
Vol.:(0123456789)

Computing and Software for Big Science (2024) 8:6
https://doi.org/10.1007/s41781-024-00116-1

BRIEF REPORT

FunTuple: A New N‑tuple Component for Offline Data Processing
at the LHCb Experiment

Abhijit Mathad1,2 · Martina Ferrillo1 · Sacha Barré2,3 · Patrick Koppenburg4 · Patrick Owen1 · Gerhard Raven4,5 ·
Eduardo Rodrigues6 · Nicola Serra1

Received: 17 November 2023 / Accepted: 11 February 2024
© The Author(s) 2024

Abstract
The offline software framework of the LHCb experiment has undergone a significant overhaul to tackle the data processing
challenges that will arise in the upcoming Run 3 and Run 4 of the Large Hadron Collider. This paper introduces FunTu-
ple, a novel component developed for offline data processing within the LHCb experiment. This component enables the
computation and storage of a diverse range of observables for both reconstructed and simulated events by leveraging on the
tools initially developed for the trigger system. This feature is crucial for ensuring consistency between trigger-computed and
offline-analysed observables. The component and its tool suite offer users flexibility to customise stored observables, and its
reliability is validated through a full-coverage set of rigorous unit tests. This paper comprehensively explores FunTuple’s
design, interface, interaction with other algorithms, and its role in facilitating offline data processing for the LHCb experi-
ment for the next decade and beyond.

Keywords High-energy-physics · LHCb experiment · Data processing and offline analysis

Introduction

The LHCb experiment, located at Point 8 of the Large Had-
ron Collider (LHC) [1] at CERN, is a forward-arm spec-
trometer designed to study the decays of beauty and charm
hadrons [2, 3]. In the initial two runs of the LHC, during
2010–2018, the experiment (mainly) collected proton–pro-
ton collision data corresponding to a total integrated lumi-
nosity of 9 fb−1 . As preparations intensify for Run 3,1 where
the LHC’s instantaneous luminosity is anticipated to surge
by a factor of 5 compared to the preceding runs, the LHCb

experiment is poised to enhance its capabilities even fur-
ther. The upgraded detector [4] and data acquisition system
will allow for improved vertexing and trigger efficiency [5].
This enhancement facilitates the exploration of exceedingly
rare decays [6] while also facilitating the probing of devia-
tions from Standard Model predictions with unparalleled
precision [7–9].

The advent of Run 3 data acquisition presents significant
hurdles for the LHCb data processing framework. Notably,
the data volume from LHCb ’s Run 3 is projected to surge
by over 15 times compared to prior runs [10]. Consequently,
management of petabytes of processed data and effectively
incorporating distributed computing resources present sig-
nificant challenges [11, 12]. In light of these challenges, a
comprehensive redesign of both the trigger and offline data
processing pipelines is imperative [10, 11]. This paper con-
centrates on the offline data processing pipeline, specifically
highlighting the development of a new component called
FunTuple [13] facilitating analysis of Run 3 data and
beyond.

 * Abhijit Mathad
 amathad@cern.ch

1 University of Zürich, Zürich, Switzerland
2 European Organization for Nuclear Research (CERN),

Geneva, Switzerland
3 The University of Manchester, Manchester, UK
4 Nikhef National Institute for Subatomic Physics, Amsterdam,

Netherlands
5 VU University Amsterdam, Amsterdam, Netherlands
6 Oliver Lodge Laboratory, University of Liverpool, Liverpool,

UK

1 The data collection from Run 3 of LHC is currently ongoing; how-
ever, the core developments emphasised in this paper transpired prior
to its commencement.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-024-00116-1&domain=pdf

 Computing and Software for Big Science (2024) 8:6 6 Page 2 of 11

In the initial LHC runs, LHCb ’s trigger and offline
reconstruction applications, Moore [14] and Brunel [15],
operated independently from the DaVinci application [16]
employed for offline data processing. Besides execut-
ing offline event selection, the DaVinci application was
used to process and store data for subsequent analysis. This
task was accomplished via the DecayTreeTuple algo-
rithm [17],2 which recorded a specific set of observables
into output files. First, due to the segregation of trigger
and offline frameworks, the equivalence between trigger-
computed observables and those analysed offline was not
guaranteed. Second, users lacked the flexibility to customise
the set of observables recorded, which is essential in light
of the anticipated data volume surge for Run 3 and Run 4.
Furthermore, as part of its strategy to tackle the forthcoming
data processing challenges in Run 4 and beyond, the LHCb
experiment plans to implement a new event model based on
Structure of Arrays (SoA), which will facilitate vectorised
processing of data [20]. Substantial enhancements were also
made to the trigger reconstruction algorithms that facilitated
retirement of the Brunel package, which was responsible
for offline reconstruction [21–24]. Consequently, the devel-
opment of new offline algorithms becomes imperative to
accommodate these changes.

To overcome these hurdles, a strategic choice was made
to leverage tools developed for the trigger system within the
offline software framework. This led to the development of
a new component, FunTuple [13], short for Functional

nTuple, which is tailored for processing Run 3 and Run 4
data. The FunTuple component introduces enhancements
to the previous workflow. First, it guarantees the consist-
ency between trigger-computed observables and those sub-
jected to offline analysis. Second, FunTuple, along with
all its dependencies, is entirely templated in C++, allow-
ing it to support both legacy and upcoming event models
planned for future LHC runs. The templated design along
with the SoA event model enables the component to lev-
erage Single Instruction Multiple Data (SIMD) vectorisa-
tion. Last, it offers users the flexibility to efficiently tailor
the list of recorded observables, an important feature given
the expected surge in data volume for Run 3 and Run 4.
This component is configured with a robust suite of tools
designed for the second stage of the LHCb trigger system,
known as Throughput Oriented (ThOr) functors [25–27].
These functors are designed to deliver high-speed in the
trigger’s demanding throughput environment and are adept
at computing topological and kinematic observables. Fun-
Tuple utilises these functors to compute a diverse range of
observables and writes a TTree in the ROOT N-tuple for-
mat.3 The N-tuple format is widely used in the High Energy
Physics community to store flattened data in a tabular for-
mat [29]. Furthermore, the component’s lightweight design
ensures simplified maintenance and seamless knowledge
transfer. As depicted in Fig. 1, the FunTuple component
plays a central role, bridging the gap between the offline

Fig. 1 Data flow diagram for Run 3 data processing showing the placement of the FunTuple component. Figure adapted from Ref. [30]

2 There were also alternative Python-based algorithms like
Bender [18, 19] for Run 1/2 data processing.

3 There are plans in the future to write ROOT RNTuple, which has
been designed to address performance bottlenecks and shortcomings
of ROOT current state of the art TTree [28].

Computing and Software for Big Science (2024) 8:6 Page 3 of 11 6

data processing stage (Sprucing) and the subsequent user
analysis stages [30]. In the Sprucing stage, the data are
slimmed and skimmed before being saved to disk as part
of the offline data processing workflow. The placement of
FunTuple underscores its critical role in LHCb ’s analy-
sis productions [31], facilitating the storage of experiment-
acquired data in a format suitable for subsequent offline
analysis.

Design and Interface

FunTuple is a novel component integral to the LHCb
experiment’s data processing infrastructure. It is a c++ [32]
class built upon the Gaudi functional framework [33], and
it offers a user-friendly Python [34] interface. The flex-
ibility of the FunTuple component lies in its templated
design, allowing it to accommodate various types of input
data. As a result, for Run 3, it is available in the three distinct
flavours FunTuple_Particles, FunTuple_MCPar-
ticles and FunTuple_Event hereafter described.

The FunTuple_Event component processes input
data comprising reconstructed or simulated events, where
each event represents a single LHC bunch crossing. It
acquires event-level information (for example, the number of
charged particles in the event), using thread-safe ThOr func-
tors that are specialised c++classes developed for utilisation
in the second stage of the LHCb trigger system [25, 26,
35]. The component then stores this extracted information
from ThOr functors in an ROOT N-tuple file. The FunTu-
ple_Particles component functions on reconstructed

events and identifies specific reconstructed decays by utilis-
ing the decay-finding tool DecayFinder [27] explained
in Sect. 2.1. It further retrieves essential details regarding
parent and children particles (for example magnitude of the
transverse moment) through ThOr functors and records
this information in an ROOT file. Similarly, the FunTu-
ple_MCParticles component shares similarities with
FunTuple_Particles, but it processes simulated
events instead, and captures information about simulated
decays. For an illustrative representation of the data flow
encompassing these three approaches, refer to Fig. 2. Each

Fig. 2 Data flow diagram of the three flavours of FunTuple component

1 # import FunTuple to run over
reconstructed particles

2 from FunTuple import
FunTuple_Particles

3

4 # define instance of FunTuple
5 data_tuple = FunTuple_Particles(
6 name="TDirectoryName",
7 tuple_name="TTreeName",
8 fields=fields,
9 variables=variables,

10 event_variables=event_variables,
11 inputs=reco_data_TES_location)

Listing 1 FunTuple_Particles instance

 Computing and Software for Big Science (2024) 8:6 6 Page 4 of 11

aspect of the data-flow diagram is further elaborated in the
following sections.

The instantiation of the three flavours of the FunTuple
component in Python is exemplified in Listings 1, 2, 3.
As depicted, the user is required to provide the name and
tuple_name attributes for all three flavours. The name
attribute defines the component’s name and the name of the
corresponding TDirectory in the output ROOT file. On
the other hand, the tuple_name attribute defines the name
of the TTree in the ROOT file. The fields attribute can
only be defined for FunTuple_Particles and FunTu-
ple_MCParticles and is used to select specific decays
within an event and define the corresponding TBranches
in the output file. For a detailed exploration of this attribute,
see Sect. "Finding Decays in an Event". The variables
attribute is used to specify the observables to be computed
for each event or decay. In the case of FunTuple_Event,
only event-level observables can be defined. Conversely, for

FunTuple_Particles and FunTuple_MCParti-
cles, both decay-level and event-level observables can
be specified. The latter is achieved by defining an optional
event_variables attribute. It is worth noting that the
FunTuple component automatically writes certain event
information, such as the run and event numbers,4 to the out-
put file by default. For a more comprehensive discussion on
the variables attribute, refer to Sect. "Retrieve Event and
Decay Information". Finally, the inputs attribute refers to
the Transient Event Store (TES) location, indicating the data
pertaining to a given event cycle that will be processed. Sub-
sequently, the processed information is stored in the output
ROOT file, which is further elaborated on in Sect. "Writing
of Retrieved Information".

The FunTuple component also incorporates several
essential counters to monitor the data processing. These
counters include tracking the number of processed events,
the count of non-empty events for each selected particle,
and the tally of events with multiple candidates for each
chosen particle. Upon completing the data processing, the
results of these counters are displayed to the users. To ensure
effective error handling, the component employs a custom
error handling class that inherits from the StatusCode
class implemented in Gaudi. This custom implementation
enables the component to raise specific exceptions in tar-
geted scenarios. For example, if a particular ThOr functor
encounters difficulties and cannot compute an observable for
a given event, the component raises an exception to promptly
notify the user of the issue. Additionally, the FunTuple
component takes measures to validate the input attributes
both on the Python and c++sides, ensuring the correctness
of the provided data. Moreover, the development process
includes the creation of several tests and examples, see Sect.
"Test Suite, Examples and Performance".

Finding Decays in an Event

Given the distinct event models for reconstructed and sim-
ulated events, the FunTuple component employs two
separate Gaudi tools for decay identification. Specifically,
FunTuple_Particles relies on the Gaudi tool [36]
DecayFinder [37], while FunTuple_MCParticles
utilises the MCDecayFinder tool [38]. Both of these tools
utilise the boost library [39, 40] to parse decay descriptors.
The names of particles used in the decay descriptor, along
with their associated properties, are stored in the LHCb con-
ditions database (CondDB) [41], and are retrieved through
the ParticlePropertySvc [42] service.

1 # import FunTuple to run over
simulated particles

2 from FunTuple import
FunTuple_MCParticles

3

4 # define instance of FunTuple
5 data_tuple = FunTuple_MCParticles(
6 name="TDirectoryName",
7 tuple_name="TTreeName",
8 fields=fields,
9 variables=variables,

10 event_variables=event_variables,
11 inputs=mc_data_TES_location)

Listing 2 FunTuple_MCParticles instance

1 # import FunTuple to run over
reconstructed or simulated event

2 from FunTuple import FunTuple_Event
3

4 # define instance of FunTuple
5 data_tuple = FunTuple_Event(
6 name="TDirectoryName",
7 tuple_name="TTreeName",
8 variables=event_variables)

Listing 3 FunTuple_Event instance

4 Both run and event numbers are used to uniquely identify an event
in the LHC experiments.

Computing and Software for Big Science (2024) 8:6 Page 5 of 11 6

To isolate a particular decay process within an event and
select a particle within the decay chain, the user is required
to provide a fields attribute to either the FunTuple_
Particles or the FunTuple_MCParticles instance.
The fields attribute takes the form of a string dictionary.
Here, the key corresponds to the particle alias, serving as
a prefix to label the TBranch in the resulting output file.
On the other hand, the associated value denotes the decay
descriptor employed to filter and select the particles partici-
pating in a distinct reconstructed or simulated decay process.
A practical illustration of the fields attribute configuration
is shown in Listing 4.

A correct syntax for the decay descriptor is crucial in
the selection of the particles within a given decay process.
A straightforward decay descriptor such as "B+ -> J/
psi(1 S) K+" is employed to select all decays of a B+
meson into a J∕�(1S) meson and a K+ meson. For the inclu-
sion of charge-conjugate decays, users can encapsulate the
decay descriptor in square brackets and append the CC key-
word, such as "[B+ -> J/psi(1 S) K+]CC". This
syntax covers both B+

→ J∕�(1S)K+ and B−
→ J∕�(1S)K−

decays. Alternatively, the []CC notation can also be used
around an individual particle, e.g., "B+ -> J/psi(1 S)
[K+]CC" , encompassing both B+

→ J∕�(1S)K+ and
B
+
→ J∕�(1S)K− decays.5 To target a specific particle within

a decay, the caret symbol (̂) is employed. For instance,
"B+ -> J/psi(1 S) ̂K+" selects the K+ meson, while
excluding the caret symbol selects the parent particle. In
cases of identical particles in the final state, the FunTuple
component ensures distinct C++ objects for each identical
particle instance. For example, "B+ -> ̂pi+ pi- pi+"
and "B+ -> pi+ pi- ̂pi+" would choose two distinct
instances of a �+ . In the context of simulations, the FunTu-
ple_MCParticles component utilises the LoKi decay
finder [43]. This finder offers the flexibility to incorporate
various arrow types within the decay descriptor syntax [43,
44]. Each arrow type allows users to selectively include sim-
ulated particles based on distinct criteria. For instance, the
=> arrow type signifies the inclusion of an arbitrary number

of additional photons stemming from final state radiation of
charged particles when matching the decay.

Retrieve Event and Decay Information

To extract essential information related to either the event or
individual particles within a decay chain, users are required
to furnish the variables or event_variables attrib-
ute to FunTuple. The variables attribute functions as
a python dictionary in which the key corresponds to the
particle name previously defined in the fields attribute.
The corresponding value is an instance of a Functor-
Collection, which acts as a collection of ThOr func-
tors, effectively resembling a dictionary itself, with the key
representing the variable name and the value denoting a
ThOr functor. Within the context of the FunTuple com-
ponent, these ThOr functors are just-in-time (JIT) compiled
and employed on the particle instance to retrieve the desired
information. Notably, a key labelled ALL holds a special
significance within the definition of the variables. Any
FunctorCollection associated with the ALL key is
applied to all particles specified in the fields attribute. In
contrast, the event_variables attribute takes the form
of an instance of FunctorCollection. The enclosed
ThOr functors are designed to provide information at the
event level. The specifics of how to define the varia-
bles and event_variables attributes are illustrated
in Listing 5.

The FunTuple component utilises the flexibility inher-
ent in ThOr functors to extract a diverse array of informa-
tion from the event. These functors are adaptable enough to
accept multiple reconstructed objects as input, enabling the
computation of associated information. For instance, con-
sider the functor designed to calculate the flight distance of
a particle. To achieve this, the functor takes both the recon-
structed primary vertices and the reconstructed particle as
input arguments. The usage of this specific functor (BPVFD)
is shown in Listing 5.

The functors support all fundamental mathematical
operators, including addition, subtraction, multiplication,
and division. In addition, they can undergo transforma-
tions such as fmath.log(F.CHI2/F.NDOF), which,
when applied to a reconstructed track, yields the track’s

Listing 4 Example definition of
the fields attribute 1 # define fields to select decays in an event

2 # key: alias of the particle used as a prefix to name the TBranch
3 # value: decay descriptor syntax select particles
4 fields = {
5 "Bplus": "[B+ -> (J/psi(1S) -> mu+ mu-) [K+]CC]CC",
6 "Jpsi" : "[B+ -> ^(J/psi(1S) -> mu+ mu-) [K+]CC]CC",
7 "kaons": "[B+ -> (J/psi(1S) -> mu+ mu-) ^[K+]CC]CC",
8 }

5 The charge-violating decays are often reconstructed at LHCb to
serve as proxies for the study of sources of background.

 Computing and Software for Big Science (2024) 8:6 6 Page 6 of 11

�2 per degree of freedom. Furthermore, the output from
one ThOr functor can be passed as input to other ThOr
functors through a mechanism known as composition. This
proves particularly advantageous when users seek to com-
pute an observable that relies on the outcomes of other
observables. All these functionalities are harnessed to pro-
vide users with an range of observables via a pre-defined
FunctorCollection instance, which is intended for
use in conjunction with FunTuple. An illustrative exam-
ple is the SelectionInfo collection, which gathers the
functors employed to store the trigger configuration key
(TCK) and the event’s trigger line decision. Listing 6 out-
lines the definition of this collection, with its application
showcased in Listing 5.

In this listing, the SelectionInfo collection is
designed to take two main inputs: the type of selection,

which can be any of the three stages (Hlt1, Hlt2, or
Sprucing), and a list of trigger or Sprucing lines. In
response, it generates a FunctorCollection that
incorporates two functors: F.TCK for storing TCK infor-
mation and F.DECISION for storing the trigger deci-
sion of the specified selection line. Such collections do
not expose the users to the technical intricacies involved
in retrieving the requested information. In this particu-
lar case, the involved functors require the DecReport
object, which is obtained from the DaVinci framework
via the get_decreports function. Furthermore, users
maintain the flexibility to add, merge or remove observa-
bles within these collections, enabling them to create
their customised collections. Multiple collections have
been developed and continue to be actively expanded,
accompanied by relevant unit tests within the DaVinci
framework.

Listing 5 Example definition of
the variables and event_
variables attribute

1 # import ThOr functor library
2 import Functors as F
3 # import the FunctorCollection library
4 import FunTuple.functorcollections as FC
5 # import function to get TES location of PVs
6 from PyConf.reading import get_pvs
7

8 # variables for "Bplus" defined in the "fields"
9 b_vars = FunctorCollection()

10 # store the flight distance of candidate B relative to the primary
vertex that best aligns with the origin of candidate B.

11 pvs = get_pvs()
12 b_vars["BPVFD"] = F.BPVFD(pvs)
13

14 # variables for "Kaons" defined in the "fields"
15 kaon_vars = FunctorCollection()
16 kaon_vars["PT"] = F.PT
17

18 # variables for "ALL" particles defined in "fields"
19 all_vars = FunctorCollection()
20 all_vars["ETA"] = F.ETA
21

22 # define decay-level variables
23 variables = {
24 "Bplus": b_vars,
25 "Kaons": kaon_vars,
26 "ALL": all_vars,
27 }
28

29 # define event-level variables,
30 # for example number of primary vertices
31 # and add FunctorCollection "SelectionInfo"
32 # that stores trigger configuration key (TCK) and
33 # decisions of "Hlt1LineName" trigger line
34 event_variables = FunctorCollection()
35 event_variables["nPVs"] = F.nPVs
36 evt_variables += FC.SelectionInfo(selection_type="Hlt2",

trigger_lines=["Hlt1LineName"])

Computing and Software for Big Science (2024) 8:6 Page 7 of 11 6

Writing of Retrieved Information

The ThOr functors, utilised for retrieving reconstructed or
truth-level information, are capable of encapsulating data
in a diverse range of formats. These functors can not only
return basic c++types, but also yield complex objects per-
taining to the LHCb software framework. Subsequently, the
extracted information is recorded within the ROOT file,
where each TBranch corresponds to a scalar or an array
of basic c++types. FunTuple accommodates diverse
data object types returned by ThOr functors. An illustra-
tive example is the functor F.STATE, which retrieves
the complete state of a reconstructed track, i.e. instance
of LHCb::State, which includes information on track
position, charge, momentum, track slopes, and the associ-
ated covariance matrix. FunTuple processes this returned
class instance, enabling the writing of multiple observables

into the ROOT file from a single functor. In this context,
FunTuple supports various variable types, and the list is
rapidly expanding. These include three vectors, four vectors,
SIMD versions of arrays, matrices of both symmetric and
non-symmetric nature with arbitrary dimensions, containers
spanning arbitrary dimensions, various enumerations, e.g.
vertex type, track state, as well as ��� ∶∶ �������� < � >
constructs and ��� ∶∶ ��� < ��� ∶∶ ������, � > structures,
where T represents any of the supported types. Additionally,
extending support for other custom classes is remarkably
straightforward.

As of the preparation of this document, the FunTuple
component utilises the GaudiTupleAlg tool [42], which
registers an entry in the ROOT file in a thread-safe manner.
However, this tool does not provide full support for various
complex data objects returned by ThOr functors; such sup-
port is exclusively offered by FunTuple. The transition to

Listing 6 Example definition of
SelectionInfo collection

1 from GaudiConf.LbExec import HltSourceID
2 import Functors as F
3 from PyConf.reading import get_decreports
4

5 def SelectionInfo(*,
6 selection_type: HltSourceID,
7 trigger_lines: list[str]) -> FunctorCollection:
8 """
9 Event-level collection for tupling trigger/Sprucing information.

10

11 Args:
12 selection_type (HltSourceID): Name of the selection type i.e.

"Hlt1" or "Hlt2" or "Spruce". Used as branch name prefix
when tupling and as source ID to get decision reports.

13 trigger_lines (list(str)): List of line names for which the
decision is requested.

14

15 Returns:
16 FunctorCollection: Collection of functors to tuple

trigger/Sprucing information.
17 """
18

19 # get selection type
20 selection_type = HltSourceID(selection_type)
21

22 # get decreports
23 dec_report = get_decreports(selection_type)
24

25 # check that the code ends with decision
26 trigger_lines = [s + "Decision" if not s.endswith("Decision") else

s for s in trigger_lines]
27

28 # create trigger info dictionary
29 trigger_info = FunctorCollection({
30 selection_type.name + "_TCK": F.TCK(dec_report),
31 l: F.DECISION(dec_report, l) for l in trigger_lines
32 })
33 return trigger_info

 Computing and Software for Big Science (2024) 8:6 6 Page 8 of 11

ROOT’s RNTuple is planned for the future with subsequent
retirement of the GaudiTupleAlg tool.

Test Suite, Examples and Performance

FunTuple includes an extensive set of examples and tuto-
rials for users, along with a dedicated test suite based on
pytest [45]. Both unit tests and “physics tests" are crafted
to assess various functionalities of the component, ensuring
its reliability. Additionally, an application test accompanies
each example job run in continuous integration, serving to
guarantee correct functionality consistently.

Comprising just over 100 unit tests and some 40 “phys-
ics tests", the test suite currently in place evaluates various
aspects of the FunTuple behaviour. These include checking
for appropriate error messages in case of incorrect configu-
rations, ensuring correct output with specified settings, vali-
dating expected numbers written to the ROOT file, testing
the behaviour of FunctorCollections, assessing the
output of FunTuple when run with different event models,
and more. The test coverage for both FunTuple and the
decay finder stands at an impressive 100%.

While a comprehensive performance analysis of Fun-
Tuple is not the focus of this paper, a brief overview is
provided. In offline analysis, computing hundreds of observ-
ables is common. Recording 740 observables using ThOr
functors for 1000 events takes 3 min, with JIT compilation
of about 200 functors taking 84 s. Post-compilation, a func-
tor cache is created, reducing overhead in both online and
offline data processing. The Python front-end of FunTuple
assists in early error detection in configurations, and the per-
formance impact from combining C++/Python is minimal
relative to functor execution time.

Interface with Other Gaudi Algorithms

In the LHCb framework, the execution of multiple algo-
rithms within the offline data processing pipeline is a
common necessity. Notable examples of such algorithms
encompass the DecayTreeFitter[46], which fits
complete decay chains with optional primary vertex con-
straints or mass constraints on intermediary states; the
MCTruthAndBkgCatAlg algorithm [27], which is used
to extract truth-level information from reconstructed objects
in simulations; the ParticleCombiner algorithm [27],
for combining basic particles into composite entities; among
others. These algorithms can be employed in conjunction
with the FunTuple component to process and store data.
A practical illustration of FunTuple in synergy with
DecayTreeFitter and MCTruthAndBkgCat is pre-
sented in Listing 7.

In this listing, the DecayTreeFitter and
MCTruthAndBkgCat algorithms operate on reconstructed
B
+
→ J∕�(1S)K+ decays. Under the hood, both algorithms

construct a relation table linking the reconstructed object
with a related object that holds pertinent information. For
MCTruthAndBkgCat, the related object is the associated
simulation object, harbouring truth-level information; con-
versely, for DecayTreeFitter, the related object cor-
responds to the output of the decay tree fitting process. To
extract the relevant information, the reconstructed object
is mapped to the related object, and the ThOr functor is
applied to the related object. This entire process is executed
within the __call__ method of both the MCTruthAndB-
kgCat and DecayTreeFitter algorithms. For exam-
ple, in Listing 7, calling MCTRUTH(F.FOURMOMEN-
TUM) establishes a mapping between the reconstructed
B
+
→ J∕�(1S)K+ decay and the corresponding simulation

object. Subsequently, the F.FOURMOMENTUM functor is
employed on the simulation object to retrieve the true four-
momentum of the B+ meson. A similar approach is followed
for the DTF(F.FOURMOMENTUM), with the distinction that
the four-momentum of the B+ meson is stored following the
decay tree fit, incorporating mass constraint on the J∕�(1S)
meson and primary vertex constraint.

The interaction between FunTuple and other Gaudi
algorithms is fortified by a fail-safe mechanism. When either
of the algorithms encounters failure, such as the absence
of corresponding truth-level information or unsuccessful
decay tree fitting, the ThOr functors and FunTuple are
equipped to handle the situation. If the ThOr functor returns
data of floating-point type, the FunTuple component auto-
matically records Not a Number (NaN) in the ROOT file.
Conversely, if the ThOr functor returns an integral type,
the invalid value needs to be explicitly defined using the
F.VALUE_OR functor, exemplified in Listing 7.

Summary and Conclusions

This paper introduces the FunTuple component, designed
to support offline data processing for the LHCb experi-
ment during the current Run 3 and subsequent runs. Its
primary purpose is to facilitate the storage of experiment-
acquired data in the ROOT format, optimising it for sub-
sequent offline analysis. Currently, the component plays a
vital role in various early measurement analyses of LHCb
data collected during the current Run 3 data taking period.
An example of the processed data using FunTuple is
displayed in Fig. 3, showcasing the reconstructed mass
of the J∕�(1S)→ �−�+ decay from LHCb data gathered
in 2022 during commissioning [47]. The figure shows the
signal J∕�(1S)→ �−�+ component in red-filled histogram
and the background component in dotted purple line. The

Computing and Software for Big Science (2024) 8:6 Page 9 of 11 6

background component involves random combinations of
muons from different part of the event. The total fit com-
ponent, composed of both signal and background, is shown
in solid blue line and the data points are shown in black
dots. The number of signal candidates is estimated to be
N
J∕�(1S) = 2354 ± 93 with mass m0 = 3093.6 ± 0.2 MeV∕c2

and width � = 9.1 ± 0.2 MeV∕c2 to be consistent with the
known J∕�(1S) mass and width [48].

Furthermore, the FunTuple component is built upon the
Gaudi functional framework, and it offers a user-friendly
Python interface. Its templated design enables it to accom-
modate various types of input data, including reconstructed
and simulated events, and it supports the processing of both

event-level and decay-level information. Additionally, this
templated design allows the component to support new event
models, based on SoA data structure in the future, facilitat-
ing vectorised processing of data. Of particular importance
is its ability to ensure equivalence between trigger-computed
observables and those subjected to offline analysis. This
achievement is made possible through the integration of the
ThOr functors, adept at computing topological and kinematic
observables. Users also have substantial flexibility, enabling
them to personalise the range of observables stored within
the ROOT file. The component is also thoroughly validated
through a series of unit-tests and pytest tests to ensure
its reliability. In conclusion, the unique attributes of the

Listing 7 Usage of the truth-
matching (MCTruthAndBk-
gCat) and decay tree fitting
(DecayTreeFitter)
algorithms in conjuntion with
FunTuple. Note that the
FunTuple definition shown in
Listing 1 does not change

1 from DecayTreeFitter import DecayTreeFitter
2 from DaVinciMCTools import MCTruthAndBkgCat
3 import Functors as F
4 from PyConf.reading import get_pvs
5

6 # get the TES location of the input data with
7 # reconstructed "B+ -> J/psi(1S) K+" decays
8 input_data = get_particles(f"/Event/HLT2/BToJpsiK/Particles")
9

10 #get the reconstructed pvs
11 pvs = get_pvs()
12

13 # define an instance of MCTruthAndBkgCat algorithm for
truth-matching.

14 # Arguments include:
15 # - name: User-specifed name
16 # - input_data: TES location of the input data
17 MCTRUTH = MCTruthAndBkgCat(name="MCTRUTH", input_data=input_data)
18

19 # define an instance of DecayTreeFitter for fitting the decay chain
20 # Arguments include:
21 # - name: User-specifed name
22 # - (optional) mass_constraint: Mass constraint on intermediate

state (in this instance J/psi(1S))
23 # - (optional) input_pvs: TES location of reconstructed primary

vertices to apply primary vertex constraint
24 # - input_data: TES location of the input data
25 DTF = DecayTreeFitter(name="DTF", mass_constraints=["J/psi(1S)"],

input_pvs=pvs, input_data=input_data)
26

27 # define the B candidate variables to be passed to FunTuple
28 # Note: The "F.VALUE_OR" functor specifies an invalid value to be

written to ROOT file in the case of no corresponding truth-level
information. For functors returning floating point types such as
components of F.FOURMOMENTUM, this is automatically chosen to be
"NaN" by FunTuple

29 b_vars = FunctorCollection()
30 # add truth-level information
31 b_vars["TRUE_ID"] = F.VALUE_OR(0) @ MCTRUTH(F.PARTICLE_ID)
32 b_vars["TRUE_FOURMOM"] = MCTRUTH(F.FOURMOMENTUM)
33 # add decay tree fitter information
34 b_vars["DTF_FOURMOM"] = DTF(F.FOURMOMENTUM)

 Computing and Software for Big Science (2024) 8:6 6 Page 10 of 11

FunTuple component establish it as a robust tool for offline
data processing at the LHCb experiment making it essential
for Run 3 and beyond.

Acknowledgements We extend our sincere appreciation to our col-
laborators in the Data Processing and Analysis (DPA) project for their
insightful discussions, input, and unwavering support throughout the
work. We are particularly grateful to Maurizio Martinelli for his work
in documenting examples pertaining to the FunTuple, and to Davide
Fazzini for his contribution in developing diverse unit tests for the com-
ponent. We acknowledge Sascha Stahl for his tests aimed at optimising
the components’s speed. Our appreciation also extends to the members
of the Real Time Analysis (RTA) project for their feedback and sugges-
tions on ThOr functor usage. Additionally, we extend a special thank
you to Christoph Hasse for his contributions to the development of
the composition mechanism, which has enhanced the flexibility of
using ThOr functors for offline processing. We also convey our grati-
tude to the members of the Early Measurement Task Force (EMTF) for
Run 3 for their rigorous stress-testing, invaluable feedback, and ongo-
ing work in expanding the FunctorCollection library within
the DaVinci framework. This work received essential support from
the Forschungskredit of the University of Zurich under grant number
FK-21-129 and the Swiss National Science Foundation under contract
204238.

Funding Open access funding provided by CERN (European Organiza-
tion for Nuclear Research)

Data availability The software component developed here is open
source and is available in the gitlab via the link: https:// gitlab. cern. ch/
lhcb/ DaVin ci. The tests and examples use LHCb Run 3 data, which is
not accessible openly.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. LHC Machine (2008) JINST 3:S08001. https:// doi. org/ 10. 1088/
1748- 0221/3/ 08/ S08001

 2. LHCb Collaboration, Alves AA Jr et al (2008) The LHCb detec-
tor at the LHC. JINST 3: S08005. https:// doi. org/ 10. 1088/ 1748-
0221/3/ 08/ S08005

 3. LHCb Collaboration, Aaij R et al (2015) LHCb detector perfor-
mance. Int J Mod Phys A30: 1530022. https:// doi. org/ 10. 1142/
S0217 751X1 53002 27arXiv: 1412. 6352

 4. LHCb Collaboration, Aaij R et al. The LHCb Upgrade I, arXiv:
2305. 10515, to appear in JINST

 5. Aaij R et al (2019) A comprehensive real-time analysis model
at the LHCb experiment. JINST 14:P04006. https:// doi. org/ 10.
1088/ 1748- 0221/ 14/ 04/ P04006. arXiv: 1903. 01360

 6. LHCb Collaboration, Aaij R et al (2022) Measurement of the
B0

S
→ �+�− decay properties and search for the B0

→ �+�− and
B0

S
→ �+�−� decays. Phys Rev D105: 012010. https:// doi. org/

10. 1103/ PhysR evD. 105. 012010arXiv: 2108. 09283
 7. LHCb Collaboration, Aaij R et al (2020) Measurement of CP

-averaged observables in the B0
→ K∗0�+�− decay. Phys Rev

Lett. 125: 011802. https:// doi. org/ 10. 1103/ PhysR evLett. 125.
011802arXiv: 2003. 04831

 8. LHCb Collaboration, Aaij R et al (2023) Test of lepton flavour
universality using B0

→ D∗−�+�� decays, with hadronic � chan-
nels. Phys Rev D108: 012018. https:// doi. org/ 10. 1103/ PhysR
evD. 108. 012018arXiv: 2305. 01463

 9. LHCb Collaboration, Aaij R et al. Measurement of the ratio
of branching fractions R(D∗) and R(D0) , arXiv: 2302. 02886,
submitted to Phys Rev Lett

 10. Skidmore N, Rodrigues E, Koppenburg P (2022) Run-3 offline
data processing and analysis at LHCb. PoS EPS-HEP2021
792. https:// doi. org/ 10. 22323/1. 398. 0792

 11. LHCb Collaboration (2018) Computing model of the upgrade
LHCb experiment, CERN-LHCC-2018-014. http:// cdsweb.
cern. ch/ search? p= CERN- LHCC- 2018- 014&f= repor tnumb er&
action_ search= Searc h&c= LHCb

 12. Tsaregorodtsev A et al (2010) DIRAC3: the new generation of
the LHCb grid software. J Phys Conf Ser 219:062029. https://
doi. org/ 10. 1088/ 1742- 6596/ 219/6/ 062029

 13. FunTuple GitLab Repository. https:// gitlab. cern. ch/ lhcb/ Analy
sis/-/ tree/ v41r15/ Phys/ FunTu ple. Analysis v41r15, Accessed 02
Nov 2022

 14. Moore Project. https:// gitlab. cern. ch/ lhcb/ Moore. Accessed 19
Aug 2023

 15. Brunel Project. https:// gitlab. cern. ch/ lhcb/ Brunel. Accessed 19
Aug 2023

 16. DaVinci Project. https:// gitlab. cern. ch/ lhcb/ DaVin ci. Accessed
19 Aug 2023

 17. Analysis project. https:// gitlab. cern. ch/ lhcb/ Analy sis/-/ tree/
v22r7? ref_ type= tags. Accessed 19 Aug 2023

 18. Belyaev I et al (2004) Python-based Physics Analysis Environ-
ment for LHCb. 2004. https:// inspi rehep. net/ liter ature/ 928906

 19. Bender Project. https:// gitlab. cern. ch/ lhcb/ Analy sis/-/ tree/
v22r7? ref_ type= tags. Accessed 19 Aug 2023

Fig. 3 Invariant mass of the (�− �+) system showing the J∕�(1S) peak
for LHCb data collected during the current Run 3 commissioning
data taking period in 2022 [47]

https://gitlab.cern.ch/lhcb/DaVinci
https://gitlab.cern.ch/lhcb/DaVinci
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1142/S0217751X15300227
https://doi.org/10.1142/S0217751X15300227
http://arxiv.org/abs/1412.6352
http://arxiv.org/abs/2305.10515
http://arxiv.org/abs/2305.10515
https://doi.org/10.1088/1748-0221/14/04/P04006
https://doi.org/10.1088/1748-0221/14/04/P04006
http://arxiv.org/abs/1903.01360
https://doi.org/10.1103/PhysRevD.105.012010
https://doi.org/10.1103/PhysRevD.105.012010
http://arxiv.org/abs/2108.09283
https://doi.org/10.1103/PhysRevLett.125.011802
https://doi.org/10.1103/PhysRevLett.125.011802
http://arxiv.org/abs/2003.04831
https://doi.org/10.1103/PhysRevD.108.012018
https://doi.org/10.1103/PhysRevD.108.012018
http://arxiv.org/abs/2305.01463
http://arxiv.org/abs/2302.02886
https://doi.org/10.22323/1.398.0792
http://cdsweb.cern.ch/search?p=CERN-LHCC-2018-014%20&f=reportnumber%20&action_search=Search%20&c=LHCb
http://cdsweb.cern.ch/search?p=CERN-LHCC-2018-014%20&f=reportnumber%20&action_search=Search%20&c=LHCb
http://cdsweb.cern.ch/search?p=CERN-LHCC-2018-014%20&f=reportnumber%20&action_search=Search%20&c=LHCb
https://doi.org/10.1088/1742-6596/219/6/062029
https://doi.org/10.1088/1742-6596/219/6/062029
https://gitlab.cern.ch/lhcb/Analysis/-/tree/v41r15/Phys/FunTuple
https://gitlab.cern.ch/lhcb/Analysis/-/tree/v41r15/Phys/FunTuple
https://gitlab.cern.ch/lhcb/Moore
https://gitlab.cern.ch/lhcb/Brunel
https://gitlab.cern.ch/lhcb/DaVinci
https://gitlab.cern.ch/lhcb/Analysis/-/tree/v22r7?ref_type=tags
https://gitlab.cern.ch/lhcb/Analysis/-/tree/v22r7?ref_type=tags
https://inspirehep.net/literature/928906
https://gitlab.cern.ch/lhcb/Analysis/-/tree/v22r7?ref_type=tags
https://gitlab.cern.ch/lhcb/Analysis/-/tree/v22r7?ref_type=tags

Computing and Software for Big Science (2024) 8:6 Page 11 of 11 6

 20. LHCb Collaboration, Hennequin A, De Cian M, Esen S. Fast
and flexible data structures for the LHCb Run 3 software trigger,
https:// doi. org/ 10. 5281/ zenodo. 81198 64arXiv: 2307. 03689

 21. Aaij R et al (2020) Allen: a high level trigger on GPUs for
LHCb. Comput Softw Big Sci 4:7. https:// doi. org/ 10. 1007/
s41781- 020- 00039-7. arXiv: 1912. 09161

 22. LHCb Collaboration, Aaij R et al. The LHCb upgrade I, arXiv:
2305. 10515

 23. Fitzpatrick C, Gligorov VV (2014) Anatomy of an upgrade event
in the upgrade era, and implications for the LHCb trigger. CERN,
Geneva

 24. Reiss F (2023) Real-time alignment procedure at the LHCb exper-
iment for Run 3. http:// cds. cern. ch/ record/ 28464 14

 25. ThOr Functors.https:// lhcbd oc. web. cern. ch/ lhcbd oc/ moore/ mas-
ter/ selec tion/ thor_ funct ors. html. Accessed 02 Nov 2022.

 26. Nolte N (2021) A selection framework for LHCb’s upgrade trig-
ger, 2020. https:// cds. cern. ch/ record/ 27658 96. Presented 22 Feb

 27. Rec Project. https:// gitlab. cern. ch/ lhcb/ Rec. Accessed 19 Aug
2023

 28. Lopez-Gomez J, Blomer J (2023) RNTuple performance: status
and outlook. J Phys Conf Ser 2438:012118. https:// doi. org/ 10.
1088/ 1742- 6596/ 2438/1/ 012118 (arXiv:2204.09043)

 29. Brun R, Rademakers F (1997) ROOT: an object oriented data
analysis framework. Nucl Instrum Meth A 389:81. https:// doi. org/
10. 1016/ S0168- 9002(97) 00048-X

 30. LHCb Collaboration (2020) RTA and DPA dataflow diagrams for
Run 1, Run 2, and the upgraded LHCb detector. https:// cds. cern.
ch/ record/ 27301 81

 31. Analysis Productions project. https:// lhcb- ap. docs. cern. ch/ index.
html. Accessed 19 Aug 2023

 32. Standard C++, version C++17. https:// isocpp. org/. Accessed 19
Aug 2023

 33. Barrand G et al (2001) GAUDI—a software architecture and
framework for building HEP data processing applications.
Comput Phys Commun 140:45. https:// doi. org/ 10. 1016/ S0010-
4655(01) 00254-5

 34. Python Software Foundation. Python Language Reference, version
3.9, https:// www. python. org/. [Online; accessed 19-Aug-2023]

 35. LHCb Collaboration, Li P (2022) Real-time analysis in Run 3 with
the LHCb experiment. PoS EPS-HEP2021 (2022) 829, https:// doi.
org/ 10. 22323/1. 398. 0829

 36. Clemencic M et al (2010) Recent developments in the lhcb soft-
ware framework gaudi. J Phys Conf Ser 219:042006. https:// doi.
org/ 10. 1088/ 1742- 6596/ 219/4/ 042006

 37. Barre S, Mathad, A. Decay finder algorithm for reconstructed
particles in Run 3 at the LHCb experiment. https:// cds. cern. ch/
record/ 28371 89. [CERN-STUDENTS-NOTE-2022-211]

 38. LHCb Project. https:// gitlab. cern. ch/ lhcb/ LHCb. Accessed 19 Aug
2023

 39. Boost.Regex 7.0.1. https:// www. boost. org/ doc/ libs/1_ 80_0/ libs/
regex/ doc/ html/ index. html. Accessed 19 Aug 2023

 40. Joel de Guzman, HK (2011) Qi—Writing Parsers. https:// www.
boost. org/ doc/ libs/1_ 80_0/ libs/ spirit/ doc/ html/ spirit/ qi. html.
Accessed 16 Sept 2022

 41. LHCb Conditions Database. https:// gitlab. cern. ch/ lhcb- conddb.
Accessed 19 Aug 2023

 42. Gaudi framework. https:// gitlab. cern. ch/ lhcb/ Gaudi. Accessed 19
Aug 2023

 43. LoKi framework. https:// twiki. cern. ch/ twiki/ bin/ view/ LHCb/ FAQ/
LoKiN ewDec ayFin ders. Accessed 19 Aug 2023

 44. LHCb collaboration (2022) Grammar in short: Arrows. https://
twiki. cern. ch/ twiki/ bin/ view/ LHCb/ FAQ/ LoKiN ewDec ayFin
ders# Arrows. Accessed 16 Sept 2022

 45. Krekel H et al (2004) pytest. https:// docs. pytest. org/ en/7. 1.x/
 46. Hulsbergen WD (2005) Decay chain fitting with a Kalman filter.

Nucl Instrum Meth A552:566. https:// doi. org/ 10. 1016/j. nima.
2005. 06. 078. arXiv: physi cs/ 05031 91

 47. LHCb Collaboration (2022) Jpsi2MuMu 2022 mass figure. https://
cds. cern. ch/ record/ 28676 64

 48. Particle Data Group, P. A. Zyla et al (2020) Review of particle
physics. Prog Theor Exp Phys. 2020: 083C01. https:// doi. org/ 10.
1093/ ptep/ ptaa1 04http:// pdg. lbl. gov/

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.8119864
http://arxiv.org/abs/2307.03689
https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1007/s41781-020-00039-7
http://arxiv.org/abs/1912.09161
http://arxiv.org/abs/2305.10515
http://arxiv.org/abs/2305.10515
http://cds.cern.ch/record/2846414
https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/selection/thor_functors.html
https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master/selection/thor_functors.html
https://cds.cern.ch/record/2765896
https://gitlab.cern.ch/lhcb/Rec
https://doi.org/10.1088/1742-6596/2438/1/012118
https://doi.org/10.1088/1742-6596/2438/1/012118
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://cds.cern.ch/record/2730181
https://cds.cern.ch/record/2730181
https://lhcb-ap.docs.cern.ch/index.html
https://lhcb-ap.docs.cern.ch/index.html
https://isocpp.org/
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1016/S0010-4655(01)00254-5
https://www.python.org/
https://doi.org/10.22323/1.398.0829
https://doi.org/10.22323/1.398.0829
https://doi.org/10.1088/1742-6596/219/4/042006
https://doi.org/10.1088/1742-6596/219/4/042006
https://cds.cern.ch/record/2837189
https://cds.cern.ch/record/2837189
https://gitlab.cern.ch/lhcb/LHCb
https://www.boost.org/doc/libs/1_80_0/libs/regex/doc/html/index.html
https://www.boost.org/doc/libs/1_80_0/libs/regex/doc/html/index.html
https://www.boost.org/doc/libs/1_80_0/libs/spirit/doc/html/spirit/qi.html
https://www.boost.org/doc/libs/1_80_0/libs/spirit/doc/html/spirit/qi.html
https://gitlab.cern.ch/lhcb-conddb
https://gitlab.cern.ch/lhcb/Gaudi
https://twiki.cern.ch/twiki/bin/view/LHCb/FAQ/LoKiNewDecayFinders
https://twiki.cern.ch/twiki/bin/view/LHCb/FAQ/LoKiNewDecayFinders
https://twiki.cern.ch/twiki/bin/view/LHCb/FAQ/LoKiNewDecayFinders#Arrows
https://twiki.cern.ch/twiki/bin/view/LHCb/FAQ/LoKiNewDecayFinders#Arrows
https://twiki.cern.ch/twiki/bin/view/LHCb/FAQ/LoKiNewDecayFinders#Arrows
https://docs.pytest.org/en/7.1.x/
https://doi.org/10.1016/j.nima.2005.06.078
https://doi.org/10.1016/j.nima.2005.06.078
http://arxiv.org/abs/physics/0503191
https://cds.cern.ch/record/2867664
https://cds.cern.ch/record/2867664
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
http://pdg.lbl.gov/

	FunTuple: A New N-tuple Component for Offline Data Processing at the LHCb Experiment
	Abstract
	Introduction
	Design and Interface
	Finding Decays in an Event
	Retrieve Event and Decay Information
	Writing of Retrieved Information
	Test Suite, Examples and Performance

	Interface with Other Gaudi Algorithms
	Summary and Conclusions
	Acknowledgements
	References

