, the functor takes both the recon-
structed primary vertices and the reconstructed particle as 
input arguments. The usage of this specific functor (BPVFD) 
is shown in Listing  5.

The functors support all fundamental mathematical 
operators, including addition, subtraction, multiplication, 
and division. In addition, they can undergo transforma-
tions such as fmath.log(F.CHI2/F.NDOF), which, 
when applied to a reconstructed track, yields the track’s 

Listing 4  Example definition of 
the fields attribute 1 # define fields to select decays in an event

2 # key: alias of the particle used as a prefix to name the TBranch
3 # value: decay descriptor syntax select particles
4 fields = {
5 "Bplus": "[B+ -> (J/psi(1S) -> mu+ mu-) [K+]CC ]CC",
6 "Jpsi" : "[B+ -> ^(J/psi(1S) -> mu+ mu-) [K+]CC ]CC",
7 "kaons": "[B+ -> (J/psi(1S) -> mu+ mu-) ^[K+]CC ]CC",
8 }

5 The charge-violating decays are often reconstructed at LHCb to 
serve as proxies for the study of sources of background.
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�2 per degree of freedom. Furthermore, the output from 
one ThOr functor can be passed as input to other ThOr 
functors through a mechanism known as composition. This 
proves particularly advantageous when users seek to com-
pute an observable that relies on the outcomes of other 
observables. All these functionalities are harnessed to pro-
vide users with an range of observables via a pre-defined 
FunctorCollection instance, which is intended for 
use in conjunction with FunTuple. An illustrative exam-
ple is the SelectionInfo collection, which gathers the 
functors employed to store the trigger configuration key 
(TCK) and the event’s trigger line decision. Listing 6 out-
lines the definition of this collection, with its application 
showcased in Listing 5.

In this listing, the SelectionInfo collection is 
designed to take two main inputs: the type of selection, 

which can be any of the three stages (Hlt1, Hlt2, or 
Sprucing), and a list of trigger or Sprucing lines. In 
response, it generates a FunctorCollection that 
incorporates two functors: F.TCK for storing TCK infor-
mation and F.DECISION for storing the trigger deci-
sion of the specified selection line. Such collections do 
not expose the users to the technical intricacies involved 
in retrieving the requested information. In this particu-
lar case, the involved functors require the DecReport 
object, which is obtained from the DaVinci framework 
via the get_decreports function. Furthermore, users 
maintain the flexibility to add, merge or remove observa-
bles within these collections, enabling them to create 
their customised collections. Multiple collections have 
been developed and continue to be actively expanded, 
accompanied by relevant unit tests within the DaVinci 
framework.

Listing 5  Example definition of 
the variables and event_
variables   attribute

1 # import ThOr functor library
2 import Functors as F
3 # import the FunctorCollection library
4 import FunTuple.functorcollections as FC
5 # import function to get TES location of PVs
6 from PyConf.reading import get_pvs
7

8 # variables for "Bplus" defined in the "fields"
9 b_vars = FunctorCollection()

10 # store the flight distance of candidate B relative to the primary
vertex that best aligns with the origin of candidate B.

11 pvs = get_pvs()
12 b_vars["BPVFD"] = F.BPVFD(pvs)
13

14 # variables for "Kaons" defined in the "fields"
15 kaon_vars = FunctorCollection()
16 kaon_vars["PT"] = F.PT
17

18 # variables for "ALL" particles defined in "fields"
19 all_vars = FunctorCollection()
20 all_vars["ETA"] = F.ETA
21

22 # define decay-level variables
23 variables = {
24 "Bplus": b_vars,
25 "Kaons": kaon_vars,
26 "ALL": all_vars,
27 }
28

29 # define event-level variables,
30 # for example number of primary vertices
31 # and add FunctorCollection "SelectionInfo"
32 # that stores trigger configuration key (TCK) and
33 # decisions of "Hlt1LineName" trigger line
34 event_variables = FunctorCollection()
35 event_variables["nPVs"] = F.nPVs
36 evt_variables += FC.SelectionInfo(selection_type="Hlt2",

trigger_lines=["Hlt1LineName"])
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Writing of Retrieved Information

The ThOr functors, utilised for retrieving reconstructed or 
truth-level information, are capable of encapsulating data 
in a diverse range of formats. These functors can not only 
return basic c++types, but also yield complex objects per-
taining to the LHCb software framework. Subsequently, the 
extracted information is recorded within the ROOT file, 
where each TBranch corresponds to a scalar or an array 
of basic c++types. FunTuple accommodates diverse 
data object types returned by ThOr functors. An illustra-
tive example is the functor F.STATE, which retrieves 
the complete state of a reconstructed track, i.e. instance 
of LHCb::State, which includes information on track 
position, charge, momentum, track slopes, and the associ-
ated covariance matrix. FunTuple processes this returned 
class instance, enabling the writing of multiple observables 

into the ROOT file from a single functor. In this context, 
FunTuple supports various variable types, and the list is 
rapidly expanding. These include three vectors, four vectors, 
SIMD versions of arrays, matrices of both symmetric and 
non-symmetric nature with arbitrary dimensions, containers 
spanning arbitrary dimensions, various enumerations, e.g. 
vertex type, track state, as well as ��� ∶∶ �������� < � > 
constructs and ��� ∶∶ ��� < ��� ∶∶ ������, � > structures, 
where T represents any of the supported types. Additionally, 
extending support for other custom classes is remarkably 
straightforward.

As of the preparation of this document, the FunTuple 
component utilises the GaudiTupleAlg tool [42], which 
registers an entry in the ROOT file in a thread-safe manner. 
However, this tool does not provide full support for various 
complex data objects returned by ThOr functors; such sup-
port is exclusively offered by FunTuple. The transition to 

Listing 6  Example definition of 
SelectionInfo collection

1 from GaudiConf.LbExec import HltSourceID
2 import Functors as F
3 from PyConf.reading import get_decreports
4

5 def SelectionInfo(*,
6 selection_type: HltSourceID,
7 trigger_lines: list[str]) -> FunctorCollection:
8 """
9 Event-level collection for tupling trigger/Sprucing information.

10

11 Args:
12 selection_type (HltSourceID): Name of the selection type i.e.

"Hlt1" or "Hlt2" or "Spruce". Used as branch name prefix
when tupling and as source ID to get decision reports.

13 trigger_lines (list(str)): List of line names for which the
decision is requested.

14

15 Returns:
16 FunctorCollection: Collection of functors to tuple

trigger/Sprucing information.
17 """
18

19 # get selection type
20 selection_type = HltSourceID(selection_type)
21

22 # get decreports
23 dec_report = get_decreports(selection_type)
24

25 # check that the code ends with decision
26 trigger_lines = [s + "Decision" if not s.endswith("Decision") else

s for s in trigger_lines]
27

28 # create trigger info dictionary
29 trigger_info = FunctorCollection({
30 selection_type.name + "_TCK": F.TCK(dec_report),
31 l: F.DECISION(dec_report, l) for l in trigger_lines
32 })
33 return trigger_info
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ROOT’s RNTuple is planned for the future with subsequent 
retirement of the GaudiTupleAlg tool.

Test Suite, Examples and Performance

FunTuple includes an extensive set of examples and tuto-
rials for users, along with a dedicated test suite based on 
pytest [45]. Both unit tests and “physics tests" are crafted 
to assess various functionalities of the component, ensuring 
its reliability. Additionally, an application test accompanies 
each example job run in continuous integration, serving to 
guarantee correct functionality consistently.

Comprising just over 100 unit tests and some 40 “phys-
ics tests", the test suite currently in place evaluates various 
aspects of the FunTuple behaviour. These include checking 
for appropriate error messages in case of incorrect configu-
rations, ensuring correct output with specified settings, vali-
dating expected numbers written to the ROOT file, testing 
the behaviour of FunctorCollections, assessing the 
output of FunTuple when run with different event models, 
and more. The test coverage for both FunTuple and the 
decay finder stands at an impressive 100%.

While a comprehensive performance analysis of Fun-
Tuple is not the focus of this paper, a brief overview is 
provided. In offline analysis, computing hundreds of observ-
ables is common. Recording 740 observables using ThOr 
functors for 1000 events takes 3 min, with JIT compilation 
of about 200 functors taking 84 s. Post-compilation, a func-
tor cache is created, reducing overhead in both online and 
offline data processing. The Python front-end of FunTuple 
assists in early error detection in configurations, and the per-
formance impact from combining C++/Python is minimal 
relative to functor execution time.

Interface with Other Gaudi Algorithms

In the LHCb framework, the execution of multiple algo-
rithms within the offline data processing pipeline is a 
common necessity. Notable examples of such algorithms 
encompass the DecayTreeFitter[46], which fits 
complete decay chains with optional primary vertex con-
straints or mass constraints on intermediary states; the 
MCTruthAndBkgCatAlg algorithm [27], which is used 
to extract truth-level information from reconstructed objects 
in simulations; the ParticleCombiner algorithm [27], 
for combining basic particles into composite entities; among 
others. These algorithms can be employed in conjunction 
with the FunTuple component to process and store data. 
A practical illustration of FunTuple in synergy with 
DecayTreeFitter and MCTruthAndBkgCat is pre-
sented in Listing 7.

In this listing, the DecayTreeFitter  and 
MCTruthAndBkgCat algorithms operate on reconstructed 
B
+
→ J∕�(1S)K+ decays. Under the hood, both algorithms 

construct a relation table linking the reconstructed object 
with a related object that holds pertinent information. For 
MCTruthAndBkgCat, the related object is the associated 
simulation object, harbouring truth-level information; con-
versely, for DecayTreeFitter, the related object cor-
responds to the output of the decay tree fitting process. To 
extract the relevant information, the reconstructed object 
is mapped to the related object, and the ThOr functor is 
applied to the related object. This entire process is executed 
within the __call__ method of both the MCTruthAndB-
kgCat and DecayTreeFitter algorithms. For exam-
ple, in Listing 7, calling MCTRUTH(F.FOURMOMEN-
TUM) establishes a mapping between the reconstructed 
B
+
→ J∕�(1S)K+ decay and the corresponding simulation 

object. Subsequently, the F.FOURMOMENTUM functor is 
employed on the simulation object to retrieve the true four-
momentum of the B+ meson. A similar approach is followed 
for the DTF(F.FOURMOMENTUM), with the distinction that 
the four-momentum of the B+ meson is stored following the 
decay tree fit, incorporating mass constraint on the J∕�(1S) 
meson and primary vertex constraint.

The interaction between FunTuple and other Gaudi 
algorithms is fortified by a fail-safe mechanism. When either 
of the algorithms encounters failure, such as the absence 
of corresponding truth-level information or unsuccessful 
decay tree fitting, the ThOr functors and FunTuple are 
equipped to handle the situation. If the ThOr functor returns 
data of floating-point type, the FunTuple component auto-
matically records Not a Number (NaN) in the ROOT file. 
Conversely, if the ThOr functor returns an integral type, 
the invalid value needs to be explicitly defined using the 
F.VALUE_OR functor, exemplified in Listing 7.

Summary and Conclusions

This paper introduces the FunTuple component, designed 
to support offline data processing for the LHCb experi-
ment during the current Run 3 and subsequent runs. Its 
primary purpose is to facilitate the storage of experiment-
acquired data in the ROOT format, optimising it for sub-
sequent offline analysis. Currently, the component plays a 
vital role in various early measurement analyses of LHCb 
data collected during the current Run 3 data taking period. 
An example of the processed data using FunTuple is 
displayed in Fig. 3, showcasing the reconstructed mass 
of the J∕�(1S)→ �−�+ decay from LHCb data gathered 
in 2022 during commissioning [47]. The figure shows the 
signal J∕�(1S)→ �−�+ component in red-filled histogram 
and the background component in dotted purple line. The 
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background component involves random combinations of 
muons from different part of the event. The total fit com-
ponent, composed of both signal and background, is shown 
in solid blue line and the data points are shown in black 
dots. The number of signal candidates is estimated to be 
N
J∕�(1S) = 2354 ± 93 with mass m0 = 3093.6 ± 0.2 MeV∕c2

and width � = 9.1 ± 0.2 MeV∕c2 to be consistent with the 
known J∕�(1S) mass and width [48].

Furthermore, the FunTuple component is built upon the 
Gaudi functional framework, and it offers a user-friendly 
Python interface. Its templated design enables it to accom-
modate various types of input data, including reconstructed 
and simulated events, and it supports the processing of both 

event-level and decay-level information. Additionally, this 
templated design allows the component to support new event 
models, based on SoA data structure in the future, facilitat-
ing vectorised processing of data. Of particular importance 
is its ability to ensure equivalence between trigger-computed 
observables and those subjected to offline analysis. This 
achievement is made possible through the integration of the 
ThOr functors, adept at computing topological and kinematic 
observables. Users also have substantial flexibility, enabling 
them to personalise the range of observables stored within 
the ROOT file. The component is also thoroughly validated 
through a series of unit-tests and pytest tests to ensure 
its reliability. In conclusion, the unique attributes of the 

Listing 7  Usage of the  truth-
matching (MCTruthAndBk-
gCat) and decay tree fitting 
(DecayTreeFitter) 
algorithms in conjuntion with 
FunTuple. Note that the 
FunTuple definition shown in 
Listing 1 does not change

1 from DecayTreeFitter import DecayTreeFitter
2 from DaVinciMCTools import MCTruthAndBkgCat
3 import Functors as F
4 from PyConf.reading import get_pvs
5

6 # get the TES location of the input data with
7 # reconstructed "B+ -> J/psi(1S) K+" decays
8 input_data = get_particles(f"/Event/HLT2/BToJpsiK/Particles")
9

10 #get the reconstructed pvs
11 pvs = get_pvs()
12

13 # define an instance of MCTruthAndBkgCat algorithm for
truth-matching.

14 # Arguments include:
15 # - name: User-specifed name
16 # - input_data: TES location of the input data
17 MCTRUTH = MCTruthAndBkgCat(name="MCTRUTH", input_data=input_data)
18

19 # define an instance of DecayTreeFitter for fitting the decay chain
20 # Arguments include:
21 # - name: User-specifed name
22 # - (optional) mass_constraint: Mass constraint on intermediate

state (in this instance J/psi(1S))
23 # - (optional) input_pvs: TES location of reconstructed primary

vertices to apply primary vertex constraint
24 # - input_data: TES location of the input data
25 DTF = DecayTreeFitter(name="DTF", mass_constraints=["J/psi(1S)"],

input_pvs=pvs, input_data=input_data)
26

27 # define the B candidate variables to be passed to FunTuple
28 # Note: The "F.VALUE_OR" functor specifies an invalid value to be

written to ROOT file in the case of no corresponding truth-level
information. For functors returning floating point types such as
components of F.FOURMOMENTUM, this is automatically chosen to be
"NaN" by FunTuple

29 b_vars = FunctorCollection()
30 # add truth-level information
31 b_vars["TRUE_ID"] = F.VALUE_OR(0) @ MCTRUTH(F.PARTICLE_ID)
32 b_vars["TRUE_FOURMOM"] = MCTRUTH(F.FOURMOMENTUM)
33 # add decay tree fitter information
34 b_vars["DTF_FOURMOM"] = DTF(F.FOURMOMENTUM)
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FunTuple component establish it as a robust tool for offline 
data processing at the LHCb experiment making it essential 
for Run 3 and beyond.
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