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Abstract
The LUXE experiment is a new experiment in planning in Hamburg, which will study quantum electrodynamics at the 
strong-field frontier. LUXE intends to measure the positron production rate in this unprecedented regime using, among oth-
ers, a silicon tracking detector. The large number of expected positrons traversing the sensitive detector layers results in an 
extremely challenging combinatorial problem, which can become computationally expensive for classical computers. This 
paper investigates the potential future use of gate-based quantum computers for pattern recognition in track reconstruction. 
Approaches based on a quadratic unconstrained binary optimisation and a quantum graph neural network are investigated 
in classical simulations of quantum devices and compared with a classical track reconstruction algorithm. In addition, a 
proof-of-principle study is performed using quantum hardware.
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Introduction

The Laser Und XFEL Experiment (LUXE) [1] at DESY 
and the European XFEL (Eu.XFEL) aims at studying 
strong-field Quantum Electrodynamics (QED) processes 
in the interactions of a high-intensity optical laser and the 
16.5 GeV electron beam of the Eu.XFEL ( e−–laser colli-
sions), as well as with high-energy secondary photons. A 
strong background field is provided by a Terawatt-scale laser 
pulse and enhanced by the Lorentz boost of the electrons, 
allowing LUXE to explore a previously uncharted intensity 
regime.

In this regime, one of the main goals of the LUXE experi-
ment is to measure the positron rate as a function of the laser 
intensity parameter � , defined as

where � is the fine structure constant, �L is the laser field 
strength, �L is the frequency of the laser, me is the electron 
mass, and �cr = 1.32 × 1018 V/m is the critical field strength, 
also known as the Schwinger limit [2]. The measured posi-
tron rate will be compared to theoretical predictions. When 
considering electron–laser collisions, the dominant process 
is the non-linear Compton scattering [3, 4]. In non-linear 
Compton scattering, the incident electron absorbs multiple 
laser photons, emitting a Compton photon, which can then 
interact again with the laser field to produce electron–posi-
tron pairs [5–7]. The expected number of positrons per 
bunch crossing (BX) as a function of � spans over five orders 
of magnitude in the range shown in Fig. 1.

(1)� =
√

4��
�L

�Lme

=
me�L

�L�cr
,

The measurement of the positron rate will be performed 
by a dedicated set of detectors comprising a silicon pixel 
tracker and a calorimeter. The wide range of expected posi-
tron rates poses a significant challenge to event reconstruc-
tion, especially within the tracker, where the large number of 
energy deposits could lead to finding spurious tracks that do 
not correspond to a real particle. The most relevant tracking 
challenge for this work is to maintain a linear dependence 
of the number of reconstructed tracks as a function of the 
number of charged particles in the event up to very high 
particle multiplicities.

This work investigates the potential future use of gate-
based quantum computers for pattern recognition in track 
reconstruction and compares the obtained performance to 
classical methods. Analogous studies have focused on track 
reconstruction in the proton–proton collision environments 
of the Large Hadron Collider and its upgrades, using quan-
tum annealers [8, 9], quantum associative memories [10] or 
quantum graph neural networks [11]. A review of various 
quantum computing algorithms studied for charged particle 
tracking can be found in Refs. [12, 13]. In this work, we pre-
sent an update of our previous study of track reconstruction 
with quantum algorithms at LUXE [14, 15].

This paper is organised as follows. A brief characterisa-
tion of the current proposed detector layout and the data-
taking environment is given in "The LUXE experiment" 
section. The data sets used in this study are presented in 
"Simulated data" section, together with the dedicated simu-
lation software. "Methodology" section presents the meth-
odology used for the reconstruction of the simulated data. 
The results are discussed in "Results" section, focusing first 
on classical simulations of quantum hardware and then pre-
senting a set of studies performed on quantum hardware 
(ibm_nairobi). The summary and conclusion are given in 
"Conclusion" section, while an outlook on future develop-
ments and work is discussed in "Outlook" section.

The LUXE Experiment

This work focuses on the reconstruction of the elec-
tron–laser collisions. In this setup, the electron beam from 
the Eu.XFEL is guided to the interaction point (IP), where it 
collides with a laser beam. The experiment plans to start tak-
ing data with a 40 TW laser, which will later be upgraded to 
reach 350 TW. The electrons and positrons produced in the 
electron–laser interactions are deflected by a 0.95 T dipole 
magnet and then detected by a positron detection system, as 
shown in Fig. 2.1
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Fig. 1  Number of positrons per bunch crossing produced in e−–laser 
collisions as a function of the laser field intensity parameter � , for dif-
ferent values of the laser power. Based on Ref. [1], with additional 
simulated events

1 LUXE uses a right-handed coordinate system with its origin at the 
nominal interaction point and the z-axis along the beam line. The 
y-axis points upwards, and the x-axis points towards the positron 
detection system.
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The outgoing positrons are detected using a silicon pixel 
tracking detector. The tracker consists of four layers, each 
comprising two ≈ 27 cm long staves placed next to each 
other, which overlap partially to avoid gaps in the coverage 
in the xy plane along the x coordinate, as illustrated in the 
figure. The layers are spaced 10 cm away from each other 
along the beam axis. The average thickness of the staves is 
0.357% of a radiation length. Each stave contains nine sen-
sors, composed of 512 × 1024 pixels of size 27 × 29 �m2 . 
The pixel sensors have a detection efficiency above 99%, a 
noise hit rate much below 10−5 and a spatial resolution of 
around 5 �m.

Simulated Data

Monte Carlo simulated event samples are used to perform 
this study. The calculation for the electron–laser interaction 
processes was performed with the PTARMIGAN [16] Monte 
Carlo event generation software. The electron beam param-
eters were chosen as follows. The incoming electron energy 
�e is set to 16.5 GeV, the beam spot size to �x = �y = 5 � m, 
�z = 24 � m, and the normalised emittance to 1.4  mm⋅

mrad. The simulation of the laser assumes a 40 TW laser, 
an energy after compression of 1.2 J and a pulse length of 
30 fs. The laser pulse is modelled as having a Gaussian pro-
file both in the longitudinal and in the transverse direction. 
The laser spot waist, which for a Gaussian pulse corresponds 
to 2� in intensity, decreases with � and varies between 6 � m 
and 3 �m.

The particles produced in the electron–laser interactions 
are propagated through the dipole magnet and tracking 
detector using a custom fast simulation that was developed 
for this study. The fast simulation uses parameterised smear-
ing functions to model the effects of multiple scattering and 
detector resolution. Furthermore, a simplified detector layout 
is considered. In this layout, the four detection layers are not 

split into two overlapping staves, but simply have a double 
length with no discontinuities.

To perform these studies, data sets corresponding to elec-
tron–laser interactions were generated with � values ranging 
from three to seven and a laser power of 40 TW. This cor-
responds to positron multiplicities ranging between 1 × 102 
and 7 × 104 . Figure 3 shows the resulting expected positron 
energy distribution for the three generated � values (top) 
and the number of hits/mm2 in the first detector layer as a 
function of the x and y coordinates for � = 7 (bottom). The 
double-peaked structure visible in the xy plane reflects the 
initial positron momentum distribution along the y-axis at 
the interaction point.

Methodology

The simulated data is then processed to find track candidates 
as described in this section.

Fig. 2  Schematic layout of the positron detection system in LUXE for 
the electron–laser setup. Adapted from Ref. [1]. The angle � repre-
sents the crossing angle of the Eu.XFEL and laser beams
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Fig. 3  Top: positron energy distribution for different values of � , nor-
malised to unit area. Based on Ref. [1], using the data sets generated 
for this work. Bottom: number of hits/mm2 in the first detector layer 
as a function of the x and y coordinates for � = 7
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The starting point for the pattern recognition are either 
doublets or triplets, defined as a set of two or three hits in 
consecutive detector layers. A pre-selection is applied to the 
initial doublet or triplet candidates to reduce the combinato-
rial candidates while keeping the efficiency as close as pos-
sible to 100% for the doublets and triplets matching with a 
real positron. Doublets are formed first and are required to 
satisfy a pre-selection based on the ratio �x∕x0 , where �x is 
the difference of the x coordinates for the two hits compos-
ing the doublet, while x0 indicates the x coordinate on the 
detector layer closest to the interaction point. A window of 
three standard deviations around the expected mean value 
of �x∕x0 for true doublets, as determined in the simulation, 
is used for this selection. This requirement ensures that the 
particles come from the IP.

Triplets are subsequently constructed by combining dou-
blet candidates that share a hit, where the second hit of a 
doublet is the first of the other, with a requirement on the 
maximum angle difference �� =

√

��2
xz
+ ��2

yz
 of the doublet 

pairs. Figure 4 illustrates the triplet construction and how 
��xz and ��yz are defined in the xz and yz planes. The maxi-
mum scattering threshold is chosen to be 1 mrad and was 
optimised taking into account multiple scattering with the 

detector material. Since triplets consist of three hits, they are 
formed either from the first to the third layer or from the 
second to the fourth layer.

Figure 5 shows the distributions of �x∕x0 for doublets 
(left) and �� for pairs of doublets (right) originating from 
true positron tracks, shown separately for low-energy 
( Ee+ < 3 GeV) and high-energy positrons ( Ee+ > 3 GeV), 
as well as the chosen thresholds. The distributions are 
obtained using � = 7 , but are generally �-independent. The 
�x∕x0 distribution shows a slight dependence on positron 
energy, while the triplet �� distribution demonstrates that 
the scattering is more pronounced for lower energy posi-
trons. The resulting pre-selection efficiencies are shown in 
Fig. 6 (left) for both doublet and triplet finding, in the case 
of electron–laser interaction for � = 7 . The pre-selection 
requirements are found to be nearly fully efficient for the 
whole energy range, with a moderate efficiency loss, at the 
level of 16% for positron energies below 2 GeV, mostly due 
to multiple scattering with the detector material. Figure 6 
(right) also shows the number of doublets and triplets pass-
ing the pre-selection criteria as a function of �.

Three pattern recognition methods are employed and sys-
tematically compared to reconstruct tracks from the detector 
hits. The first two methods employ a global pattern recog-
nition strategy that finds trajectories by processing all hits 
registered by the detector simultaneously. The first approach 
formulates the tracking problem as a quadratic unconstrained 
binary optimisation (QUBO), similar to the one used in Ref. 
[8], which is then processed with quantum algorithms. The 
second method uses a hybrid quantum-classical graph neural 
network approach [11], but is limited to specific scenarios 
compatible with the available devices. Finally, the results 
obtained with the quantum approaches are compared to an 

Fig. 4  Illustration of ��xz and ��yz in the xz and yz planes
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optimised classical approach based on a Kalman filter [17, 
18], which is taken to be the reference for the state-of-the-
art using no quantum computers. This approach differs from 
the first two by adopting a local strategy that generates track 
seeds from measurements in a localised detector region, and 
then extends the track candidate by searching for additional 
hits.

A summary of the data processing procedure is shown 
in Fig. 7.

Quadratic Unconstrained Binary Optimisation

In this approach, the pairs of triplet candidates that can be 
combined to form tracks are identified by solving a QUBO 
problem. The QUBO is expressed via the objective function:

where Ti and Tj are triplets of hits and ai and bij are real coef-
ficients. The triplets Ti and Tj assume binary values. The 
solution of the QUBO determines whether each triplet is 
considered false and rejected, by being set to zero, or true 
and selected, by being set to one. The linear term of the 
QUBO weighs the individual triplets by their quality quanti-
fied by the coefficient ai . The ai coefficient is set to the value 
of �� scaled to populate the [−1;1] range. The quadratic term 
represents the interactions between triplet pairs, where the 
coefficient bij characterises their compatibility. The coef-
ficient bij is computed from the doublets forming the two 
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∑
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Fig. 7  Diagram illustrating the overall data processing procedure
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considered triplets. It is taken to be the norm of the sum of 
the standard deviations of the doublet angles in the xy and 
yz planes, translated and scaled to populate the [−1; − 0.9] 
range. If the two triplets are in conflict, the coefficient bij is 
set to one. If the triplets do not share any hit, it is set to zero. 
The chosen ranges for the ai and bij values are the results 
of an empirical optimisation, which was found to lead to 
a performance competitive with that of the other methods 
investigated in this work.

The QUBO in Eq. (2) can be mapped to an Ising Hamilto-
nian by mapping Ti → (1 + Zi)∕2 , where Zi is the third Pauli 
matrix. Minimising the QUBO is equivalent to finding the 
ground state of the Hamiltonian. The Variational Quantum 
Eigensolver (VQE) [19] method, a hybrid quantum-classical 
algorithm, was used to find the ground state. In this work, 
the data is processed using the VQE implementation avail-
able in the Qiskit [20] library. Most results rely on clas-
sical simulations of quantum circuits, where no sources 
of noise or decoherence are included, and a simple ansatz 

with RY gates and a linear CNOT entangler is chosen, as 
shown in Fig. 8. An ansatz with CNOTs between all pos-
sible pairs and a single circuit repetition was found to lead 
to results compatible within statistical uncertainties, but 
was discarded for simplicity. The selected optimiser is the 
Nakanishi–Fujii–Todo (NFT) [21] algorithm. The ansatz and 
optimiser were selected as those leading to the highest track 
reconstruction efficiency in previous work [15].

The number of qubits required to represent the tracking 
problem as a QUBO is determined by the number of triplet 
candidates. Due to the limited number of qubits available 
on the current quantum devices, the QUBO in this work 
is partitioned into QUBOs of smaller size (referred to as 
sub-QUBOs) to be solved sequentially. For small enough 
sub-QUBO sizes, such as the size 7 used in this work, an 
exact solution using matrix diagonalisation is possible and 
is used as a benchmark.

Figure 9 summarises the QUBO solving process. At the 
beginning of the processing, all triplet candidates are set to 
1. The splitting into sub-QUBOs is done by extracting the 
sub-QUBO matrices of the desired size, by picking triplets 
in order of their impact. The impact is defined as the change 
in the value of the objective function when Ti → 1 − Ti . 
Each triplet is assigned an additional constant term rep-
resenting the sum of all interactions with triplets outside 
of the sub-QUBO to retain sensitivity to the connections 
outside of each sub-QUBO when computing the value of 
the objective function. After the sub-QUBOs are solved, 
the solution is combined. These steps are repeated for a 
number of QUBO iterations. The triplets selected by the 
QUBO minimisation are retained and matched to form track 
candidates.

Fig. 8  Layout of the variational quantum circuit using the ansatz with 
RY gates and a linear CNOT entangling pattern. For simplicity, only 
four qubits are shown

Fig. 9  Diagram illustrating the QUBO solving procedure
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Alternative algorithms for finding the optimal QUBO 
solution, such as the Quantum Approximate Optimisation 
Algorithm (QAOA) [22], were briefly investigated and were 
found to lead to significantly worse performance. A dedi-
cated optimisation and characterisation of the results of such 
alternative algorithms is left to future work.

Quantum Graph Neural Network

This approach is based on a graph neural network (GNN) 
[23, 24] that consists of both classical neural network layers 
and quantum circuits. The graph is constructed from dou-
blets, where the hits are nodes and the connections between 
the hits are edges. All nodes of consecutive layers are con-
nected and only the ones that satisfy the pre-selection cri-
teria are kept. The quantum graph neural network (QGNN) 
model follows the implementation of Ref. [11] and consists 
of three networks. First, the InputNet takes the input node 
features, i.e. the three spatial coordinates, and produces 
hidden node features. For this purpose, a single fully con-
nected neural network layer that has 10 neurons with a tanh 
activation function is used. Second, the EdgeNet takes all 
connected node pairs as input and produces a scalar edge 
feature for each of them using a sigmoid activation function. 
This will later be the prediction score of the model for each 
doublet, as this model is essentially a segment classifier. Cir-
cuit 10 with two layers and 10 qubits is selected for this task 
based on previous work [11]. Each layer of this circuit uses 
RY gates and linear CNOT entanglers between all possible 
pairs of qubits. Third, the NodeNet considers each node and 
its connecting nodes to update the hidden node features. The 
architecture of the NodeNet is similar to EdgeNet, but it uses 
the tanh activation function for the last layer, as the NodeNet 
is an intermediate step, and sigmoid activation functions are 
known to lead to vanishing gradients.

The quantum graph neural network model first starts 
with the InputNet. Then, the EdgeNet and the NodeNet are 
applied alternately four times to allow the node features 
to be updated using farther nodes, as determined in a scan 
of the optimal model parameters. At the end, the EdgeNet 
is applied one last time to obtain the predictions for each 
doublet connection. Finally, the edges are discarded if the 
prediction value is less than a fixed threshold (chosen to be 
0.5 in our simulations) and the rest are retained and used to 
form track candidates.

Combinatorial Kalman Filter

A tracking algorithm based on A Common Tracking Soft-
ware (ACTS) toolkit [25] with the combinatorial Kalman 

Filter (CKF) technique for track finding and fitting is used as 
a benchmark. In this classical tracking method, track finding 
starts from seeds, which are the triplets formed from the first 
three detector layers. To avoid a combinatorial growth in the 
number of seeds at high particle density, further constraints 
are placed on seeds sharing the same hits by prioritising the 
better-aligned seeds. An initial estimate of track parameters 
is obtained from the seed and is used to predict the next hit 
and is updated progressively, with the measurement search 
performed at the same time as the fit.

Final Track Selection

A final step in the track reconstruction is common to all con-
sidered methods. Track candidates are required to have four 
hits and, as explained in the previous subsections, can be 
found with the QUBO approach that combines triplets into 
quadruplets (see "Quadratic unconstrained binary optimisa-
tion" section), by employing the QGNN approach that com-
bines doublets into quadruplets (see "Quantum graph neural 
network" section), or by using the classical CKF method (see 
"Combinatorial Kalman filter" section). After finding these 
track candidates, the final tracks now have to be selected 
among these candidates, using a final step explained in the 
following.

The track candidates are fitted to straight lines with the 
least-square method, as the particles propagate through the 
tracking detector in absence of a magnetic field. A track can-
didate is considered matched if it has at least three out of four 
hits matched to the same particle. Figure 10 (left) shows the 
duplication rate, i.e. the fraction of matched particles that are 
matched to more than one track candidate, as a function of � . 
The substantially larger duplication rate of the CKF technique 
is due to this method being a local approach with no knowl-
edge of the overall BX, unlike the QUBO and QGNN-based 
approaches.

To resolve the overlaps between the track candidates and 
to reject fake tracks, an ambiguity resolution step is per-
formed. The track candidates are scored based on the �2/ndf 
of the track fit and the number of shared hits with other track 
candidates. The track candidates with the most shared hits 
are evaluated first. They are compared to the other track can-
didates sharing the same hits, and the ones with worse �2/ndf 
of the track fit are rejected. The procedure is repeated until all 
remaining tracks have up to one shared hit. Figure 10 (right) 
shows the effect of the ambiguity resolution on matched and 
fake tracks for a QUBO solved using matrix diagonalisation 
in a BX with � = 7 . This scenario was selected to show the 
effect for the highest particle multiplicity considered in this 
work.
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Results

Studies with Classical Hardware

The results presented in the following are obtained on clas-
sical hardware, including classical simulations of quantum 
hardware. A set of studies performed on quantum hardware 
(ibm_nairobi) will be presented in "Studies with quantum 
hardware" section. The performance of various tracking 
methods is assessed using the efficiency and the fake rate as 
metrics, which are computed on the final set of tracks. The 
efficiency and fake rate are defined as

Figure 11 shows the average track reconstruction efficiency 
(top) and fake rate (bottom) as a function of the laser field 
intensity parameter � for all tested approaches: QUBO-
based tracking (both with the approximate solution obtained 
with VQE and the exact solution via matrix diagonalisa-
tion), QGNN-based tracking, and conventional CKF-based 
tracking.

The performance of CKF-based tracking is used as a 
state-of-the-art benchmark. The excellent performance of 
the classical method deteriorates with � , because of the 

Efficiency =
Nmatched
tracks

N
generated

tracks

and

Fake rate =
Nfake
tracks

Nreconstructed
tracks

.

increasing hit density. The results using the exact matrix 
diagonalisation to solve the QUBO are well aligned with 
the CKF algorithm and achieve a higher efficiency by 1–2% 
for large values of � at the cost of an increase in the fake 
rate of approximately a factor of two. The rate of purely 
combinatorial tracks, i.e. tracks reconstructed from four hits 
belonging to four distinct positrons, accounts for about 50% 
of the total fake rate, independently of the reconstruction 
algorithm considered. The results for VQE are in excellent 
agreement, within the statistical uncertainties, with those 
from the matrix diagonalisation.

The results for the QGNN-based tracking are shown up to 
� = 4 , above which simulating the quantum circuits becomes 
computationally prohibitive with the currently available 
resources. The reconstruction efficiency is found to be com-
patible with the other methods, with a substantially higher 
fake rate. Further work aimed at optimising the selection 
of the EdgeNet predictions could mitigate this effect. The 
QGNN results were validated by implementing a classical 
GNN [23, 24] with the same architecture, but with 128 node 
hidden features, finding excellent agreement. For � = 3 , two 
values of QGNN efficiency are shown. The empty triangle 
is the result based on 100 BXs, i.e. the same number of BX 
used to evaluate the performance of the CKF and QUBO-
based methods, using 90% of the data for the training of 
the model and 10% for the inference. Because of the mod-
est particle multiplicity expected at � = 3 , the number of 
true tracks used in the QGNN training is too small to obtain 
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the QUBO approach with exact matrix diagonalisation, shown sepa-
rately for matched (blue) and fake (red) track candidates. The dashed 
lines represent the track candidates from the QUBO solution, while 
the solid lines represent the selected tracks after the resolution of 
reconstruction ambiguities
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an optimal result. The full triangles show the efficiency 
obtained with the QGNN training based on data generated 
with � = 4 , which corresponds to a substantially larger set 
of true tracks, restoring a higher efficiency.

The dependence of the track reconstruction efficiency on 
the GNN-based approaches was further studied in e−–laser 
collisions with � = 3 , comparing the results obtained with 
the QGNN and with a classical GNN for different numbers 
of true tracks used in the training. The findings are presented 
in Fig. 12. The efficiency results for the largest track multi-
plicity of both GNNs are obtained performing the training 
on events with a larger value of � = 5 for the classical GNN 
and � = 4 for the QGNN. All other data points are obtained 
by increasing the number of BXs considered at � = 3 . While 
it is not expected for the QGNN and the classical GNN to 

perfectly overlap in performance because of the slightly 
different model architectures, the results show compatible 
trends when considering additional data for a fixed value of 
� and using models trained on BXs with larger �.

Figure 13 shows the track reconstruction efficiency (top) 
and fake rate (bottom) as a function of the true positron 
energy for the case of � = 5 , for the CKF and QUBO-based 
methods. The methods show similar behaviours, with a 
decrease in the region corresponding to the highest detector 
occupancy. Because of effects coming from the propagation 
through the magnetic field and from the longitudinal size of 
the interaction region, the maximum occupancy shown in 
Fig. 3 does not correspond to the maximum of the positron 
energy distribution. The reduced efficiency of the QUBO-
based methods for positrons with an energy below 3 GeV is 
dominated by the pre-selection efficiency shown in Fig. 6 
(left).

The average energy resolution of the reconstructed tracks 
was also compared between the different methods. The track 
energy resolution was found to be 0.5% and independent, 
within the statistical uncertainty, of the reconstruction 
method of the analysed data set.

Studies with Quantum Hardware

This section presents a detailed assessment of the perfor-
mance of the VQE algorithm on QUBOs of size seven, 
chosen to be the same as the sub-QUBO size used for the 
results based on classically simulated VQE in "Studies with 
classical hardware" section.
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A QUBO representing two nearby particles, leading to a 
total of seven triplets, was selected for this test. The VQE 
method was applied first in an exact classical simulation 
assuming an ideal quantum device with shot noise only, then 
in a classical simulation involving a noise model extracted 
from a snapshot of the measured noise of the ibm_nairobi 
device (fake_nairobi) and finally using real quantum hard-
ware (ibm_nairobi).

For each of these scenarios, 512 circuit evaluations 
(shots) were considered. When performing the computa-
tions with fake_nairobi and ibm_nairobi, a measurement 
error mitigation based on the generation of a calibration 
matrix was used [26, 27]. The readout error probabili-
ties were calibrated every 30 function evaluations of the 
optimiser.

Figure 14 shows the probabilities of the returned results 
for these three scenarios, where the correct binary solution 
0001111 is also the most probable.

Conclusion

This work investigated the use of hybrid quantum-classical 
algorithms for particle track reconstruction. Focusing on a 
VQE approach for a QUBO formulation of track reconstruc-
tion and a QGNN approach, the performance of these hybrid 
quantum-classical methods was compared to results obtained 
from a state-of-the-art classical tracking method.

In order to produce these results, a standalone fast simu-
lation of the LUXE tracking detector was put in place as 
well as a software framework to reconstruct tracks up to 
the maximum number of positrons expected during the data 
taking with a laser power of 40 TW.

The results were analysed in terms of reconstruction effi-
ciency, fake rate and energy resolution. Hybrid quantum-
classical algorithms were found to lead to competitive results 
when compared to classical algorithms. For large particle 
multiplicities, a QUBO approach based on VQE using a 
classical simulation of a quantum device was found to have 
moderately higher efficiency than classical tracking, but with 
a significant increase in the fake rate. It was not possible, 
due to limitations in the computing resources, to evaluate 
the performance of the approach based on QGNNs beyond 
a few thousand charged particles.
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Outlook

In this work, it was observed that the impact-based process-
ing order leads to a significant fraction of trivially solvable 
sub-QUBOs with no interacting triplets. Future work will be 
aimed at developing alternative algorithms for determining 
the ordering of the triplet candidates used to construct the 
sub-QUBOs. To further reduce the computation time and 
the rate of fake tracks reconstructed with this method, future 
work will focus on optimising the scaling ranges for the ai 
and bij coefficients.

While the initial study of the VQE performance on real 
quantum hardware (ibm_nairobi) yielded promising results, 
a more systematic study of hybrid quantum-classical algo-
rithms using NISQ-era devices will be performed in future 
work.

Finally, the choice of the optimiser used for VQE has a 
significant impact on the probability to find the true mini-
mum of the cost function, and a careful optimisation will be 
required when considering larger sub-QUBO sizes.
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