
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:26 
https://doi.org/10.1007/s41781-021-00073-z

ORIGINAL ARTICLE

Charged Particle Tracking via Edge‑Classifying Interaction Networks

Gage DeZoort1   · Savannah Thais1 · Javier Duarte2 · Vesal Razavimaleki2 · Markus Atkinson3 · Isobel Ojalvo1 · 
Mark Neubauer3 · Peter Elmer1

Received: 12 July 2021 / Accepted: 13 October 2021 / Published online: 15 November 2021 
© The Author(s) 2021

Abstract
Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited 
to address a variety of reconstruction problems in high-energy particle physics. In particular, particle tracking data are 
naturally represented as a graph by identifying silicon tracker hits as nodes and particle trajectories as edges, given a set of 
hypothesized edges, edge-classifying GNNs identify those corresponding to real particle trajectories. In this work, we adapt 
the physics-motivated interaction network (IN) GNN toward the problem of particle tracking in pileup conditions similar to 
those expected at the high-luminosity Large Hadron Collider. Assuming idealized hit filtering at various particle momenta 
thresholds, we demonstrate the IN’s excellent edge-classification accuracy and tracking efficiency through a suite of meas-
urements at each stage of GNN-based tracking: graph construction, edge classification, and track building. The proposed IN 
architecture is substantially smaller than previously studied GNN tracking architectures; this is particularly promising as a 
reduction in size is critical for enabling GNN-based tracking in constrained computing environments. Furthermore, the IN 
may be represented as either a set of explicit matrix operations or a message passing GNN. Efforts are underway to accelerate 
each representation via heterogeneous computing resources towards both high-level and low-latency triggering applications.

Keywords  Graph neural networks · Tracking · Particle physics

Introduction

Charged particle tracking is essential to many physics 
reconstruction tasks including vertex finding [1, 2], parti-
cle reconstruction [3, 4], and jet flavor tagging [5–7]. Cur-
rent tracking algorithms at the CERN Large Hadron Col-
lider (LHC) experiments [2, 8] are typically based on the 

combinatorial Kalman filter [9–12] and have been shown 
to scale worse than linearly with increasing beam intensity 
and detector occupancy [13]. The high-luminosity phase of 
the LHC (HL-LHC) will see an order of magnitude increase 
in luminosity [14], highlighting the need to develop new 
tracking algorithms demonstrating reduced latency and 
improved performance in high-pileup environments. To this 
end, ongoing research focuses on both accelerating current 
tracking algorithms via parallelization or dedicated hardware 
and developing new tracking algorithms based on machine 
learning (ML) techniques.

Geometric deep learning (GDL) [15–18] is a growing 
sub-field of ML focused on learning representations on non-
Euclidean domains, such as sets, graphs, and manifolds. 
Graph neural networks (GNNs) [19–24] are the subset of 
GDL algorithms that operate on graphs, data represented as 
a set of nodes connected by edges, and have been explored 
for a variety of tasks in high energy physics [25, 26]. Particle 
tracking data are naturally represented as a graph; detec-
tor hits form a 3D point cloud and the edges between them 
represent hypotheses about particle trajectories. Recent pro-
gress by the Exa.TrkX project and other collaborations has 
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demonstrated that edge-classifying GNNs are well suited 
to particle tracking applications [27–30]. Tracking via edge 
classification typically involves three stages. In the graph 
construction stage, silicon tracker hits are mapped to nodes 
and an edge-assignment algorithm forms edges between cer-
tain nodes. In the edge classification stage, an edge-classify-
ing GNN infers the probability that each edge corresponds 
to a true track segment meaning that both hits (nodes con-
necting the edge) are associated to the same truth particle, as 
discussed further in Sect. 4.1. Finally, in the track building 
step, a track-building algorithm leverages the edge weights 
to form full track candidates.

In this work, we present a suite of measurements at each 
of these stages, exploring a range of strategies and algo-
rithms to facilitate GNN-based tracking. We focus in par-
ticular on the interaction network (IN) [22], a GNN architec-
ture frequently used as a building block in more complicated 
architectures [27, 29, 31, 32]. The IN itself demonstrates 
powerful edge-classification capability and its mathematical 
formulations are the subject of ongoing acceleration stud-
ies [33]. In Sect. 2, we first present an overview of particle 
tracking and graph-based representations of track hits. In 
Sect. 3, we introduce INs and describe the mathematical 
foundations of our architecture. In Sect. 4, we present spe-
cific graph construction, IN edge classification, and track 
building measurements on the open-source TrackML data-
set. Additionally, we present IN inference time measure-
ments, framing this work in the context of ongoing GNN 
acceleration studies. In Sect. 5, we summarize the results of 
our studies and contextualize them in the broader space of 
ML-based particle tracking. We conclude in the same sec-
tion with outlook and discussion of future studies, in particu-
lar highlighting efforts to accelerate INs via heterogeneous 
computing resources.

Theory and Background

Particle Tracking

In collider experiments, such as the LHC, charged parti-
cle trackers are composed of cylindrical detector layers 
immersed in an axially-aligned magnetic field. The detec-
tor geometry is naturally described by cylindrical coordi-
nates (r,�, z) , where the z-axis is aligned with the beam-
line. Pseudorapidity is a measure of angle with respect 
to the beamline, defined as �∶= − log tan

�

2
 where � is the 

polar angle. Charged particles produced in collision events 
move in helical trajectories through the magnetic field, 
generating localized hits in the tracker layers via ionization 
energy deposits. Track reconstruction consists of “con-
necting the dots,” wherein hits are systematically grouped 
to form charged particle trajectories. We refer to a pair of 
hits that belong to the same particle as a track segment, 
such that the line extending between the hits is a linear 
approximation of the particle’s trajectory. Note that in a 
high-pileup scenario, track hits might correspond to multi-
ple overlapping particle trajectories. Reconstructed tracks 
are defined by their respective hit patterns and kinematic 
properties, which are extracted from each track’s helix 
parameters. Specifically, initial position and direction fol-
low directly from helical fits and the transverse momentum 
pT is extracted from the track’s curvature (see Fig. 1) [34].

In this work, we focus specifically on track building in 
the pixel detector (see Fig. 2), the innermost subdetec-
tor of the tracker. Many tracking algorithms run “inside 
out,” where track seeds from the pixel detector are used to 
estimate initial track parameters and propagated through 
the full detector [2]. Improving the seeding stage of the 

Fig. 1   (Left) A transverse view of a generic particle tracker, where 
the z-axis points out of the page. Here, we see a set of four cylindri-
cal detector layers with three particles traversing them. The magnetic 
field (of strength B) is aligned with the z-axis such that tracks move 
with a radius of curvature R in the transverse plane, yielding meas-

urements of transverse momentum via pT = 0.3 [
GeV

T⋅m
] BR . (Middle) 

The four cylindrical tracker layers are “unrolled” in the r–z plane to 
show the full event contents: three particles plus additional noise hits. 
(Right) The corresponding hitgraph is shown with example node and 
edge labels
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tracking pipeline is an important step towards enabling 
efficient tracking at the HL-LHC; this approach is compli-
mentary to other GNN-based tracking efforts that focus on 
the full tracker barrel (without including endcaps) using 
graph segmentation [28].

Tracker Hits as Graphs

Tracking data is naturally represented as a graph by identify-
ing hits as nodes and track segments as (in general) directed 
edges (see Fig. 1). In this scheme, nodes have cylindrical 
spatial features xk = (rk,�k, zk) and edges are defined by the 
nodes they connect. We employ two different edge represen-
tations: 1) binary incidence matrices Ri,Ro ∈ {0, 1}nedges×nnodes 
in incoming/outgoing (IO) format and 2) hit index pair lists 
I ∈ ℕ

2×nedges in coordinate (COO) format [36]. Specifically, 
the incidence matrix elements (Ri)e,h are 1 if edge e is incom-
ing to hit h and 0 otherwise; Ro is defined similarly for out-
going edges. COO entries I0,e and I1,e are the hit indices from 
which edge e is outgoing from and incoming to, respectively. 
Each edge is assigned a set of geometric features 
aij = (Δrij,Δ�ij,Δzij,ΔRij) , where ΔRij =

√
Δ�2

ij
+ Δ�2

ij
 is 

the edge length in �-� space. Node and edge features are 
s t a cke d  i n t o  m a t r i c e s  X = [xk] ∈ ℝ

nnodes×3  a n d 
Ra = [aij] ∈ ℝ

nedges×4 . Accordingly, we define hitgraphs rep-
resenting tracking data as GIO∶=(X,Ra,Ri,Ro) and 
GCOO∶=(X,Ra, I) . The corresponding training target is the 
vector y ∈ ℝ

nedges , whose components ye are 1 when edge e 
connects two hits associated to the same particle and 0 
otherwise.

Interaction Networks

The IN is a physics-motivated GNN capable of reasoning 
about objects and their relations [22]. Each IN forward-
pass involves a relational reasoning step, in which an 
interaction is computed, and an object reasoning step, in 
which interaction effects are aggregated and object dynam-
ics are applied. The resulting predictions have been shown 
to generate next-timestep dynamics consistent with vari-
ous physical principles. We adapt the IN to the problem 
of edge classification by conceptualizing each hitgraph as 
a complex network of hit “objects” and edge “relations.” 
In this context, the relational and object reasoning steps 
correspond to edge and node re-embeddings, respectively. 
In an edge classification scheme, the IN must determine 
whether or not each edge represents a track segment. 
Accordingly, we extend the IN forward pass to include an 
additional relational reasoning step, which produces an 
edge weight for each edge in the hitgraph. We consider 
two formulations of the IN: (1) the matrix formulation, 
suitable for edge-classification on GIO defined via PyTorch 
[37] and (2) the message passing formulation, suitable for 
edge-classification on GCOO defined via PyTorch Geomet-
ric (PyG) [36]. These formulations are equivalent in the-
ory, but specific implementations and training procedures 
can vary their computational and physics performance. 
In particular, the COO encoding of the edge adjacency 
can greatly reduce the memory footprint for training. For 
this reason, the measurements performed in this paper are 
based on the message passing formulation. In Sect. 3.1, we 
review the matrix formulation as presented in the origi-
nal IN paper [22], subsequently expanding the notation to 
describe the message passing IN formulation in Sect.  3.2.

Matrix Formulation

The original IN was formulated using simple matrix opera-
tions interpreted as a set of physical interactions and effects 
[22]. The forward pass begins with an input hitgraph 
GIO = (X,Ra,Ri,Ro) . The hits receiving an incoming edge 
are given by Xi∶=RiX ∈ ℝ

nedges×3 ; likewise, the hits send-
ing an outgoing edge are given by Xo∶=RoX ∈ ℝ

nedges×3 . 
Interaction terms are defined by the concatenation 
m(GIO)∶=[Xi,Xo,Ra] ∈ ℝ

nedges×10 , known as the marshal-
ling step. A relational network �R,1 predicts an effect 
for each interaction term, E∶=�R,1

(
m(GIO)

)
∈ ℝ

nedges×4 . 
These effects are aggregated via summation for each 
receiving node, A∶=a(GIO,E) = RT

i
E ∈ ℝ

nnodes×4 , and con-
catenated with X to form a set of expanded hit features 
C∶=[X,A] ∈ ℝ

nnodes×7 . An object network �O re-embeds the 
hit positions as X̃∶=𝜙O(C) ∈ ℝ

nnodes×3 . At this point, the 

Fig. 2   Here we depict a particle tracker geometry similar to tracker 
designs proposed for the HL-LHC era. This “generic tracker” geom-
etry is used in the TrackML dataset (see Sect. 4). The generic tracker 
is composed of three sub-detectors named by the shape of their sili-
con modules: the pixel detector, the short strip detector, and the long 
strip detector. Each sub-detector is divided into volumes (numbered 
7-18); each volume contains a set of detector layers. Volumes 8, 13, 
and 17 above are referred to as the barrel of the detector because 
their layers sit at a constant cylindrical radius. Volumes 7, 9, 12, 
14, 16, and 18 comprise the tracker’s endcaps because of their disk-
like shape; endcap layers are positioned at a single point along the 
z-axis. The above figure is adapted from a figure in Ref. [35] and the 
TrackML detector diagram accompanying Kaggle’s TrackML dataset
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traditional IN inference is complete, having re-embedded 
both the edges and nodes. Accordingly, we denote the re-
embedded graph IN(GIO) = G̃IO = (X̃,E,Ri,Ro).

To produce edge weights, an additional relational reasoning 
step is performed on G̃IO . Re-marshalling yields new inter-
action terms m(G̃IO) = [X̃i, X̃o,E] ∈ ℝ

nedges×10 and a second 
relational network �R,2 predicts edge weights for each edge: 
W(GIO)∶=𝜙R,2(m(G̃IO)) ∈ (0, 1)nedges . Summarily, we have a 
full forward pass of the edge classification IN:

Message Passing Formulation

The message passing NN (MPNN) framework summarizes 
the behavior of a range of GNN architectures including the 
IN [21]. In general, MPNNs update node features by aggre-
gating “messages,” localized information derived from the 
node’s neighborhood, and propagating them throughout the 
graph. This process is iterative; given a message passing time 
T indexed by t ∈ ℕ , a generic message passing node update 
can be written as follows:

Here, N(i) is neighborhood of node i. The differentiable 
function �(t)

message calculates messages for each j ∈ N(i) , 
which are aggregated across N(i) by a permutation-invariant 
function ◻ . A separate differentiable function �(t)

node
 lever-

ages the aggregated messages to update the node’s features. 
Given this generalized MPNN, the IN follows from the iden-
tifications �message → �R,1 , ◻j∈N(i) →

∑
j∈N(i) , and �node → �O 

for a single timestep (T = 1):

An additional relational reasoning step gives edge weights

In this way, we produce edge weights W(GCOO) = [w
(1)

ij
] from 

the re-embedded graph with node features X̃ = [x
(1)

i
] and 

edge features E = [a
(1)

ij
] . This formulation is easily general-

ized to T > 1 by applying Eqs. 3 and  4 in sequence at each 
time step before finally calculating edge weights via Eq. 5 at 
time T. In the following studies, we focus on the simplest 
case of nearest-neighbor message passing ( T = 1).

(1)W(GIO) = �R,2

[
m
(
IN(GIO)

)]
.

(2)x
(t)

i
= �

(t)

node

(
x
(t−1)

i
, ◻
j∈N(i)

�(t)
message

(
x
(t−1)

i
, x

(t−1)

j
, a

(t−1)

ij

))
.

(3)a
(1)

ij
= �R,1

(
x
(0)

i
, x

(0)

j
, a

(0)

ij

)
,

(4)x
(1)

i
= �O

(
x
(0)

i
,
∑

j∈N(i)

a
(1)

ij

)
.

(5)w
(1)

ij
∶=�R,2

(
x
(1)

i
, x

(1)

j
, a

(1)

ij

)
.

Measurements

TrackML Dataset

The TrackML dataset is a simulated set of proton-proton 
collision events originally developed for the TrackML Par-
ticle Tracking Challenge [35]. TrackML events are gener-
ated with 200 pileup interactions on average, simulating 
the high-pileup conditions expected at the HL-LHC. Each 
event contains 3D hit position and truth information about 
the particles that generated them. In particular, particles are 
specified by particle IDs ( pID ) and three-momentum vectors 
( � ). Each simulated hit has a unique identifier assigned that 
gives the true hit position and which particle created the hit. 
For this truth assignment, no merging of reconstructed hits 
is considered as merging of hits occurs in less than 0.5% of 
the cases and the added complexity was deemed unneces-
sary for the original challenge. Other simplifications in this 
dataset include a simple geometry with modules arranged 
in cylinders and disks, instead of a more complex geometry 
with cones, no simulation of electronics, cooling tubes, and 
cables, and only one type of physics process (top quark-
antiquark pairs) instead of a variety of processes.

The TrackML detector is designed as a generalized 
LHC tracker; it contains discrete layers of sensor arrays 
immersed in a strong magnetic field. We focus specifically 
on the pixel layers, a highly-granular set of four barrel and 
fourteen endcap layers in the innermost tracker regions. 
The pixel layers are shown in Fig. 2. We note that con-
straining our studies to the pixel layers reduces the size of 
the hitgraphs such that they can be held in memory and 
processed by the GNN without segmentation.

Graph Construction

In the graph construction stage, each event’s tracker hits 
are converted to a hitgraph through an edge selection algo-
rithm. Typically, a set of truth filters are applied to hits 
before they are assigned to graph nodes. For example, pT 
filters reject hits generated by particles with pT < pmin

T
 , 

noise filters reject noise hits, and same-layer filters reject 
all but one hit per layer for each particle. These truth fil-
ters are used to modulate the number of hits present in 
each hit graph to make it more feasible to apply GNN 
methods and can be thought of as an idealized hit filtering 
step (see Table 1). One goal of future R&D is to lower or 
remove this truth-based filter or replace it with a realistic 
hit filtering step that could be applied in a high-pileup 
experimental setting. After initial hit filtering yields a 
set of nodes, edge-assignment algorithms extend edges 
between certain nodes. These edges are inputs to the 
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inference stage and must therefore represent as many true 
track segments as possible. Naively, one might return a 
fully-connected hitgraph. However, this strategy yields 
1

2
nnodes(nnodes − 1) edges, which for nnodes ∼ O(1000) gives 
nedges ∼ O(500, 000) . This represents a fundamental trade-
off between different edge-assignment algorithms: they 
must simultaneously maximize efficiency, the fraction of 
track segments represented as true edges, and purity, the 
fraction of true edges to total edges in the hitgraph.

In this work, we compare multiple graph construction 
algorithms, each of which determines whether or not to 
extend an edge with features aij between hits i and j. In all 
methods, only pixel detector hits are considered, pseudora-
pidity is restricted to � ∈ [−4, 4] , and the noise and same-
layer hit filters are applied. Each method has the same defini-
tion of graph construction efficiency (Nreconstructed

true
∕N

possible

true ) 
and purity (Nreconstructed

true
∕Nreconstructed

total
) . The denominator 

quantity Npossible

true  is independent of the graph construction 
algorithm such that one may directly compare the efficien-
cies of the various methods. On the other hand, the denomi-
nator Nreconstructed

total
 depends on the specific graph construction 

routine; for this reason, it is important to study purity in 
the context of efficiency. The same-layer filter introduces an 
ambiguity in defining edges between the barrel and inner-
most endcap layers. Specifically, barrel hits generated by the 
same particle could produce multiple true edges incoming 
to a single endcap hit. The resulting triangular edge pat-
tern conflicts with the main assumption of the same-layer 
filter, that only one true track segment exists between each 
subsequent layer. For this reason, a barrel intersection cut 
was developed, in which edges between a barrel layer and 
an innermost endcap layer are rejected if they intersect with 
any intermediate barrel layers (see Fig. 3).

In addition to the barrel intersection cut, edges must also 
satisfy pmin

T
-dependent constraints on the geometric quanti-

ties z0 = zi − ri
zj−zi

rj−ri
 and �slope =

�j−�i

rj−ri
 . These selections form 

the basis of each of the following graph construction 
algorithms: 

1.	 Geometric Edges must satisfy the barrel intersection cut 
and z0 and �slope constraints.

2.	 Geometric and preclustering In addition to all geometric 
selections, edges must also belong to the same cluster in 

Table 1   The pT , noise, and same-layer filters are used as a han-
dle on graph size by reducing the number of hits allowed into the 
graph. Here, we profile 100 events from the TrackML train_1 
sample; these events have an average of N(total) = 56751 ± 6070 
hits in the pixel detector. Denote the hits removed by the pT , 
noise, and same-layer filters as N(pT < pmin

T
) , N(noise) and 

N(same − layer) , respectively. The noise filter is observed to 

remove N(noise) = 3702 ± 56 hits, roughly 6.5% of the detec-
tor occupancy. The pT and same-layer filters remove hits as a func-
tion of pmin

T
 ; these values are reported in the table below. We define 

N(remaining)∶=N(total) − N(pT < pmin
T

) − N(same − layer) − N(noise) 
to be the hits remaining after these filters are applied; N(remaining) 
corresponds to nnodes constructed in the hitgraph

pmin
T

 [GeV] N(pT < pmin
T

) N(same − layer) N(remaining) N(remaining)∕N(total) 
[%]

2.0 51520 ± 5848 439 ± 87 1090 ± 156 1.9 ± 0.3

1.5 49880 ± 5617 921 ± 159 2248 ± 155 4.0 ± 0.5

1.0 45501 ± 5057 2233 ± 333 5315 ± 152 9.4 ± 1.0

0.9 43839 ± 4855 2735 ± 395 6475 ± 151 11.4 ± 1.2

0.8 41677 ± 4583 3396 ± 480 7976 ± 150 14.1 ± 1.5

0.7 38778 ± 4242 4278 ± 582 9993 ± 148 17.6 ± 1.9

0.6 34951 ± 3798 5448 ± 714 12650 ± 146 22.3 ± 2.4

0.5 29830 ± 3265 7025 ± 875 16194 ± 144 28.5 ± 3.1

Fig. 3   The transition region between the barrel and endcaps intro-
duces an ambiguity in truth-labeling edges crossing from barrel to 
endcap layers. Specifically, one may draw multiple possible edges 
between hits in barrel layers and the innermost endcap layer. Only 
one such edge can be true; the others (labeled red) should be rejected. 
The barrel intersection cut rejects any edges between a barrel layer 
and an innermost endcap layer that intersect an intermediate barrel 
layer. Accordingly, the red edges would be rejected by the intersect-
ing line cut and the blue edges would not
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�-� space determined by the density-based spatial clus-
tering of applications with noise (DBSCAN) algorithm 
[38].

3.	 Geometric and data-driven In addition to all geometric 
selections, edges must connect detector modules that 
have produced valid track segments in an independent 
data sample; this data-driven strategy is known as the 
module map method originally developed in [39].

Truth-labeled example graphs and key performance metrics 
for each graph construction algorithm are shown in Figs. 4 
and  5, respectively. For each method, pmin

T
-dependent values 

of �slope and z0 are chosen to keep the efficiency at a con-
stant O(99%) . We observe a corresponding drop in purity to 
O(1%) as pmin

T
 is decreased and graphs become denser. At 

high values of pmin
T

 , preclustering hits in �–� space yields 
a significant increase in purity over the purely geometric 
construction. This effect disappears as pmin

T
 decreases below 

1.5GeV , as tracks begin to overlap non-trivially with higher 
detector occupancy. On the other hand, the data-driven mod-
ule map yields a significant boost in purity for the full range 
of pmin

T
 . Accordingly, the module map method is most suited 

to constrained computing environments in which graph size 
or processing time is limited. It should be noted, however, 
that purer graphs do not necessarily lead to higher edge clas-
sification accuracies.

 

Edge Classification

As detailed in Sect. 3, we have implemented the IN in 
PyTorch [37] as a set of explicit matrix operations and 
in PyG [36] as a MPNN. Both implementations are avail-
able in the Git repository accompanying this paper [40]. 
In the following studies, we limit our focus to the MPNN 
implementation trained on graphs built using geometric 
cuts only. Because PyG accommodates the sparse GCOO 
edge representation, the MPNN implementation is signifi-
cantly faster and more flexible than the matrix implemen-
tation (see 4.5). The full forward-pass, composed of edge 
and node blocks used to predict edge weights, is shown in 
Fig. 6. The functions �R,1 , �R,2 , and �O are approximated 
as multilayer perceptrons (MLPs) with rectified linear unit 
(ReLU) activation functions [41, 42]. The ReLU activa-
tion function behaves as an identity function for positive 
inputs and saturates at 0 for negative inputs. Notably, 
the �R,2 outputs have a sigmoid activation �(⋅) ∈ (0, 1) , 
such that they represent probabilities, or edge weights, 
W(GCOO) ∈ (0, 1)nedges that each edge is a track segment. We 
therefore seek to optimize a binary cross-entropy (BCE) 
loss between the truth targets yk = {0, 1} and edge weights 
wk ∈ (0, 1) , which henceforth are re-labeled by the edge 
index k:

Fig. 4   Edge colors indicate truth labels; blue edges are true track seg-
ments and back edges are false. Varying pmin

T
 modulates the graph 

size. As pmin
T

 is decreased, graphs are increasingly composed of false 
edges. Preclustering and data-driven edge selections reduce the frac-
tion of false edges in the graphs when compared to simple geometric 
selections

Fig. 5   Graph construction efficiency, purity, node counts, and edge 
counts are reported for a range of pmin

T
 calculated using 100 random 

graphs from the train_1 sample
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Here, n is the sample index so that the total loss per epoch is 
the average BCE loss L({Gn, yn}

N
n=1

) =
1

N

∑N

n=1
�

�
yn,Wn(G)

�
 . 

Throughout the following studies, the architecture in Fig. 6 
is held at a constant size of 6,448 trainable parameters, cor-
responding to 40 hidden units (h.u.) per layer in each of 
the MLPs. Validation studies indicate that even this small 
network rapidly converged to losses of O(10−3) , similar to 
its larger counterparts (see Fig. 6). Assuming every MLP 
layer has the same number of h.u., 40 h.u. per layer is suf-
ficient to recover the maximum classification accuracy with 
models trained on pmin

T
= 1GeV graphs. In the following 

studies, models are trained on graphs built with pmin
T

 rang-
ing from 0.6–2 GeV . At each value of pmin

T
 , 1500 graphs 

belonging to the TrackML train_1 sample are randomly 
divided into 1000 training, 400 testing, and 100 validation 
sets. The Adam optimizer is used to facilitate training [43]. 
It is configured with learning rates of 3.5–8×10−3 , which are 
decayed by a factor of � = 0.95 for pmin

T
≤ 1GeV and � = 0.8 

for pmin
T

> 1GeV every 10 epochs.
To evaluate the IN edge-classification performance, it is 

necessary to define a threshold � such that each edge weight 
wk ∈ W(GCOO) satisfying wk ≥ � or wk < 𝛿 indicates that 
edge k was classified as true or false, respectively. Here, 
we define �∗ as the threshold at which the true positive rate 
(TPR) equals the true negative rate (TNR). In principle, �∗ 
may be calculated individually for each graph. However, this 
introduces additional overhead to the inference step, which 
is undesirable in constrained computing environments. We 
instead determine �∗ during the training process by minimiz-
ing the difference |TPR − TNR| for graphs in the validation 

(6)

�

(
yn,Wn(G)

)
= −

nedges∑

k=1

(
yk logwk + (1 − yk) log(1 − wk)

) set. The resulting �∗ , which is stored for use in evaluating the 
testing sample, represents the average optimal threshold for 
the validation graphs. Accordingly, we define the model’s 
accuracy at �∗ as (nTP + nTN)∕nedges , where nTP ( nTN ) is the 
number of true positives (negatives), and note that the BCE 
loss is independent of �∗.

As shown in Fig. 7, the training process results in smooth 
convergence to excellent edge-classification accuracy for a 
range of pmin

T
 . Classification accuracy degrades slightly as 

pmin
T

 is lowered below 1GeV ; hyperparameter studies indi-
cate that larger networks improve performance on lower pmin

T
 

graphs (see Fig. 6). A transfer learning study was conducted 
in which models trained on graphs at a specific pmin

T
 were 

tested on graph samples at a range of pmin
T

 . The results are 
summarized in Fig. 8, which shows that the models achieve 
relatively robust performance on a range of graph sizes. 
These results suggest it may be possible to train IN mod-
els in simplified scenarios and apply them to more complex 
realistic scenarios (e.g. without a pmin

T
 cut).

Track Building

In the track building step, the predicted edge weights 
wk ∈ W(GCOO) are used to infer that edges satisfy-
ing wk ≥ �∗ represent true track segments. If the edge 
weight mask perfectly reproduced the training target (i.e. 
���(W(GCOO) ≥ �∗) = y ), the edge-classification step would 
produce nparticles disjoint subgraphs, each corresponding to a 
single particle. Imperfect edge-classification leads to spuri-
ous connections between these subgraphs, prompting the 
need for more sophisticated track-building algorithms. Here, 
we use the union-find algorithm [44] and DBSCAN to clus-
ter hits in the edge-weighted graphs. Hit clusters are then 
considered to be reconstructed tracks candidates; the track 

Fig. 6   (Left) The complete IN forward-pass with the relational and object models approximated as MLPs. (Right) An example hyperparameter 
scan in which a models with varying numbers of hidden units (h.u.) were trained on pmin

T
= 0.7GeV graphs
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candidates are subsequently matched to simulated particles 
(when possible). In a full tracking pipeline, these track can-
didates would then be fit to extract track parameters, such as 
pT and � ; in this work, we use truth information for matched 
particles to get the track parameters. Tracking efficiency 
metrics measure the relative success of the clustering and 
matching process using various definitions. We define three 
tracking efficiency measurements using progressively tighter 
requirements to allow comparison with current tracking 
algorithm efficiencies and other on-going HL-LHC track-
ing studies: 

1.	 LHC match efficiency The number of reconstructed 
tracks containing over 75% of hits from the same parti-
cle, divided by the total number of particles.

2.	 Double-majority efficiency The number of reconstructed 
tracks containing over 50% of hits from the same parti-
cle and over 50% of that particle’s hits, divided by the 
total number of particles.

3.	 Perfect match efficiency The number of reconstructed 
tracks containing only hits from the same particle and 
every hit generated by that particle, divided by the num-
ber of particles.

We note that the perfect match efficiency is not commonly 
used by experiments as 100% is not realistically achievable, 
but we present it to demonstrate the absolute performance 
of the GNN tracking pipeline.

Figure 9 shows each of these tracking efficiencies as a 
function of particle pT and � for both the DBSCAN and 
union-find clustering approaches. Additionally, Table 2 
shows the corresponding fake rates, or fractions of 
unmatched clusters relative to all clusters, across the full 
pT and � range. The efficiencies and fake rates are calcu-
lated with pmin

T
= 0.9GeV graphs. Tracking performance 

is relatively stable at low pT but degrades for higher pT 
particles; similar effects have been noted in other edge-
weight-based hit clustering schemes [39]. The tracking 
efficiencies are lowest in the neighborhood of � = 0 , 
indicating that performance is worst in the pixel barrel 
region. This is consistent with the observation that most 
edge classification errors occur in the barrel, where the 
density of detector modules is significantly higher [35]. 
Tracking efficiency loss around |�| ≈ 2.5 corresponds to 
the transition region between barrel and endcap layers. 
DBSCAN demonstrates higher tracking efficiency than 
union-find across all pT and � values and efficiency defini-
tions. This performance gap is likely due to the additional 
spatial information used in DBSCAN’s clustering routine. 

Fig. 7   (Left) Loss convergence for models trained on various pmin
T

 
graphs. (Right) A model trained on pmin

T
= 1GeV graphs was used to 

evaluate an unseen pmin
T

= 1GeV graph, yielding a loss of 1.52 × 10−3 

and accuracy of 99.9%. 98 out of 95,160 edges were incorrectly clas-
sified; these erroneous classifications are magnified in the figure

Fig. 8   Models trained on various pmin
T

 graphs in the train_1 sam-
ple were tested on 400 graphs from the train_3 sample at various 
pmin
T

 thresholds
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Moving forward, additional tracking performance may be 
recovered by leveraging the specific values of each edge 
weight to make dynamic hit clustering decisions. The fake 
rates are relatively low for both track-building methods, 
and as expected roughly increase for increasingly tight 
efficiency definitions. Interestingly, DBSCAN demon-
strates a lower fake rate for LHC match efficiency while 
union-find demonstrates a lower fake rate for the perfect 
match efficiency; DBSCAN also has a larger drop in track-
ing efficency between the double match and perfect match 

definitions, indicating that while DBSCAN identifies more 
track candidates, union-find builds tracks more precisely.

Inference Timing

An important advantage of GNN-based approaches over 
traditional methods for HEP reconstruction is the abil-
ity to natively run on highly parallel computing architec-
tures. The PyG library supports graphics processing units 
(GPUs) to parallelize the algorithm execution. Moreover, 
the model was prepared for inference by converting it to a 
TorchScript program [45]. For the IN studied in this work, 
the average CPU and GPU inference times per graph for a 
variety of minimum pT cuts are shown in Table 3. For this 
test, the graphs are constructed using the geometric selec-
tions as described in Section 4.2. Moreover, we use bidirec-
tional graphs, which means both directed edges (outward 
and inward from the primary vertex) are present in the edge 
list. As can be seen, inference can be significantly sped up 

Fig. 9   The track-building performance of DBSCAN and union-find is measured as a function of particle pT and � for three tracking efficiency 
definitions atpmin

T
= 0.9GeV

Table 2   Overall fake rates of union-find and DBSCAN track-building 
for three tracking efficiency definitions for pmin

T
= 0.9GeV

Efficiency definition Union-find DBSCAN

LHC match 0.0471 ± 0.008 0.0275 ± 0.005

Double majority 0.0934 ± 0.01 0.0891 ± 0.01

Perfect match 0.0910 ± 0.01 0.1242 ± 0.01
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with heterogeneous resources like GPUs. For instance, for a 
0.5GeVminimum pT cut, the inference time can be reduced 
by approximately a factor of 10 using the GPU with respect 
to the CPU. In general, the speedup is greater at lower pmin

T
 

because of the higher multiplicity and thus the greater gain 
from parallelization on the GPU versus the CPU. Other het-
erogeneous computing resources specialized for inference 
may be even more beneficial. This speed-up may benefit 
the experiments’ computing workflows by accessing these 
resources as an on-demand, scalable service [46–48].

Work has also been done to accelerate the inference of 
deep neural networks with heterogeneous resources beyond 
GPUs, like field-programmable gate arrays (FPGAs) 
[49–57]. This work extends to GNN architectures [29, 
58]. Specifically, in Ref. [29], a compact version of the IN 
was implemented for pT > 2GeV segmented geometric 
graphs with up to 28 nodes and 37 edges, and shown to 
have a latency less than 1 � s, an initiation interval of 5 ns, 
reproduce the floating-point precision model with a fixed-
point precision of 16 bits or less, and fit on a Xilinx Kintex 
UltraScale FPGA.

While this preliminary FPGA acceleration work is prom-
ising, there are several limitations of the current FPGA 
implementation of the IN: 

1.	 This fully pipelined design cannot easily scale to beyond 
O(100) nodes and O(1000) edges. However, if the initia-
tion interval requirements are loosened, it can scale up 
to O(10, 000) nodes and edges.

2.	 The neural network itself is small, and while it is effec-
tive for pT > 2GeV graphs, it may not be sufficient for 
lower-pT graphs.

3.	 The FPGA design makes no assumptions about the pos-
sible graph connectivity (e.g. layer 1 nodes are only con-

nected to layer 2 nodes), and instead allows all nodes to 
potentially participate in message passing. However by 
taking this additional structure into account, the hard-
ware resources can be significantly reduced.

4.	 Quantization-aware training [55, 59–68] using QKeras 
[56, 69] or Brevitas [50, 70], parameter pruning [71–
76], and general hardware-algorithm codesign can 
significantly reduce the necessary FPGA resources by 
reducing the required bit precision and removing irrel-
evant operations.

5.	 The design can be made more flexible, configurable, 
and reusable by integrating it fully with a user-friendly 
interface like hls4ml [77].

Summary and Outlook

In this work, we have shown that the physics-motivated 
interaction network (IN), a type of graph neural network 
(GNN), can successfully be applied to the task of charged 
particle tracking across a range of hitgraph sizes. Through 
a suite of graph construction, edge classification, and track 
building measurements, we have framed the IN’s perfor-
mance in the context of a GNN-based tracking pipeline 
following a truth-based hit filtering preselection in which 
hits associated with particles whose transverse momentum 
( pT ) is below a certain threshold ( pmin

T
 ) are removed. The 

graph construction measurements demonstrate that geomet-
ric cuts, hit clustering, and data-driven strategies are effec-
tive in constructing highly-efficient graphs from pixel barrel 
and endcap layers; in constrained computing environments, 
the parameters of each strategy allow a trade-off between 
graph efficiency and purity. In particular, for a fixed graph 
construction efficiency of O(99%) , we show that geometric 

Table 3   CPU and GPU inference time estimates for each pT thresh-
old. The model was prepared for inference by converting it to a 
TorchScript program. The timing tests were performed with an 
Nvidia Titan Xp GPU with 12  GB RAM and a 12-core Intel Xeon 
CPU E5-2650 v4 @ 2.20 GHz. Inference is performed with a batch 
size of one graph. Graphs are constructed using geometric restrictions 
with bidirectional edges (both edge directions are present). The infer-
ence is repeated 100 times (after some warm-up) for 5 iterations and 

the best time per inference over the 5 iterations is found. The mean 
and standard deviation of the best inference time derived for 5 ran-
dom graphs in the testing dataset are then reported. The mean and 
standard deviation of the number of nodes and edges are also reported 
for 100 graphs. We find a significant speedup with the GPU versus 
the CPU, which is greater at lower pmin

T
 because of the higher multi-

plicity and thus the greater gain from parallelization on the GPU

pmin
T

 [GeV] CPU [ms] GPU [ms] nnodes nedges

2 3.83 ± 0.89 0.95 ± 0.01 1090.6 ± 192.8 9080.7 ± 3027.1

1.5 7.96 ± 1.44 0.95 ± 0.03 2247.0 ± 363.9 30980.6 ± 9468.6

1 33.96 ± 11.24 3.61 ± 0.91 5309.3 ± 765.5 200910.1 ± 55825.9

0.9 52.44 ± 14.15 5.36 ± 1.37 6468.5 ± 912.2 312809.5 ± 85441.3

0.8 91.86 ± 24.42 9.60 ± 2.61 7970.5 ± 1100.0 556417.7 ± 151482.8

0.7 168.40 ± 41.34 17.70 ± 4.39 9982.7 ± 1341.5 1011884.4 ± 268706.0

0.6 273.20 ± 62.09 28.84 ± 6.65 12640.0 ± 1648.2 1585883.3 ± 409146.8

0.5 437.00 ± 97.99 44.66 ± 7.91 16178.6 ± 2019.1 2535979.6 ± 628297.1
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cuts alone produce reasonably pure graphs ( ∼ 4% purity at 
pmin
T

= 1GeV ) but that the module-map method produces the 
most pure graphs for the entire range of pmin

T
 ( ∼ 10% purity 

at pmin
T

= 1GeV ). With efficiency held constant, purity is 
more-or-less a comparison of graph sizes, indicating that the 
module map method is most suited for graph construction 
in constrained computing environments. Though high graph 
construction efficiency is desirable in a global sense, graph 
purity is non-trivially related to downstream physics perfor-
mance; in particular, many message passing GNN architec-
tures may benefit from less-pure graphs due to higher edge 
connectivity.

The lightweight IN models trained in the edge classifi-
cation step demonstrate extremely high edge classification 
efficiency for a range of pmin

T
 . Significantly, we find models 

trained in simpler scenarios (larger pmin
T

 ) generalize to more 
complex scenarios (smaller pmin

T
 ). Track building measure-

ments performed on these edge-weighted graphs showed 
that DBSCAN’s spatial clustering outperformed union-find 
clustering across a variety of efficiency definitions.

The IN architecture presented here is substantially smaller 
than previous GNN tracking architectures, which may enable 
its use in constrained computing environments. Accordingly, 
we have compared the IN’s CPU and GPU inference times 
and discussed related work on accelerating INs with FPGAs. 
As described in Section 4.5, there are several limitations to 
the current FPGA implementation of the IN and addressing 
these concerns is the subject of ongoing work.

Another important aspect of GNN-based tracking is 
reducing the time it takes to construct graphs. Ongoing 
efforts are dedicated to studying how best to accelerate 
graph construction using heterogeneous resources. Alter-
native GNN approaches that do not require an input graph 
structure, such as dynamic graph convolutional neural net-
works [24], distance-weighted GNNs [78], attention-based 
transformers [79], reformers [80], and performers [81], may 
be fruitful avenues of investigation as well.

In summary, geometric deep learning methods can be 
naturally applied to many physics reconstruction tasks, and 
our work and related studies establish GNNs as an extremely 
promising candidate for tracking at the high luminosity 
LHC.
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