
Vol.:(0123456789)1 3

Computing and Software for Big Science (2023) 7:7
https://doi.org/10.1007/s41781-023-00100-1

RESEARCH

Lightweight Integration of a Data Cache for Opportunistic Usage
of HPC Resources in HEP Workflows

Dirk Sammel1 · Michael Boehler1 · Anton J. Gamel1,2 · Markus Schumacher1

Received: 15 February 2023 / Accepted: 30 June 2023
© The Author(s) 2023

Abstract
A data caching setup has been implemented for the High Energy Physics (HEP) computing infrastructure in Freiburg,
Germany, as a possible alternative to local long-term storage. Files are automatically cached on disk upon first request by a
client, can be accessed from cache for subsequent requests, and are deleted after predefined conditions are met. The required
components are provided to a dedicated HEP cluster, and, via virtual research environments, to the opportunistically used
High-Performance Computing (HPC) Cluster NEMO (Neuroscience, Elementary Particle Physics, Microsystems Engineering
and Materials Science). A typical HEP workflow has been implemented as benchmark test to identify any overhead intro-
duced by the caching setup with respect to direct, non-cached data access, and to compare the performance of cached and
non-cached access to several external files sources. The results indicate no significant overhead in the workflow and faster
file access with the caching setup, especially for geographically distant file sources. Additionally, the hardware requirements
for various numbers of parallel file requests were measured for estimating future requirements.

Keywords Caching · Particle physics · Benchmarks · Data analysis · HPC

Introduction

With the start of the High-Luminosity Large Hadron Col-
lider (HL-LHC) [7] in the near future, the amount of data
collected by the LHC experiments will increase significantly
and reach, e.g., for the ATLAS experiment, at least 1 Exa-
byte in 2030 [3]. Distribution, storage, and processing of the
data are important tasks of the Worldwide LHC Comput-
ing Grid (WLCG) [5]. The sites that are part of the WLCG
are structured in a tiered hierarchy. The single Tier-0 site is
located at CERN and is used for the prompt reconstruction

of data. Fifteen Tier-1 sites provide long-term storage on
tape drives and serve as local hubs for the distribution of
the data to the ∼ 150 Tier-2 sites, which are used for storage,
analysis, and simulation. Finally, Tier-3 sites are connected
to the WLCG, but provide their resources only to local users.

In the current organization of the WLCG, the Tier-2 sites
provide both storage- and computing resources. An alterna-
tive approach taken into consideration, the “data lake model”
[14], would consist of data centers on the one hand and pure
computing sites on the other hand.

As part of the WLCG, the University of Freiburg cur-
rently manages storage- and computing resources at Tier-2
level, providing 84 nodes with 3360 CPU cores, and 3.5
Petabyte of dCache [9] storage. The users of four local High
Energy Physics (HEP) groups can use part of this storage
to store data needed for their analyses. In addition, institu-
tional storage- and computing resources at Tier-3 level are
provided by the local High-Performance Computing (HPC)
Cluster NEMO (Neuroscience, Elementary Particle Phys-
ics, Microsystems Engineering and Materials Science)1 [19].
NEMO provides 768 Terabyte of storage and 900 nodes
with 18000 CPU cores. Without the WLCG related storage
and with the increase in data storage requirements after the

 * Dirk Sammel
 dirk.sammel@physik.uni-freiburg.de

 Michael Boehler
 michael.boehler@physik.uni-freiburg.de

 Anton J. Gamel
 anton.gamel@physik.uni-freiburg.de

 Markus Schumacher
 markus.schumacher@physik.uni-freiburg.de

1 Physikalisches Institut, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany

2 Rechenzentrum, Albert-Ludwigs-Universität Freiburg,
Hermann-Herder-Str. 10, 79104 Freiburg, Germany 1 https:// www. nemo. uni- freib urg. de/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-023-00100-1&domain=pdf
https://www.nemo.uni-freiburg.de/

 Computing and Software for Big Science (2023) 7:7

1 3

 7 Page 2 of 11

start of the HL-LHC, the institutional storage will likely be
not sufficient. In the data lake model, users would need to
perform their analyses using the data centers as file source,
which might result in longer completion times depending on
the geographical distance and/or network connection.

An alternative to this scenario is the implementation
of a local disk caching setup. When a user requests data
from a data center, it is downloaded in parallel to a local
cache space. From there, it can be accessed for subsequent
requests, reducing the network load and the latency. Due to
the limited storage capacities, the data can be automatically
deleted after predefined conditions are met.

There are already existing solutions and studies regard-
ing data caching in the HEP community. For Tier-2 sites,
A-REX Data Cache2 and XCache [12] are available. A disk
caching solution for local users at Tier-3 level was investi-
gated under the name Disk-Caching-on-the-Fly.3 Here we
present a setup which can be deployed with minimal addi-
tional infrastructure and therefore very cost-efficiently.

This paper first gives a general overview of the computing
infrastructure in Freiburg and the implementation of virtual
research environments (VREs). After that, the implementa-
tion of an XRootD [8] disk caching setup in this environment
is described. The performance was tested with benchmarks
that use typical features of a HEP analysis.

Virtual Research Environments in Freiburg

A sketch of the components of the compute clusters in
Freiburg is shown in Fig. 1. The relevant components of
both clusters, the HEP cluster and the HPC cluster, are
indicated. The HEP cluster (ATLAS-BFG) is integrated
into the WLCG as Tier-2 computing facility. Both ATLAS
production- and analysis jobs, as well as the jobs of local
HEP users, are executed on the worker nodes (WN). The
HPC cluster (NEMO) is explicitly dedicated to users in the
state of Baden-Württemberg, including the local users in
Freiburg.

The SLURM scheduler [20] is used to send jobs to the
WNs of the HEP cluster, while the Moab scheduler4 [1] is
used to send jobs to the bare metal WNs of the HPC cluster.
To submit jobs via SLURM, the users log in to a machine of
the HEP cluster that serves as User Interface (UI). Although
the HEP users can submit their jobs via Moab to the bare
metal WNs, an advantageous option is to use SLURM to
send their jobs to a VRE running on the WNs. These VREs
offer, in contrast to the bare metal machines, a tailor-made
setup for analyses. This setup is identical to the setup of the
HEP cluster WNs.

COBalD/TARDIS (C/T) [10, 11] manages the integration
of HPC resources into the HEP cluster as VREs by commu-
nicating with the schedulers: the demand is obtained from
SLURM and new resources are requested and monitored via

Fig. 1 Visualization of the computing environment in Freiburg

2 https:// www. nordu grid. org/ arc/ arc6/ tech/ data/ arex_ cache. html.
3 https:// git. gsi. de/ atay/ xrootd- disk- cachi ng- on- the- fly/. 4 https:// adapt iveco mputi ng. com/ moab- hpc- suite/

https://www.nordugrid.org/arc/arc6/tech/data/arex_cache.html
https://git.gsi.de/atay/xrootd-disk-caching-on-the-fly/
https://adaptivecomputing.com/moab-hpc-suite/

Computing and Software for Big Science (2023) 7:7

1 3

Page 3 of 11 7

Moab, which allocates WNs from the HPC cluster. VREs
are started on these allocated WNs as virtual machines via
an OpenStack5 instance. Once a VRE is operational, the
resource appears in SLURM and can be utilized. C/T also
instructs Moab to release resources when they are no longer
required. Integration and release of resources are performed
based on demand on the HEP cluster and availability on the
HPC cluster.

The images for the VREs, UIs, and WNs are all built
with Packer,6 and have a large overlap in their configuration.
Therefore, they are pre-configured by Puppet.7 OpenSLX8 is
used to boot the UI- and WN-images, while the VRE images
are booted with OpenStack. All images, the UIs, the WNs,
the SLURM server, and the VREs are kept up-to-date by
Puppet.

An easy integration of the caching setup into the existing
computing environment was required. The setup described
in the following section fulfills this requirement.

Caching Setup

The caching setup consists of three components: the client,
the proxy server, and the cache space. If the client requests
a file from an external site with the XRootD protocol, the
request is forwarded to the proxy server. Such a file request
can be, e.g., the request to copy a file with the xrdcp shell
command or the request to open a file in ROOT9 [6] using
the TFile() class. The proxy server first checks if the
requested file is already completely available in the cache
space. If the file is found, the proxy server points the request
to the location of the file in the cache space. If the file is not
found, the request of the client is forwarded to the external
site. While the client is accessing the file from the external
site, the proxy server starts to download the file in parallel to
the cache space. The download is only active while the file is
accessed by a client: if the access terminates before the file
is fully downloaded, the download is aborted, but the partial
file remains in the cache space. The download is continued
if the file is requested again. The caching setup is suitable
for a multi-user environment: every client that requests the
same file from the same external site is pointed to the file
in the cache space by the proxy server. This workflow is
shown in Fig. 2.

Details about the setups of the different components and
the used machines are described in the following subsec-
tions. The configurations of the machines where the client
and the proxy server are running were deployed with Puppet.

This setup is not meant to be an optimized caching solu-
tion. The aim was to demonstrate that decent results can
already be achieved by setting up a caching instance on an
existing system landscape. The setup most likely would ben-
efit from dedicated hardware, e.g., SSD storage for the cache
space (due to the better latency, throughput, and input/output
operations per second with respect to HDD storage [16]) or
more RAM for the proxy server (especially for high numbers
of parallel file requests). However, the use and optimization
of additional hardware was out of scope for this study since
we wanted to concentrate on commodity hardware which can
be found in any data center.

Client

A virtual machine managed with OpenStack and running
on a node of the NEMO cluster is used for the client. The
machine has one virtual core of an Intel Xeon CPU E5-2630
v4 @ 2.20 GHz10 and 2 GB of RAM. The network con-
nection of the virtual machine is 1 Gb/s. CentOS Linux
7.8.200311 is used as operating system. Due to the nature

Fig. 2 Sketch of the caching workflow

5 https:// www. opens tack. org/
6 https:// www. packer. io/.
7 https:// puppet. com/.
8 https:// opens lx. com/.
9 ROOT is a data analysis framework which is commonly used in
HEP.

10 https:// www. intel. com/ conte nt/ www/ us/ en/ produ cts/ sku/ 92981/
intel- xeon- proce ssor- e52630- v4- 25m- cache-2- 20- ghz/ speci ficat ions.
html
11 https:// wiki. centos. org/ Manua ls/ Relea seNot es/ CentO S7. 2003..

https://www.openstack.org/
https://www.packer.io/
https://puppet.com/
https://openslx.com/
https://www.intel.com/content/www/us/en/products/sku/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz/specifications.html
https://wiki.centos.org/Manuals/ReleaseNotes/CentOS7.2003

 Computing and Software for Big Science (2023) 7:7

1 3

 7 Page 4 of 11

of the OpenStack environment, the resources are not exclu-
sively reserved for the client, but are shared with other vir-
tual machines.

The client package of XRootD 4.12.312 was used on the
client. The configuration of the caching setup is done by
environment variables. To enable the forwarding of the file
request to the proxy server, the environment variable XRD_
PLUGIN is set to the path of the XrdClProxyPlugin. With
this plugin, the target URL of any file request is replaced
by the URL stored in the environment variable XROOT_
PROXY, which is set to the IP address of the proxy server.
A X.509 certificate is required to authenticate against the
proxy server. The VOMS13 [2] package is used to create the
X.509 certificate from a valid WLCG user certificate. The
proxy server can restrict access to certain virtual organiza-
tions (VO). In that case, the user certificate and the X.509
certificate have to be associated with the respective VO. This
guarantees that only users with appropriate permissions can
trigger the download of files.

For the measurements of parallel file requests, a bare
metal node of the NEMO cluster is used. This machine is
equipped with 2 x AMD EPYC 7742 @ 2.25 GHz14 with a
total of 128 cores, and 512 GB of RAM. The resources of
the bare metal node are exclusively used by the client.

Proxy Server

For the proxy server, VMware ESXi15 [18] is used to config-
ure a virtual machine with four virtual cores of an Intel Xeon
CPU E5-2640 v3 @ 2.60 GHz16 and 8 GB of RAM. The
operating system is CentOS Linux 7.9.2009.17 The proxy
server has a network connection of 1 Gb/s. As in the case of
OpenStack, the resources of the proxy server are shared with
other virtual machines in the VMware ESXi environment.

The server package of XRootD 5.2.018 was used on the
proxy server.19 The XRootD server daemon is running and
configured to act as a forwarding proxy and to use the disk
caching features of XRootD. The default values of the cach-
ing parameters have been used, e.g., a blocksize of 1 MB and

a prefetch of up to 10 blocks. Automatic deletion of the data
in the cache space was disabled since this feature was not
relevant for the benchmarks.

As a forwarding proxy, the server forwards the file request
by the client to the external site or, if the file already exists
in the cache space, points the client to the respective path. If
the requested file is not yet completely present in the cache
space, the proxy server downloads the file. To authenticate
against the external site, the proxy server needs a valid
X.509 certificate which is associated to the respective VO
of the external site. The VOMS package is used to create a
X.509 certificate from a WLCG host certificate. The X.509
certificate is created for the service account xrootd that
is running the XRootD server daemon. To acquire a proper
host certificate, the proxy server needs a public IP address.
Since this was not possible with the OpenStack setup in
Freiburg, the virtual machine was deployed with VMware
ESXi.

Cache Space

The cache space is the location, e.g., a certain disk or direc-
tory, where the cached files are stored. Both the client and
the proxy server need access to the cache space. The cli-
ent needs read permissions, whereas the proxy server needs
read- and write permissions. Any type of distributed file
system can be used.

For the setup used in this study, a workspace20 on the
NEMO storage, which uses the file system BeeGFS21 [15],
was created and the necessary permissions were set. The
network connection between the cache space and sites out-
side of the university network of Freiburg is 20 Gb/s. Each
NEMO user has a storage quota of 10 Terabyte, but no such
quota exists for individual workspaces. Therefore, the cache
space could in principle use the total storage of 768 Terabyte
provided by NEMO, if available.

Benchmark Setup

Benchmarks were performed to measure the performance
of the caching setup and the resource requirements of the
proxy server.

For the workflow benchmarks, the required time to com-
plete the benchmarks is measured. This is done for different
scenarios, including the default setup without caching.

For the benchmarks of the proxy server, the resource
consumption of the proxy server is measured when multi-
ple client requests have to be processed in parallel. Several

14 https:// www. amd. com/ en/ produ cts/ cpu/ amd- epyc- 7742.
15 https:// www. vmware. com/ produ cts/ esxi- and- esx. html.
16 https:// www. intel. com/ conte nt/ www/ us/ en/ produ cts/ sku/ 83359/
intel- xeon- proce ssor- e52640- v3- 20m- cache-2- 60- ghz/ speci ficat ions.
html.
17 https:// wiki. centos. org/ Manua ls/ Relea seNot es/ CentO S7. 2009.
18 https:// xrootd. slac. stanf ord. edu/ 2021/ 05/ 20/ annou nceme nt_5_ 2_0.
html.
19 The HEP framework on the client machine did not provide version
5.2.0 of XRootD, so an older version had to be used there.

20 https:// github. com/ holge rBerg er/ hpc- works pace.
21 https:// www. beegfs. io/c/.

12 https:// xrootd. slac. stanf ord. edu/ 2020/ 06/ 11/ annou nceme nt_4_
12_3. html.
13 https:// itali angrid. github. io/ voms/..

https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.vmware.com/products/esxi-and-esx.html
https://www.intel.com/content/www/us/en/products/sku/83359/intel-xeon-processor-e52640-v3-20m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/83359/intel-xeon-processor-e52640-v3-20m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/83359/intel-xeon-processor-e52640-v3-20m-cache-2-60-ghz/specifications.html
https://wiki.centos.org/Manuals/ReleaseNotes/CentOS7.2009
https://xrootd.slac.stanford.edu/2021/05/20/announcement_5_2_0.html
https://xrootd.slac.stanford.edu/2021/05/20/announcement_5_2_0.html
https://github.com/holgerBerger/hpc-workspace
https://www.beegfs.io/c/
https://xrootd.slac.stanford.edu/2020/06/11/announcement_4_12_3.html
https://xrootd.slac.stanford.edu/2020/06/11/announcement_4_12_3.html
https://italiangrid.github.io/voms/

Computing and Software for Big Science (2023) 7:7

1 3

Page 5 of 11 7

thousand client requests are not uncommon in a production
environment, and hence it is important to know the expected
resource consumption under such circumstances. Therefore,
the results of the measurements of the proxy server were
used to extrapolate the required resources for larger numbers
of parallel requests.

Python 3.8.622 and the ROOT module for Python
(PyROOT23) with ROOT version 6.22.0624 are used for these
benchmarks.

Input Files

The input files for the benchmarks were created in the ROOT
format with the event generator Pythia 8.30325 [4]. The files
contain information about simulated tt̄ events26 from pro-
ton–proton collisions at a center-of-mass energy of 13 TeV.
For each event, the number of particles in the event and
several properties of the particles are stored in the files: the
particle type, the particle status,27 the energy, the mass, the
transverse momentum, the azimuthal angle, and the pseu-
dorapidity. The mean size of this information is about 26
kB per event, and the mean number of particles per event
is about 1600.

Three files with different numbers of events, and therefore
different file sizes, were generated: a small file with 50k
events (1.3 GB), a medium file with 200k events (4.9 GB),
and a large file with 500k events (13 GB).

Benchmark Description

Typical operations of a HEP analysis were performed in the
benchmark: the ROOT Python module was used to open
the requested file with the TFile() class. After that, the
data in the file were loaded and a loop over the events was
executed. For each event, a second loop over the respective
number of particles of the event was executed. The pseu-
dorapidity of each particle was filled into an histogram.
In addition, the transverse momentum, the pseudorapid-
ity, the azimuth angle, and the mass of each particle origi-
nating from the decay of the tt̄ system was used to build a

LorentzVector,28 from which the mass of the tt̄ system was
reconstructed and filled into an histogram.

The input files, the code to create them, and the bench-
mark code are publicly available.29

Workflow Benchmarks

Several input parameters were varied to test the respective
dependency of the performance of the caching setup. All
three file sizes were used as input, and the number of pro-
cessed events was varied: 1, 100, 1000, and 50k events for
all three files, 200k events for the medium and the large file,
and 500k events for the large file. The files were distributed
to several WLCG sites that provide resources to the ATLAS
collaboration to determine the influence of the geographi-
cal distance to the external site from which the files were
requested. The sites used for the benchmarks were KIT
(Karlsruhe, Germany), LRZ (Munich, Germany), DESY
(Hamburg, Germany), TRIUMF (Vancouver, Canada),
BNL (Brookhaven, USA), and the WLCG infrastructure in
Freiburg, denoted as “dCache Freiburg“. Measurements of
the round-trip time (RTT) using the ping command have
been performed in order to estimate latencies due to the geo-
graphical distance and the individual network connections,
and are shown in Table 1. As expected, more distant sites
have a higher RTT. In addition, direct access to the files
stored on the BeeGFS was tested.

The benchmark was performed for all combinations of
file size, number of events, and external site. To reduce sta-
tistical uncertainties and the impact of external factors like
network- or I/O load, every benchmark was repeated several
times.

Proxy Server Benchmarks

For the measurements of the resource requirements of the
proxy server, the above-mentioned parameters were fixed
to the large file, 10k events (to ensure an overlap in the pro-
cessing of the parallel requests), and KIT (to ensure a fast
connection). Instead, the number of parallel requests that had

Table 1 Measurements of the
round-trip time (RTT) and their
standard deviations for the
external sites. The results are
rounded to significant digits

Site RTT [ms]

dCache FR 0.38 ± 0.10
KIT 2.80 ± 0.13
LRZ 10.3 ± 0.6
DESY 20.8 ± 3.4
BNL 89.5 ± 0.4
TRIUMF 157.15 ± 0.30

22 https:// www. python. org/ downl oads/ relea se/ python- 386/.
23 https:// root. cern/ manual/ python/.
24 https:// root. cern/ relea ses/ relea se- 62206/.
25 https:// pythia. org/ manua ls/ pythi a8303/ Welco me. html.
26 The collision of particles and the induced production of new parti-
cles is called an event.
27 Pythia sets the status of a particle according to how it was pro-
duced and if it is still present at the end of the collision.
28 https:// root. cern. ch/ doc/ master/ class ROOT_1_ 1Math_1_ 1Lore
ntzVe ctor. html. 29 https:// github. com/ ALU- Schum acher/ cachi ng_ bench marks.

https://www.python.org/downloads/release/python-386/
https://root.cern/manual/python/
https://root.cern/releases/release-62206/
https://pythia.org/manuals/pythia8303/Welcome.html
https://root.cern.ch/doc/master/classROOT_1_1Math_1_1LorentzVector.html
https://root.cern.ch/doc/master/classROOT_1_1Math_1_1LorentzVector.html
https://github.com/ALU-Schumacher/caching_benchmarks

 Computing and Software for Big Science (2023) 7:7

1 3

 7 Page 6 of 11

to be processed by the proxy server was varied. The tested
numbers were 25, 50, 75, 100, and 128. To avoid an impact
on the results by parallel reading of a single file, 128 copies
of the large file were placed at the KIT storage.

The memory consumption and the CPU load of the
xrootd service were measured on the proxy server during
the complete run of the benchmark.30

The measurements for each number of parallel requests
were repeated several times to reduce the statistical uncer-
tainties and the impact of external factors like network- or
I/O load.

Results and Discussion

For the workflow benchmarks, the mean value and standard
deviation (SD) of the measurements of the elapsed time were
calculated, respectively, for all combinations of the input
parameters. For the proxy server benchmarks, the mean
value and standard deviation of the measurements of the
CPU load and the memory consumption were calculated,
respectively, for all numbers of parallel requests.

Workflow Results

The results of the workflow benchmarks for all sites without
and with caching setup are shown in Table 2 and Table 3,
respectively. Preliminary results of this study have been pre-
viously published [17].

Fig. 3 shows the workflow benchmark results for the cach-
ing setup with a hot cache, i.e., when the files are already
available in the cache space on the BeeGFS, and for access-
ing the files directly on the BeeGFS in Freiburg without
using the caching setup. This comparison is a test for poten-
tial overhead introduced by the caching setup, since the files
are stored on the BeeGFS in Freiburg in both cases. For each
file size and each number of events, the results are compara-
ble. Therefore, no significant overhead by the caching setup
is observed. While the completion time of the benchmark is
larger for increasing numbers of events, it is independent of
the file size. This allowed to merge the measurements for the
three file sizes in the subsequent figures and tables.

The comparison between direct file access on the different
sites and accessing the file in the cache space when using

Fig. 3 Workflow benchmark results for BeeGFS Freiburg with (yellow) and without (purple) caching setup for different numbers of events, for
the small, medium, and large files (from left to right)

Fig. 4 Workflow benchmark results for the caching setup, from left to
right: when the file is already available in the cache space (yellow),
for access without caching setup for dCache Freiburg (dark yellow),
KIT (blue), LRZ (green), DESY (brown), BNL (pink), and TRIUMF
(lavender), for different numbers of events. The results for the three
file sizes have been merged

30 The commands to retrieve the respective information were pmap
-d pid tail -n 1 cut -d’ ’ -f7 for memory and top
-b -n 2 -d 0.2 -p pid tail -1 awk ’ print $9’
for CPU, where pid was the process ID of the xrootd service.

Computing and Software for Big Science (2023) 7:7

1 3

Page 7 of 11 7

the caching setup is shown in Fig. 4. Reading files in the
cache space is comparable to reading the files on sites that
are geographically close to Freiburg, e.g., KIT. For sites at a
larger distance, like BNL and TRIUMF, reading files in the
cache space is faster up to a factor of ∼ 1.5 , and the client
profits from the caching setup.

Figure 5 shows the workflow benchmark results for the
external sites with and without the caching setup for a cold
cache, i.e., when the file is not available in the local cache

space. For 50k and more events, the completion time of the
benchmark is lower for geographically far sites if the caching
setup is used. This effect is largest for BNL and TRIUMF,
but is also observed for DESY and LRZ.

The explanation for this effect is the simultaneous execu-
tion of the event loop by the client and the download of
the file by the proxy server. For large numbers of events,
the event loop, which reads the file from the external site,
takes longer to complete than the time it takes to download

Fig. 5 Workflow benchmark results for KIT without caching setup
(blue) and with caching setup (orange), DESY without caching setup
(brown) and with caching setup (dark blue), TRIUMF without cach-
ing setup (lavender) and with caching setup (green), BNL without
caching setup (pink) and with caching setup (black), dCache Freiburg

without caching setup (dark yellow) and with caching setup (dark
green), and LRZ without caching setup (turquoise) and with caching
setup (red) for different numbers of events. The results for the three
file sizes have been merged

Table 2 Workflow benchmark
results without caching setup.
Shown are the completion
times of the benchmark for the
different sites and numbers of
events. The results for the three
file sizes have been merged and
are rounded to significant digits

No. of events 1 100 1k 50k 200k 500k
Site Time [s]

BeeGFS FR 2.9 4.24 17.1 730 2860 6960
dCache FR 3.2 4.5 17.6 730 2860 6890
LRZ 3.5 4.9 18.8 770 3300 7500
KIT 3.7 5.2 19 760 3000 7500
DESY 3.8 5.5 18.8 800 3140 7700
BNL 5.9 7.0 23 880 3660 8400
TRIUMF 7.5 9.1 26 1050 4260 10900

 Computing and Software for Big Science (2023) 7:7

1 3

 7 Page 8 of 11

the file to the cache space. As soon as the file is completely
available in the cache space, the event loop starts to read
the local version of the file. Since reading the local version
of the file is faster than reading from the external site, the
completion time of the benchmark is reduced with respect to
the benchmark without caching setup, where the file is read
completely from the external site.

Because of this, using the caching setup results in faster
file access for the client in case of large numbers of events

and geographically far sites, even if the file is not already
available in the cache space.

Proxy Server Results

In the analysis of the memory consumption of the xrootd
service, values below a certain threshold were discarded to
exclude idle time. With the remaining measurements, the
mean value and the SD of the memory consumption were
calculated for each number of parallel requests. The respec-
tive values for the different number of parallel requests are
listed in Table 4.

Fig. 6 shows the distribution of memory consumption
by the xrootd service for exemplary values of 25, 75, and
128 parallel requests.

The dependence of the memory consumption on the
number of requests can be described by a linear function
as shown in Fig. 7. The fit was executed with Numpy31

Table 3 Workflow benchmark
results with caching setup.
Shown are the completion
times of the benchmark for the
different sites and numbers of
events. The results for the three
file sizes have been merged and
are rounded to significant digits

No. of events 1 100 1k 50k 200k 500k
Site Time [s]

Hot cache
 F ile in cache 3.6 4.8 18.1 740 2980 7060

Cold cache
 dCache FR 4.8 6.3 20.4 742 2880 6980
 LRZ 5.0 6.7 19.5 730 2940 6960
 DESY 5.4 6.6 19.6 730 2940 6860
 KIT 5.4 6.7 19.5 730 3080 7010
 BNL 7.5 9.3 22 739 2840 7050
 TRIUMF 9.8 11.3 24.1 760 3000 7120

Table 4 Proxy server benchmark results. Thresholds, mean values,
and standard deviations of the memory consumption for the different
numbers of parallel requests

No. of requests Threshold [GB] Mean [GB] SD [GB]

25 0.81 0.93 0.06
50 0.99 1.21 0.14
75 1.15 1.43 0.19
100 1.3 1.65 0.20
128 1.7 1.99 0.15

Fig. 6 Memory consumption of the xrootd service on the proxy
server for 25, 75, and 128 parallel requests. Measurements below the
respective thresholds are excluded

Fig. 7 Measured mean values and standard deviations of the memory
consumption (blue dots), and the result of the linear fit (black dashed
line)

31 https:// numpy. org/.

https://numpy.org/

Computing and Software for Big Science (2023) 7:7

1 3

Page 9 of 11 7

[13]. The function to get the required memory in GB for
the number of parallel requests N is f (N) = 0.67 + 0.01 ⋅ N .
With this, the minimum number of required memory can be
extrapolated to larger numbers of parallel requests, assum-
ing that the observed linearity still holds for larger N. In a
production environment, 1000 − 3000 parallel requests are

not unrealistic, and would require at least ∼ 11GB − 31GB
of memory. The deployment of a cluster of proxy servers,
instead of a single proxy server, would therefore be advis-
able. The implementation of such a setup is possible with
XRootD.

The other measured metric was the CPU load of the
xrootd service. As in the case of the analysis of the
memory consumption, very low values of CPU load were
observed during idle times. Therefore, a threshold of 5 %
was introduced. The mean value and the SD of the CPU load
were calculated from the remaining measurements for each
number of parallel requests. The respective values for the
different number of parallel requests are listed in Table 5.

Fig. 8 shows the distribution of CPU load by the xrootd
service for exemplary values of 25, 75, and 128 parallel
requests. Since the proxy server was equipped with 4 virtual
cores, the maximum is at 400 %.

As in the case of the memory consumption, the depend-
ence of the CPU load on the number of requests can be
described by a linear function as shown in Fig. 9. All val-
ues were divided by 100 to derive a function for the num-
ber of required virtual cores (vCores). The function to get
the required number of virtual cores for a given number of
requests N is f (N) = 0.406 + 0.005 ⋅ N . 1000 − 3000 parallel
requests would require at least ∼ 6 − 16 virtual cores. This
could be realized with a cluster of proxy servers consisting
of 4 virtual machines.

Conclusion

A lightweight caching setup was successfully implemented
for the HEP computing infrastructure in Freiburg, which
includes VREs running on the opportunistically used HPC
cluster NEMO. This setup consists of a client, a proxy
server, and a cache space. No additional hardware was nec-
essary for the cache space, since the file system provided by
the HEP cluster was used. The only additional infrastructure
component was a VM (4 cores and 8 GB RAM) serving
as proxy server, which was running in the local VMware
ESXi environment. Benchmarks that simulate a typical HEP
workflow were devised to test the performance of the disk
caching setup, and to measure the resource consumption on
the proxy server during parallel file requests.

The disk caching setup outperforms non-cached access if
the requested file is already available in the local cache space
and if the external site is geographically far from Freiburg.

For large numbers of events in the benchmark, even ini-
tial requests, for which the file is not available in the cache
space, are completed faster with the disk caching setup. The
cause for this is the parallel download of the file, which
makes it eventually available in the cache space.

Table 5 Proxy server benchmark results. Thresholds, mean values,
and standard deviations of the CPU load for the different numbers of
parallel requests

No. of requests Threshold [%] Mean [%] SD [%]

25 5 53.28 29.76
50 5 64.68 40.37
75 5 86.84 52.59

100 5 96.94 58.01
128 5 101.59 61.28

Fig. 8 CPU load of the xrootd service on the proxy server for 25,
75, and 128 parallel requests. Measurements below the threshold are
excluded

Fig. 9 Measured mean values and standard deviations of the CPU
load (blue dots), and the result of the linear fit (black dashed line)

 Computing and Software for Big Science (2023) 7:7

1 3

 7 Page 10 of 11

These results have been achieved by using the default val-
ues of the caching parameters, e.g., blocksize and prefetch.
Other values might result in a better performance, but might
also depend on the specific environment where the caching
setup is deployed. It is expected that the usage of SSD storage
as cache space will increase the performance, but this has not
been investigated since this study focuses on improvements
with commodity hardware.

The resource consumption of the proxy server was meas-
ured by sending several requests in parallel, for different
numbers of parallel requests. A linear dependence of both the
memory consumption and the CPU load on the number of
parallel requests was observed. This was used to extrapolate
the measured resource consumption to larger, more realistic
numbers of parallel requests. To handle 1000 − 3000 parallel
requests, at least ∼ 11GB − 31GB of memory and at least
∼ 6 − 16 virtual cores would be necessary. This can be real-
ized with a cluster of multiple, virtualized proxy servers, with-
out the need for additional hardware.

Acknowledgements This research was performed on the bwForClus-
ter NEMO supported by the Ministry of Science, Research and the
Arts Baden-Württemberg through the bwHPC grant and by the Ger-
man Research Foundation (DFG) through grant no. INST 39/963-1
FUGG (bwForCluster NEMO). The work was supported by the Fed-
eral Ministry of Education and Research (BMBF) within the projects
05H18VFRC1 "Entwicklung und Optimierung der Nutzung hetero-
gener Rechenressourcen (Verbund: Innovative Digitale Technologien
für die Erforschung von Universum und Materie (IDT-UM))" and
05H21VFRC2 "Weiterentwicklung, Integration und Optimierung von
föderierten digitalen Infrastrukturen für ErUM (Verbund: Föderi-
erte Digitale Infrastrukturen für die Erforschung von Universum und
Materie (FIDIUM))“.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on
reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Adaptive Computing Enterprises, Inc (2011) Introduction to
Cloud for HPC. Technical report.

 2. Alfieri R, Cecchini R, Ciaschini V, et al (2004) VOMS, an
authorization system for virtual organizations. In: Fernán-
dez Rivera F, Bubak M, Gómez Tato A, et al (eds) AxGrids
2003: Grid Computing, Lecture Notes in Computer Science, vol
2970. Springer, Berlin, Heidelberg, Germany, pp 33–40, https://
doi. org/ 10. 1007/ 978-3- 540- 24689-3_5

 3. ATLAS Collaboration (2022) ATLAS Software and Computing
HL-LHC Roadmap. Technical report, CERN, Geneva, https://
cds. cern. ch/ record/ 28029 18

 4. Bierlich C, Chakraborty S, Desai N, et al (2022) A comprehen-
sive guide to the physics and usage of PYTHIA 83. SciPost Phys
Codebases. https:// doi. org/ 10. 21468/ SciPo stPhy sCodeb.8

 5. Bos K, Brook N, Duellmann D, et al (eds) (2005) LHC comput-
ing grid: technical design report. CERN, Geneva, https:// cds.
cern. ch/ record/ 840543

 6. Brun R, Rademakers F (1997) ROOT–an object oriented data
analysis framework. Nucl Inst Meth in Phys Res A 389:81–86.
https:// doi. org/ 10. 1016/ S0168- 9002(97) 00048-X

 7. Béjar Alonso I, Brüning O, Fessia P, et al (eds) (2020) High-
Luminosity Large Hadron Collider (HL-LHC): technical design
report. CERN Yellow Reports: Monographs, CERN, Geneva,
https:// doi. org/ 10. 23731/ CYRM- 2020- 0010

 8. Dorigo A, Elmer P, Furano F et al (2005) XROOTD/TXNetFile:
a highly scalable architecture for data access in the ROOT envi-
ronment. WSEAS Trans Comput 4:348–354

 9. Ernst M, Fuhrmann P, Gasthuber M, et al (2001) dCache, a
distributed data storage caching system. In: Chen HS (ed) Pro-
ceedings of CHEP 2001. Beijing: Science Press

 10. Fischer M, Kuehn E, Giffels M, et al (2022) Matterminers/
cobald: v0.13.0. https:// doi. org/ 10. 5281/ zenodo. 18878 72

 11. Giffels M, Kroboth S, Schnepf M, et al (2021) Matterminers/
tardis: The survivors (0.6.0). https:// doi. org/ 10. 5281/ zenodo.
22406 05

 12. Hanushevsky A, Ito H, Lassnig M et al (2019) Xcache in the
atlas distributed computing environment. EPJ Web Conf. https://
doi. org/ 10. 1051/ epjco nf/ 20192 14040 08

 13. Harris CR, Millman KJ, van der Walt SJ et al (2020) Array
programming with NumPy. Nature 585:357–362. https:// doi.
org/ 10. 1038/ s41586- 020- 2649-2

 14. HEP Software Foundation (2019) A roadmap for HEP software
and computing R &D for the 2020s. Comput Softw Big Sci.
https:// doi. org/ 10. 1007/ s41781- 018- 0018-8

 15. Herold F, Breuner S (2018) An introduction to BeeGFS. Techni-
cal report.

 16. Lüttgau J, Kuhn M, Duwe K (2018) Survey of storage systems
for high-performance computing. Supercomput Front Innov
5(1):31–58. https:// doi. org/ 10. 14529/ jsfi1 80103

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-540-24689-3_5
https://doi.org/10.1007/978-3-540-24689-3_5
https://cds.cern.ch/record/2802918
https://cds.cern.ch/record/2802918
https://doi.org/10.21468/SciPostPhysCodeb.8
https://cds.cern.ch/record/840543
https://cds.cern.ch/record/840543
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.5281/zenodo.1887872
https://doi.org/10.5281/zenodo.2240605
https://doi.org/10.5281/zenodo.2240605
https://doi.org/10.1051/epjconf/201921404008
https://doi.org/10.1051/epjconf/201921404008
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.14529/jsfi180103

Computing and Software for Big Science (2023) 7:7

1 3

Page 11 of 11 7

 17. Sammel D, Böhler M, Gamel AJ, et al (2022) How to bring
HTC data to HPC resources: a caching solution for the ATLAS
computing environment in Freiburg. In: Mosch C, Salk J, Wag-
ner FW (eds) Proceedings of the 7th bwHPC Symposium. Open
Access Repositorium der Universität Ulm und Technischen
Hochschule Ulm, Ulm, Germany, pp 63–68. https:// doi. org/ 10.
18725/ OPARU- 46068

 18. VMware, Inc. (2007) The Architecture of VMware ESXi. Tech-
nical report.

 19. Wiebelt B, Meier K, Jancyk M, et al (2017) Flexible HPC:
bwForCluster NEMO. In: Richling S, Baumann M, Heuveline V
(eds) Proceedings of the 3rd bwHPC-Symposium. heiBOOKS,
Heidelberg, Germany, https:// doi. org/ 10. 11588/ heibo oks. 308.
c3729

 20. Yoo AB, Jette MA, Grondona M (2003) SLURM: simple linux
utility for resource management. In: Feitelson D, Rudolph L,
Schwiegelshohn U (eds) JSSPP 2003: Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer Science, vol
2862. Springer, Berlin, Heidelberg, Germany, pp 44–60, https://
doi. org/ 10. 1007/ 10968 987_3

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.18725/OPARU-46068
https://doi.org/10.18725/OPARU-46068
https://doi.org/10.11588/heibooks.308.c3729
https://doi.org/10.11588/heibooks.308.c3729
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

	Lightweight Integration of a Data Cache for Opportunistic Usage of HPC Resources in HEP Workflows
	Abstract
	Introduction
	Virtual Research Environments in Freiburg
	Caching Setup
	Client
	Proxy Server
	Cache Space

	Benchmark Setup
	Input Files
	Benchmark Description
	Workflow Benchmarks
	Proxy Server Benchmarks

	Results and Discussion
	Workflow Results
	Proxy Server Results

	Conclusion
	Acknowledgements
	References

