
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:26
https://doi.org/10.1007/s41781-021-00073-z

ORIGINAL ARTICLE

Charged Particle Tracking via Edge‑Classifying Interaction Networks

Gage DeZoort1  · Savannah Thais1 · Javier Duarte2 · Vesal Razavimaleki2 · Markus Atkinson3 · Isobel Ojalvo1 ·
Mark Neubauer3 · Peter Elmer1

Received: 12 July 2021 / Accepted: 13 October 2021 / Published online: 15 November 2021
© The Author(s) 2021

Abstract
Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited
to address a variety of reconstruction problems in high-energy particle physics. In particular, particle tracking data are
naturally represented as a graph by identifying silicon tracker hits as nodes and particle trajectories as edges, given a set of
hypothesized edges, edge-classifying GNNs identify those corresponding to real particle trajectories. In this work, we adapt
the physics-motivated interaction network (IN) GNN toward the problem of particle tracking in pileup conditions similar to
those expected at the high-luminosity Large Hadron Collider. Assuming idealized hit filtering at various particle momenta
thresholds, we demonstrate the IN’s excellent edge-classification accuracy and tracking efficiency through a suite of meas-
urements at each stage of GNN-based tracking: graph construction, edge classification, and track building. The proposed IN
architecture is substantially smaller than previously studied GNN tracking architectures; this is particularly promising as a
reduction in size is critical for enabling GNN-based tracking in constrained computing environments. Furthermore, the IN
may be represented as either a set of explicit matrix operations or a message passing GNN. Efforts are underway to accelerate
each representation via heterogeneous computing resources towards both high-level and low-latency triggering applications.

Keywords  Graph neural networks · Tracking · Particle physics

Introduction

Charged particle tracking is essential to many physics
reconstruction tasks including vertex finding [1, 2], parti-
cle reconstruction [3, 4], and jet flavor tagging [5–7]. Cur-
rent tracking algorithms at the CERN Large Hadron Col-
lider (LHC) experiments [2, 8] are typically based on the

combinatorial Kalman filter [9–12] and have been shown
to scale worse than linearly with increasing beam intensity
and detector occupancy [13]. The high-luminosity phase of
the LHC (HL-LHC) will see an order of magnitude increase
in luminosity [14], highlighting the need to develop new
tracking algorithms demonstrating reduced latency and
improved performance in high-pileup environments. To this
end, ongoing research focuses on both accelerating current
tracking algorithms via parallelization or dedicated hardware
and developing new tracking algorithms based on machine
learning (ML) techniques.

Geometric deep learning (GDL) [15–18] is a growing
sub-field of ML focused on learning representations on non-
Euclidean domains, such as sets, graphs, and manifolds.
Graph neural networks (GNNs) [19–24] are the subset of
GDL algorithms that operate on graphs, data represented as
a set of nodes connected by edges, and have been explored
for a variety of tasks in high energy physics [25, 26]. Particle
tracking data are naturally represented as a graph; detec-
tor hits form a 3D point cloud and the edges between them
represent hypotheses about particle trajectories. Recent pro-
gress by the Exa.TrkX project and other collaborations has

S. T. and V. R. are supported by IRIS-HEP through the U.S.
National Science Foundation (NSF) under Cooperative Agreement
OAC-1836650. J. D. is supported by the U.S. Department of
Energy (DOE), Office of Science, Office of High Energy Physics
Early Career Research program under Award No. DE-SC0021187.
G. D. is supported by DOE Award No. DE-SC0007968.

 *	 Gage DeZoort
	 jdezoort@princeton.edu

 *	 Savannah Thais
	 sthais@princeton.edu; savannah.jennifer.thais@cern.ch

1	 Princeton University, Princeton, NJ, USA
2	 University of California San Diego, La Jolla, CA, USA
3	 University of Illinois at Urbana-Champaign, Champaign, IL,

USA

http://orcid.org/0000-0002-5890-0445
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00073-z&domain=pdf

	 Computing and Software for Big Science (2021) 5:26

1 3

26  Page 2 of 13

demonstrated that edge-classifying GNNs are well suited
to particle tracking applications [27–30]. Tracking via edge
classification typically involves three stages. In the graph
construction stage, silicon tracker hits are mapped to nodes
and an edge-assignment algorithm forms edges between cer-
tain nodes. In the edge classification stage, an edge-classify-
ing GNN infers the probability that each edge corresponds
to a true track segment meaning that both hits (nodes con-
necting the edge) are associated to the same truth particle, as
discussed further in Sect. 4.1. Finally, in the track building
step, a track-building algorithm leverages the edge weights
to form full track candidates.

In this work, we present a suite of measurements at each
of these stages, exploring a range of strategies and algo-
rithms to facilitate GNN-based tracking. We focus in par-
ticular on the interaction network (IN) [22], a GNN architec-
ture frequently used as a building block in more complicated
architectures [27, 29, 31, 32]. The IN itself demonstrates
powerful edge-classification capability and its mathematical
formulations are the subject of ongoing acceleration stud-
ies [33]. In Sect. 2, we first present an overview of particle
tracking and graph-based representations of track hits. In
Sect. 3, we introduce INs and describe the mathematical
foundations of our architecture. In Sect. 4, we present spe-
cific graph construction, IN edge classification, and track
building measurements on the open-source TrackML data-
set. Additionally, we present IN inference time measure-
ments, framing this work in the context of ongoing GNN
acceleration studies. In Sect. 5, we summarize the results of
our studies and contextualize them in the broader space of
ML-based particle tracking. We conclude in the same sec-
tion with outlook and discussion of future studies, in particu-
lar highlighting efforts to accelerate INs via heterogeneous
computing resources.

Theory and Background

Particle Tracking

In collider experiments, such as the LHC, charged parti-
cle trackers are composed of cylindrical detector layers
immersed in an axially-aligned magnetic field. The detec-
tor geometry is naturally described by cylindrical coordi-
nates (r,�, z) , where the z-axis is aligned with the beam-
line. Pseudorapidity is a measure of angle with respect
to the beamline, defined as �∶= − log tan

�

2
 where � is the

polar angle. Charged particles produced in collision events
move in helical trajectories through the magnetic field,
generating localized hits in the tracker layers via ionization
energy deposits. Track reconstruction consists of “con-
necting the dots,” wherein hits are systematically grouped
to form charged particle trajectories. We refer to a pair of
hits that belong to the same particle as a track segment,
such that the line extending between the hits is a linear
approximation of the particle’s trajectory. Note that in a
high-pileup scenario, track hits might correspond to multi-
ple overlapping particle trajectories. Reconstructed tracks
are defined by their respective hit patterns and kinematic
properties, which are extracted from each track’s helix
parameters. Specifically, initial position and direction fol-
low directly from helical fits and the transverse momentum
pT is extracted from the track’s curvature (see Fig. 1) [34].

In this work, we focus specifically on track building in
the pixel detector (see Fig. 2), the innermost subdetec-
tor of the tracker. Many tracking algorithms run “inside
out,” where track seeds from the pixel detector are used to
estimate initial track parameters and propagated through
the full detector [2]. Improving the seeding stage of the

Fig. 1   (Left) A transverse view of a generic particle tracker, where
the z-axis points out of the page. Here, we see a set of four cylindri-
cal detector layers with three particles traversing them. The magnetic
field (of strength B) is aligned with the z-axis such that tracks move
with a radius of curvature R in the transverse plane, yielding meas-

urements of transverse momentum via pT = 0.3 [
GeV

T⋅m
] BR . (Middle)

The four cylindrical tracker layers are “unrolled” in the r–z plane to
show the full event contents: three particles plus additional noise hits.
(Right) The corresponding hitgraph is shown with example node and
edge labels

Computing and Software for Big Science (2021) 5:26	

1 3

Page 3 of 13  26

tracking pipeline is an important step towards enabling
efficient tracking at the HL-LHC; this approach is compli-
mentary to other GNN-based tracking efforts that focus on
the full tracker barrel (without including endcaps) using
graph segmentation [28].

Tracker Hits as Graphs

Tracking data is naturally represented as a graph by identify-
ing hits as nodes and track segments as (in general) directed
edges (see Fig. 1). In this scheme, nodes have cylindrical
spatial features xk = (rk,�k, zk) and edges are defined by the
nodes they connect. We employ two different edge represen-
tations: 1) binary incidence matrices Ri,Ro ∈ {0, 1}nedges×nnodes
in incoming/outgoing (IO) format and 2) hit index pair lists
I ∈ ℕ

2×nedges in coordinate (COO) format [36]. Specifically,
the incidence matrix elements (Ri)e,h are 1 if edge e is incom-
ing to hit h and 0 otherwise; Ro is defined similarly for out-
going edges. COO entries I0,e and I1,e are the hit indices from
which edge e is outgoing from and incoming to, respectively.
Each edge is assigned a set of geometric features
aij = (Δrij,Δ�ij,Δzij,ΔRij) , where ΔRij =

√
Δ�2

ij
+ Δ�2

ij
 is

the edge length in �-� space. Node and edge features are
s t a cke d i n t o m a t r i c e s X = [xk] ∈ ℝ

nnodes×3 a n d
Ra = [aij] ∈ ℝ

nedges×4 . Accordingly, we define hitgraphs rep-
resenting tracking data as GIO∶=(X,Ra,Ri,Ro) and
GCOO∶=(X,Ra, I) . The corresponding training target is the
vector y ∈ ℝ

nedges , whose components ye are 1 when edge e
connects two hits associated to the same particle and 0
otherwise.

Interaction Networks

The IN is a physics-motivated GNN capable of reasoning
about objects and their relations [22]. Each IN forward-
pass involves a relational reasoning step, in which an
interaction is computed, and an object reasoning step, in
which interaction effects are aggregated and object dynam-
ics are applied. The resulting predictions have been shown
to generate next-timestep dynamics consistent with vari-
ous physical principles. We adapt the IN to the problem
of edge classification by conceptualizing each hitgraph as
a complex network of hit “objects” and edge “relations.”
In this context, the relational and object reasoning steps
correspond to edge and node re-embeddings, respectively.
In an edge classification scheme, the IN must determine
whether or not each edge represents a track segment.
Accordingly, we extend the IN forward pass to include an
additional relational reasoning step, which produces an
edge weight for each edge in the hitgraph. We consider
two formulations of the IN: (1) the matrix formulation,
suitable for edge-classification on GIO defined via PyTorch
[37] and (2) the message passing formulation, suitable for
edge-classification on GCOO defined via PyTorch Geomet-
ric (PyG) [36]. These formulations are equivalent in the-
ory, but specific implementations and training procedures
can vary their computational and physics performance.
In particular, the COO encoding of the edge adjacency
can greatly reduce the memory footprint for training. For
this reason, the measurements performed in this paper are
based on the message passing formulation. In Sect. 3.1, we
review the matrix formulation as presented in the origi-
nal IN paper [22], subsequently expanding the notation to
describe the message passing IN formulation in Sect. 3.2.

Matrix Formulation

The original IN was formulated using simple matrix opera-
tions interpreted as a set of physical interactions and effects
[22]. The forward pass begins with an input hitgraph
GIO = (X,Ra,Ri,Ro) . The hits receiving an incoming edge
are given by Xi∶=RiX ∈ ℝ

nedges×3 ; likewise, the hits send-
ing an outgoing edge are given by Xo∶=RoX ∈ ℝ

nedges×3 .
Interaction terms are defined by the concatenation
m(GIO)∶=[Xi,Xo,Ra] ∈ ℝ

nedges×10 , known as the marshal-
ling step. A relational network �R,1 predicts an effect
for each interaction term, E∶=�R,1

(
m(GIO)

)
∈ ℝ

nedges×4 .
These effects are aggregated via summation for each
receiving node, A∶=a(GIO,E) = RT

i
E ∈ ℝ

nnodes×4 , and con-
catenated with X to form a set of expanded hit features
C∶=[X,A] ∈ ℝ

nnodes×7 . An object network �O re-embeds the
hit positions as X̃∶=𝜙O(C) ∈ ℝ

nnodes×3 . At this point, the

Fig. 2   Here we depict a particle tracker geometry similar to tracker
designs proposed for the HL-LHC era. This “generic tracker” geom-
etry is used in the TrackML dataset (see Sect. 4). The generic tracker
is composed of three sub-detectors named by the shape of their sili-
con modules: the pixel detector, the short strip detector, and the long
strip detector. Each sub-detector is divided into volumes (numbered
7-18); each volume contains a set of detector layers. Volumes 8, 13,
and 17 above are referred to as the barrel of the detector because
their layers sit at a constant cylindrical radius. Volumes 7, 9, 12,
14, 16, and 18 comprise the tracker’s endcaps because of their disk-
like shape; endcap layers are positioned at a single point along the
z-axis. The above figure is adapted from a figure in Ref. [35] and the
TrackML detector diagram accompanying Kaggle’s TrackML dataset

	 Computing and Software for Big Science (2021) 5:26

1 3

26  Page 4 of 13

traditional IN inference is complete, having re-embedded
both the edges and nodes. Accordingly, we denote the re-
embedded graph IN(GIO) = G̃IO = (X̃,E,Ri,Ro).

To produce edge weights, an additional relational reasoning
step is performed on G̃IO . Re-marshalling yields new inter-
action terms m(G̃IO) = [X̃i, X̃o,E] ∈ ℝ

nedges×10 and a second
relational network �R,2 predicts edge weights for each edge:
W(GIO)∶=𝜙R,2(m(G̃IO)) ∈ (0, 1)nedges . Summarily, we have a
full forward pass of the edge classification IN:

Message Passing Formulation

The message passing NN (MPNN) framework summarizes
the behavior of a range of GNN architectures including the
IN [21]. In general, MPNNs update node features by aggre-
gating “messages,” localized information derived from the
node’s neighborhood, and propagating them throughout the
graph. This process is iterative; given a message passing time
T indexed by t ∈ ℕ , a generic message passing node update
can be written as follows:

Here, N(i) is neighborhood of node i. The differentiable
function �(t)

message calculates messages for each j ∈ N(i) ,
which are aggregated across N(i) by a permutation-invariant
function ◻ . A separate differentiable function �(t)

node
 lever-

ages the aggregated messages to update the node’s features.
Given this generalized MPNN, the IN follows from the iden-
tifications �message → �R,1 , ◻j∈N(i) →

∑
j∈N(i) , and �node → �O

for a single timestep (T = 1):

An additional relational reasoning step gives edge weights

In this way, we produce edge weights W(GCOO) = [w
(1)

ij
] from

the re-embedded graph with node features X̃ = [x
(1)

i
] and

edge features E = [a
(1)

ij
] . This formulation is easily general-

ized to T > 1 by applying Eqs. 3 and 4 in sequence at each
time step before finally calculating edge weights via Eq. 5 at
time T. In the following studies, we focus on the simplest
case of nearest-neighbor message passing ( T = 1).

(1)W(GIO) = �R,2

[
m
(
IN(GIO)

)]
.

(2)x
(t)

i
= �

(t)

node

(
x
(t−1)

i
, ◻
j∈N(i)

�(t)
message

(
x
(t−1)

i
, x

(t−1)

j
, a

(t−1)

ij

))
.

(3)a
(1)

ij
= �R,1

(
x
(0)

i
, x

(0)

j
, a

(0)

ij

)
,

(4)x
(1)

i
= �O

(
x
(0)

i
,
∑

j∈N(i)

a
(1)

ij

)
.

(5)w
(1)

ij
∶=�R,2

(
x
(1)

i
, x

(1)

j
, a

(1)

ij

)
.

Measurements

TrackML Dataset

The TrackML dataset is a simulated set of proton-proton
collision events originally developed for the TrackML Par-
ticle Tracking Challenge [35]. TrackML events are gener-
ated with 200 pileup interactions on average, simulating
the high-pileup conditions expected at the HL-LHC. Each
event contains 3D hit position and truth information about
the particles that generated them. In particular, particles are
specified by particle IDs ( pID ) and three-momentum vectors
( � ). Each simulated hit has a unique identifier assigned that
gives the true hit position and which particle created the hit.
For this truth assignment, no merging of reconstructed hits
is considered as merging of hits occurs in less than 0.5% of
the cases and the added complexity was deemed unneces-
sary for the original challenge. Other simplifications in this
dataset include a simple geometry with modules arranged
in cylinders and disks, instead of a more complex geometry
with cones, no simulation of electronics, cooling tubes, and
cables, and only one type of physics process (top quark-
antiquark pairs) instead of a variety of processes.

The TrackML detector is designed as a generalized
LHC tracker; it contains discrete layers of sensor arrays
immersed in a strong magnetic field. We focus specifically
on the pixel layers, a highly-granular set of four barrel and
fourteen endcap layers in the innermost tracker regions.
The pixel layers are shown in Fig. 2. We note that con-
straining our studies to the pixel layers reduces the size of
the hitgraphs such that they can be held in memory and
processed by the GNN without segmentation.

Graph Construction

In the graph construction stage, each event’s tracker hits
are converted to a hitgraph through an edge selection algo-
rithm. Typically, a set of truth filters are applied to hits
before they are assigned to graph nodes. For example, pT
filters reject hits generated by particles with pT < pmin

T
 ,

noise filters reject noise hits, and same-layer filters reject
all but one hit per layer for each particle. These truth fil-
ters are used to modulate the number of hits present in
each hit graph to make it more feasible to apply GNN
methods and can be thought of as an idealized hit filtering
step (see Table 1). One goal of future R&D is to lower or
remove this truth-based filter or replace it with a realistic
hit filtering step that could be applied in a high-pileup
experimental setting. After initial hit filtering yields a
set of nodes, edge-assignment algorithms extend edges
between certain nodes. These edges are inputs to the

Computing and Software for Big Science (2021) 5:26	

1 3

Page 5 of 13  26

inference stage and must therefore represent as many true
track segments as possible. Naively, one might return a
fully-connected hitgraph. However, this strategy yields
1

2
nnodes(nnodes − 1) edges, which for nnodes ∼ O(1000) gives
nedges ∼ O(500, 000) . This represents a fundamental trade-
off between different edge-assignment algorithms: they
must simultaneously maximize efficiency, the fraction of
track segments represented as true edges, and purity, the
fraction of true edges to total edges in the hitgraph.

In this work, we compare multiple graph construction
algorithms, each of which determines whether or not to
extend an edge with features aij between hits i and j. In all
methods, only pixel detector hits are considered, pseudora-
pidity is restricted to � ∈ [−4, 4] , and the noise and same-
layer hit filters are applied. Each method has the same defini-
tion of graph construction efficiency (Nreconstructed

true
∕N

possible

true)
and purity (Nreconstructed

true
∕Nreconstructed

total
) . The denominator

quantity Npossible

true is independent of the graph construction
algorithm such that one may directly compare the efficien-
cies of the various methods. On the other hand, the denomi-
nator Nreconstructed

total
 depends on the specific graph construction

routine; for this reason, it is important to study purity in
the context of efficiency. The same-layer filter introduces an
ambiguity in defining edges between the barrel and inner-
most endcap layers. Specifically, barrel hits generated by the
same particle could produce multiple true edges incoming
to a single endcap hit. The resulting triangular edge pat-
tern conflicts with the main assumption of the same-layer
filter, that only one true track segment exists between each
subsequent layer. For this reason, a barrel intersection cut
was developed, in which edges between a barrel layer and
an innermost endcap layer are rejected if they intersect with
any intermediate barrel layers (see Fig. 3).

In addition to the barrel intersection cut, edges must also
satisfy pmin

T
-dependent constraints on the geometric quanti-

ties z0 = zi − ri
zj−zi

rj−ri
 and �slope =

�j−�i

rj−ri
 . These selections form

the basis of each of the following graph construction
algorithms:

1.	 Geometric Edges must satisfy the barrel intersection cut
and z0 and �slope constraints.

2.	 Geometric and preclustering In addition to all geometric
selections, edges must also belong to the same cluster in

Table 1   The pT , noise, and same-layer filters are used as a han-
dle on graph size by reducing the number of hits allowed into the
graph. Here, we profile 100 events from the TrackML train_1
sample; these events have an average of N(total) = 56751 ± 6070
hits in the pixel detector. Denote the hits removed by the pT ,
noise, and same-layer filters as N(pT < pmin

T
) , N(noise) and

N(same − layer) , respectively. The noise filter is observed to

remove N(noise) = 3702 ± 56 hits, roughly 6.5% of the detec-
tor occupancy. The pT and same-layer filters remove hits as a func-
tion of pmin

T
 ; these values are reported in the table below. We define

N(remaining)∶=N(total) − N(pT < pmin
T

) − N(same − layer) − N(noise)
to be the hits remaining after these filters are applied; N(remaining)
corresponds to nnodes constructed in the hitgraph

pmin
T

 [GeV] N(pT < pmin
T

) N(same − layer) N(remaining) N(remaining)∕N(total)
[%]

2.0 51520 ± 5848 439 ± 87 1090 ± 156 1.9 ± 0.3

1.5 49880 ± 5617 921 ± 159 2248 ± 155 4.0 ± 0.5

1.0 45501 ± 5057 2233 ± 333 5315 ± 152 9.4 ± 1.0

0.9 43839 ± 4855 2735 ± 395 6475 ± 151 11.4 ± 1.2

0.8 41677 ± 4583 3396 ± 480 7976 ± 150 14.1 ± 1.5

0.7 38778 ± 4242 4278 ± 582 9993 ± 148 17.6 ± 1.9

0.6 34951 ± 3798 5448 ± 714 12650 ± 146 22.3 ± 2.4

0.5 29830 ± 3265 7025 ± 875 16194 ± 144 28.5 ± 3.1

Fig. 3   The transition region between the barrel and endcaps intro-
duces an ambiguity in truth-labeling edges crossing from barrel to
endcap layers. Specifically, one may draw multiple possible edges
between hits in barrel layers and the innermost endcap layer. Only
one such edge can be true; the others (labeled red) should be rejected.
The barrel intersection cut rejects any edges between a barrel layer
and an innermost endcap layer that intersect an intermediate barrel
layer. Accordingly, the red edges would be rejected by the intersect-
ing line cut and the blue edges would not

	 Computing and Software for Big Science (2021) 5:26

1 3

26  Page 6 of 13

�-� space determined by the density-based spatial clus-
tering of applications with noise (DBSCAN) algorithm
[38].

3.	 Geometric and data-driven In addition to all geometric
selections, edges must connect detector modules that
have produced valid track segments in an independent
data sample; this data-driven strategy is known as the
module map method originally developed in [39].

Truth-labeled example graphs and key performance metrics
for each graph construction algorithm are shown in Figs. 4
and 5, respectively. For each method, pmin

T
-dependent values

of �slope and z0 are chosen to keep the efficiency at a con-
stant O(99%) . We observe a corresponding drop in purity to
O(1%) as pmin

T
 is decreased and graphs become denser. At

high values of pmin
T

 , preclustering hits in �–� space yields
a significant increase in purity over the purely geometric
construction. This effect disappears as pmin

T
 decreases below

1.5GeV , as tracks begin to overlap non-trivially with higher
detector occupancy. On the other hand, the data-driven mod-
ule map yields a significant boost in purity for the full range
of pmin

T
 . Accordingly, the module map method is most suited

to constrained computing environments in which graph size
or processing time is limited. It should be noted, however,
that purer graphs do not necessarily lead to higher edge clas-
sification accuracies.

Edge Classification

As detailed in Sect. 3, we have implemented the IN in
PyTorch [37] as a set of explicit matrix operations and
in PyG [36] as a MPNN. Both implementations are avail-
able in the Git repository accompanying this paper [40].
In the following studies, we limit our focus to the MPNN
implementation trained on graphs built using geometric
cuts only. Because PyG accommodates the sparse GCOO
edge representation, the MPNN implementation is signifi-
cantly faster and more flexible than the matrix implemen-
tation (see 4.5). The full forward-pass, composed of edge
and node blocks used to predict edge weights, is shown in
Fig. 6. The functions �R,1 , �R,2 , and �O are approximated
as multilayer perceptrons (MLPs) with rectified linear unit
(ReLU) activation functions [41, 42]. The ReLU activa-
tion function behaves as an identity function for positive
inputs and saturates at 0 for negative inputs. Notably,
the �R,2 outputs have a sigmoid activation �(⋅) ∈ (0, 1) ,
such that they represent probabilities, or edge weights,
W(GCOO) ∈ (0, 1)nedges that each edge is a track segment. We
therefore seek to optimize a binary cross-entropy (BCE)
loss between the truth targets yk = {0, 1} and edge weights
wk ∈ (0, 1) , which henceforth are re-labeled by the edge
index k:

Fig. 4   Edge colors indicate truth labels; blue edges are true track seg-
ments and back edges are false. Varying pmin

T
 modulates the graph

size. As pmin
T

 is decreased, graphs are increasingly composed of false
edges. Preclustering and data-driven edge selections reduce the frac-
tion of false edges in the graphs when compared to simple geometric
selections

Fig. 5   Graph construction efficiency, purity, node counts, and edge
counts are reported for a range of pmin

T
 calculated using 100 random

graphs from the train_1 sample

Computing and Software for Big Science (2021) 5:26	

1 3

Page 7 of 13  26

Here, n is the sample index so that the total loss per epoch is
the average BCE loss L({Gn, yn}

N
n=1

) =
1

N

∑N

n=1
�

�
yn,Wn(G)

�
 .

Throughout the following studies, the architecture in Fig. 6
is held at a constant size of 6,448 trainable parameters, cor-
responding to 40 hidden units (h.u.) per layer in each of
the MLPs. Validation studies indicate that even this small
network rapidly converged to losses of O(10−3) , similar to
its larger counterparts (see Fig. 6). Assuming every MLP
layer has the same number of h.u., 40 h.u. per layer is suf-
ficient to recover the maximum classification accuracy with
models trained on pmin

T
= 1GeV graphs. In the following

studies, models are trained on graphs built with pmin
T

 rang-
ing from 0.6–2 GeV . At each value of pmin

T
 , 1500 graphs

belonging to the TrackML train_1 sample are randomly
divided into 1000 training, 400 testing, and 100 validation
sets. The Adam optimizer is used to facilitate training [43].
It is configured with learning rates of 3.5–8×10−3 , which are
decayed by a factor of � = 0.95 for pmin

T
≤ 1GeV and � = 0.8

for pmin
T

> 1GeV every 10 epochs.
To evaluate the IN edge-classification performance, it is

necessary to define a threshold � such that each edge weight
wk ∈ W(GCOO) satisfying wk ≥ � or wk < 𝛿 indicates that
edge k was classified as true or false, respectively. Here,
we define �∗ as the threshold at which the true positive rate
(TPR) equals the true negative rate (TNR). In principle, �∗
may be calculated individually for each graph. However, this
introduces additional overhead to the inference step, which
is undesirable in constrained computing environments. We
instead determine �∗ during the training process by minimiz-
ing the difference |TPR − TNR| for graphs in the validation

(6)

�

(
yn,Wn(G)

)
= −

nedges∑

k=1

(
yk logwk + (1 − yk) log(1 − wk)

) set. The resulting �∗ , which is stored for use in evaluating the
testing sample, represents the average optimal threshold for
the validation graphs. Accordingly, we define the model’s
accuracy at �∗ as (nTP + nTN)∕nedges , where nTP ( nTN ) is the
number of true positives (negatives), and note that the BCE
loss is independent of �∗.

As shown in Fig. 7, the training process results in smooth
convergence to excellent edge-classification accuracy for a
range of pmin

T
 . Classification accuracy degrades slightly as

pmin
T

 is lowered below 1GeV ; hyperparameter studies indi-
cate that larger networks improve performance on lower pmin

T

graphs (see Fig. 6). A transfer learning study was conducted
in which models trained on graphs at a specific pmin

T
 were

tested on graph samples at a range of pmin
T

 . The results are
summarized in Fig. 8, which shows that the models achieve
relatively robust performance on a range of graph sizes.
These results suggest it may be possible to train IN mod-
els in simplified scenarios and apply them to more complex
realistic scenarios (e.g. without a pmin

T
 cut).

Track Building

In the track building step, the predicted edge weights
wk ∈ W(GCOO) are used to infer that edges satisfy-
ing wk ≥ �∗ represent true track segments. If the edge
weight mask perfectly reproduced the training target (i.e.
���(W(GCOO) ≥ �∗) = y ), the edge-classification step would
produce nparticles disjoint subgraphs, each corresponding to a
single particle. Imperfect edge-classification leads to spuri-
ous connections between these subgraphs, prompting the
need for more sophisticated track-building algorithms. Here,
we use the union-find algorithm [44] and DBSCAN to clus-
ter hits in the edge-weighted graphs. Hit clusters are then
considered to be reconstructed tracks candidates; the track

Fig. 6   (Left) The complete IN forward-pass with the relational and object models approximated as MLPs. (Right) An example hyperparameter
scan in which a models with varying numbers of hidden units (h.u.) were trained on pmin

T
= 0.7GeV graphs

	 Computing and Software for Big Science (2021) 5:26

1 3

26  Page 8 of 13

candidates are subsequently matched to simulated particles
(when possible). In a full tracking pipeline, these track can-
didates would then be fit to extract track parameters, such as
pT and � ; in this work, we use truth information for matched
particles to get the track parameters. Tracking efficiency
metrics measure the relative success of the clustering and
matching process using various definitions. We define three
tracking efficiency measurements using progressively tighter
requirements to allow comparison with current tracking
algorithm efficiencies and other on-going HL-LHC track-
ing studies:

1.	 LHC match efficiency The number of reconstructed
tracks containing over 75% of hits from the same parti-
cle, divided by the total number of particles.

2.	 Double-majority efficiency The number of reconstructed
tracks containing over 50% of hits from the same parti-
cle and over 50% of that particle’s hits, divided by the
total number of particles.

3.	 Perfect match efficiency The number of reconstructed
tracks containing only hits from the same particle and
every hit generated by that particle, divided by the num-
ber of particles.

We note that the perfect match efficiency is not commonly
used by experiments as 100% is not realistically achievable,
but we present it to demonstrate the absolute performance
of the GNN tracking pipeline.

Figure 9 shows each of these tracking efficiencies as a
function of particle pT and � for both the DBSCAN and
union-find clustering approaches. Additionally, Table 2
shows the corresponding fake rates, or fractions of
unmatched clusters relative to all clusters, across the full
pT and � range. The efficiencies and fake rates are calcu-
lated with pmin

T
= 0.9GeV graphs. Tracking performance

is relatively stable at low pT but degrades for higher pT
particles; similar effects have been noted in other edge-
weight-based hit clustering schemes [39]. The tracking
efficiencies are lowest in the neighborhood of � = 0 ,
indicating that performance is worst in the pixel barrel
region. This is consistent with the observation that most
edge classification errors occur in the barrel, where the
density of detector modules is significantly higher [35].
Tracking efficiency loss around |�| ≈ 2.5 corresponds to
the transition region between barrel and endcap layers.
DBSCAN demonstrates higher tracking efficiency than
union-find across all pT and � values and efficiency defini-
tions. This performance gap is likely due to the additional
spatial information used in DBSCAN’s clustering routine.

Fig. 7   (Left) Loss convergence for models trained on various pmin
T

graphs. (Right) A model trained on pmin

T
= 1GeV graphs was used to

evaluate an unseen pmin
T

= 1GeV graph, yielding a loss of 1.52 × 10−3

and accuracy of 99.9%. 98 out of 95,160 edges were incorrectly clas-
sified; these erroneous classifications are magnified in the figure

Fig. 8   Models trained on various pmin
T

 graphs in the train_1 sam-
ple were tested on 400 graphs from the train_3 sample at various
pmin
T

 thresholds

Computing and Software for Big Science (2021) 5:26	

1 3

Page 9 of 13  26

Moving forward, additional tracking performance may be
recovered by leveraging the specific values of each edge
weight to make dynamic hit clustering decisions. The fake
rates are relatively low for both track-building methods,
and as expected roughly increase for increasingly tight
efficiency definitions. Interestingly, DBSCAN demon-
strates a lower fake rate for LHC match efficiency while
union-find demonstrates a lower fake rate for the perfect
match efficiency; DBSCAN also has a larger drop in track-
ing efficency between the double match and perfect match

definitions, indicating that while DBSCAN identifies more
track candidates, union-find builds tracks more precisely.

Inference Timing

An important advantage of GNN-based approaches over
traditional methods for HEP reconstruction is the abil-
ity to natively run on highly parallel computing architec-
tures. The PyG library supports graphics processing units
(GPUs) to parallelize the algorithm execution. Moreover,
the model was prepared for inference by converting it to a
TorchScript program [45]. For the IN studied in this work,
the average CPU and GPU inference times per graph for a
variety of minimum pT cuts are shown in Table 3. For this
test, the graphs are constructed using the geometric selec-
tions as described in Section 4.2. Moreover, we use bidirec-
tional graphs, which means both directed edges (outward
and inward from the primary vertex) are present in the edge
list. As can be seen, inference can be significantly sped up

Fig. 9   The track-building performance of DBSCAN and union-find is measured as a function of particle pT and � for three tracking efficiency
definitions atpmin

T
= 0.9GeV

Table 2   Overall fake rates of union-find and DBSCAN track-building
for three tracking efficiency definitions for pmin

T
= 0.9GeV

Efficiency definition Union-find DBSCAN

LHC match 0.0471 ± 0.008 0.0275 ± 0.005

Double majority 0.0934 ± 0.01 0.0891 ± 0.01

Perfect match 0.0910 ± 0.01 0.1242 ± 0.01

	 Computing and Software for Big Science (2021) 5:26

1 3

26  Page 10 of 13

with heterogeneous resources like GPUs. For instance, for a
0.5GeVminimum pT cut, the inference time can be reduced
by approximately a factor of 10 using the GPU with respect
to the CPU. In general, the speedup is greater at lower pmin

T

because of the higher multiplicity and thus the greater gain
from parallelization on the GPU versus the CPU. Other het-
erogeneous computing resources specialized for inference
may be even more beneficial. This speed-up may benefit
the experiments’ computing workflows by accessing these
resources as an on-demand, scalable service [46–48].

Work has also been done to accelerate the inference of
deep neural networks with heterogeneous resources beyond
GPUs, like field-programmable gate arrays (FPGAs)
[49–57]. This work extends to GNN architectures [29,
58]. Specifically, in Ref. [29], a compact version of the IN
was implemented for pT > 2GeV segmented geometric
graphs with up to 28 nodes and 37 edges, and shown to
have a latency less than 1 � s, an initiation interval of 5 ns,
reproduce the floating-point precision model with a fixed-
point precision of 16 bits or less, and fit on a Xilinx Kintex
UltraScale FPGA.

While this preliminary FPGA acceleration work is prom-
ising, there are several limitations of the current FPGA
implementation of the IN:

1.	 This fully pipelined design cannot easily scale to beyond
O(100) nodes and O(1000) edges. However, if the initia-
tion interval requirements are loosened, it can scale up
to O(10, 000) nodes and edges.

2.	 The neural network itself is small, and while it is effec-
tive for pT > 2GeV graphs, it may not be sufficient for
lower-pT graphs.

3.	 The FPGA design makes no assumptions about the pos-
sible graph connectivity (e.g. layer 1 nodes are only con-

nected to layer 2 nodes), and instead allows all nodes to
potentially participate in message passing. However by
taking this additional structure into account, the hard-
ware resources can be significantly reduced.

4.	 Quantization-aware training [55, 59–68] using QKeras
[56, 69] or Brevitas [50, 70], parameter pruning [71–
76], and general hardware-algorithm codesign can
significantly reduce the necessary FPGA resources by
reducing the required bit precision and removing irrel-
evant operations.

5.	 The design can be made more flexible, configurable,
and reusable by integrating it fully with a user-friendly
interface like hls4ml [77].

Summary and Outlook

In this work, we have shown that the physics-motivated
interaction network (IN), a type of graph neural network
(GNN), can successfully be applied to the task of charged
particle tracking across a range of hitgraph sizes. Through
a suite of graph construction, edge classification, and track
building measurements, we have framed the IN’s perfor-
mance in the context of a GNN-based tracking pipeline
following a truth-based hit filtering preselection in which
hits associated with particles whose transverse momentum
( pT ) is below a certain threshold ( pmin

T
 ) are removed. The

graph construction measurements demonstrate that geomet-
ric cuts, hit clustering, and data-driven strategies are effec-
tive in constructing highly-efficient graphs from pixel barrel
and endcap layers; in constrained computing environments,
the parameters of each strategy allow a trade-off between
graph efficiency and purity. In particular, for a fixed graph
construction efficiency of O(99%) , we show that geometric

Table 3   CPU and GPU inference time estimates for each pT thresh-
old. The model was prepared for inference by converting it to a
TorchScript program. The timing tests were performed with an
Nvidia Titan Xp GPU with 12 GB RAM and a 12-core Intel Xeon
CPU E5-2650 v4 @ 2.20 GHz. Inference is performed with a batch
size of one graph. Graphs are constructed using geometric restrictions
with bidirectional edges (both edge directions are present). The infer-
ence is repeated 100 times (after some warm-up) for 5 iterations and

the best time per inference over the 5 iterations is found. The mean
and standard deviation of the best inference time derived for 5 ran-
dom graphs in the testing dataset are then reported. The mean and
standard deviation of the number of nodes and edges are also reported
for 100 graphs. We find a significant speedup with the GPU versus
the CPU, which is greater at lower pmin

T
 because of the higher multi-

plicity and thus the greater gain from parallelization on the GPU

pmin
T

 [GeV] CPU [ms] GPU [ms] nnodes nedges

2 3.83 ± 0.89 0.95 ± 0.01 1090.6 ± 192.8 9080.7 ± 3027.1

1.5 7.96 ± 1.44 0.95 ± 0.03 2247.0 ± 363.9 30980.6 ± 9468.6

1 33.96 ± 11.24 3.61 ± 0.91 5309.3 ± 765.5 200910.1 ± 55825.9

0.9 52.44 ± 14.15 5.36 ± 1.37 6468.5 ± 912.2 312809.5 ± 85441.3

0.8 91.86 ± 24.42 9.60 ± 2.61 7970.5 ± 1100.0 556417.7 ± 151482.8

0.7 168.40 ± 41.34 17.70 ± 4.39 9982.7 ± 1341.5 1011884.4 ± 268706.0

0.6 273.20 ± 62.09 28.84 ± 6.65 12640.0 ± 1648.2 1585883.3 ± 409146.8

0.5 437.00 ± 97.99 44.66 ± 7.91 16178.6 ± 2019.1 2535979.6 ± 628297.1

Computing and Software for Big Science (2021) 5:26	

1 3

Page 11 of 13  26

cuts alone produce reasonably pure graphs ( ∼ 4% purity at
pmin
T

= 1GeV ) but that the module-map method produces the
most pure graphs for the entire range of pmin

T
 ( ∼ 10% purity

at pmin
T

= 1GeV ). With efficiency held constant, purity is
more-or-less a comparison of graph sizes, indicating that the
module map method is most suited for graph construction
in constrained computing environments. Though high graph
construction efficiency is desirable in a global sense, graph
purity is non-trivially related to downstream physics perfor-
mance; in particular, many message passing GNN architec-
tures may benefit from less-pure graphs due to higher edge
connectivity.

The lightweight IN models trained in the edge classifi-
cation step demonstrate extremely high edge classification
efficiency for a range of pmin

T
 . Significantly, we find models

trained in simpler scenarios (larger pmin
T

 ) generalize to more
complex scenarios (smaller pmin

T
 ). Track building measure-

ments performed on these edge-weighted graphs showed
that DBSCAN’s spatial clustering outperformed union-find
clustering across a variety of efficiency definitions.

The IN architecture presented here is substantially smaller
than previous GNN tracking architectures, which may enable
its use in constrained computing environments. Accordingly,
we have compared the IN’s CPU and GPU inference times
and discussed related work on accelerating INs with FPGAs.
As described in Section 4.5, there are several limitations to
the current FPGA implementation of the IN and addressing
these concerns is the subject of ongoing work.

Another important aspect of GNN-based tracking is
reducing the time it takes to construct graphs. Ongoing
efforts are dedicated to studying how best to accelerate
graph construction using heterogeneous resources. Alter-
native GNN approaches that do not require an input graph
structure, such as dynamic graph convolutional neural net-
works [24], distance-weighted GNNs [78], attention-based
transformers [79], reformers [80], and performers [81], may
be fruitful avenues of investigation as well.

In summary, geometric deep learning methods can be
naturally applied to many physics reconstruction tasks, and
our work and related studies establish GNNs as an extremely
promising candidate for tracking at the high luminosity
LHC.

Acknowledgements  We gratefully acknowledge the input and discus-
sion from the Exa.TrkX collaboration.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Piacquadio G, Prokofiev K, Wildauer A (2008) Primary vertex
reconstruction in the ATLAS experiment at LHC. J Phys Conf Ser
119:032033. https://​doi.​org/​10.​1088/​1742-​6596/​119/3/​032033

	 2.	 CMS Collaboration (2014) Description and performance of track
and primary-vertex reconstruction with the CMS tracker. JINST
9(10):P10009. https://​doi.​org/​10.​1088/​1748-​0221/9/​10/​P10009.
arXiv:​1405.​6569

	 3.	 ATLAS Collaboration (2017) Jet reconstruction and performance
using particle flow with the ATLAS detector. Eur Phys J C 77:466.
https://​doi.​org/​10.​1140/​epjc/​s10052-​017-​5031-2. arXiv:​1703.​
10485

	 4.	 Collaboration CMS (2017) Particle-flow reconstruction and global
event description with the CMS detector. JINST 12:P10003.
https://​doi.​org/​10.​1088/​1748-​0221/​12/​10/​P10003. arXiv:​1706.​
04965

	 5.	 Larkoski AJ, Moult I, Nachman B (2020) Jet substructure at the
large hadron collider: a review of recent advances in theory and
machine learning. Phys Rep 841:1. https://​doi.​org/​10.​1016/j.​physr​
ep.​2019.​11.​001. arXiv:​1709.​04464

	 6.	 CMS Collaboration (2018) Identification of heavy-flavour
jets with the CMS detector in pp collisions at 13 TeV. JINST
13(05):P05011. https://​doi.​org/​10.​1088/​1748-​0221/​13/​05/​P05011.
arXiv:​1712.​07158

	 7.	 ATLAS Collaboration (2018) Measurements of b-jet tagging effi-
ciency with the ATLAS detector using tt events at

√
s = 13 TeV.

JHEP 08:089. https://​doi.​org/​10.​1007/​JHEP0​8(2018)​089. arXiv:​
1805.​01845

	 8.	 ATLAS Collaboration (2017) Performance of the ATLAS track
reconstruction algorithms in dense environments in LHC run 2.
Eur Phys J C 77(10):673. https://​doi.​org/​10.​1140/​epjc/​s10052-​
017-​5225-7. arXiv:​1704.​07983

	 9.	 Billoir P (1989) Progressive track recognition with a Kalman-like
fitting procedure. Comput Phys Commun 57:390. https://​doi.​org/​
10.​1016/​0010-​4655(89)​90249-X

	10.	 Billoir P, Qian S (1990) Simultaneous pattern recognition and
track fitting by the Kalman filtering method. Nucl Instrum Meth-
ods A 294:219. https://​doi.​org/​10.​1016/​0168-​9002(90)​91835-Y

	11.	 Mankel R (1997) A concurrent track evolution algorithm for pat-
tern recognition in the hera-b main tracking system. Nucl Instrum
Methods A 395:169. https://​doi.​org/​10.​1016/​S0168-​9002(97)​
00705-5

	12.	 Frühwirth R (1987) Application of Kalman filtering to track and
vertex fitting. Nucl Instrum Methods A 262:444. https://​doi.​org/​
10.​1016/​0168-​9002(87)​90887-4

	13.	 CMS Collaboration (2018) Expected performance of the physics
objects with the upgraded CMS detector at the HL-LHC, CMS
Note CMS-NOTE-2018-006. CERN-CMS-NOTE-2018-006

	14.	 Apollinari G et al (eds) (2017) High-luminosity large hadron
collider (HL-LHC): technical design report V. 0.1, vol 4/2017.
CERN. https://​doi.​org/​10.​23731/​CYRM-​2017-​004

	15.	 Bronstein MM et al (2017) Geometric deep learning: going
beyond Euclidean data. IEEE Signal Process Mag 34:18. https://​
doi.​org/​10.​1109/​MSP.​2017.​26934​18. arXiv:​1611.​08097

	16.	 Zhang Z, Cui P, Zhu W (2020) Deep learning on graphs. A survey.
IEEE Trans Knowl Data Eng (1):1. https://​doi.​org/​10.​1109/​TKDE.​
2020.​29813​33. arXiv:​1812.​04202

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1742-6596/119/3/032033
https://doi.org/10.1088/1748-0221/9/10/P10009
http://arxiv.org/abs/1405.6569
https://doi.org/10.1140/epjc/s10052-017-5031-2
http://arxiv.org/abs/1703.10485
http://arxiv.org/abs/1703.10485
https://doi.org/10.1088/1748-0221/12/10/P10003
http://arxiv.org/abs/1706.04965
http://arxiv.org/abs/1706.04965
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1016/j.physrep.2019.11.001
http://arxiv.org/abs/1709.04464
https://doi.org/10.1088/1748-0221/13/05/P05011
http://arxiv.org/abs/1712.07158
https://doi.org/10.1007/JHEP08(2018)089
http://arxiv.org/abs/1805.01845
http://arxiv.org/abs/1805.01845
https://doi.org/10.1140/epjc/s10052-017-5225-7
https://doi.org/10.1140/epjc/s10052-017-5225-7
http://arxiv.org/abs/1704.07983
https://doi.org/10.1016/0010-4655(89)90249-X
https://doi.org/10.1016/0010-4655(89)90249-X
https://doi.org/10.1016/0168-9002(90)91835-Y
https://doi.org/10.1016/S0168-9002(97)00705-5
https://doi.org/10.1016/S0168-9002(97)00705-5
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
http://arxiv.org/abs/1611.08097
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
https://arxiv.org/abs/1812.04202

	 Computing and Software for Big Science (2021) 5:26

1 3

26  Page 12 of 13

	17.	 Zhou J et al (2020) Graph neural networks: a review of methods
and applications.AI Open 1:57-81. https://​doi.​org/​10.​1016/j.​aio-
pen.​2021.​01.​001. arXiv:​1812.​ 08434

	18.	 Wu Z et al (2020) A comprehensive survey on graph neural net-
works. IEEE Trans Neural Netw Learn Syst. https://​doi.​org/​10.​
1109/​TNNLS.​2020.​29783​86. arXiv:​1901.​00596

	19.	 Scarselli F et al (2009) The graph neural network model. IEEE
Trans Neural Netw 20(1):61. https://​doi.​org/​10.​1109/​TNN.​2008.​
20056​05

	20.	 Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: deep learning on
point sets for 3D classification and segmentation. In: 2017 IEEE
conference on computer vision and pattern recognition (CVPR).
https://​arxiv.​org/​abs/​1612.​00593. https://​doi.​org/​10.​1109/​CVPR.​
2017.​16

	21.	 Gilmer J et al (2017) Neural message passing for quantum chem-
istry. In: Proceedings of the 34th international conference on
machine learning, volume 70 of Proceedings of machine learning
research, p 1263. https://​arxiv.​org/​abs/​1704.​01212

	22.	 Battaglia PW et al (2016) Interaction networks for learn-
ing about objects, relations and physics. In: Lee D et al (eds)
Advances in neural information processing systems, vol 29,
p 4502. Curran Associates, Inc. https://​arxiv.​org/​abs/​1612.​
00222

	23.	 Battaglia PW et al (2018) Relational inductive biases, deep
learning. and graph networks. https://​arxiv.​org/​abs/​1806.​01261

	24.	 Wang Y et al (2019) Dynamic graph CNN for learning on point
clouds. ACM Trans Graph. https://​doi.​org/​10.​1145/​33263​62.
https://​arxiv.​org/​abs/​1801.​07829

	25.	 Duarte J, Vlimant J-R (2020) Graph neural networks for particle
tracking and reconstruction. In: Calafiura P, Rousseau D, Terao
K (eds) Artificial intelligence for high energy physics. World
Scientific Publishing, p 12. https://​arxiv.​org/​abs/​2012.​01249.
https://​doi.​org/​10.​1142/​12200(Submitted to Int. J. Mod. Phys.
A)

	26.	 Shlomi J, Battaglia P, Vlimant J-R (2020) Graph neural net-
works in particle physics. Mach Learn Sci Technol 2:021001.
https://​doi.​org/​10.​1088/​2632-​2153/​abbf9a. arXiv:​2007.​13681

	27.	 Farrell S et al (2018) Novel deep learning methods for track
reconstruction. In: 4th international workshop connecting the
dots 2018. https://​arxiv.​org/​abs/​1810.​06111

	28.	 Ju X et al (2019) Graph neural networks for particle reconstruc-
tion in high energy physics detectors. In: Machine learning and
the physical sciences workshop at the 33rd annual conference
on neural information processing systems. https://​arxiv.​org/​abs/​
2003.​11603

	29.	 Heintz A et al (2020) Accelerated charged particle tracking with
graph neural networks on FPGAs. In: 3rd machine learning and
the physical sciences workshop at the 34th annual conference
on neural information processing systems, vol 12. https://​arxiv.​
org/​abs/​2012.​01563

	30.	 Ju X et al (2021) Performance of a geometric deep learning pipe-
line for HL-LHC particle tracking, vol 3. https://​arxiv.​org/​abs/​
2103.​06995(Submitted to Eur. Phys. J. C)

	31.	 Moreno EA et al (2020) Interaction networks for the identification
of boosted H → bb decays. Phys Rev D 102:012010. https://​doi.​
org/​10.​1103/​PhysR​evD.​102.​012010. https://​arxiv.​org/​abs/​1909.​
12285

	32.	 Moreno EA et al (2020) JEDI-net: a jet identification algorithm
based on interaction networks. Eur Phys J C 80:58. https://​doi.​
org/​10.​1140/​epjc/​s10052-​020-​7608-4. https://​arxiv.​org/​abs/​1908.​
05318

	33.	 Besta M et al (2019) Graph processing on FPGAs: taxonomy,
survey, challenges. arXiv:​1903.​06697

	34.	 Strandlie A, Frühwirth R (2010) Track and vertex reconstruc-
tion: from classical to adaptive methods. Rev Mod Phys 82:1419.
https://​doi.​org/​10.​1103/​RevMo​dPhys.​82.​1419

	35.	 Amrouche S et al (2020) The tracking machine learning chal-
lenge: accuracy phase. In: The NeurIPS ’18 competition, p 231.
https://​arxiv.​org/​abs/​1904.​06778. https://​doi.​org/​10.​1007/​
978-3-​030-​29135-8_9

	36.	 Fey M, Lenssen JE (2019) Fast graph representation learning with
PyTorch Geometric. In: Representation learning on graphs and
manifolds workshop at the 7th international conference on learn-
ing representations. arXiv:​1903.​02428

	37.	 Paszke A et al (2019) PyTorch: an imperative style, high-perfor-
mance deep learning library. In: Wallach H et al (eds) Advances in
neural information processing systems, vol 32. Curran Associates,
Inc. arXiv:​1912.​ 01703

	38.	 Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: Proceedings of the second international conference on
knowledge discovery and data mining, p 226. AAAI Press

	39.	 Biscarat C et al (2021) Towards a realistic track reconstruction
algorithm based on graph neural networks for the HL-LHC. In:
25th international conference on computing in high-energy and
nuclear physics, vol 3. arXiv:​2103.​ 00916

	40.	 DeZoort G, Duarte J (2021) GageDeZoort/interaction_network_
paper: interaction networks for GNN-based particle tracking.
https://​doi.​org/​10.​5281/​zenodo.​55580​32. https://​github.​com/​
GageD​eZoort/​inter​action_​netwo​rk_​paper. Accessed 08 Oct 2021

	41.	 Nair V, Hinton GE (2010) Rectified linear units improve restricted
Boltzmann machines. In: 27th international conference on inter-
national conference on machine learning, ICML’10, p 807. Omni-
press, Madison

	42.	 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural
networks. In: Gordon G, Dunson D, Dudík M (eds) 14th interna-
tional conference on artificial intelligence and statistics, vol 15, p
315. JMLR, Fort Lauderdale, FL, USA, 4

	43.	 Kingma DP, Ba J (2015) Adam: a method for stochastic optimiza-
tion. In: Bengio Y, LeCun Y (eds) 3rd international conference on
learning representations. https://​arxiv.​org/​abs/​1412.​6980

	44.	 Patwary MMA, Blair J, Manne F (2010) Experiments on union-
find algorithms for the disjoint-set data structure. In: Festa P (ed)
Experimental algorithms. Springer, Berlin, pp 411–423

	45.	 The PyTorch Team, TorchScript (2021). https://​pytor​ch.​org/​docs/​
stable/​jit.​html. Accessed 08 Oct 2021

	46.	 Krupa J et al (2021) Gpu coprocessors as a service for deep learn-
ing inference in high energy physics. Mach Learn Sci Technol
2(3):035005. https://​doi.​org/​10.​1088/​2632-​2153/​abec21. https://​
arxiv.​org/​abs/​2007.​10359

	47.	 Rankin DS et al (2020) FPGAs-as-a-service toolkit (FaaST). In:
2020 IEEE/ACM international workshop on heterogeneous high-
performance reconfigurable computing (H2RC). https://​arxiv.​org/​
abs/​2010.​08556. https://​doi.​org/​10.​1109/​H2RC5​1942.​2020.​00010

	48.	 Wang M et al (2021) GPU-accelerated machine learning infer-
ence as a service for computing in neutrino experiments. Front
Big Data 3:48. https://​doi.​org/​10.​3389/​fdata.​2020.​604083. https://​
arxiv.​org/​abs/​2009.​04509

	49.	 Umuroglu Y et al (2017) FINN: a framework for fast, scalable
binarized neural network inference. In: Proceedings of the 2017
ACM/SIGDA international symposium on field-programmable
gate arrays, p 65. ACM, New York, NY, USA. https://​arxiv.​org/​
abs/​1612.​07119. https://​doi.​org/​10.​1145/​30200​78.​30217​44

	50.	 Blott M et al (2018) FINN-R: An end-to-end deep-learning frame-
work for fast exploration of quantized neural networks. ACM
Trans Reconfig Technol Syst 11(12). https://​doi.​org/​10.​1145/​
32428​97. https://​arxiv.​org/​abs/​1809.​04570

	51.	 Shawahna A, Sait SM, El-Maleh A (2019) FPGA-based accelera-
tors of deep learning networks for learning and classification: a
review. IEEE Access 7:7823. https://​doi.​org/​10.​1109/​ACCESS.​
2018.​28901​50. https://​arxiv.​org/​abs/​1901.​00121

https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://arxiv.org/abs/1812.08434
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1901.00596
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1612.00593
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1806.01261
https://doi.org/10.1145/3326362
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/2012.01249
https://doi.org/10.1142/12200
https://doi.org/10.1088/2632-2153/abbf9a
http://arxiv.org/abs/2007.13681
http://arxiv.org/abs/1810.06111
http://arxiv.org/abs/2003.11603
http://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2103.06995
https://arxiv.org/abs/2103.06995
https://doi.org/10.1103/PhysRevD.102.012010
https://doi.org/10.1103/PhysRevD.102.012010
http://arxiv.org/abs/1909.12285
http://arxiv.org/abs/1909.12285
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1903.06697
https://doi.org/10.1103/RevModPhys.82.1419
http://arxiv.org/abs/1904.06778
https://doi.org/10.1007/978-3-030-29135-8_9
https://doi.org/10.1007/978-3-030-29135-8_9
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2103.00916
https://doi.org/10.5281/zenodo.5558032
https://github.com/GageDeZoort/interaction_network_paper
https://github.com/GageDeZoort/interaction_network_paper
http://arxiv.org/abs/1412.6980
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html
https://doi.org/10.1088/2632-2153/abec21
http://arxiv.org/abs/2007.10359
http://arxiv.org/abs/2007.10359
http://arxiv.org/abs/2010.08556
http://arxiv.org/abs/2010.08556
https://doi.org/10.1109/H2RC51942.2020.00010
https://doi.org/10.3389/fdata.2020.604083
http://arxiv.org/abs/2009.04509
http://arxiv.org/abs/2009.04509
http://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1612.07119
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3242897
https://doi.org/10.1145/3242897
http://arxiv.org/abs/1809.04570
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1109/ACCESS.2018.2890150
http://arxiv.org/abs/1901.00121

Computing and Software for Big Science (2021) 5:26	

1 3

Page 13 of 13  26

	52.	 Wang T, Wang C, Zhou X, Chen H (2019) An overview of FPGA
based deep learning accelerators: challenges and opportunities.
In: 2019 IEEE 21st international conference on high performance
computing and communications; IEEE 17th international confer-
ence on smart city; IEEE 5th international conference on data sci-
ence and systems (HPCC/SmartCity/DSS), p 1674. https://​arxiv.​
org/​abs/​1901.​04988. https://​doi.​org/​10.​1109/​HPCC/​Smart​City/​
DSS.​2019.​00229

	53.	 Duarte J et al (2018) Fast inference of deep neural networks in
FPGAs for particle physics. JINST 13:P07027. https://​doi.​org/​10.​
1088/​1748-​0221/​13/​07/​P07027. https://​arxiv.​org/​abs/​1804.​06913

	54.	 Summers S et al (2020) Fast inference of boosted decision trees in
FPGAs for particle physics. JINST 15:P05026. https://​doi.​org/​10.​
1088/​1748-​0221/​15/​05/​p05026. https://​arxiv.​org/​abs/​2002.​02534

	55.	 Ngadiuba J et al (2020) Compressing deep neural networks on
FPGAs to binary and ternary precision with hls4ml. Mach
Learn Sci Technol 2(1):015001. https://​doi.​org/​10.​1088/​2632-​
2153/​aba042. https://​arxiv.​org/​abs/​2003.​06308

	56.	 Coelho CN et al (2021) Automatic heterogeneous quantization
of deep neural networks for low-latency inference on the edge
for particle detectors. Nat Mach Intell. https://​doi.​org/​10.​1038/​
s42256-​021-​00356-5. https://​arxiv.​org/​abs/​2006.​10159

	57.	 Åarrestad T et al (2021) Fast convolutional neural networks on
FPGAs with hls4ml. Mach Learn Sci Technol 2(4):045015.
https://​doi.​org/​10.​1088/​2632-​2153/​ac0ea1. https://​arxiv.​org/​abs/​
2101.​05108

	58.	 Iiyama Y et al (2021) Distance-weighted graph neural networks
on FPGAs for real-time particle reconstruction in high energy
physics. Front Big Data 3:44. https://​doi.​org/​10.​3389/​fdata.​2020.​
598927. https://​arxiv.​org/​abs/​2008.​03601

	59.	 Moons B, Goetschalckx K, Berckelaer NV, Verhelst M (2017)
Minimum energy quantized neural networks. In: 2017 51st asi-
lomar conference on signals, systems, and computers, p 1921.
https://​arxiv.​org/​abs/​1711.​00215. https://​doi.​org/​10.​1109/​ACSSC.​
2017.​83356​99

	60.	 Courbariaux M, Bengio Y, David J-P (2015) BinaryConnect:
training deep neural networks with binary weights during propa-
gations. In: Cortes C et al (eds) Advances in Neural Informa-
tion Processing Systems, vol 28, p 3123. Curran Associates, Inc.
https://​arxiv.​org/​abs/​1511.​00363

	61.	 Zhang D, Yang J, Ye D, Hua G (2018) LQ-nets: learned quan-
tization for highly accurate and compact deep neural networks.
In: Proceedings of the European conference on computer vision
(ECCV), p 365. https://​arxiv.​org/​abs/​1807.​10029

	62.	 Li F, Liu B (2016) Ternary weight networks. https://​arxiv.​org/​abs/​
1605.​04711

	63.	 Zhou S et al (2016) DoReFa-Net: training low bitwidth convolu-
tional neural networks with low bitwidth gradients. https://​arxiv.​
org/​abs/​1606.​06160

	64.	 Hubara I et al (2018) Quantized neural networks: training neu-
ral networks with low precision weights and activations. J Mach
Learn Res 18(187):1. https://​arxiv.​org/​abs/​1609.​07061

	65.	 Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) XNOR-Net:
ImageNet classification using binary convolutional neural net-
works. In: 14th European conference on computer vision (ECCV).
Springer International Publishing, Cham, p 525. https://​doi.​org/​
10.​1007/​978-3-​319-​46493-0_​32. https://​arxiv.​org/​abs/​1603.​05279

	66.	 Micikevicius P et al (2018) Mixed precision training. In: 6th inter-
national conference on learning representations. https://​arxiv.​org/​
abs/​1710.​03740

	67.	 Zhuang B et al (2018) Towards effective low-bitwidth convolu-
tional neural networks. In: 2018 IEEE/CVF conference on com-
puter vision and pattern recognition, p 7920. https://​arxiv.​org/​abs/​
1711.​00205. https://​doi.​org/​10.​1109/​CVPR.​2018.​00826

	68.	 Wang N et al (2018) Training deep neural networks with 8-bit
floating point numbers. In: Bengio S et al (eds) Advances in neural
information processing systems, vol 31, p 7675. Curran Associ-
ates, Inc. https://​arxiv.​org/​abs/​1812.​08011

	69.	 Coelho C (2019) QKeras. https://​github.​com/​google/​qkeras.
Accessed 08 Oct 2021

	70.	 Pappalardo A (2020) Xilinx/brevitas. https://​doi.​org/​10.​5281/​
zenodo.​33335​52

	71.	 LeCun Y, Denker JS, Solla SA (1990) In: Touretzky DS (ed) Opti-
mal brain damage. In: Advances in neural information processing
systems, vol 2. Morgan-Kaufmann, p 598

	72.	 Han S, Mao H, Dally WJ (2016) Deep compression: compress-
ing deep neural networks with pruning, trained quantization and
Huffman coding. In: 4th international conference on learning rep-
resentations. https://​arxiv.​org/​abs/​1510.​00149

	73.	 Frankle J, Carbin M (2019) The lottery ticket hypothesis: training
pruned neural networks. In: 7th international conference on learn-
ing representations. https://​arxiv.​org/​abs/​1803.​03635

	74.	 Zhou H, Lan J, Liu R, Yosinski J (2019) Deconstructing lot-
tery tickets: zeros, signs, and the supermask. In: Wallach H et al
(eds) Advances in neural information processing systems, vol 32,
p 3597. Curran Associates, Inc. https://​arxiv.​org/​abs/​1905.​01067

	75.	 Blalock D, Ortiz JJG, Frankle J, Guttag J (2020) What is the state
of neural network pruning? In: 4th conference on machine learn-
ing and systems. https://​arxiv.​org/​abs/​2003.​03033

	76.	 Hawks B et al (2021) Ps and Qs: quantization-aware pruning for
efficient low latency neural network inference. Front AI 4:94.
https://​doi.​org/​10.​3389/​frai.​2021.​676564. https://​arxiv.​org/​abs/​
2102.​11289

	77.	 Loncar V et al (2021) fastmachinelearning/hls4ml. https://​doi.​org/​
10.​5281/​zenodo.​44474​39

	78.	 Qasim SR, Kieseler J, Iiyama Y, Pierini M (2019) Learning rep-
resentations of irregular particle-detector geometry with distance-
weighted graph networks. Eur Phys J C 79:608. https://​doi.​org/​10.​
1140/​epjc/​s10052-​019-​7113-9. https://​arxiv.​org/​abs/​1902.​07987

	79.	 Vaswani A et al (2017) Attention is all you need. In: Guyon I et al
(eds) Advances in neural information processing systems, vol 30,
p 5998. Curran Associates, Inc. https://​arxiv.​org/​abs/​1706.​03762

	80.	 Kitaev N, Kaiser Ł, Levskaya A (2020) Reformer: the efficient
transformer. In: 8th international conference on learning repre-
sentations. https://​arxiv.​org/​abs/​2001.​04451

	81.	 Choromanski K et al (2021) Rethinking attention with perform-
ers. In: 9th international conference on learning representations.
arXiv:​2009.​ 14794

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1901.04988
http://arxiv.org/abs/1901.04988
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00229
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00229
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027
http://arxiv.org/abs/1804.06913
https://doi.org/10.1088/1748-0221/15/05/p05026
https://doi.org/10.1088/1748-0221/15/05/p05026
http://arxiv.org/abs/2002.02534
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.1088/2632-2153/aba042
http://arxiv.org/abs/2003.06308
https://doi.org/10.1038/s42256-021-00356-5
https://doi.org/10.1038/s42256-021-00356-5
http://arxiv.org/abs/2006.10159
https://doi.org/10.1088/2632-2153/ac0ea1
http://arxiv.org/abs/2101.05108
http://arxiv.org/abs/2101.05108
https://doi.org/10.3389/fdata.2020.598927
https://doi.org/10.3389/fdata.2020.598927
http://arxiv.org/abs/2008.03601
http://arxiv.org/abs/1711.00215
https://doi.org/10.1109/ACSSC.2017.8335699
https://doi.org/10.1109/ACSSC.2017.8335699
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1807.10029
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1609.07061
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
http://arxiv.org/abs/1603.05279
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1711.00205
http://arxiv.org/abs/1711.00205
https://doi.org/10.1109/CVPR.2018.00826
http://arxiv.org/abs/1812.08011
https://github.com/google/qkeras
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1905.01067
http://arxiv.org/abs/2003.03033
https://doi.org/10.3389/frai.2021.676564
http://arxiv.org/abs/2102.11289
http://arxiv.org/abs/2102.11289
https://doi.org/10.5281/zenodo.4447439
https://doi.org/10.5281/zenodo.4447439
https://doi.org/10.1140/epjc/s10052-019-7113-9
https://doi.org/10.1140/epjc/s10052-019-7113-9
http://arxiv.org/abs/1902.07987
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2001.04451
https://arxiv.org/abs/2009.14794

	Charged Particle Tracking via Edge-Classifying Interaction Networks
	Abstract
	Introduction
	Theory and Background
	Particle Tracking
	Tracker Hits as Graphs

	Interaction Networks
	Matrix Formulation
	Message Passing Formulation

	Measurements
	TrackML Dataset
	Graph Construction
	Edge Classification
	Track Building
	Inference Timing

	Summary and Outlook
	Acknowledgements
	References

