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Abstract
Machine Learning (ML) will play a significant role in the success of the upcoming High-Luminosity LHC (HL-LHC) pro-
gram at CERN. An unprecedented amount of data at the exascale will be collected by LHC experiments in the next decade, 
and this effort will require novel approaches to train and use ML models. In this paper, we discuss a Machine Learning as a 
Service pipeline for HEP (MLaaS4HEP) which provides three independent layers: a data streaming layer to read High-Energy 
Physics (HEP) data in their native ROOT data format; a data training layer to train ML models using distributed ROOT files; 
a data inference layer to serve predictions using pre-trained ML models via HTTP protocol. Such modular design opens up 
the possibility to train data at large scale by reading ROOT files from remote storage facilities, e.g., World-Wide LHC Com-
puting Grid (WLCG) infrastructure, and feed the data to the user’s favorite ML framework. The inference layer implemented 
as TensorFlow as a Service (TFaaS) may provide an easy access to pre-trained ML models in existing infrastructure and 
applications inside or outside of the HEP domain. In particular, we demonstrate the usage of the MLaaS4HEP architecture 
for a physics use-case, namely, the tt̄ Higgs analysis in CMS originally performed using custom made Ntuples. We provide 
details on the training of the ML model using distributed ROOT files, discuss the performance of the MLaaS and TFaaS 
approaches for the selected physics analysis, and compare the results with traditional methods.
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Introduction

With the CERN LHC program underway, we started seeing 
an acceleration of data growth in the HEP field. By the end 
of Run II, the CERN experiments were already operating 
at the Peta-Byte (PB) level, producing O(100) PB of data 
each year. The new HL-LHC program will extend it further, 
to the Exa-Byte scale, and the usage of ML in HEP will be 
critical [1]. ML techniques have been successfully used in 
online and offline reconstruction programs, and there is a 
huge gain in applying them to detector simulation, object 
reconstruction, identification, Monte Carlo (MC) genera-
tion, and beyond [2]. As was pointed out in the ML in HEP 

Community White Paper [1] the lack of engagement from 
Computer Science experts to address HEP ML challenges 
is partly due to the fact that HEP data are stored in ROOT 
data format, which is mostly unknown outside of the HEP 
community. The ROOT data format [3] is used to store HEP 
events in tree-based data structures, where the size of indi-
vidual events cannot be determined a-priory, e.g., the num-
ber of electrons varies in each physics event. On a contrary, 
the existing ML frameworks rely on fixed-size data repre-
sentation of individual events, usually stored in CSV [4], 
NumPy [5], HDF5 [6] data formats. Therefore, the event-
based data structures cannot be fed directly to existing ML 
frameworks and special care should be taken either at the 
framework or at the data input level discussed in this paper. 
This and other reasons led to an artificial gap between ML 
and HEP communities. For example, in recent Kaggle chal-
lenges [7–9] the HEP data was presented in CSV data format 
to allow non-HEP ML practitioners to compete.

Here, we discuss the Machine Learning as a Service 
(MLaaS) architecture for HEP, referred to as MLaaS4HEP 
in this paper, which consists of two individual parts. The 
first part, the MLaaS4HEP framework [10], provides a way 
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to read HEP ROOT-based data natively into the Python ML 
framework of user choice. And, the second part, the Ten-
sorFlow as a Service (TFaaS) framework [11], can be used 
to host pre-trained ML models and obtain predictions via 
HTTP protocol.

This approach can be used by physicists or experts outside 
of HEP domain, because it only relies on Python libraries. 
It provides access to local or remote data storage, and does 
not require any modification or integration with the experi-
ment’s specific framework(s). Such modular design opens 
up a possibility to train ML models on PB-size data sets 
remotely accessible from the WLCG sites without requiring 
data transformation, i.e., from ROOT data format to flat data 
format and subsequent storage of these data sets to be used 
by underlying ML framework(s). Therefore, an existing gap 
between HEP and ML communities can be easily reduced 
using the discussed MLaaS architecture.

The organization of this paper is the following. Section 2 
provides a summary of related works and the key aspects of 
the proposed solution. Section 3 presents the details of the 
MLaaS4HEP architecture and its workflow. Section 4 shows 
performance results and validation of MLaaS4HEP for a 
physics use-case. Section 5 outlines possible future direc-
tions, and Sect. 6 presents the summary.

Related Works and Solutions

Machine Learning as a Service is a well-known concept in 
industry, and major IT companies offer such solutions to 
their customers. For example, Amazon ML, Microsoft Azure 
ML Studio, Google Prediction API and ML engine, and IBM 
Watson are prominent implementations of this concept (see 
[12]). Usually, Machine Learning as a Service is used as an 
umbrella of various ML tasks such as data pre-processing, 
model training and evaluation, and inference through REST 
APIs. Even though providers offer plenty of interfaces and 
APIs, most of the time these services are designed to cover 
standard use-cases, e.g., natural language processing, image 
classifications, computer vision, and speech recognition. 
Although a custom ML codebase can be supplied to these 
platforms, its usage for HEP is quite limited for several rea-
sons. For instance, the HEP ROOT data format cannot be 
used directly in any service provider’s APIs. Therefore, the 
operational cost, e.g., data transformation from ROOT files 
to data format used by MLaaS provider APIs, data manage-
ment, and data pre-processing, can be significant for large 
data sets. The data flattening from dynamic size event-based 
tree format to fixed-size data representation does not exist. 
Therefore, we found that out-of-the-box commercial solu-
tions most often are not applicable or ineffective for HEP 
use-cases (costwise and functionalitywise). This might 
change in the future, as various initiatives, e.g., CERN 

OpenLab [13], continue to work in close cooperation with 
almost all aforementioned service providers.

At the same time, various R&D activities within HEP 
are underway. For example, the hls4ml project [14] targets 
ML inference on FPGAs, while the SonicCMS project [15] 
is designed as Services for Optimal Network Inference on 
Co-processors. Both are targeted to the optimization of the 
inference phase rather than the whole ML pipeline, i.e., from 
reading data to training models and serving predictions.

Another solution uses the Spark platform for data pro-
cessing and ML training [16]. Although it seems very 
promising, it requires data ingestion into the CERN EOS 
filesystem or the HDFS/Spark infrastructure. As such, there 
is no easy way to access data located at WLCG sites or from 
outside of such dedicated infrastructure. Besides, a Spark-
based library (Analytics Zoo, BigDL) may be required on 
top of Keras API, and flexibility of ML framework choice is 
limited on the user side.

As introduced in the previous section, quite often addi-
tional transformations are required either at the data or soft-
ware framework level. For example, in CMS a Deep Neural 
Network (DNN) used for a jet tagging algorithm relies on 
the TensorFlow (TF) queue system with a custom opera-
tion kernel for reading ROOT trees and feeding them to 
ML models like TensorFlow [17]. Although it represents an 
interesting approach for a specific use-case, it is not an “as 
a Service” solution.

In the end, we found that there is no final product that can 
be used as Machine Learning as a Service for distributed 
HEP data without additional efforts which can provide trans-
parent integration with existing Python-based ML frame-
works to perform ML training over HEP data, and this work 
aims to close this gap.

Novelty of the Proposed Solution

The original contribution of the proposed solution is the 
following. 

1. We provide a transparent access to HEP data sets stored 
in the event tree-based ROOT data format into exist-
ing Python-based ML frameworks of user’s choice. 
Usually, they are designed to operate with row-based 
data structures like NumPy arrays, CSV files and alike. 
The proposed solution discussed in Sects. 3.1 and 3.2 
relies on the uproot library [18] and XrootD protocol 
[19] for reading small or large tree-based ROOT files 
from local filesystem or remote sites. It transforms the 
Jagged Arrays1 representation of ROOT data, and feeds 

1 Jagged Array is an array of arrays of which the member arrays can 
be of different sizes, see Sect. 3.2 for more details.
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it into ML framework via vector or matrix-based trans-
formations applied to the I/O stream. This opens up a 
possibility to use favorite non-HEP ML frameworks like 
PyTorch [20], Keras [21], TensorFlow [22], fast.ai [23], 
etc., train ML models using distributed data sets, and, 
therefore, attracting non-HEP ML practitioners to be 
engaged in HEP ML activities.

2. In Sect. 4.2, we show that the proposed solution can be 
used as a valid alternative to a traditional HEP analysis 
based on custom flat tuples (derived from the production 
ROOT files). Then, in Sect. 4.3, we provide performance 
studies for a specific analysis, and in Sect. 4.4, we dis-
cuss the performance projection for very large data sets2.

3. We developed an independent Tensor as a Service frame-
work [11], as a part of this work, which provides access 
to any kind of Tensor-based ML models via HTTP pro-
tocol. Although similar functionalities exist in various 
industry solutions most of them are integrated as a part 
of their service stack which may not be affordable or 
accessible to research communities, where an efficient, 
scalable open-source alternative is desired to have.

4. Finally, the proposed modular architecture can be easily 
adapted among any HEP experiment either as an entire 
pipeline or be used partially, without requiring changes 
in existing frameworks or infrastructure.

MLaaS4HEP Architecture

A typical ML workflow consists of three steps: acquire the 
data necessary for training, use a ML framework to train 
the model, and utilize the trained model for predictions. In 
our Machine Learning as a Service solution, MLaaS4HEP 
[10], this workflow can be abstracted as data streaming, data 
training, and inference phases, respectively. Each of these 
components can be either tightly integrated into the applica-
tion design, or composed and used individually. The choice 
is mostly driven by particular use-cases. We can define these 
layers as follows (see Fig. 1). 

– Data Streaming Layer: it is responsible for reading 
local and/or remote ROOT files, and streaming data 
batches into the Data Training Layer. The implementa-
tion of this layer requires the ROOT I/O layer with the 
support of remote I/O file access;

– Data Training Layer: it represents a thin wrapper 
around standard ML libraries such as TensorFlow, 

PyTorch, and others. It receives data from the Data 
Streaming Layer in chunks, transforms them from the 
ROOT TTree-based representation to the format suitable 
for the underlying ML framework, and uses it for training 
purposes;

– Data Inference Layer: it refers to the inference part of 
the service architecture. We implemented it as TFaaS 
[11] which allows to upload pre-trained models, and 
query them from a client side application using HTTP 
protocol.

Even though the implementation of these layers can differ 
from one experiment to another (or other scientific domains), 
it can be easily generalized and be part of the foundation for 
a generic Machine Learning as a Service framework. The 
MLaaS4HEP framework [10] implements the Data Stream-
ing and Data Training layers, and we provide their details 
in Sects. 3.1 and 3.2, respectively. In Sect. 3.3, we provide 
technical details of the ML training workflow implemented 
in the MLaaS4HEP framework and used for our studies pre-
sented in Sect. 4. The data inference layer is implemented 
as independent TFaaS [11] framework, since it can be used 
outside of HEP, and its details are discussed in Sect. 3.4.

Data Streaming Layer

The Data Streaming Layer is responsible for streaming data 
from local or remote data storage. Originally, the reading 
of ROOT files was mostly possible from C++ or PyRoot 
frameworks, but the recent development of ROOT I/O sig-
nificantly simplifies and speed up access to ROOT data from 
Python. The main development was done in the uproot [18] 
framework supported by the DIANA-HEP initiative [25]. 
The uproot library uses NumPy [5] calls to rapidly cast data 
blocks in ROOT file as NumPy arrays. It allows, among the 
implemented features, a partial reading of ROOT TBranches, 
non-flat TTrees, non TTrees histograms, and more. It relies 
on data caching and parallel processing to achieve high 
throughput. The data can be read from local ROOT files or 
remotely via XrootD protocol [19].

In our implementation of machine learning as a service 
(see Sect. 3.5) this layer is composed as a Python Generator 
[26] which is capable of reading chunk of data either from 
local or remote file(s). The output of this Python Genera-
tor is a NumPy array with flat and Jagged Array attributes. 
Such implementation provides efficient access to large data 
sets, since it does not require loading the entire data set into 
the RAM of the training node. In addition, it can be used to 
parallelize the data flow into the ML workflow pipeline. The 
choice of chunk size should be driven by complexity of the 
processed events, available network bandwidth and hardware 
resources, see discussion in Sect. 4.3.

2 Even though it is possible to apply this approach for data sets at TB 
to PB scale an additional fine-tuning may be required to parallelize 
the data flow into the ML pipeline, see Sect. 4.3 and 4.4 for further 
details.
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Data Training Layer

This layer transforms HEP ROOT data presented by the Data 
Streaming Layer as Jagged Array into a flat data format used 
by the application [1, 17]. The Jagged Array (see Fig. 2) is a 
compact representation of variable size event data produced 
in HEP experiments.

The HEP tree-based data representation is optimized for 
data storage but it is not directly suitable for ML frameworks. 
Therefore, a certain data transformation is required to feed 
tree-based data structures into the ML framework as a flat 
data structure. We explored two possible transformations: a 

vector representation with padded values (see Fig. 3) and a 
matrix representation of data within the phase space of user 
choice (see Fig. 5).

The HEP events have different dimensionality across 
event attributes. For instance, a single event may have a dif-
ferent number of particles. Therefore, proper care should 
be done to flatten and padding ROOT events in the Jagged 
Array representation. For that, we use a two-passes proce-
dure. In the first pass across all the events we determine 
the dimensionality of each attribute and its min/max values. 
Even though this procedure may not be feasible for very 
large data sets, i.e., at Tera or Peta-Byte scale, it can be 

HDFS
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Remote
storage

uproot

Data Reader

batches

XRootD

NumPy
array

jagged
b

ranches

jagged
dimensionality

b
ranches

Input Jagged Array data
Neural Network

with Dense Jagged  Layers

Data Streaming Layer
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Repository
of NN models
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Fig. 1  MLaaS4HEP architecture diagram representing three inde-
pendent layers: a Data Streaming Layer (top) to read local or remote 
ROOT files, a Data Training Layer (middle) to feed tree-based HEP 

data into ML framework, and a Data Inference Layer (bottom) via 
TensorFlow as a Service [24]
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easily replaced by alternative approaches with approximated 
min/max and clipping procedures. In the second pass we 
map Jagged Array attributes into a single vector representa-
tion with proper size and padding (see Fig. 3). In addition, 
we provide a proper normalization of each attribute during 
this phase. This layer can be easily abstracted as a Python 
decorator to allow multiple implementations of normaliza-
tion procedure that can be provided directly by the user.

We also keep a separate masking vector (see Fig. 4) to 
distinguish assigned padded (e.g., NaN or zeros) values from 
the real values of the attributes. This may be important in 
certain kinds of Neural Networks, e.g., AutoEncoders (AE) 
[27], where the location of padded values in the input vector 
can be used in the decoding phase.

Alternatively, a matrix representation can be obtained 
from a Jagged Array (see Fig. 5). For example, the spatial 
coordinates are often part of HEP data sets and, therefore, 
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b
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Fig. 2  Jagged Array data representation. It consists of flat attributes 
followed by Jagged attributes whose dimensions vary event by event 
[24]
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values [24]
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can be used for matrix representation of the events. This 
approach can resolve the issue of vector representation (of 
having to make a choice on the representation size) but it 
has its own problem with the choice of granularity of space 
matrix. For example, in the simplest case, a 2D matrix rep-
resentation3 (see Fig. 5) can be used in some X–Y phase 
space (where X and Y refer to an arbitrary pair of attributes). 
However, the cell size of this image is not known a-priory.

A choice of cell size may introduce a data collision issue 
within an event, e.g., different particles may have values of 
(X,Y) pair within the same cell. Such ambiguity may be 
resolved either by increasing matrix granularity or using an 
additional attribute, e.g., via higher dimensions of the cell 
space. But such changes will increase the sparsity of matrix 
representation and the matrix size and, therefore, will require 
more computing resources at training time.

Below we provide details of the MLaaS4HEP workflow 
used in the Data Streaming and Data Training layers using 
a vector representation for the results presented in Sect. 4.

ML Training Workflow Implementation

We implemented the Data Streaming and Data Training lay-
ers using the Python programming language and we made 

them available in the MLaaS4HEP repository [10] under 
MIT license. The Data Training Layer was abstracted to sup-
port any kind of Python-based ML frameworks: TensorFlow, 
PyTorch, and others4.

We used two parameters to control the data flow within 
the framework. The Nchunk parameter controls the chunk 
size of data read by the Data Streaming Layer from local 
or remote storage. And, the Nbatch parameter defines a batch 
size, namely, the number of events used by the underlying 
ML framework in each training cycle. We refer to chunk as 
a set of events read by the Data Streaming Layer while batch 
as a set of events used by the ML training loop.

To train the ML models defined by the user code (pro-
vided externally) the MLaaS4HEP framework uses data 
chunks with the proper proportion of events presented in 
the ROOT files. The schematic of the data flow used in the 
Data Streaming and Data Training layers is shown in Fig. 6.

The first pass (denoted by 1  in Fig. 6) represents the 
reading part of the MLaaS4HEP pipeline to create a specs 
file. This part is performed by reading all the ROOT files 
in chunks (which size is fixed a priori by the user) so that 
the information stored in the specs file is updated chunk 
by chunk. The specs file contains all the information about 
the ROOT files: the dimension of Jagged branches, the 

Fig. 5  Matrix representation of 
Jagged Array into certain phase 
space, e.g., eta-phi [24]
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4 In all our tests we used Keras and PyTorch frameworks to define 
our ML models.

3 In the general case the matrix representation can have any number 
of dimensions.



Computing and Software for Big Science (2021) 5:17 

1 3

Page 7 of 16 17

minimum and the maximum for each branch, and the num-
ber of events for each ROOT file5.

The second part of the flowchart shown as 2  represents 
the ML training phase. In the first loop of the cycle, when 
the events are not read yet, we read Nchunk events from the ith 
file fi that we store into the ith chunk ci . Then Nchunk ⋅ ni∕Ntot 
events are taken from it, where ni is the number of events 
from file fi and Ntot is the whole amount of events from 
all files. These events are converted into NumPy arrays, 
with the necessary transformation of the Jagged Arrays 
dimensions and normalization of the values (based on the 

information computed during step 1  ). The reading of the 
events and their pre-processing is performed for all the files 
fi . After having created a chunk of Nchunk events properly 
mixed from the different files, the events are used to train the 
ML model. The training phase is performed using batches 
of data taken from the created chunk, and run for a certain 
number of epochs. The batch size Nbatch and the number of 
epochs Nepochs are fixed a priori by the user. In case Nchunk is 
not multiple of Nbatch , the last batch used to train the model 
contains less than Nbatch events. Then we come back at the 
beginning of the cycle, and if all the events stored in the 
chunk ci have been already read, we read Nchunk events from 
the file fi , otherwise we read the proper amount of events 
( Nchunk ⋅ ni∕Ntot ) from the chunk ci . The training process con-
tinues and if files are not completely read the entire pipeline 
is restarted from the beginning of point 2  until all events 
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normalise the values

S
B
B
S
B
B

B

chunk of handled events
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B
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Train the model for 
Nepochs using batches 
of data with size Nbatch

Are 

completely 
read?

NO

YES

specs.json

Read all the compute load specs 
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i = i + 1i = 0
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Fig. 6  Schematic representation of the steps performed in the MLaaS4HEP pipeline, in particular those inside the Data  Streaming and 
Data Training layers (see text for details)

5 Once the specs file is produced, either through the aforementioned 
procedure or by studying Monte Carlo distributions (for large data 
sets) to determine attribute dimensions and their min/max values, it 
can be reused for all files from the given data set during the ML train-
ing phase.
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are read, creating at each cycle a new chunk of events that is 
used to train the ML model for Nepochs epochs. At the end of 
the cycle, i.e., when we read all the events from all files and 
we completed the ML training for all the individual epochs, 
all the events contained in all files are read, and the training 
process of the model is completed, producing a model that 
can be used in physics analysis.

The discussed training procedure can be applied to a vari-
ety of use-cases. And, even though we used it in Sect. 4, it 
should not be viewed as the only way to train data sets using 
the MLaaS4HEP framework. We left to the end user the 
final choice of ML strategy for concrete use-cases, where 
appropriate steps should be taken to check the convergence 
of the model, a proper set of metrics to monitor the training 
cycle, etc. For instance, when a data set does not fit into the 
RAM of the training node other solutions can be adopted, 
e.g., using an SGD [28] model. In such case, the ML training 
workflow should be adapted to use the entire data set during 
each epoch. In this particular situation, the concept of batch 
and chunk would coincide.

Data Inference Layer

A data inference layer can be implemented in a variety of 
ways. It can be either tightly integrated with application 
frameworks (for example both CMS and ATLAS experi-
ments followed this approach in their CMSSW-DNN [29] 
and LTNN [30] solutions, respectively) or it can be devel-
oped as a Service (aaS) solution. The former has the advan-
tage of reducing latency of the inference step per processing 
event, but the latter can be easily generalized and become 
independent from internal infrastructure. For instance, it can 
be easily integrated into cloud platforms, it can be used as 
a repository of pre-trained models, and also serve models 
across experiment boundaries. However, the speed of the 
data inference layer, i.e., throughput of serving predictions, 
can vary based on the chosen technology. A choice of HTTP 
protocol guarantees easy adaptation, while gRPC protocol 
can provide the best performance but will require dedicated 
clients. We decided to implement the Data Inference Layer 
as a TensorFlow as a Service architecture [11] based on 
HTTP protocol.

We evaluated several ML frameworks and we decided 
to use TensorFlow graphs [22] for the inference phase. The 
TF model represents a computational graph in a static form, 
i.e., mathematical computations, graph edges, and data 
flow are well-defined at run time. Reading TF model can 
be done in different programming languages thanks to the 
support of APIs provided by the TF library. Moreover, the 
TF graphs are very well optimized for GPUs and TPUs. We 
opted for the Go programming language [31] to implement 
the inference part of the MLaaS4HEP framework based on 
the following factors: the Go language natively supports 

concurrency via goroutines and channels; it is the language 
developed and used by Google, and it is very well integrated 
with the TF library; it provides a final static executable 
which significantly simplifies its deployment on-premises 
and to various (cloud) service providers. We also opted out 
in favor of the REST interface. Clients may upload their 
TF models to the server and use it for their inference needs 
via the same interface. Both Python and C++ clients were 
developed on top of the REST APIs (end-points) and other 
clients can be easily developed thanks to HTTP protocol. 
The TFaaS framework can be used outside of HEP to serve 
any kind of TF-based models uploaded to TFaaS service via 
HTTP protocol6.

MLaaS4HEP: Proof‑of‑Concept Prototype

When all layers of the MLaaS4HEP framework were devel-
oped, we successfully tested a working prototype of the sys-
tem using ROOT files accessible through XrootD servers. 
The data were read in chunks of 1k events, where the single 
chunk was approximately 4 MB in size. We tested this pro-
totype on a local machine as well as successfully deployed it 
on a GPU node. To further validate the MLaaS4HEP frame-
work we decided to apply it to a real physics analysis, see 
Sect. 4, where we explored local and remote data access, 
usage of different data chunks, random access to files, etc.

Real Case Scenario

To validate the MLaaS4HEP approach, we decided to test 
the infrastructure on a real physics use-case. This allowed 
us to test the performances of the MLaaS4HEP framework, 
and validate its results from the physics point of view. We 
decided to use the tt̄ Higgs analysis ( tt̄H(bb̄) ) in the boosted, 
all-hadronic final state [32, 33] due to affinity with the analy-
sis group. In the following sub-sections we discuss:

– the tt̄H(bb̄) all-hadronic analysis strategy (Sect. 4.1);
– MLaaS4HEP validation (Sect. 4.2);
– MLaaS4HEP performance results using the physics use-

case (Sect. 4.3);
– MLaaS4HEP projected performance (Sect. 4.4);
– TFaaS performance results (Sect. 4.5).

6 For instance, we tested the TFaaS functionality using non-HEP 
models such as image recognition ML models.
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tt̄H(bb̄) all‑hadronic Analysis Strategy

In this subsection, we provide details of the tt̄ Higgs analysis 
we used to test the MLaaS performance and to validate its 
functionality on a real physics use-case.

The Higgs boson is considered the most relevant dis-
covery of the last few years in High Energy Physics. After 
almost 50 years from its prediction, it was discovered by 
the ATLAS and CMS collaborations in 2012 at the CERN 
Large-Hadron Collider (LHC) [34, 35]. Since then, many 
analyses have been performed to measure its properties with 
higher precision.

In the Standard Model framework, the Higgs boson is 
predicted to couple with fermions via Yukawa-like inter-
action, which gives the mass to fermions proportionally 
to the coupling. The heaviest top quark is responsible 
for coupling to the Higgs boson. Direct measurement of 
the top-Higgs coupling exploits tree-level processes. The 
tt̄H production plays an important role in the study of the 
top-Higgs Yukawa coupling, as other production mecha-
nisms (such as gluon–gluon fusion) involve loop-level 
diagrams in which contributions from Beyond Standard 
Model (BSM) physics could enter the loops unnoticed. 
The highest branching ratio ( ≈25%) is represented by the 
all-hadronic decay channel with H(bb̄) and all-hadronic 
tt̄ . The W bosons produced by the tt̄ pair decay into a 
pair of light quarks, while the Higgs boson decays into 
a bb̄ pair (see Fig. 7). In the final state, there are at least 
eight partons (more might arise from the initial and final 
state radiation) where four of them are bottom (b) quarks. 
Despite the highest branching ratio, the all-jets final state 
is very challenging. It is dominated by the large QCD 

multi-jet production at LHC, and there are large uncer-
tainties in this channel due to the presence of many jets. At 
the same time, it represents the unique possibility to fully 
reconstruct the tt̄H as all decay products are observable.

At the 13 TeV center-of-mass energy, top quarks with 
a very high pT  can be produced via tt̄H . If their Lorentz 
boost is sufficiently high, their decay products are very 
collimated into a single, wide jet, named boosted jet. In 
particular, we are interested in the tt̄H(bb̄) analysis with 
all-jets final state, where at least one of the jets of the final 
state is a boosted jet, and where the Higgs boson decays 
in a pair of well resolved jets identified as a result of the 
hadronization of bottom quarks.

For identification of the tt̄H(bb̄) events containing a 
resolved-Higgs decay a Machine Learning model based 
on Boosted Decision Tree (BDT) was used by CMS in the 
analysis [32, 33] and the training was done within TMVA 
[36] framework.

The Monte Carlo simulation provides events used for 
training, where events are selected among the tt̄H  sam-
ple and the two dominant background samples, namely, 
QCD and tt̄ , respectively. The tt̄H events with the resolved 
Higgs-boson matching to the system of two b-tagged 
jets are considered as signal events. On the contrary, 
unmatched tt̄H events, and all the QCD and tt̄ events are 
considered as background events. Both signal and back-
ground events are required to pass some selection criteria, 
such as to have at least a boosted jet, to contain no leptons, 
to pass the signal trigger, etc. This selection is aimed to 
select boosted, all-jets-like events.

MLaaS4HEP Validation

To validate the MLaaS4HEP functionality against standard 
BDT-based procedure, we decided to use a set of ROOT 
files from the resolved-Higgs analysis discussed in the pre-
vious section. The goal of this exercise was to demonstrate 
that the MLaaS4HEP framework can provide a valuable 
alternative and deliver comparable results with respect 
to the traditional analysis based on a pre-defined set of 
metrics. For our purposes, we decided to use a generic 
ML model and compare the results obtained inside and 
outside MLaaS4HEP. In particular, we explored the fol-
lowing approaches:

– use MLaaS4HEP to read and normalize events, and to 
train the ML model;

– use MLaaS4HEP to read and normalize events, and use 
a Jupyter notebook to perform the training of the ML 
model outside MLaaS4HEP;

– use a Jupyter notebook to perform the entire pipeline 
without using MLaaS4HEP.

Fig. 7  Feynman diagram for the tt̄H(bb̄) decay
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Initially, we performed the analysis using the ROOT files 
that passed the selection criteria discussed in the previ-
ous section. The final data set consisted of eight ROOT 
files containing background events, and one file containing 
signal events. Each file had 27 branches, with 350k events 
in total, and the total size of this data set was 28 MB. The 
ratio between the number of signal events and background 
events was approximately 10.8%. The data set was split 
into three parts, 64% for training, 16% for validation, and 
20% for test purposes, respectively. We used a Keras [21] 
sequential Neural Network with two hidden layers made by 
128 and 64 neurons, and with a 0.5 dropout regularization 

between layers. Finally, we trained the model for 5 epochs 
with a batch size of 100 events.

The results of this exercise are shown in Fig. 8, and 
demonstrate that different approaches have similar perfor-
mance. We did not target to reproduce and/or match exact 
AUC numbers obtained in the standard physics analysis, and 
we found that our result (in terms of AUC score) is compara-
ble with the BDT model used in the physics analysis.

When the aforementioned ML model is trained using 
chunks of the data through the training workflow strategy 
described in Sect. 3.3, the convergence of the model is still 
valid. However, as we pointed out in Sect. 3.3, once the user 
chooses a specific physics use-case and a ML model, the 
convergence of the model should be verified and the appro-
priate ML training workflow should be adapted, if necessary.

MLaaS4HEP Performance

In this section, we provide details of the MLaaS4HEP per-
formance testing: the scalability of the framework and its 
benchmarks using different storage layers. For that purpose, 
we used all available ROOT files without any physics cuts. 
This gave us a data set with 28.5M events with 74 branches 
(22 flat and 52 Jagged), and a total size of about 10.1 GB.

We performed all tests running the MLaaS4HEP frame-
work on macOS (laptop), 2.2 GHz Intel Core i7 dual-core, 
8 GB of RAM, and on CentOS 7 Linux, 4 VCPU Intel Core 
Processor Haswell 2.4 GHz, 7.3 GB of RAM CERN Virtual 
Machine. The ROOT files are read from three data cent-
ers: Bologna (BO), Pisa (PI), and Bari (BA). The average 
available bandwidth was approximately 129 Mbit/s with 
the Standard Deviation of Mean (SDOM) parameter equal 
to 4 Mbit/s and 639 (SDOM = 39) Mbit/s using macOS 
and CERN VM, respectively (in both cases the values are 
obtained after 10 trials).

Fig. 8  Comparison of the AUC score for the training, validation, and 
test set for three different cases: (i) using MLaaS4HEP to read and 
normalize events, and to train the ML model; (ii) using MLaaS4HEP 
to read and normalize events, and using a Jupyter notebook to per-
form the training of the ML model outside MLaaS4HEP; (iii) using 
a Jupyter notebook to perform the entire pipeline without using 
MLaaS4HEP

Table 1  Performances of reading and specs computing phase with 
chunk size fixed to 100k events, using the macOS system and the 
CERN VM. Each value shown in the table cells represents the arith-
metic mean of five trials with the corresponding SDOM reported 
inside the round brackets. The mean value of each event throughput 
is the mean of the values obtained chunk by chunk in the step 1  in 

Fig.  6. In local storage cases, the files are stored in a SSD 500 GB 
in the macOS case and in a Virtual Disk 52 GB in the CERN VM 
case, respectively. Moreover, BO, BA, and PI stand for various Italian 
storage facilities with different WAN configurations (see text for more 
details)

Reading time Specs comp. time Time to complete Event throughput for
(s) (s) Step 1  (s) Reading + specs comp. (evts/s)

macOS with local files 1633 (9) 958 (2) 2599 (11) 11055 (49)
macOS with remote files (BO) 2365 (49) 974 (10) 3353 (57) 8585 (149)
VM with local files 1131 (3) 963 (2) 2102 (5) 13690 (34)
VM with remote files (BO) 2455 (68) 959 (2) 3427 (67) 8396 (158)
VM with remote files (BA) 2304 (88) 961 (2) 3279 (89) 8801 (241)
VM with remote files (PI) 2129 (41) 1044 (78) 3186 (83) 9047 (228)
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Table 1 summarizes the I/O numbers we obtained in the 
first step of the MLaaS4HEP pipeline ( 1  in Fig. 6) using 
various setups and a chunk size of 100k events. It provides 
the values of time spent for reading the files, the time spent 
for computing specs values, the total time spent for complet-
ing the step 1  , and the event throughput for the reading and 
specs computing step.

In Fig. 9, we show the event throughput for reading the 
data as a function of chunk size for different trials. In all 
cases, we find no significant peaks. The larger chunk sizes 
can lead to certain problems, as in the case of the CERN 
VMs, where we may reach a limitation of the underlying 
hardware, e.g., big memory footprint. We found lower read-
ing times and higher event throughput using local files, while 
in the case of remote files, the results are mostly influenced 
by the available bandwidth (the link connectivity between 
processing node and sites hosting the data).

In the performance studies of the second step of the 
MLaaS4HEP pipeline ( 2  in Fig. 6), we are interested in 
the data reading part, the data pre-processing step (which 

include data transformation), and the time spent in the 
MLaaS4HEP training step.

As already mentioned in Sect. 3.3, there is a loop over 
files that allows building the chunk used to train the ML 
model with the adequate proportion of the events. If the 
chunk that contains the events of the ith ROOT file is empty 
or fully processed, a new chunk of events from the ith file 
is read, and the time for reading is added to the whole time 
spent for creating the chunk (see Fig. 6). In other words, the 
time spent for creating a chunk is made by the sum of n read-
ing actions, and of the time to pre-process the events. The 
event throughput for creating a single data chunk and the 
event throughput for pre-processing a single data chunk are 
reported in Table 2. In Fig. 10, we show the event through-
put for creating a chunk as a function of the chunk size for 
different trials.

We found that the time spent for creating a chunk was 
almost the same using macOS or CERN VM, and similar 
using local or remote files. Obviously, for remote files, 
the reading time increased consequently, and the time for 
creating the chunk increased, but this difference was quite 

Fig. 9  Average event through-
put for reading the data as a 
function of the chunk size for 
different trials of step 1  in 
Fig. 6. The data points represent 
the arithmetic mean of five 
trials and the error bars are the 
corresponding SDOM

Table 2  Event throughput for the chunk creation and for the pre-pro-
cessing step with a chunk size of 100k events computed as the ratio 
of the number of events over the time spent on chunk creation. The 
difference between the two steps is based on the reading part, i.e., the 

time for creating a chunk, as the sum of times for reading events from 
the ROOT files, and the time for the pre-processing step. Shown val-
ues represent the arithmetic mean of ten trials with the corresponding 
SDOM reported inside the round brackets

Event throughput for Event throughput for
Creating a chunk (evts/s) Pre-processing a chunk (evts/s)

macOS with local files 1102 (11) 1157 (7)
macOS with remote files (BO) 1057 (17) 1138 (4)
VM with local files 1209 (11) 1247 (2)
VM with remote files (BO) 1110 (32) 1243 (5)
VM with remote files (BA) 1071 (19) 1153 (4)
VM with remote files (PI) 1152 (18) 1234 (5)
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negligible. For instance, we spend around 90 s to create 
a chunk of 100k events, which translates into an event 
throughput of about 1.1k etvs/s as reported in Table 2.

The choice of the chunk size is left to the user and there 
is no pre-defined “best” value for it. We suggest that users 
should start with a lower value of chunk size, e.g., 1k, and 
increase it gradually based on their resource availability. 
For instance, in our initial proof-of-concept implementa-
tion, see Sect. 3.5, we used 1k events as a chunk data size, 
while within performance studies discussed in this section, 
we extended the chunk size to 100k events.

The actual ML training time is independent from the 
MLaaS4HEP framework, since it is determined by usage 
of the underlying ML framework, e.g., Keras or PyTorch, 
the complexity of used ML model and available hardware 
resources. In particular, using the simple ML model intro-
duced in Sect. 4.2 and a chunk size of 100k events, we 
found that for each chunk the time spent to split properly 
the data for training, validation and test purpose is about 
1s (and almost equal for MacOS and CERN VM), and the 
training time for 5 epochs is about 11s and 13s for MacOS 
and CERN VM, respectively.

During the implementation of the MLaaS4HEP frame-
work, we resolved few bottlenecks with respect to the 
results obtained in [24]. For example, we improved the 
reading time by a factor of 10. This came from better han-
dling of Jagged Arrays via flattening the event arrays and 
computing of min/max values of each branch. Moreover, 
we also obtained a factor of 2.8 improvements in the data 
pre-processing step using lists comprehensions instead of 
loops within the event. On MacOS the performance of the 
MLaaS4HEP framework is about 86s to pre-process 100k 
events with 36%, 26%, 27%, and 6% breakdown used to 
extract and convert each event in a list of NumPy arrays, 

the normalization step, fixing the dimensions, and creating 
the masking vectors, respectively.

In conclusion, we demonstrated that MLaaS4HEP 
approach can be applicable to the discussed physics analy-
sis. Using 10 GB of data (approximately 28.5M events) we 
obtained the following results:

– MLaaS4HEP framework is capable to work with local 
and remote files;

– its throughput reaches about 13.7k evts/s for reading local 
ROOT files (with specs computing), and about 9k evts/s 
for remote files;

– the throughput of the pre-processing step is peaked at 
1.2k evts/s.

MLaaS4HEP Performance Projection

Based on our studies presented in the previous section, 
we found that to process 28.5M events (or 10 GB of data) 
MLaaS4HEP takes about 35 min for the first step of the 
pipeline ( 1  in Fig. 6), i.e., to obtain min/max boundaries 
of all attributes across the processed events. The second step 
of the MLaaS4HEP pipeline ( 2  in Fig. 6) takes about 7 h. 
This time includes reading all data chunks from the ROOT 
files, pre-process the events (data transformation from Jag-
ged Array to flat NumPy arrays with fixing of the Jagged 
Arrays dimensions, data normalization), and feeding the 
data to the ML framework. The actual ML training time 
depends on the user-provided model and does not repre-
sent MLaaS4HEP performance. In our studies reported in 
Sect. 4.2, it adds an additional hour to the total time. There-
fore, we estimate that using the same hardware resources 
the step 1  will take O(100) hours and O(100k) hours for 
data sets at TB and PB scale, and the time for step 2  will 
be O(1k) hours and O(1M) hours, respectively, plus time 

Fig. 10  Event throughput for 
creating a chunk as a function 
of the chunk size for different 
trials. Shown values represent 
the arithmetic mean of ten trials 
with the SDOM error bars
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required to train the ML model. These estimates suggest 
that further optimization of the MLaaS4HEP pipeline will 
be required to process TB or PB scale data sets and it may 
involve parallelization of I/O, distributed ML training, and 
other optimization techniques which we discuss further in 
Sect. 5.

At this stage, our goal was mainly to prove the feasibility 
of the MLaaS4HEP pipeline, and validate its usage within 
the context of a real physics use-case rather than perform 
real ML training at TB/PB scale. In Sect. 5, we discuss fur-
ther improvements which can be done.

TFaaS Performance

The performance testing of the TFaaS service was done 
using a variety of ML models, from simple image clas-
sification to the ML model developed and discussed in 
Sect. 4.2. In particular, we performed several benchmarks 
using the TFaaS server running on CentOS 7 Linux, 16 
cores, 30 GB of RAM. The benchmarks were done in two 
modes: using 1k calls with 100 concurrent clients and 5k 
calls with 200 concurrent clients. We tested both JSON and 
ProtoBuffer [37] data formats while sending and fetching the 
data to/from the TFaaS server. In both cases, we achieved a 
throughput of ∼ 500 req/sec. These numbers were obtained 
by serving the mid-size pre-trained model with 27 features 
and 1024x1024 hidden layers used in the physics analysis 
discussed in Sect. 4.1. A similar performance was found 
for image classification data sets (MNIST). The actual per-
formance of TFaaS will depend on the complexity of the 
served ML model and the available hardware resources. 
Even though a single TFaaS server may not be as efficient 
as an integrated solution, it can be easily horizontally scaled, 
e.g., using Kubernetes or other cluster orchestrated solu-
tions, and may provide the desired throughput for concurrent 
clients. It also decouples the application layer/framework 
from the inference phase which can be easily integrated into 
any existing infrastructure using the HTTP protocol.

Future Directions

In the previous section, we discussed the usage of 
MLaaS4HEP in the scope of a real HEP physics analysis. 
We found the following:

– the usage of MLaaS4HEP is transparent to the chosen 
HEP data set, i.e., data can be read locally or from remote 
storage;

– the discussed architecture is HEP experiment agnostic 
and can be used with any existing ML (Python-based) 

framework as well as easily integrated into existing infra-
structure;

– the data can be read in chunks from remote storage, and 
this allows continuous ML training over large data sets, 
and further parallelization.

These observations open up a possibility to train ML mod-
els over large data sets, potentially at Peta-Byte scale while 
using existing Python-based open-source ML frameworks. 
Therefore, we foresee that the Machine Learning as a Ser-
vice approach can be widely applicable in HEP. For exam-
ple, future directions of this work might include the exploi-
tation of this architecture to streamline the access to cloud 
and HPC resources for training and inference tasks. It can 
represent an attractive option to open up HPC resources for 
large scale ML training in HEP along with required secu-
rity measurements, resource provisioning, and remote data 
access to WLCG sites. To move in this direction additional 
work will be required. Below, we discuss a possible set of 
improvements that can be explored.

Data Streaming Layer

To improve the Data Streaming Layer a multi-threaded I/O 
layer can be implemented. This can be achieved by wrap-
ping up the data reader code-base into a service that will 
deliver the data chunks in parallel upon requests from the 
upstream layer. In addition, the chunks can be pre-fetched 
from XrootD servers into a local cache to improve the I/O 
throughput. In particular, there are several R&D’s under-
ways to demonstrate intelligence smart caching [38] for 
Dynamic On-Demand Analysis Service (DODAS) at com-
puter centers, such as HPC, national Tier centers, etc. Such 
a DODAS facility can reduce the time spent on the Data 
Streaming Layer by pre-fetching ROOT files into local cache 
and use them for ML training.

Data Training Layer

If data I/O parallelism can be achieved, further improve-
ments can be made via implementation of distributed 
training [39]. There are several R&D developments in this 
direction, from adapting the Dask Python framework [40], 
or using distributed Keras [41], to using MPI-Based Python 
framework for distributed training [42], or using MLflow 
framework [43] on an HDFS+Spark infrastructure, which 
explores both task and data parallelism approaches.

The current landscape of ML frameworks is changing 
rapidly, and we should adjust MLaaS4HEP to existing 
and future ML framework and innovations. For instance, 
Open Network Exchange Format [44] opens up the door 
to migration of models from one framework into another. 
This may open up a possibility to use MLaaS4HEP for the 
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next generation of Open-Source ML frameworks and ensure 
that end-users will not be locked into a particular one. For 
instance, we are working on the automatic transformation of 
PyTorch [20] and fast.ai [23] models into TensorFlow which 
later can be uploaded and used through TFaaS service [11].

As discussed in Sect. 3.2, there are different approaches 
to feed Jagged Arrays into ML framework and R&D in 
this direction is in progress. For instance, for AutoEncoder 
models, the vector representation with padded values should 
always keep around a cast vector which later can be used 
to decode back the vector representation of the data back 
to Jagged Array or ROOT TTree data structures. We also 
would like to explore matrix representation of Jagged Array 
data and see if it can be applied to certain types of use-cases, 
e.g., in calorimetry or tracking, where image representation 
of the objects can be used.

Data Inference Layer

On the inference side, several approaches can be used. As 
discussed above, the TFaaS [11] throughput can be further 
improved by switching from HTTP to a gRPC-based solu-
tion such as SONIC [45] which can provide a fast inference 
layer based on FPGAs and GPUs-based infrastructures.

The current implementation of TFaaS can be used as a 
repository of pre-trained models which can be easily shared 
across experiment boundaries or domains thanks to serv-
ing ML models via HTTP protocol. For instance, the cur-
rent implementation of TFaaS allows visual inspection of 
uploaded models, versioning, tagging, etc. We foresee the 
next logical step is towards a repository of pre-trained mod-
els with flexible search capabilities, extended model tag-
ging, and versioning. This can be achieved by providing 
a dedicated service for ML models with proper meta-data 
description. For instance, such meta-data can capture model 
parameters, details of used software, releases, data input, and 
performance output. With a proper search engine in place, 
users may search for available ML models related to their 
use-case.

MLaaS4HEP Services

The proposed architecture allows us to develop and deploy 
training and inference layers as independent services. The 
separate resource providers can be used and dynamically 
scaled if necessary, e.g., GPUs/TPUs can be provisioned on-
demand using the commercial cloud(s) for training purposes 
of specific models, while inference TFaaS service can reside 
elsewhere, e.g., on a dedicated Kubernetes cluster at some 
computer center. For instance, the continuous training of 
complex DL models would be possible when data produced 
by the experiment will be placed on WLCG sites. The train-
ing service will receive a set of notifications about newly 

available data, and re-train specific model(s). When a new 
ML model is ready it can be easily pushed to TFaaS and be 
available for end-users immediately without any intervention 
on the existing infrastructure as part of CD/CI (Continuous 
Development and Continuous Integration) workflows. The 
TFaaS can be further adapted to use FPGAs to speed up the 
inference phase. We foresee that such an approach may be 
more flexible and cost-effective for HEP experiments in the 
HL-LHC era. As such, we plan to perform additional R&D 
studies in this direction and evaluate further MLaaS4HEP 
services using available resources.

Summary

In this paper, we presented a modern approach to train HEP 
ML models using the native ROOT data-format either from 
local or remote storage. The MLaaS4HEP consists of three 
layers: the Data Streaming and Data Training layers as part 
of the MLaaS4HEP framework [10], and the Data Infer-
ence Layer implemented in the TFaaS framework based on 
the TensorFlow library. All three layers are implemented as 
independent components. The Data Streaming Layer relies 
on the uproot library for reading data from ROOT files (local 
or remote) and yielding NumPy (Jagged) arrays. The Data 
Training Layer transforms the input Jagged Array into a 
vector representation and passes it into the ML framework 
provided by the user. Finally, the Data Inference Layer was 
implemented as an independent HTTP service. We foresee 
that it can be useful in a variety of use-cases such as quick 
evaluation of ML models in physics analysis, or online appli-
cations, where new models can be built periodically. The 
TFaaS implementation allows to use itself as a repository 
of ML pre-trained models, and it can be a valuable com-
ponent in the agile ML development cycle of any group, 
from small physics analysis group(s) to cross-experiment 
collaborations.

The flexible architecture we implemented allows per-
forming ML training over a large set of distributed HEP 
ROOT data without physically downloading data into local 
storage. We demonstrated that such architecture is capa-
ble of reading local and distributed data sets, available via 
XrootD protocol on WLCG infrastructure. We validate the 
MLaaS4HEP architecture using an official CMS tt̄ Higgs 
analysis ( tt̄H(bb) ) in the boosted, all-hadronic final state, 
and we obtained comparable ML model performance with 
respect to a traditional physics analysis based on data extrac-
tion from ROOT files into custom Ntuples.
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