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Abstract
A data caching setup has been implemented for the High Energy Physics (HEP) computing infrastructure in Freiburg, 
Germany, as a possible alternative to local long-term storage. Files are automatically cached on disk upon first request by a 
client, can be accessed from cache for subsequent requests, and are deleted after predefined conditions are met. The required 
components are provided to a dedicated HEP cluster, and, via virtual research environments, to the opportunistically used 
High-Performance Computing (HPC) Cluster NEMO (Neuroscience, Elementary Particle Physics, Microsystems Engineering 
and Materials Science). A typical HEP workflow has been implemented as benchmark test to identify any overhead intro-
duced by the caching setup with respect to direct, non-cached data access, and to compare the performance of cached and 
non-cached access to several external files sources. The results indicate no significant overhead in the workflow and faster 
file access with the caching setup, especially for geographically distant file sources. Additionally, the hardware requirements 
for various numbers of parallel file requests were measured for estimating future requirements.
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Introduction

With the start of the High-Luminosity Large Hadron Col-
lider (HL-LHC) [7] in the near future, the amount of data 
collected by the LHC experiments will increase significantly 
and reach, e.g., for the ATLAS experiment, at least 1 Exa-
byte in 2030 [3]. Distribution, storage, and processing of the 
data are important tasks of the Worldwide LHC Comput-
ing Grid (WLCG) [5]. The sites that are part of the WLCG 
are structured in a tiered hierarchy. The single Tier-0 site is 
located at CERN and is used for the prompt reconstruction 

of data. Fifteen Tier-1 sites provide long-term storage on 
tape drives and serve as local hubs for the distribution of 
the data to the ∼ 150 Tier-2 sites, which are used for storage, 
analysis, and simulation. Finally, Tier-3 sites are connected 
to the WLCG, but provide their resources only to local users.

In the current organization of the WLCG, the Tier-2 sites 
provide both storage- and computing resources. An alterna-
tive approach taken into consideration, the “data lake model” 
[14], would consist of data centers on the one hand and pure 
computing sites on the other hand.

As part of the WLCG, the University of Freiburg cur-
rently manages storage- and computing resources at Tier-2 
level, providing 84 nodes with 3360 CPU cores, and 3.5 
Petabyte of dCache [9] storage. The users of four local High 
Energy Physics (HEP) groups can use part of this storage 
to store data needed for their analyses. In addition, institu-
tional storage- and computing resources at Tier-3 level are 
provided by the local High-Performance Computing (HPC) 
Cluster NEMO (Neuroscience, Elementary Particle Phys-
ics, Microsystems Engineering and Materials Science)1 [19]. 
NEMO provides 768 Terabyte of storage and 900 nodes 
with 18000 CPU cores. Without the WLCG related storage 
and with the increase in data storage requirements after the 
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start of the HL-LHC, the institutional storage will likely be 
not sufficient. In the data lake model, users would need to 
perform their analyses using the data centers as file source, 
which might result in longer completion times depending on 
the geographical distance and/or network connection.

An alternative to this scenario is the implementation 
of a local disk caching setup. When a user requests data 
from a data center, it is downloaded in parallel to a local 
cache space. From there, it can be accessed for subsequent 
requests, reducing the network load and the latency. Due to 
the limited storage capacities, the data can be automatically 
deleted after predefined conditions are met.

There are already existing solutions and studies regard-
ing data caching in the HEP community. For Tier-2 sites, 
A-REX Data Cache2 and XCache [12] are available. A disk 
caching solution for local users at Tier-3 level was investi-
gated under the name Disk-Caching-on-the-Fly.3 Here we 
present a setup which can be deployed with minimal addi-
tional infrastructure and therefore very cost-efficiently.

This paper first gives a general overview of the computing 
infrastructure in Freiburg and the implementation of virtual 
research environments (VREs). After that, the implementa-
tion of an XRootD [8] disk caching setup in this environment 
is described. The performance was tested with benchmarks 
that use typical features of a HEP analysis.

Virtual Research Environments in Freiburg

A sketch of the components of the compute clusters in 
Freiburg is shown in Fig. 1. The relevant components of 
both clusters, the HEP cluster and the HPC cluster, are 
indicated. The HEP cluster (ATLAS-BFG) is integrated 
into the WLCG as Tier-2 computing facility. Both ATLAS 
production- and analysis jobs, as well as the jobs of local 
HEP users, are executed on the worker nodes (WN). The 
HPC cluster (NEMO) is explicitly dedicated to users in the 
state of Baden-Württemberg, including the local users in 
Freiburg.

The SLURM scheduler [20] is used to send jobs to the 
WNs of the HEP cluster, while the Moab scheduler4 [1] is 
used to send jobs to the bare metal WNs of the HPC cluster. 
To submit jobs via SLURM, the users log in to a machine of 
the HEP cluster that serves as User Interface (UI). Although 
the HEP users can submit their jobs via Moab to the bare 
metal WNs, an advantageous option is to use SLURM to 
send their jobs to a VRE running on the WNs. These VREs 
offer, in contrast to the bare metal machines, a tailor-made 
setup for analyses. This setup is identical to the setup of the 
HEP cluster WNs.

COBalD/TARDIS (C/T) [10, 11] manages the integration 
of HPC resources into the HEP cluster as VREs by commu-
nicating with the schedulers: the demand is obtained from 
SLURM and new resources are requested and monitored via 

Fig. 1  Visualization of the computing environment in Freiburg

2 https:// www. nordu grid. org/ arc/ arc6/ tech/ data/ arex_ cache. html.
3 https:// git. gsi. de/ atay/ xrootd- disk- cachi ng- on- the- fly/. 4 https:// adapt iveco mputi ng. com/ moab- hpc- suite/

https://www.nordugrid.org/arc/arc6/tech/data/arex_cache.html
https://git.gsi.de/atay/xrootd-disk-caching-on-the-fly/
https://adaptivecomputing.com/moab-hpc-suite/
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Moab, which allocates WNs from the HPC cluster. VREs 
are started on these allocated WNs as virtual machines via 
an OpenStack5 instance. Once a VRE is operational, the 
resource appears in SLURM and can be utilized. C/T also 
instructs Moab to release resources when they are no longer 
required. Integration and release of resources are performed 
based on demand on the HEP cluster and availability on the 
HPC cluster.

The images for the VREs, UIs, and WNs are all built 
with Packer,6 and have a large overlap in their configuration. 
Therefore, they are pre-configured by Puppet.7 OpenSLX8 is 
used to boot the UI- and WN-images, while the VRE images 
are booted with OpenStack. All images, the UIs, the WNs, 
the SLURM server, and the VREs are kept up-to-date by 
Puppet.

An easy integration of the caching setup into the existing 
computing environment was required. The setup described 
in the following section fulfills this requirement.

Caching Setup

The caching setup consists of three components: the client, 
the proxy server, and the cache space. If the client requests 
a file from an external site with the XRootD protocol, the 
request is forwarded to the proxy server. Such a file request 
can be, e.g., the request to copy a file with the xrdcp shell 
command or the request to open a file in ROOT9 [6] using 
the TFile() class. The proxy server first checks if the 
requested file is already completely available in the cache 
space. If the file is found, the proxy server points the request 
to the location of the file in the cache space. If the file is not 
found, the request of the client is forwarded to the external 
site. While the client is accessing the file from the external 
site, the proxy server starts to download the file in parallel to 
the cache space. The download is only active while the file is 
accessed by a client: if the access terminates before the file 
is fully downloaded, the download is aborted, but the partial 
file remains in the cache space. The download is continued 
if the file is requested again. The caching setup is suitable 
for a multi-user environment: every client that requests the 
same file from the same external site is pointed to the file 
in the cache space by the proxy server. This workflow is 
shown in Fig. 2.

Details about the setups of the different components and 
the used machines are described in the following subsec-
tions. The configurations of the machines where the client 
and the proxy server are running were deployed with Puppet.

This setup is not meant to be an optimized caching solu-
tion. The aim was to demonstrate that decent results can 
already be achieved by setting up a caching instance on an 
existing system landscape. The setup most likely would ben-
efit from dedicated hardware, e.g., SSD storage for the cache 
space (due to the better latency, throughput, and input/output 
operations per second with respect to HDD storage [16]) or 
more RAM for the proxy server (especially for high numbers 
of parallel file requests). However, the use and optimization 
of additional hardware was out of scope for this study since 
we wanted to concentrate on commodity hardware which can 
be found in any data center.

Client

A virtual machine managed with OpenStack and running 
on a node of the NEMO cluster is used for the client. The 
machine has one virtual core of an Intel Xeon CPU E5-2630 
v4 @ 2.20 GHz10 and 2 GB of RAM. The network con-
nection of the virtual machine is 1 Gb/s. CentOS Linux 
7.8.200311 is used as operating system. Due to the nature 

Fig. 2  Sketch of the caching workflow

5 https:// www. opens tack. org/
6 https:// www. packer. io/.
7 https:// puppet. com/.
8 https:// opens lx. com/.
9 ROOT is a data analysis framework which is commonly used in 
HEP.

10 https:// www. intel. com/ conte nt/ www/ us/ en/ produ cts/ sku/ 92981/ 
intel- xeon- proce ssor- e52630- v4- 25m- cache-2- 20- ghz/ speci ficat ions. 
html
11 https:// wiki. centos. org/ Manua ls/ Relea seNot es/ CentO S7. 2003..

https://www.openstack.org/
https://www.packer.io/
https://puppet.com/
https://openslx.com/
https://www.intel.com/content/www/us/en/products/sku/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz/specifications.html
https://wiki.centos.org/Manuals/ReleaseNotes/CentOS7.2003
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of the OpenStack environment, the resources are not exclu-
sively reserved for the client, but are shared with other vir-
tual machines.

The client package of XRootD 4.12.312 was used on the 
client. The configuration of the caching setup is done by 
environment variables. To enable the forwarding of the file 
request to the proxy server, the environment variable XRD_
PLUGIN is set to the path of the XrdClProxyPlugin. With 
this plugin, the target URL of any file request is replaced 
by the URL stored in the environment variable XROOT_
PROXY, which is set to the IP address of the proxy server. 
A X.509 certificate is required to authenticate against the 
proxy server. The VOMS13 [2] package is used to create the 
X.509 certificate from a valid WLCG user certificate. The 
proxy server can restrict access to certain virtual organiza-
tions (VO). In that case, the user certificate and the X.509 
certificate have to be associated with the respective VO. This 
guarantees that only users with appropriate permissions can 
trigger the download of files.

For the measurements of parallel file requests, a bare 
metal node of the NEMO cluster is used. This machine is 
equipped with 2 x AMD EPYC 7742 @ 2.25 GHz14 with a 
total of 128 cores, and 512 GB of RAM. The resources of 
the bare metal node are exclusively used by the client.

Proxy Server

For the proxy server, VMware ESXi15 [18] is used to config-
ure a virtual machine with four virtual cores of an Intel Xeon 
CPU E5-2640 v3 @ 2.60 GHz16 and 8 GB of RAM. The 
operating system is CentOS Linux 7.9.2009.17 The proxy 
server has a network connection of 1 Gb/s. As in the case of 
OpenStack, the resources of the proxy server are shared with 
other virtual machines in the VMware ESXi environment.

The server package of XRootD 5.2.018 was used on the 
proxy server.19 The XRootD server daemon is running and 
configured to act as a forwarding proxy and to use the disk 
caching features of XRootD. The default values of the cach-
ing parameters have been used, e.g., a blocksize of 1 MB and 

a prefetch of up to 10 blocks. Automatic deletion of the data 
in the cache space was disabled since this feature was not 
relevant for the benchmarks.

As a forwarding proxy, the server forwards the file request 
by the client to the external site or, if the file already exists 
in the cache space, points the client to the respective path. If 
the requested file is not yet completely present in the cache 
space, the proxy server downloads the file. To authenticate 
against the external site, the proxy server needs a valid 
X.509 certificate which is associated to the respective VO 
of the external site. The VOMS package is used to create a 
X.509 certificate from a WLCG host certificate. The X.509 
certificate is created for the service account xrootd that 
is running the XRootD server daemon. To acquire a proper 
host certificate, the proxy server needs a public IP address. 
Since this was not possible with the OpenStack setup in 
Freiburg, the virtual machine was deployed with VMware 
ESXi.

Cache Space

The cache space is the location, e.g., a certain disk or direc-
tory, where the cached files are stored. Both the client and 
the proxy server need access to the cache space. The cli-
ent needs read permissions, whereas the proxy server needs 
read- and write permissions. Any type of distributed file 
system can be used.

For the setup used in this study, a workspace20 on the 
NEMO storage, which uses the file system BeeGFS21 [15], 
was created and the necessary permissions were set. The 
network connection between the cache space and sites out-
side of the university network of Freiburg is 20 Gb/s. Each 
NEMO user has a storage quota of 10 Terabyte, but no such 
quota exists for individual workspaces. Therefore, the cache 
space could in principle use the total storage of 768 Terabyte 
provided by NEMO, if available.

Benchmark Setup

Benchmarks were performed to measure the performance 
of the caching setup and the resource requirements of the 
proxy server.

For the workflow benchmarks, the required time to com-
plete the benchmarks is measured. This is done for different 
scenarios, including the default setup without caching.

For the benchmarks of the proxy server, the resource 
consumption of the proxy server is measured when multi-
ple client requests have to be processed in parallel. Several 

14 https:// www. amd. com/ en/ produ cts/ cpu/ amd- epyc- 7742.
15 https:// www. vmware. com/ produ cts/ esxi- and- esx. html.
16 https:// www. intel. com/ conte nt/ www/ us/ en/ produ cts/ sku/ 83359/ 
intel- xeon- proce ssor- e52640- v3- 20m- cache-2- 60- ghz/ speci ficat ions. 
html.
17 https:// wiki. centos. org/ Manua ls/ Relea seNot es/ CentO S7. 2009.
18 https:// xrootd. slac. stanf ord. edu/ 2021/ 05/ 20/ annou nceme nt_5_ 2_0. 
html.
19 The HEP framework on the client machine did not provide version 
5.2.0 of XRootD, so an older version had to be used there.

20 https:// github. com/ holge rBerg er/ hpc- works pace.
21 https:// www. beegfs. io/c/.

12 https:// xrootd. slac. stanf ord. edu/ 2020/ 06/ 11/ annou nceme nt_4_ 
12_3. html.
13 https:// itali angrid. github. io/ voms/..

https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.vmware.com/products/esxi-and-esx.html
https://www.intel.com/content/www/us/en/products/sku/83359/intel-xeon-processor-e52640-v3-20m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/83359/intel-xeon-processor-e52640-v3-20m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/83359/intel-xeon-processor-e52640-v3-20m-cache-2-60-ghz/specifications.html
https://wiki.centos.org/Manuals/ReleaseNotes/CentOS7.2009
https://xrootd.slac.stanford.edu/2021/05/20/announcement_5_2_0.html
https://xrootd.slac.stanford.edu/2021/05/20/announcement_5_2_0.html
https://github.com/holgerBerger/hpc-workspace
https://www.beegfs.io/c/
https://xrootd.slac.stanford.edu/2020/06/11/announcement_4_12_3.html
https://xrootd.slac.stanford.edu/2020/06/11/announcement_4_12_3.html
https://italiangrid.github.io/voms/
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thousand client requests are not uncommon in a production 
environment, and hence it is important to know the expected 
resource consumption under such circumstances. Therefore, 
the results of the measurements of the proxy server were 
used to extrapolate the required resources for larger numbers 
of parallel requests.

Python 3.8.622 and the ROOT module for Python 
(PyROOT23) with ROOT version 6.22.0624 are used for these 
benchmarks.

Input Files

The input files for the benchmarks were created in the ROOT 
format with the event generator Pythia 8.30325 [4]. The files 
contain information about simulated tt̄ events26 from pro-
ton–proton collisions at a center-of-mass energy of 13 TeV. 
For each event, the number of particles in the event and 
several properties of the particles are stored in the files: the 
particle type, the particle status,27 the energy, the mass, the 
transverse momentum, the azimuthal angle, and the pseu-
dorapidity. The mean size of this information is about 26 
kB per event, and the mean number of particles per event 
is about 1600.

Three files with different numbers of events, and therefore 
different file sizes, were generated: a small file with 50k 
events (1.3 GB), a medium file with 200k events (4.9 GB), 
and a large file with 500k events (13 GB).

Benchmark Description

Typical operations of a HEP analysis were performed in the 
benchmark: the ROOT Python module was used to open 
the requested file with the TFile() class. After that, the 
data in the file were loaded and a loop over the events was 
executed. For each event, a second loop over the respective 
number of particles of the event was executed. The pseu-
dorapidity of each particle was filled into an histogram. 
In addition, the transverse momentum, the pseudorapid-
ity, the azimuth angle, and the mass of each particle origi-
nating from the decay of the tt̄ system was used to build a 

LorentzVector,28 from which the mass of the tt̄ system was 
reconstructed and filled into an histogram.

The input files, the code to create them, and the bench-
mark code are publicly available.29

Workflow Benchmarks

Several input parameters were varied to test the respective 
dependency of the performance of the caching setup. All 
three file sizes were used as input, and the number of pro-
cessed events was varied: 1, 100, 1000, and 50k events for 
all three files, 200k events for the medium and the large file, 
and 500k events for the large file. The files were distributed 
to several WLCG sites that provide resources to the ATLAS 
collaboration to determine the influence of the geographi-
cal distance to the external site from which the files were 
requested. The sites used for the benchmarks were KIT 
(Karlsruhe, Germany), LRZ (Munich, Germany), DESY 
(Hamburg, Germany), TRIUMF (Vancouver, Canada), 
BNL (Brookhaven, USA), and the WLCG infrastructure in 
Freiburg, denoted as “dCache Freiburg“. Measurements of 
the round-trip time (RTT) using the ping command have 
been performed in order to estimate latencies due to the geo-
graphical distance and the individual network connections, 
and are shown in Table 1. As expected, more distant sites 
have a higher RTT. In addition, direct access to the files 
stored on the BeeGFS was tested.

The benchmark was performed for all combinations of 
file size, number of events, and external site. To reduce sta-
tistical uncertainties and the impact of external factors like 
network- or I/O load, every benchmark was repeated several 
times.

Proxy Server Benchmarks

For the measurements of the resource requirements of the 
proxy server, the above-mentioned parameters were fixed 
to the large file, 10k events (to ensure an overlap in the pro-
cessing of the parallel requests), and KIT (to ensure a fast 
connection). Instead, the number of parallel requests that had 

Table 1  Measurements of the 
round-trip time (RTT) and their 
standard deviations for the 
external sites. The results are 
rounded to significant digits

Site RTT [ms]

dCache FR 0.38 ± 0.10
KIT 2.80 ± 0.13
LRZ 10.3 ± 0.6
DESY 20.8 ± 3.4
BNL 89.5 ± 0.4
TRIUMF 157.15 ± 0.30

22 https:// www. python. org/ downl oads/ relea se/ python- 386/.
23 https:// root. cern/ manual/ python/.
24 https:// root. cern/ relea ses/ relea se- 62206/.
25 https:// pythia. org/ manua ls/ pythi a8303/ Welco me. html.
26 The collision of particles and the induced production of new parti-
cles is called an event.
27 Pythia sets the status of a particle according to how it was pro-
duced and if it is still present at the end of the collision.
28 https:// root. cern. ch/ doc/ master/ class ROOT_1_ 1Math_1_ 1Lore 
ntzVe ctor. html. 29 https:// github. com/ ALU- Schum acher/ cachi ng_ bench marks.

https://www.python.org/downloads/release/python-386/
https://root.cern/manual/python/
https://root.cern/releases/release-62206/
https://pythia.org/manuals/pythia8303/Welcome.html
https://root.cern.ch/doc/master/classROOT_1_1Math_1_1LorentzVector.html
https://root.cern.ch/doc/master/classROOT_1_1Math_1_1LorentzVector.html
https://github.com/ALU-Schumacher/caching_benchmarks
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to be processed by the proxy server was varied. The tested 
numbers were 25, 50, 75, 100, and 128. To avoid an impact 
on the results by parallel reading of a single file, 128 copies 
of the large file were placed at the KIT storage.

The memory consumption and the CPU load of the 
xrootd service were measured on the proxy server during 
the complete run of the benchmark.30

The measurements for each number of parallel requests 
were repeated several times to reduce the statistical uncer-
tainties and the impact of external factors like network- or 
I/O load.

Results and Discussion

For the workflow benchmarks, the mean value and standard 
deviation (SD) of the measurements of the elapsed time were 
calculated, respectively, for all combinations of the input 
parameters. For the proxy server benchmarks, the mean 
value and standard deviation of the measurements of the 
CPU load and the memory consumption were calculated, 
respectively, for all numbers of parallel requests.

Workflow Results

The results of the workflow benchmarks for all sites without 
and with caching setup are shown in Table 2 and Table 3, 
respectively. Preliminary results of this study have been pre-
viously published [17].

Fig. 3 shows the workflow benchmark results for the cach-
ing setup with a hot cache, i.e., when the files are already 
available in the cache space on the BeeGFS, and for access-
ing the files directly on the BeeGFS in Freiburg without 
using the caching setup. This comparison is a test for poten-
tial overhead introduced by the caching setup, since the files 
are stored on the BeeGFS in Freiburg in both cases. For each 
file size and each number of events, the results are compara-
ble. Therefore, no significant overhead by the caching setup 
is observed. While the completion time of the benchmark is 
larger for increasing numbers of events, it is independent of 
the file size. This allowed to merge the measurements for the 
three file sizes in the subsequent figures and tables.

The comparison between direct file access on the different 
sites and accessing the file in the cache space when using 

Fig. 3  Workflow benchmark results for BeeGFS Freiburg with (yellow) and without (purple) caching setup for different numbers of events, for 
the small, medium, and large files (from left to right)

Fig. 4  Workflow benchmark results for the caching setup, from left to 
right: when the file is already available in the cache space (yellow), 
for access without caching setup for dCache Freiburg (dark yellow), 
KIT (blue), LRZ (green), DESY (brown), BNL (pink), and TRIUMF 
(lavender), for different numbers of events. The results for the three 
file sizes have been merged

30 The commands to retrieve the respective information were pmap 
-d pid  tail -n 1  cut -d’ ’ -f7 for memory and top 
-b -n 2 -d 0.2 -p pid  tail -1  awk ’ print $9’ 
for CPU, where pid was the process ID of the xrootd service.



Computing and Software for Big Science             (2023) 7:7  

1 3

Page 7 of 11     7 

the caching setup is shown in Fig. 4. Reading files in the 
cache space is comparable to reading the files on sites that 
are geographically close to Freiburg, e.g., KIT. For sites at a 
larger distance, like BNL and TRIUMF, reading files in the 
cache space is faster up to a factor of ∼ 1.5 , and the client 
profits from the caching setup.

Figure 5 shows the workflow benchmark results for the 
external sites with and without the caching setup for a cold 
cache, i.e., when the file is not available in the local cache 

space. For 50k and more events, the completion time of the 
benchmark is lower for geographically far sites if the caching 
setup is used. This effect is largest for BNL and TRIUMF, 
but is also observed for DESY and LRZ.

The explanation for this effect is the simultaneous execu-
tion of the event loop by the client and the download of 
the file by the proxy server. For large numbers of events, 
the event loop, which reads the file from the external site, 
takes longer to complete than the time it takes to download 

Fig. 5  Workflow benchmark results for KIT without caching setup 
(blue) and with caching setup (orange), DESY without caching setup 
(brown) and with caching setup (dark blue), TRIUMF without cach-
ing setup (lavender) and with caching setup (green), BNL without 
caching setup (pink) and with caching setup (black), dCache Freiburg 

without caching setup (dark yellow) and with caching setup (dark 
green), and LRZ without caching setup (turquoise) and with caching 
setup (red) for different numbers of events. The results for the three 
file sizes have been merged

Table 2  Workflow benchmark 
results without caching setup. 
Shown are the completion 
times of the benchmark for the 
different sites and numbers of 
events. The results for the three 
file sizes have been merged and 
are rounded to significant digits

No. of events 1 100 1k 50k 200k 500k
Site Time [s]

BeeGFS FR 2.9 4.24 17.1 730 2860 6960
dCache FR 3.2 4.5 17.6 730 2860 6890
LRZ 3.5 4.9 18.8 770 3300 7500
KIT 3.7 5.2 19 760 3000 7500
DESY 3.8 5.5 18.8 800 3140 7700
BNL 5.9 7.0 23 880 3660 8400
TRIUMF 7.5 9.1 26 1050 4260 10900
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the file to the cache space. As soon as the file is completely 
available in the cache space, the event loop starts to read 
the local version of the file. Since reading the local version 
of the file is faster than reading from the external site, the 
completion time of the benchmark is reduced with respect to 
the benchmark without caching setup, where the file is read 
completely from the external site.

Because of this, using the caching setup results in faster 
file access for the client in case of large numbers of events 

and geographically far sites, even if the file is not already 
available in the cache space.

Proxy Server Results

In the analysis of the memory consumption of the xrootd 
service, values below a certain threshold were discarded to 
exclude idle time. With the remaining measurements, the 
mean value and the SD of the memory consumption were 
calculated for each number of parallel requests. The respec-
tive values for the different number of parallel requests are 
listed in Table 4.

Fig. 6 shows the distribution of memory consumption 
by the xrootd service for exemplary values of 25, 75, and 
128 parallel requests.

The dependence of the memory consumption on the 
number of requests can be described by a linear function 
as shown in Fig. 7. The fit was executed with Numpy31 

Table 3  Workflow benchmark 
results with caching setup. 
Shown are the completion 
times of the benchmark for the 
different sites and numbers of 
events. The results for the three 
file sizes have been merged and 
are rounded to significant digits

No. of events 1 100 1k 50k 200k 500k
Site Time [s]

Hot cache
    F ile in cache 3.6 4.8 18.1 740 2980 7060

Cold cache
    dCache FR 4.8 6.3 20.4 742 2880 6980
    LRZ 5.0 6.7 19.5 730 2940 6960
    DESY 5.4 6.6 19.6 730 2940 6860
    KIT 5.4 6.7 19.5 730 3080 7010
    BNL 7.5 9.3 22 739 2840 7050
    TRIUMF 9.8 11.3 24.1 760 3000 7120

Table 4  Proxy server benchmark results. Thresholds, mean values, 
and standard deviations of the memory consumption for the different 
numbers of parallel requests

No. of requests Threshold [GB] Mean [GB] SD [GB]

25 0.81 0.93 0.06
50 0.99 1.21 0.14
75 1.15 1.43 0.19
100 1.3 1.65 0.20
128 1.7 1.99 0.15

Fig. 6  Memory consumption of the xrootd service on the proxy 
server for 25, 75, and 128 parallel requests. Measurements below the 
respective thresholds are excluded

Fig. 7  Measured mean values and standard deviations of the memory 
consumption (blue dots), and the result of the linear fit (black dashed 
line)

31 https:// numpy. org/.

https://numpy.org/
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[13]. The function to get the required memory in GB for 
the number of parallel requests N is f (N) = 0.67 + 0.01 ⋅ N . 
With this, the minimum number of required memory can be 
extrapolated to larger numbers of parallel requests, assum-
ing that the observed linearity still holds for larger N. In a 
production environment, 1000 − 3000 parallel requests are 

not unrealistic, and would require at least ∼ 11GB − 31GB 
of memory. The deployment of a cluster of proxy servers, 
instead of a single proxy server, would therefore be advis-
able. The implementation of such a setup is possible with 
XRootD.

The other measured metric was the CPU load of the 
xrootd service. As in the case of the analysis of the 
memory consumption, very low values of CPU load were 
observed during idle times. Therefore, a threshold of 5 % 
was introduced. The mean value and the SD of the CPU load 
were calculated from the remaining measurements for each 
number of parallel requests. The respective values for the 
different number of parallel requests are listed in Table 5.

Fig. 8 shows the distribution of CPU load by the xrootd 
service for exemplary values of 25, 75, and 128 parallel 
requests. Since the proxy server was equipped with 4 virtual 
cores, the maximum is at 400 %.

As in the case of the memory consumption, the depend-
ence of the CPU load on the number of requests can be 
described by a linear function as shown in Fig. 9. All val-
ues were divided by 100 to derive a function for the num-
ber of required virtual cores (vCores). The function to get 
the required number of virtual cores for a given number of 
requests N is f (N) = 0.406 + 0.005 ⋅ N . 1000 − 3000 parallel 
requests would require at least ∼ 6 − 16 virtual cores. This 
could be realized with a cluster of proxy servers consisting 
of 4 virtual machines.

Conclusion

A lightweight caching setup was successfully implemented 
for the HEP computing infrastructure in Freiburg, which 
includes VREs running on the opportunistically used HPC 
cluster NEMO. This setup consists of a client, a proxy 
server, and a cache space. No additional hardware was nec-
essary for the cache space, since the file system provided by 
the HEP cluster was used. The only additional infrastructure 
component was a VM (4 cores and 8 GB RAM) serving 
as proxy server, which was running in the local VMware 
ESXi environment. Benchmarks that simulate a typical HEP 
workflow were devised to test the performance of the disk 
caching setup, and to measure the resource consumption on 
the proxy server during parallel file requests.

The disk caching setup outperforms non-cached access if 
the requested file is already available in the local cache space 
and if the external site is geographically far from Freiburg.

For large numbers of events in the benchmark, even ini-
tial requests, for which the file is not available in the cache 
space, are completed faster with the disk caching setup. The 
cause for this is the parallel download of the file, which 
makes it eventually available in the cache space.

Table 5  Proxy server benchmark results. Thresholds, mean values, 
and standard deviations of the CPU load for the different numbers of 
parallel requests

No. of requests Threshold [%] Mean [%] SD [%]

25 5 53.28 29.76
50 5 64.68 40.37
75 5 86.84 52.59

100 5 96.94 58.01
128 5 101.59 61.28

Fig. 8  CPU load of the xrootd service on the proxy server for 25, 
75, and 128 parallel requests. Measurements below the threshold are 
excluded

Fig. 9  Measured mean values and standard deviations of the CPU 
load (blue dots), and the result of the linear fit (black dashed line)
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These results have been achieved by using the default val-
ues of the caching parameters, e.g., blocksize and prefetch. 
Other values might result in a better performance, but might 
also depend on the specific environment where the caching 
setup is deployed. It is expected that the usage of SSD storage 
as cache space will increase the performance, but this has not 
been investigated since this study focuses on improvements 
with commodity hardware.

The resource consumption of the proxy server was meas-
ured by sending several requests in parallel, for different 
numbers of parallel requests. A linear dependence of both the 
memory consumption and the CPU load on the number of 
parallel requests was observed. This was used to extrapolate 
the measured resource consumption to larger, more realistic 
numbers of parallel requests. To handle 1000 − 3000 parallel 
requests, at least ∼ 11GB − 31GB of memory and at least 
∼ 6 − 16 virtual cores would be necessary. This can be real-
ized with a cluster of multiple, virtualized proxy servers, with-
out the need for additional hardware.
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