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Abstract
We study the performance of a cloud-based GPU-accelerated inference server to speed up event reconstruction in neutrino 
data batch jobs. Using detector data from the ProtoDUNE experiment and employing the standard DUNE grid job submis-
sion tools, we attempt to reprocess the data by running several thousand concurrent grid jobs, a rate we expect to be typical 
of current and future neutrino physics experiments. We process most of the dataset with the GPU version of our processing 
algorithm and the remainder with the CPU version for timing comparisons. We find that a 100-GPU cloud-based server is 
able to easily meet the processing demand, and that using the GPU version of the event processing algorithm is two times 
faster than processing these data with the CPU version when comparing to the newest CPUs in our sample. The amount of 
data transferred to the inference server during the GPU runs can overwhelm even the highest-bandwidth network switches, 
however, unless care is taken to observe network facility limits or otherwise distribute the jobs to multiple sites. We discuss 
the lessons learned from this processing campaign and several avenues for future improvements.

Keywords Machine learning · Heterogeneous (CPU+GPU) computing · GPU (graphics processing unit) · Particle physics · 
Cloud computing (SaaS) · Neutrino physics · Distributed computing

Introduction

Machine learning (ML)-based algorithms have been widely 
used in the field of neutrino physics, for applications rang-
ing from data acquisition to data reconstruction and analy-
sis [1–4]. A detector technology ideally suited for computer 
vision applications in neutrino physics is that of liquid argon 
time projection chambers (LArTPCs), which are employed 
by the Deep Underground Neutrino Experiment (DUNE) [5] 
and Short-Baseline Neutrino [6] experiments. ML applica-
tions are now deeply integrated into the event reconstruction 
and data analyses for the LArTPC experiments [7–9].

The basic unit of data is a trigger record, also known as an 
event or event record, which consists of a series of time sam-
ples of detector readout channels at a fixed interval within a 
total specified time window. The number of channels, sam-
pling rate, and readout window vary by experiment. Event 
record sizes for the current generation of LArTPC experi-
ments are typically ≤1 GB and are expected to increase in the 
next few years. With increased event size, the event recon-
struction, especially the inference of ML algorithms, will 
become a challenge. Additionally, neutrino detectors are sen-
sitive to neutrinos from a core-collapse supernova in or near 
the Milky Way. One of DUNE’s physics goals is to rapidly 
reconstruct detector trigger records from such a supernova to 
provide rapid localization information to optical telescopes, 
placing a premium on short event reconstruction times. We 
have demonstrated GPU-accelerated ML inference as a ser-
vice, which significantly reduced the reconstruction time for 
simulated neutrino events in the ProtoDUNE experiment 
[10]. Later, we tested the same GPU-as-a-Service (GPUaaS) 
approach to process the entire ProtoDUNE Run I dataset 
to demonstrate the scalability of this method. This paper 
reports the results of those tests.
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Infrastructure Setup and Methods

ProtoDUNE Description

The ProtoDUNE single phase detector (ProtoDUNE-
SP) [11, 12] is a liquid argon time projection chamber 
(LArTPC) that serves as a prototype for the first far detec-
tor module of DUNE [5]. The ProtoDUNE-SP is installed 
at the CERN Neutrino Platform [13]. It has an active vol-
ume of 7.2 × 6.1 × 7.0 m 3 . The TPC wires are read out 
by 15,360 electric channels at a rate of 2 MHz. A typical 
event record consists of 6000 time samples, corresponding 
to a 3 ms time window. Between October 10 and Novem-
ber 11, 2018, ProtoDUNE-SP was exposed to a beam that 
delivers charged pions, kaons, protons, muons and elec-
trons with momenta in the range 0.3 GeV/c to 7 GeV/c. 
After the beam runs ended, ProtoDUNE-SP continued to 
collect cosmic ray and calibration data until July 20, 2020, 
after which the detector decommissioning started. The 
total number of trigger records during the beam period, 
which consist of both beam interactions and non-beam 
interactions such as cosmic rays, is approximately 7.2 
million.

A ProtoDUNE-SP TPC waveform recorded by a single 
electric channel consists of both signals and noise. There 
are typically three sources of signals. During the beam 
runs, the beam particles can interact with the liquid argon 
inside the TPC and produce both ionization electrons and 
scintillation light. Since ProtoDUNE-SP is located on 
the Earth’s surface, it is subject to a large flux of cosmic 
ray muons, which induce signals over the entire detector. 
There are also radioactive backgrounds such as 39 Ar that 
generate low energy signals on the scale of a few hundred 
keV to a few MeV. Figure 1 shows the event display of a 
6 GeV/c pion interaction in the ProtoDUNE-SP detector.

The first step in the reconstruction of events in the TPC 
is the signal processing. The goal of this stage is to produce 
distributions of charge arrival times and positions given the 
input TPC waveforms. The effects of induced currents due 
to drifting and collecting charge, as well as the response of 
the front-end electronics, are removed through de-convolu-
tion. The charge arrival distributions are used in subsequent 
reconstruction steps, starting with hit finding. The hit find-
ing algorithm fits peaks in the wire waveforms, where a hit 
represents a charge deposition on a single wire at a given 
time. Each hit corresponds to a fitted peak. The hits are input 
to pattern recognition algorithms such as Pandora [14–16]. 
This stage finds the high-level objects associated with parti-
cles, like tracks, showers, and vertices, and assembles them 
into a hierarchy of parent-daughter nodes that ultimately 
point back to the candidate neutrino interaction. More details 
on the reconstruction workflow are described in Ref. [11].

In ProtoDUNE-SP, a novel algorithm is developed based 
on a convolutional neural network (CNN) to perform the 
classification of each reconstructed hit as track-like or aris-
ing from electromagnetic cascades [9]. These hit-level clas-
sifications can be used alongside pattern recognition based 
reconstruction algorithms such as Pandora to refine the track 
or shower classification of reconstructed particles. The CNN 
model was trained using TensorFlow [17]. In the DUNE 
code base this algorithm is known as EmTrkMichelId; here-
after, we call this algorithm EmTrk.

In order to improve the efficiency and speed of the infer-
ence of ML algorithms in a large-scale data processing, GPU 
acceleration specifically for the ProtoDUNE-SP reconstruc-
tion chain has been integrated without disrupting the native 
computing workflow using the services for optimized net-
work inference on coprocessors (SONIC) approach [10, 18]. 
With the integrated framework, the most time-consuming 
task, track and particle shower hit identification, runs faster 
by a factor of 17. This results in a factor of 2.7 reduction in 

Fig. 1  A 6 GeV/c beam �+ 
interaction in the ProtoDUNE-
SP detector [11]. The x axis 
shows the wire number. The y 
axis shows the time tick in the 
unit of 0.5 μ s. The color scale 
represents the charge deposition
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the total processing time when compared with CPU-only 
production. This initial test using a small number of simu-
lated ProtoDUNE-SP events showed a viable, cost-effective 
way to solve the computing challenge facing the neutrino 
experiments. In this work, we report the results of reprocess-
ing the entire 7 million ProtoDUNE-SP events taken during 
the test beam runs with the SONIC-enabled framework.

Inference Server Setup

The Nvidia  Triton™ Inference Server is an open-source 
inference serving software that helps standardize model 
deployment and execution; its goal is to deliver fast and scal-
able AI in production [19]. NVIDIA provides multiple ways 
to deploy the inference server on different cloud providers 
and infrastructure types, including both bare metal and con-
tainerized workloads.

This study uses a cloud-based deployment of Nvidia 
 Triton™ Inference Server within a Google Cloud Kuber-
netes Engine [20] cluster on virtual infrastructure provided 
by Google Cloud Platform. The use of this technology ena-
bles us to deploy a flexible GPUaaS model where a pub-
lic endpoint takes remote inference requests from various 

geographically distributed sources as depicted in Fig. 2. The 
 Triton™ server running on the Google cloud supports dif-
ferent backends. We use the TensorFlow (version 1.15.5) 
backend for the inference of the EmTrk algorithm.

In a similar way as Ref. [10], this study uses several 
 Triton™ servers split into separate Kubernetes deployments 
with common services for networking and external load bal-
ancing in the form of ingress objects [21]. One significant 
improvement for the current study is the deployment of met-
rics and monitoring which provided us with observability 
within the system in different states. In IT and cloud comput-
ing, observability is the ability to measure a system’s current 
state based on the data it generates, such as logs, metrics, 
and traces. It relies on telemetry derived from instrumenta-
tion that comes from the endpoints and services in com-
puting environments.  Triton™ provides a built-in metrics 
endpoint [22] that publishes plain-text data in Prometheus 
format [23].

Methods

The DUNE collaboration undertook a production campaign 
in 2021 to process ProtoDUNE-SP data using the LArSoft 

Fig. 2  ProtoDUNE GPUaaS component diagram depicting local and remote batch inference runs submitted from Fermilab and OSG Grid sites
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toolkit [24] version v09_30_00. Each production run dur-
ing the beam period comprises several data files, each con-
taining between 100 and 150 data records. In contrast to 
the previous work, in which DUNE simulation events were 
processed by submitting jobs locally to a dedicated queue, 
we submit jobs to process each file via the current standard 
DUNE workflow management and job submission systems 
[25, 26], thus requiring no special treatment. Jobs may run 
either at Fermilab or one of several remote sites that we 
reach with opportunistic access enabled by the OSG Con-
sortium [27].

We begin from the existing reconstructed outputs and 
apply the updated EmTrk algorithm to produce new outputs. 
Of the 7.2 million ProtoDUNE events during the 2018 beam 
period, we process 6.4 million through the SONIC infra-
structure, and 800k with the CPU-only version of the same 
algorithm for comparison. The OSG sites included in the 
SONIC runs were chosen to be geographically proximate to 
the location of the Google Cloud GPU servers (which were 
in Iowa, USA at the time) in order to minimize the latency 
in data transmissions. Latency between the sites and Google 
Cloud server as measured by the ping utility was typically 
between 15 and 20 ms.

The difference in the time spent in the inference step is 
the primary metric with which we assess the advantage of 
GPUaaS over traditional CPU processing. Each job produces 
a log file that statistically summarizes the time spent on each 
stage of the event reconstruction for the job as a whole. The 
log has no record of per-stage processing time at the individ-
ual event level, but we can closely approximate it by taking 
the difference between the start times of consecutive events. 
We estimate the per-event EmTrk duration by subtracting the 
median non-EmTrk duration from the total event duration, 
as the non-EmTrk stages display very little time variation 
across events. The CNN-based hit classification occurs in 
the EmTrk stage and is the most time-consuming step in the 
event reconstruction, typically accounting for more than 90% 
of the processing time.

Results

CPU‑Only Runs

We process a set of 13 runs using CPU-based TensorFlow 
both at Fermilab and several off-site locations. The off-site 
locations are the University of Notre Dame, the University 
of Victoria, and the high performance computing center 
at Wayne State University. The TensorFlow version used 
in the CPU-only runs is 2.3.1. Although the TensorFlow 
version differs from that used in the backend for the GPU 
runs, the main differences between the two versions concern 
additional support for advanced CPU instruction sets. We 

therefore do not expect any significant performance differ-
ences between the two versions in the GPU case. Table 1 
summarizes the number of events processed at each site and 
the median processing times. We did not request any specific 
CPU type when submitting these jobs since typical DUNE 
practice is to use any and all available CPU types.

There is a clear dependence on processor type in the 
EmTrk processing time distribution. In general, more recent 
CPUs process events faster. Figure 3 shows the CPU-based 
EmTrk timing for each of the CPU types currently available 
on the Fermilab general purpose batch farm. We do not have 
access to CPU type information outside of Fermilab and thus 
group them together.

GPU Runs

Our main processing effort uses the GPUaaS infrastructure 
as described. Figure 4 shows the average EmTrk processing 
time when using the GPUaaS infrastructure for our entire 

Table 1  List of CPU-only run sites and median processing time

OSG Site N samples Median 
processing 
time (s)

FermiGrid 746,603 79
Notre Dame 36,082 68
Victoria 10,944 52
Wayne State 4242 45

Fig. 3  Timing distributions for CPU-only runs, broken down by CPU 
type
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running period. The first peak at approximately 20 s repre-
sents a factor of two improvement with respect to the fastest 
CPU-only runs, and a factor of roughly 11 over the slow-
est CPU runs. It is important to note that the EmTrk times 
we report here are wall times measured within the job, and 
thus include contributions from network latency to and from 
the server. There is another peak in the distribution with a 
median of over 100 s, to which we now turn.

Outbound Network Saturation

During the first period of GPU running we averaged between 
200 and 2000 concurrent jobs. Figure 5 shows the overlay 
of network traffic and event processing start rate during the 
period of September 30, 2021 to October 6, 2021. As the 
event start rate increases because of the rise in the number 
of concurrent jobs, we see that the 100 Gb/s outbound net-
work connection used by the Fermilab data center where 
the jobs run becomes saturated. While our jobs were not 
solely responsible for the saturation (the connection serves 
the entire cluster), the saturation did result in a significant 
increase in the average EmTrk processing time as shown in 
Fig. 6. The highest job concurrency levels were on Octo-
ber 5, when unusually low demand for computing resources 
from other Fermilab experiments resulted in a large num-
ber of opportunistic job slots being available at Fermilab. 
We were, without any direct intervention, thus able to scale 
up to approximately 6000 concurrent jobs. The monitoring 
does show switch saturation as early as October 1, however. 
After learning of the network saturation we implemented a 
concurrency limit on jobs of approximately 600; thereafter 

the jobs ran without incident and the EmTrk times returned 
to pre-saturation levels (see Fig. 7).

Discussion

In order to understand the impact of ProtoDUNE jobs on the 
Fermilab network traffic, we plot the distribution of event 
processing start rate versus network traffic in Fig. 8. Even 
though the network traffic has contributions from all grid 
jobs at Fermilab, there is a clear correlation between the 
number of ProtoDUNE concurrent jobs and the increase of 
network traffic. We fit a straight line to the data points below 
the network traffic of 80 Gb/s. The slope of the best fit line 
is 4.2 ± 0.2 Gb, which is the average outbound data trans-
mission per event. The intercept is 44 ± 2 Gb/s, which is the 
average traffic from non-ProtoDUNE grid jobs. Based on 
the discussion of transmission time in Ref. [10], for 55,000 
inferences per event, with each input a 48 × 48 image at 32 
bits, the total amount of data transmitted is about 4.1 Giga-
bits per event. This is consistent with the slope of the best fit 
straight line. The spread in data with respect to the straight 
line could be caused by the variation in the number of non-
ProtoDUNE grid jobs during this period.

Figure  7 indicates that the average processing time 
is roughly 25  s/event for the GPU jobs. Assuming the 
entire 100 Gb/s bandwidth is available to the Proto-
DUNE jobs, the maximum number of concurrent Proto-
DUNE jobs we can run without saturating the network is 
(100 Gb/s)∕(4.1 Gb/event) ⋅ (25 s/event) ≃ 600 .  This  is 

Fig. 4  Average EmTrk times for GPU runs during the period Septem-
ber 30, 2021 to October 20, 2021. The double peak structure arises 
from periods during which the outbound network connection from the 
Fermilab grid processing center was saturated

Fig. 5  Overlay of network traffic and event processing start rate at 
FermiGrid as a function of time, which is a proxy for the number of 
concurrent jobs. The origin day is September 30, 2021. The solid line 
is the event start rate, the blue dot-dash line is the outbound network 
traffic rate through the 100 Gb/s switch at Fermilab used by the batch 
processing cluster, and the black dashed line is the ingress rate to the 
Google cloud server. We are unable to disambiguate traffic sources 
through the switch, so the blue dot-dash line represents the total traf-
fic as opposed to only traffic generated by our processing campaign. 
We see that the network switch was effectively saturated in multiple 
instances, though Google ingress was not
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consistent with the concurrency limit of 600 jobs that we 
implemented after October 7.

Based on the above discussions, we conclude that, while 
overall computational time clearly decreases using GPUaaS, 
one does have to take particular care to understand what the 
expected data movement requirements will be for jobs using 
this architecture, and to set job concurrency limits appropri-
ate to the capabilities of each local computing site and input 
data source. HTCondor [28, 29] in particular has the ability 
to define an arbitrary kind of resource that each job requires; 
one could define a “bandwidth” resource for these jobs, for 
example. HTCondor additionally allows configuring the job 
submissions to prevent more jobs to start at a given site once 
the sum of consumed resources by running jobs at that site 
reaches a certain threshold. Therefore, if one knows the total 
network capacity of each site hosting jobs, one can config-
ure per-site job limits and prevent network saturation in an 
automated way.

Future Improvements

A number of improvements to overall scalability and ease of 
use are possible. In addition to automatic job concurrency 
limits to prevent network saturation as previously described, 
we are exploring the possibility of compressing the data sent 
to the GPU server to reduce the overall bandwidth require-
ments. While a reduced payload would obviously increase 
job concurrency limits, that must be balanced against the 
additional run time that would be introduced in compressing 
and decompressing the data on the worker node and server, 
respectively. Another desirable area of improvement is in 
overall ease of use and human effort requirements. In the 
current setup we make use of the standard DUNE Production 
job submission infrastructure, which allows for a high degree 
of automated job submission, but due to the current nature of 
the cloud server it requires an authorized individual to man-
ually instantiate the GPU inference server before we submit 
jobs. Establishing a method of automatically instantiating 
the server at job submission time and automatically ramping 
it down when the associated jobs are complete would avoid a 
clear possible failure point should no authorized individuals 
be available when the infrastructure is needed.

A second option to study is to use several geographi-
cally distributed inference servers instead of a single 
server, while also spreading the job workload over a 
much broader range of sites. Expanding the site pool has 
the advantage of making it much less likely that any sin-
gle site would get enough work assigned to saturate its 
external connectivity, and using several inference servers 
spread around the world would help to mitigate the poten-
tial problem of network latency becoming comparable to 
the inference time. The cost changes in this scenario (for 
example, the relative cost of three cloud servers versus a 

Fig. 6  The average EmTrk duration before Oct. 7 as a function of the 
total network traffic through the 100 Gb/s network switch at Fermilab 
used by the batch processing cluster. The top plot shows the real event 
rate. The bottom plot is the same as the top one, with each column 
scaled separately so the maximum amplitude is 1 for each column

Fig. 7  The average time spent in the EmTrk task for all GPU jobs 
after October 8, when the network saturation had subsided
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single server three times the size) must be assessed and 
taken into account. Another consideration is how the over-
all event processing times would change if the worker 
nodes were much more geographically diffuse than they 
were for this study. Since we stream the input data over 
the network, longer network paths between the worker 
nodes and input data sources may lead to the non-EmTrk 
portions of the event processing taking longer, which in 
turn affects the total event processing time. DUNE is able 
to distribute data to various storage elements around the 
world via the Rucio framework [30], and pre-placing the 
data of interest at storage elements close to the sites to be 
used for processing may mitigate such concerns, though 
it is not required.

Another potential avenue is to use the GPU server infra-
structure, but to use sites with GPUs available on the worker 
nodes, and run an independent server on each worker node. 
Several high-performance computing sites have built or are 
building clusters with readily available GPUs, and in some 
cases with multiple GPUs on each worker node, that would 
naturally lend themselves to such a setup. If the jobs run 
on worker nodes with local GPUs, external network con-
nectivity limitations become unimportant for carrying out 
the inference calculations. In fact,  Triton™ allows the use of 
shared memory for direct data transfer between CPU and 
GPU when the GPU is local. While it may not be neces-
sary to retain the server infrastructure in these cases, the 
advantage of doing so is that the experiment software does 
not have to be modified to directly access the GPU, making 
it maximally portable and easier to maintain. We plan to 
conduct a similar study using this type of setup in the future.

Summary

We have reprocessed approximately seven million data 
events from the ProtoDUNE detector installed at CERN. 
We use an Nvidia  Triton™ inference server hosted on the 
Google Cloud Platform to run the most computationally 
expensive step of the workflow on a GPU, speeding up 
the required processing time by more than a factor of two, 
even comparing to the fastest CPU runs. Running at a 
scale similar to that expected during regular ProtoDUNE-
II and DUNE operations, we see the expected performance 
improvement until the network switch through which the 
majority of our jobs communicate becomes saturated. 
Despite that, the cloud infrastructure easily kept up with 
demand and demonstrates the viability of the GPUaaS 
model at a level sufficient for current and future high-
energy physics experiments, as long as the job concur-
rency levels at each site respect the site’s network resource 
limits. With several promising avenues of improvement to 
explore, we expect that this computing model will become 
even more capable and easier to use in the future.
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