
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:17
https://doi.org/10.1007/s41781-021-00061-3

ORIGINAL ARTICLE

MLaaS4HEP: Machine Learning as a Service for HEP

Valentin Kuznetsov1 · Luca Giommi2 · Daniele Bonacorsi2

Received: 26 July 2020 / Accepted: 8 June 2021 / Published online: 5 July 2021
© The Author(s) 2021

Abstract
Machine Learning (ML) will play a significant role in the success of the upcoming High-Luminosity LHC (HL-LHC) pro-
gram at CERN. An unprecedented amount of data at the exascale will be collected by LHC experiments in the next decade,
and this effort will require novel approaches to train and use ML models. In this paper, we discuss a Machine Learning as a
Service pipeline for HEP (MLaaS4HEP) which provides three independent layers: a data streaming layer to read High-Energy
Physics (HEP) data in their native ROOT data format; a data training layer to train ML models using distributed ROOT files;
a data inference layer to serve predictions using pre-trained ML models via HTTP protocol. Such modular design opens up
the possibility to train data at large scale by reading ROOT files from remote storage facilities, e.g., World-Wide LHC Com-
puting Grid (WLCG) infrastructure, and feed the data to the user’s favorite ML framework. The inference layer implemented
as TensorFlow as a Service (TFaaS) may provide an easy access to pre-trained ML models in existing infrastructure and
applications inside or outside of the HEP domain. In particular, we demonstrate the usage of the MLaaS4HEP architecture
for a physics use-case, namely, the tt̄ Higgs analysis in CMS originally performed using custom made Ntuples. We provide
details on the training of the ML model using distributed ROOT files, discuss the performance of the MLaaS and TFaaS
approaches for the selected physics analysis, and compare the results with traditional methods.

Keywords BigData · LHC · Data management · Machine learning

Introduction

With the CERN LHC program underway, we started seeing
an acceleration of data growth in the HEP field. By the end
of Run II, the CERN experiments were already operating
at the Peta-Byte (PB) level, producing O(100) PB of data
each year. The new HL-LHC program will extend it further,
to the Exa-Byte scale, and the usage of ML in HEP will be
critical [1]. ML techniques have been successfully used in
online and offline reconstruction programs, and there is a
huge gain in applying them to detector simulation, object
reconstruction, identification, Monte Carlo (MC) genera-
tion, and beyond [2]. As was pointed out in the ML in HEP

Community White Paper [1] the lack of engagement from
Computer Science experts to address HEP ML challenges
is partly due to the fact that HEP data are stored in ROOT
data format, which is mostly unknown outside of the HEP
community. The ROOT data format [3] is used to store HEP
events in tree-based data structures, where the size of indi-
vidual events cannot be determined a-priory, e.g., the num-
ber of electrons varies in each physics event. On a contrary,
the existing ML frameworks rely on fixed-size data repre-
sentation of individual events, usually stored in CSV [4],
NumPy [5], HDF5 [6] data formats. Therefore, the event-
based data structures cannot be fed directly to existing ML
frameworks and special care should be taken either at the
framework or at the data input level discussed in this paper.
This and other reasons led to an artificial gap between ML
and HEP communities. For example, in recent Kaggle chal-
lenges [7–9] the HEP data was presented in CSV data format
to allow non-HEP ML practitioners to compete.

Here, we discuss the Machine Learning as a Service
(MLaaS) architecture for HEP, referred to as MLaaS4HEP
in this paper, which consists of two individual parts. The
first part, the MLaaS4HEP framework [10], provides a way

 * Luca Giommi
 luca.giommi3@unibo.it

 Valentin Kuznetsov
 vkuznet@gmail.com

 Daniele Bonacorsi
 daniele.bonacorsi@unibo.it

1 Cornell University, Ithaca, USA
2 University of Bologna and INFN, Bologna, Italy

http://orcid.org/0000-0003-0667-069X
http://orcid.org/0000-0003-3539-4313
http://orcid.org/0000-0002-0835-9574
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00061-3&domain=pdf

 Computing and Software for Big Science (2021) 5:17

1 3

17 Page 2 of 16

to read HEP ROOT-based data natively into the Python ML
framework of user choice. And, the second part, the Ten-
sorFlow as a Service (TFaaS) framework [11], can be used
to host pre-trained ML models and obtain predictions via
HTTP protocol.

This approach can be used by physicists or experts outside
of HEP domain, because it only relies on Python libraries.
It provides access to local or remote data storage, and does
not require any modification or integration with the experi-
ment’s specific framework(s). Such modular design opens
up a possibility to train ML models on PB-size data sets
remotely accessible from the WLCG sites without requiring
data transformation, i.e., from ROOT data format to flat data
format and subsequent storage of these data sets to be used
by underlying ML framework(s). Therefore, an existing gap
between HEP and ML communities can be easily reduced
using the discussed MLaaS architecture.

The organization of this paper is the following. Section 2
provides a summary of related works and the key aspects of
the proposed solution. Section 3 presents the details of the
MLaaS4HEP architecture and its workflow. Section 4 shows
performance results and validation of MLaaS4HEP for a
physics use-case. Section 5 outlines possible future direc-
tions, and Sect. 6 presents the summary.

Related Works and Solutions

Machine Learning as a Service is a well-known concept in
industry, and major IT companies offer such solutions to
their customers. For example, Amazon ML, Microsoft Azure
ML Studio, Google Prediction API and ML engine, and IBM
Watson are prominent implementations of this concept (see
[12]). Usually, Machine Learning as a Service is used as an
umbrella of various ML tasks such as data pre-processing,
model training and evaluation, and inference through REST
APIs. Even though providers offer plenty of interfaces and
APIs, most of the time these services are designed to cover
standard use-cases, e.g., natural language processing, image
classifications, computer vision, and speech recognition.
Although a custom ML codebase can be supplied to these
platforms, its usage for HEP is quite limited for several rea-
sons. For instance, the HEP ROOT data format cannot be
used directly in any service provider’s APIs. Therefore, the
operational cost, e.g., data transformation from ROOT files
to data format used by MLaaS provider APIs, data manage-
ment, and data pre-processing, can be significant for large
data sets. The data flattening from dynamic size event-based
tree format to fixed-size data representation does not exist.
Therefore, we found that out-of-the-box commercial solu-
tions most often are not applicable or ineffective for HEP
use-cases (costwise and functionalitywise). This might
change in the future, as various initiatives, e.g., CERN

OpenLab [13], continue to work in close cooperation with
almost all aforementioned service providers.

At the same time, various R&D activities within HEP
are underway. For example, the hls4ml project [14] targets
ML inference on FPGAs, while the SonicCMS project [15]
is designed as Services for Optimal Network Inference on
Co-processors. Both are targeted to the optimization of the
inference phase rather than the whole ML pipeline, i.e., from
reading data to training models and serving predictions.

Another solution uses the Spark platform for data pro-
cessing and ML training [16]. Although it seems very
promising, it requires data ingestion into the CERN EOS
filesystem or the HDFS/Spark infrastructure. As such, there
is no easy way to access data located at WLCG sites or from
outside of such dedicated infrastructure. Besides, a Spark-
based library (Analytics Zoo, BigDL) may be required on
top of Keras API, and flexibility of ML framework choice is
limited on the user side.

As introduced in the previous section, quite often addi-
tional transformations are required either at the data or soft-
ware framework level. For example, in CMS a Deep Neural
Network (DNN) used for a jet tagging algorithm relies on
the TensorFlow (TF) queue system with a custom opera-
tion kernel for reading ROOT trees and feeding them to
ML models like TensorFlow [17]. Although it represents an
interesting approach for a specific use-case, it is not an “as
a Service” solution.

In the end, we found that there is no final product that can
be used as Machine Learning as a Service for distributed
HEP data without additional efforts which can provide trans-
parent integration with existing Python-based ML frame-
works to perform ML training over HEP data, and this work
aims to close this gap.

Novelty of the Proposed Solution

The original contribution of the proposed solution is the
following.

1. We provide a transparent access to HEP data sets stored
in the event tree-based ROOT data format into exist-
ing Python-based ML frameworks of user’s choice.
Usually, they are designed to operate with row-based
data structures like NumPy arrays, CSV files and alike.
The proposed solution discussed in Sects. 3.1 and 3.2
relies on the uproot library [18] and XrootD protocol
[19] for reading small or large tree-based ROOT files
from local filesystem or remote sites. It transforms the
Jagged Arrays1 representation of ROOT data, and feeds

1 Jagged Array is an array of arrays of which the member arrays can
be of different sizes, see Sect. 3.2 for more details.

Computing and Software for Big Science (2021) 5:17

1 3

Page 3 of 16 17

it into ML framework via vector or matrix-based trans-
formations applied to the I/O stream. This opens up a
possibility to use favorite non-HEP ML frameworks like
PyTorch [20], Keras [21], TensorFlow [22], fast.ai [23],
etc., train ML models using distributed data sets, and,
therefore, attracting non-HEP ML practitioners to be
engaged in HEP ML activities.

2. In Sect. 4.2, we show that the proposed solution can be
used as a valid alternative to a traditional HEP analysis
based on custom flat tuples (derived from the production
ROOT files). Then, in Sect. 4.3, we provide performance
studies for a specific analysis, and in Sect. 4.4, we dis-
cuss the performance projection for very large data sets2.

3. We developed an independent Tensor as a Service frame-
work [11], as a part of this work, which provides access
to any kind of Tensor-based ML models via HTTP pro-
tocol. Although similar functionalities exist in various
industry solutions most of them are integrated as a part
of their service stack which may not be affordable or
accessible to research communities, where an efficient,
scalable open-source alternative is desired to have.

4. Finally, the proposed modular architecture can be easily
adapted among any HEP experiment either as an entire
pipeline or be used partially, without requiring changes
in existing frameworks or infrastructure.

MLaaS4HEP Architecture

A typical ML workflow consists of three steps: acquire the
data necessary for training, use a ML framework to train
the model, and utilize the trained model for predictions. In
our Machine Learning as a Service solution, MLaaS4HEP
[10], this workflow can be abstracted as data streaming, data
training, and inference phases, respectively. Each of these
components can be either tightly integrated into the applica-
tion design, or composed and used individually. The choice
is mostly driven by particular use-cases. We can define these
layers as follows (see Fig. 1).

– Data Streaming Layer: it is responsible for reading
local and/or remote ROOT files, and streaming data
batches into the Data Training Layer. The implementa-
tion of this layer requires the ROOT I/O layer with the
support of remote I/O file access;

– Data Training Layer: it represents a thin wrapper
around standard ML libraries such as TensorFlow,

PyTorch, and others. It receives data from the Data
Streaming Layer in chunks, transforms them from the
ROOT TTree-based representation to the format suitable
for the underlying ML framework, and uses it for training
purposes;

– Data Inference Layer: it refers to the inference part of
the service architecture. We implemented it as TFaaS
[11] which allows to upload pre-trained models, and
query them from a client side application using HTTP
protocol.

Even though the implementation of these layers can differ
from one experiment to another (or other scientific domains),
it can be easily generalized and be part of the foundation for
a generic Machine Learning as a Service framework. The
MLaaS4HEP framework [10] implements the Data Stream-
ing and Data Training layers, and we provide their details
in Sects. 3.1 and 3.2, respectively. In Sect. 3.3, we provide
technical details of the ML training workflow implemented
in the MLaaS4HEP framework and used for our studies pre-
sented in Sect. 4. The data inference layer is implemented
as independent TFaaS [11] framework, since it can be used
outside of HEP, and its details are discussed in Sect. 3.4.

Data Streaming Layer

The Data Streaming Layer is responsible for streaming data
from local or remote data storage. Originally, the reading
of ROOT files was mostly possible from C++ or PyRoot
frameworks, but the recent development of ROOT I/O sig-
nificantly simplifies and speed up access to ROOT data from
Python. The main development was done in the uproot [18]
framework supported by the DIANA-HEP initiative [25].
The uproot library uses NumPy [5] calls to rapidly cast data
blocks in ROOT file as NumPy arrays. It allows, among the
implemented features, a partial reading of ROOT TBranches,
non-flat TTrees, non TTrees histograms, and more. It relies
on data caching and parallel processing to achieve high
throughput. The data can be read from local ROOT files or
remotely via XrootD protocol [19].

In our implementation of machine learning as a service
(see Sect. 3.5) this layer is composed as a Python Generator
[26] which is capable of reading chunk of data either from
local or remote file(s). The output of this Python Genera-
tor is a NumPy array with flat and Jagged Array attributes.
Such implementation provides efficient access to large data
sets, since it does not require loading the entire data set into
the RAM of the training node. In addition, it can be used to
parallelize the data flow into the ML workflow pipeline. The
choice of chunk size should be driven by complexity of the
processed events, available network bandwidth and hardware
resources, see discussion in Sect. 4.3.

2 Even though it is possible to apply this approach for data sets at TB
to PB scale an additional fine-tuning may be required to parallelize
the data flow into the ML pipeline, see Sect. 4.3 and 4.4 for further
details.

 Computing and Software for Big Science (2021) 5:17

1 3

17 Page 4 of 16

Data Training Layer

This layer transforms HEP ROOT data presented by the Data
Streaming Layer as Jagged Array into a flat data format used
by the application [1, 17]. The Jagged Array (see Fig. 2) is a
compact representation of variable size event data produced
in HEP experiments.

The HEP tree-based data representation is optimized for
data storage but it is not directly suitable for ML frameworks.
Therefore, a certain data transformation is required to feed
tree-based data structures into the ML framework as a flat
data structure. We explored two possible transformations: a

vector representation with padded values (see Fig. 3) and a
matrix representation of data within the phase space of user
choice (see Fig. 5).

The HEP events have different dimensionality across
event attributes. For instance, a single event may have a dif-
ferent number of particles. Therefore, proper care should
be done to flatten and padding ROOT events in the Jagged
Array representation. For that, we use a two-passes proce-
dure. In the first pass across all the events we determine
the dimensionality of each attribute and its min/max values.
Even though this procedure may not be feasible for very
large data sets, i.e., at Tera or Peta-Byte scale, it can be

HDFS

ROOT

local

Remote
storage

uproot

Data Reader

batches

XRootD

NumPy
array

jagged
b

ranches

jagged
dimensionality

b
ranches

Input Jagged Array data
Neural Network

with Dense Jagged Layers

Data Streaming Layer

Data Training Layer

Repository
of NN models

Data Inference Layer

Fig. 1 MLaaS4HEP architecture diagram representing three inde-
pendent layers: a Data Streaming Layer (top) to read local or remote
ROOT files, a Data Training Layer (middle) to feed tree-based HEP

data into ML framework, and a Data Inference Layer (bottom) via
TensorFlow as a Service [24]

Computing and Software for Big Science (2021) 5:17

1 3

Page 5 of 16 17

easily replaced by alternative approaches with approximated
min/max and clipping procedures. In the second pass we
map Jagged Array attributes into a single vector representa-
tion with proper size and padding (see Fig. 3). In addition,
we provide a proper normalization of each attribute during
this phase. This layer can be easily abstracted as a Python
decorator to allow multiple implementations of normaliza-
tion procedure that can be provided directly by the user.

We also keep a separate masking vector (see Fig. 4) to
distinguish assigned padded (e.g., NaN or zeros) values from
the real values of the attributes. This may be important in
certain kinds of Neural Networks, e.g., AutoEncoders (AE)
[27], where the location of padded values in the input vector
can be used in the decoding phase.

Alternatively, a matrix representation can be obtained
from a Jagged Array (see Fig. 5). For example, the spatial
coordinates are often part of HEP data sets and, therefore,

NumPy
array

jagged
b

ranches

jagged
dimensionality

b
ranches

Fig. 2 Jagged Array data representation. It consists of flat attributes
followed by Jagged attributes whose dimensions vary event by event
[24]

Fig. 3 Vector representation
of Jagged Array with padded
values [24]

NumPy
array

jagged
b

ranches

jagged
dimensionality

b
ranches

jagged
branchpadding

jagged branches

rest of
jagged branches

with padding

Transform jagged NumPy

Fig. 4 Vector representation of
Jagged Array along with cor-
responding mask vector [24] jagged

branchpadding

jagged branches

rest of
jagged branches

with padding

data
array

mask
array

mask representing
real data values

mask representing
padded NAN values

 Computing and Software for Big Science (2021) 5:17

1 3

17 Page 6 of 16

can be used for matrix representation of the events. This
approach can resolve the issue of vector representation (of
having to make a choice on the representation size) but it
has its own problem with the choice of granularity of space
matrix. For example, in the simplest case, a 2D matrix rep-
resentation3 (see Fig. 5) can be used in some X–Y phase
space (where X and Y refer to an arbitrary pair of attributes).
However, the cell size of this image is not known a-priory.

A choice of cell size may introduce a data collision issue
within an event, e.g., different particles may have values of
(X,Y) pair within the same cell. Such ambiguity may be
resolved either by increasing matrix granularity or using an
additional attribute, e.g., via higher dimensions of the cell
space. But such changes will increase the sparsity of matrix
representation and the matrix size and, therefore, will require
more computing resources at training time.

Below we provide details of the MLaaS4HEP workflow
used in the Data Streaming and Data Training layers using
a vector representation for the results presented in Sect. 4.

ML Training Workflow Implementation

We implemented the Data Streaming and Data Training lay-
ers using the Python programming language and we made

them available in the MLaaS4HEP repository [10] under
MIT license. The Data Training Layer was abstracted to sup-
port any kind of Python-based ML frameworks: TensorFlow,
PyTorch, and others4.

We used two parameters to control the data flow within
the framework. The Nchunk parameter controls the chunk
size of data read by the Data Streaming Layer from local
or remote storage. And, the Nbatch parameter defines a batch
size, namely, the number of events used by the underlying
ML framework in each training cycle. We refer to chunk as
a set of events read by the Data Streaming Layer while batch
as a set of events used by the ML training loop.

To train the ML models defined by the user code (pro-
vided externally) the MLaaS4HEP framework uses data
chunks with the proper proportion of events presented in
the ROOT files. The schematic of the data flow used in the
Data Streaming and Data Training layers is shown in Fig. 6.

The first pass (denoted by 1 in Fig. 6) represents the
reading part of the MLaaS4HEP pipeline to create a specs
file. This part is performed by reading all the ROOT files
in chunks (which size is fixed a priori by the user) so that
the information stored in the specs file is updated chunk
by chunk. The specs file contains all the information about
the ROOT files: the dimension of Jagged branches, the

Fig. 5 Matrix representation of
Jagged Array into certain phase
space, e.g., eta-phi [24]

NumPy
array

jagged
b

ranches

jagged
dimensionality

b
ranches

branch
vector

rest of branch
vectors

Transform jagged NumPy
matrix form (eta-phi phase)

Transform matrix form
into vector

branch

phi

et
a

4 In all our tests we used Keras and PyTorch frameworks to define
our ML models.

3 In the general case the matrix representation can have any number
of dimensions.

Computing and Software for Big Science (2021) 5:17

1 3

Page 7 of 16 17

minimum and the maximum for each branch, and the num-
ber of events for each ROOT file5.

The second part of the flowchart shown as 2 represents
the ML training phase. In the first loop of the cycle, when
the events are not read yet, we read Nchunk events from the ith
file fi that we store into the ith chunk ci . Then Nchunk ⋅ ni∕Ntot
events are taken from it, where ni is the number of events
from file fi and Ntot is the whole amount of events from
all files. These events are converted into NumPy arrays,
with the necessary transformation of the Jagged Arrays
dimensions and normalization of the values (based on the

information computed during step 1). The reading of the
events and their pre-processing is performed for all the files
fi . After having created a chunk of Nchunk events properly
mixed from the different files, the events are used to train the
ML model. The training phase is performed using batches
of data taken from the created chunk, and run for a certain
number of epochs. The batch size Nbatch and the number of
epochs Nepochs are fixed a priori by the user. In case Nchunk is
not multiple of Nbatch , the last batch used to train the model
contains less than Nbatch events. Then we come back at the
beginning of the cycle, and if all the events stored in the
chunk ci have been already read, we read Nchunk events from
the file fi , otherwise we read the proper amount of events
(Nchunk ⋅ ni∕Ntot) from the chunk ci . The training process con-
tinues and if files are not completely read the entire pipeline
is restarted from the beginning of point 2 until all events

convert into numpy

normalise the values

S
B
B
S
B
B

B

chunk of handled events

S
B

B
B

Train the model for
Nepochs using batches
of data with size Nbatch

Are

completely
read?

NO

YES

specs.json

Read all the compute load specs
information

1

2

If chunk ci
 is empty

or fully processed,
read Nchunk

 events

i

{max:
{key1: max_1,

min:
{key_1: min_1, key_2:

SBBB

read the events

pre-process the events

Take Nchunk
. ni / Ntot

events from the chunk ci

Did
you go

through all the

YES

NO

i = i + 1i = 0

train the ML model

Fig. 6 Schematic representation of the steps performed in the MLaaS4HEP pipeline, in particular those inside the Data Streaming and
Data Training layers (see text for details)

5 Once the specs file is produced, either through the aforementioned
procedure or by studying Monte Carlo distributions (for large data
sets) to determine attribute dimensions and their min/max values, it
can be reused for all files from the given data set during the ML train-
ing phase.

 Computing and Software for Big Science (2021) 5:17

1 3

17 Page 8 of 16

are read, creating at each cycle a new chunk of events that is
used to train the ML model for Nepochs epochs. At the end of
the cycle, i.e., when we read all the events from all files and
we completed the ML training for all the individual epochs,
all the events contained in all files are read, and the training
process of the model is completed, producing a model that
can be used in physics analysis.

The discussed training procedure can be applied to a vari-
ety of use-cases. And, even though we used it in Sect. 4, it
should not be viewed as the only way to train data sets using
the MLaaS4HEP framework. We left to the end user the
final choice of ML strategy for concrete use-cases, where
appropriate steps should be taken to check the convergence
of the model, a proper set of metrics to monitor the training
cycle, etc. For instance, when a data set does not fit into the
RAM of the training node other solutions can be adopted,
e.g., using an SGD [28] model. In such case, the ML training
workflow should be adapted to use the entire data set during
each epoch. In this particular situation, the concept of batch
and chunk would coincide.

Data Inference Layer

A data inference layer can be implemented in a variety of
ways. It can be either tightly integrated with application
frameworks (for example both CMS and ATLAS experi-
ments followed this approach in their CMSSW-DNN [29]
and LTNN [30] solutions, respectively) or it can be devel-
oped as a Service (aaS) solution. The former has the advan-
tage of reducing latency of the inference step per processing
event, but the latter can be easily generalized and become
independent from internal infrastructure. For instance, it can
be easily integrated into cloud platforms, it can be used as
a repository of pre-trained models, and also serve models
across experiment boundaries. However, the speed of the
data inference layer, i.e., throughput of serving predictions,
can vary based on the chosen technology. A choice of HTTP
protocol guarantees easy adaptation, while gRPC protocol
can provide the best performance but will require dedicated
clients. We decided to implement the Data Inference Layer
as a TensorFlow as a Service architecture [11] based on
HTTP protocol.

We evaluated several ML frameworks and we decided
to use TensorFlow graphs [22] for the inference phase. The
TF model represents a computational graph in a static form,
i.e., mathematical computations, graph edges, and data
flow are well-defined at run time. Reading TF model can
be done in different programming languages thanks to the
support of APIs provided by the TF library. Moreover, the
TF graphs are very well optimized for GPUs and TPUs. We
opted for the Go programming language [31] to implement
the inference part of the MLaaS4HEP framework based on
the following factors: the Go language natively supports

concurrency via goroutines and channels; it is the language
developed and used by Google, and it is very well integrated
with the TF library; it provides a final static executable
which significantly simplifies its deployment on-premises
and to various (cloud) service providers. We also opted out
in favor of the REST interface. Clients may upload their
TF models to the server and use it for their inference needs
via the same interface. Both Python and C++ clients were
developed on top of the REST APIs (end-points) and other
clients can be easily developed thanks to HTTP protocol.
The TFaaS framework can be used outside of HEP to serve
any kind of TF-based models uploaded to TFaaS service via
HTTP protocol6.

MLaaS4HEP: Proof‑of‑Concept Prototype

When all layers of the MLaaS4HEP framework were devel-
oped, we successfully tested a working prototype of the sys-
tem using ROOT files accessible through XrootD servers.
The data were read in chunks of 1k events, where the single
chunk was approximately 4 MB in size. We tested this pro-
totype on a local machine as well as successfully deployed it
on a GPU node. To further validate the MLaaS4HEP frame-
work we decided to apply it to a real physics analysis, see
Sect. 4, where we explored local and remote data access,
usage of different data chunks, random access to files, etc.

Real Case Scenario

To validate the MLaaS4HEP approach, we decided to test
the infrastructure on a real physics use-case. This allowed
us to test the performances of the MLaaS4HEP framework,
and validate its results from the physics point of view. We
decided to use the tt̄ Higgs analysis (tt̄H(bb̄)) in the boosted,
all-hadronic final state [32, 33] due to affinity with the analy-
sis group. In the following sub-sections we discuss:

– the tt̄H(bb̄) all-hadronic analysis strategy (Sect. 4.1);
– MLaaS4HEP validation (Sect. 4.2);
– MLaaS4HEP performance results using the physics use-

case (Sect. 4.3);
– MLaaS4HEP projected performance (Sect. 4.4);
– TFaaS performance results (Sect. 4.5).

6 For instance, we tested the TFaaS functionality using non-HEP
models such as image recognition ML models.

Computing and Software for Big Science (2021) 5:17

1 3

Page 9 of 16 17

tt̄H(bb̄) all‑hadronic Analysis Strategy

In this subsection, we provide details of the tt̄ Higgs analysis
we used to test the MLaaS performance and to validate its
functionality on a real physics use-case.

The Higgs boson is considered the most relevant dis-
covery of the last few years in High Energy Physics. After
almost 50 years from its prediction, it was discovered by
the ATLAS and CMS collaborations in 2012 at the CERN
Large-Hadron Collider (LHC) [34, 35]. Since then, many
analyses have been performed to measure its properties with
higher precision.

In the Standard Model framework, the Higgs boson is
predicted to couple with fermions via Yukawa-like inter-
action, which gives the mass to fermions proportionally
to the coupling. The heaviest top quark is responsible
for coupling to the Higgs boson. Direct measurement of
the top-Higgs coupling exploits tree-level processes. The
tt̄H production plays an important role in the study of the
top-Higgs Yukawa coupling, as other production mecha-
nisms (such as gluon–gluon fusion) involve loop-level
diagrams in which contributions from Beyond Standard
Model (BSM) physics could enter the loops unnoticed.
The highest branching ratio (≈25%) is represented by the
all-hadronic decay channel with H(bb̄) and all-hadronic
tt̄ . The W bosons produced by the tt̄ pair decay into a
pair of light quarks, while the Higgs boson decays into
a bb̄ pair (see Fig. 7). In the final state, there are at least
eight partons (more might arise from the initial and final
state radiation) where four of them are bottom (b) quarks.
Despite the highest branching ratio, the all-jets final state
is very challenging. It is dominated by the large QCD

multi-jet production at LHC, and there are large uncer-
tainties in this channel due to the presence of many jets. At
the same time, it represents the unique possibility to fully
reconstruct the tt̄H as all decay products are observable.

At the 13 TeV center-of-mass energy, top quarks with
a very high pT can be produced via tt̄H . If their Lorentz
boost is sufficiently high, their decay products are very
collimated into a single, wide jet, named boosted jet. In
particular, we are interested in the tt̄H(bb̄) analysis with
all-jets final state, where at least one of the jets of the final
state is a boosted jet, and where the Higgs boson decays
in a pair of well resolved jets identified as a result of the
hadronization of bottom quarks.

For identification of the tt̄H(bb̄) events containing a
resolved-Higgs decay a Machine Learning model based
on Boosted Decision Tree (BDT) was used by CMS in the
analysis [32, 33] and the training was done within TMVA
[36] framework.

The Monte Carlo simulation provides events used for
training, where events are selected among the tt̄H sam-
ple and the two dominant background samples, namely,
QCD and tt̄ , respectively. The tt̄H events with the resolved
Higgs-boson matching to the system of two b-tagged
jets are considered as signal events. On the contrary,
unmatched tt̄H events, and all the QCD and tt̄ events are
considered as background events. Both signal and back-
ground events are required to pass some selection criteria,
such as to have at least a boosted jet, to contain no leptons,
to pass the signal trigger, etc. This selection is aimed to
select boosted, all-jets-like events.

MLaaS4HEP Validation

To validate the MLaaS4HEP functionality against standard
BDT-based procedure, we decided to use a set of ROOT
files from the resolved-Higgs analysis discussed in the pre-
vious section. The goal of this exercise was to demonstrate
that the MLaaS4HEP framework can provide a valuable
alternative and deliver comparable results with respect
to the traditional analysis based on a pre-defined set of
metrics. For our purposes, we decided to use a generic
ML model and compare the results obtained inside and
outside MLaaS4HEP. In particular, we explored the fol-
lowing approaches:

– use MLaaS4HEP to read and normalize events, and to
train the ML model;

– use MLaaS4HEP to read and normalize events, and use
a Jupyter notebook to perform the training of the ML
model outside MLaaS4HEP;

– use a Jupyter notebook to perform the entire pipeline
without using MLaaS4HEP.

Fig. 7 Feynman diagram for the tt̄H(bb̄) decay

 Computing and Software for Big Science (2021) 5:17

1 3

17 Page 10 of 16

Initially, we performed the analysis using the ROOT files
that passed the selection criteria discussed in the previ-
ous section. The final data set consisted of eight ROOT
files containing background events, and one file containing
signal events. Each file had 27 branches, with 350k events
in total, and the total size of this data set was 28 MB. The
ratio between the number of signal events and background
events was approximately 10.8%. The data set was split
into three parts, 64% for training, 16% for validation, and
20% for test purposes, respectively. We used a Keras [21]
sequential Neural Network with two hidden layers made by
128 and 64 neurons, and with a 0.5 dropout regularization

between layers. Finally, we trained the model for 5 epochs
with a batch size of 100 events.

The results of this exercise are shown in Fig. 8, and
demonstrate that different approaches have similar perfor-
mance. We did not target to reproduce and/or match exact
AUC numbers obtained in the standard physics analysis, and
we found that our result (in terms of AUC score) is compara-
ble with the BDT model used in the physics analysis.

When the aforementioned ML model is trained using
chunks of the data through the training workflow strategy
described in Sect. 3.3, the convergence of the model is still
valid. However, as we pointed out in Sect. 3.3, once the user
chooses a specific physics use-case and a ML model, the
convergence of the model should be verified and the appro-
priate ML training workflow should be adapted, if necessary.

MLaaS4HEP Performance

In this section, we provide details of the MLaaS4HEP per-
formance testing: the scalability of the framework and its
benchmarks using different storage layers. For that purpose,
we used all available ROOT files without any physics cuts.
This gave us a data set with 28.5M events with 74 branches
(22 flat and 52 Jagged), and a total size of about 10.1 GB.

We performed all tests running the MLaaS4HEP frame-
work on macOS (laptop), 2.2 GHz Intel Core i7 dual-core,
8 GB of RAM, and on CentOS 7 Linux, 4 VCPU Intel Core
Processor Haswell 2.4 GHz, 7.3 GB of RAM CERN Virtual
Machine. The ROOT files are read from three data cent-
ers: Bologna (BO), Pisa (PI), and Bari (BA). The average
available bandwidth was approximately 129 Mbit/s with
the Standard Deviation of Mean (SDOM) parameter equal
to 4 Mbit/s and 639 (SDOM = 39) Mbit/s using macOS
and CERN VM, respectively (in both cases the values are
obtained after 10 trials).

Fig. 8 Comparison of the AUC score for the training, validation, and
test set for three different cases: (i) using MLaaS4HEP to read and
normalize events, and to train the ML model; (ii) using MLaaS4HEP
to read and normalize events, and using a Jupyter notebook to per-
form the training of the ML model outside MLaaS4HEP; (iii) using
a Jupyter notebook to perform the entire pipeline without using
MLaaS4HEP

Table 1 Performances of reading and specs computing phase with
chunk size fixed to 100k events, using the macOS system and the
CERN VM. Each value shown in the table cells represents the arith-
metic mean of five trials with the corresponding SDOM reported
inside the round brackets. The mean value of each event throughput
is the mean of the values obtained chunk by chunk in the step 1 in

Fig. 6. In local storage cases, the files are stored in a SSD 500 GB
in the macOS case and in a Virtual Disk 52 GB in the CERN VM
case, respectively. Moreover, BO, BA, and PI stand for various Italian
storage facilities with different WAN configurations (see text for more
details)

Reading time Specs comp. time Time to complete Event throughput for
(s) (s) Step 1 (s) Reading + specs comp. (evts/s)

macOS with local files 1633 (9) 958 (2) 2599 (11) 11055 (49)
macOS with remote files (BO) 2365 (49) 974 (10) 3353 (57) 8585 (149)
VM with local files 1131 (3) 963 (2) 2102 (5) 13690 (34)
VM with remote files (BO) 2455 (68) 959 (2) 3427 (67) 8396 (158)
VM with remote files (BA) 2304 (88) 961 (2) 3279 (89) 8801 (241)
VM with remote files (PI) 2129 (41) 1044 (78) 3186 (83) 9047 (228)

Computing and Software for Big Science (2021) 5:17

1 3

Page 11 of 16 17

Table 1 summarizes the I/O numbers we obtained in the
first step of the MLaaS4HEP pipeline (1 in Fig. 6) using
various setups and a chunk size of 100k events. It provides
the values of time spent for reading the files, the time spent
for computing specs values, the total time spent for complet-
ing the step 1 , and the event throughput for the reading and
specs computing step.

In Fig. 9, we show the event throughput for reading the
data as a function of chunk size for different trials. In all
cases, we find no significant peaks. The larger chunk sizes
can lead to certain problems, as in the case of the CERN
VMs, where we may reach a limitation of the underlying
hardware, e.g., big memory footprint. We found lower read-
ing times and higher event throughput using local files, while
in the case of remote files, the results are mostly influenced
by the available bandwidth (the link connectivity between
processing node and sites hosting the data).

In the performance studies of the second step of the
MLaaS4HEP pipeline (2 in Fig. 6), we are interested in
the data reading part, the data pre-processing step (which

include data transformation), and the time spent in the
MLaaS4HEP training step.

As already mentioned in Sect. 3.3, there is a loop over
files that allows building the chunk used to train the ML
model with the adequate proportion of the events. If the
chunk that contains the events of the ith ROOT file is empty
or fully processed, a new chunk of events from the ith file
is read, and the time for reading is added to the whole time
spent for creating the chunk (see Fig. 6). In other words, the
time spent for creating a chunk is made by the sum of n read-
ing actions, and of the time to pre-process the events. The
event throughput for creating a single data chunk and the
event throughput for pre-processing a single data chunk are
reported in Table 2. In Fig. 10, we show the event through-
put for creating a chunk as a function of the chunk size for
different trials.

We found that the time spent for creating a chunk was
almost the same using macOS or CERN VM, and similar
using local or remote files. Obviously, for remote files,
the reading time increased consequently, and the time for
creating the chunk increased, but this difference was quite

Fig. 9 Average event through-
put for reading the data as a
function of the chunk size for
different trials of step 1 in
Fig. 6. The data points represent
the arithmetic mean of five
trials and the error bars are the
corresponding SDOM

Table 2 Event throughput for the chunk creation and for the pre-pro-
cessing step with a chunk size of 100k events computed as the ratio
of the number of events over the time spent on chunk creation. The
difference between the two steps is based on the reading part, i.e., the

time for creating a chunk, as the sum of times for reading events from
the ROOT files, and the time for the pre-processing step. Shown val-
ues represent the arithmetic mean of ten trials with the corresponding
SDOM reported inside the round brackets

Event throughput for Event throughput for
Creating a chunk (evts/s) Pre-processing a chunk (evts/s)

macOS with local files 1102 (11) 1157 (7)
macOS with remote files (BO) 1057 (17) 1138 (4)
VM with local files 1209 (11) 1247 (2)
VM with remote files (BO) 1110 (32) 1243 (5)
VM with remote files (BA) 1071 (19) 1153 (4)
VM with remote files (PI) 1152 (18) 1234 (5)

 Computing and Software for Big Science (2021) 5:17

1 3

17 Page 12 of 16

negligible. For instance, we spend around 90 s to create
a chunk of 100k events, which translates into an event
throughput of about 1.1k etvs/s as reported in Table 2.

The choice of the chunk size is left to the user and there
is no pre-defined “best” value for it. We suggest that users
should start with a lower value of chunk size, e.g., 1k, and
increase it gradually based on their resource availability.
For instance, in our initial proof-of-concept implementa-
tion, see Sect. 3.5, we used 1k events as a chunk data size,
while within performance studies discussed in this section,
we extended the chunk size to 100k events.

The actual ML training time is independent from the
MLaaS4HEP framework, since it is determined by usage
of the underlying ML framework, e.g., Keras or PyTorch,
the complexity of used ML model and available hardware
resources. In particular, using the simple ML model intro-
duced in Sect. 4.2 and a chunk size of 100k events, we
found that for each chunk the time spent to split properly
the data for training, validation and test purpose is about
1s (and almost equal for MacOS and CERN VM), and the
training time for 5 epochs is about 11s and 13s for MacOS
and CERN VM, respectively.

During the implementation of the MLaaS4HEP frame-
work, we resolved few bottlenecks with respect to the
results obtained in [24]. For example, we improved the
reading time by a factor of 10. This came from better han-
dling of Jagged Arrays via flattening the event arrays and
computing of min/max values of each branch. Moreover,
we also obtained a factor of 2.8 improvements in the data
pre-processing step using lists comprehensions instead of
loops within the event. On MacOS the performance of the
MLaaS4HEP framework is about 86s to pre-process 100k
events with 36%, 26%, 27%, and 6% breakdown used to
extract and convert each event in a list of NumPy arrays,

the normalization step, fixing the dimensions, and creating
the masking vectors, respectively.

In conclusion, we demonstrated that MLaaS4HEP
approach can be applicable to the discussed physics analy-
sis. Using 10 GB of data (approximately 28.5M events) we
obtained the following results:

– MLaaS4HEP framework is capable to work with local
and remote files;

– its throughput reaches about 13.7k evts/s for reading local
ROOT files (with specs computing), and about 9k evts/s
for remote files;

– the throughput of the pre-processing step is peaked at
1.2k evts/s.

MLaaS4HEP Performance Projection

Based on our studies presented in the previous section,
we found that to process 28.5M events (or 10 GB of data)
MLaaS4HEP takes about 35 min for the first step of the
pipeline (1 in Fig. 6), i.e., to obtain min/max boundaries
of all attributes across the processed events. The second step
of the MLaaS4HEP pipeline (2 in Fig. 6) takes about 7 h.
This time includes reading all data chunks from the ROOT
files, pre-process the events (data transformation from Jag-
ged Array to flat NumPy arrays with fixing of the Jagged
Arrays dimensions, data normalization), and feeding the
data to the ML framework. The actual ML training time
depends on the user-provided model and does not repre-
sent MLaaS4HEP performance. In our studies reported in
Sect. 4.2, it adds an additional hour to the total time. There-
fore, we estimate that using the same hardware resources
the step 1 will take O(100) hours and O(100k) hours for
data sets at TB and PB scale, and the time for step 2 will
be O(1k) hours and O(1M) hours, respectively, plus time

Fig. 10 Event throughput for
creating a chunk as a function
of the chunk size for different
trials. Shown values represent
the arithmetic mean of ten trials
with the SDOM error bars

Computing and Software for Big Science (2021) 5:17

1 3

Page 13 of 16 17

required to train the ML model. These estimates suggest
that further optimization of the MLaaS4HEP pipeline will
be required to process TB or PB scale data sets and it may
involve parallelization of I/O, distributed ML training, and
other optimization techniques which we discuss further in
Sect. 5.

At this stage, our goal was mainly to prove the feasibility
of the MLaaS4HEP pipeline, and validate its usage within
the context of a real physics use-case rather than perform
real ML training at TB/PB scale. In Sect. 5, we discuss fur-
ther improvements which can be done.

TFaaS Performance

The performance testing of the TFaaS service was done
using a variety of ML models, from simple image clas-
sification to the ML model developed and discussed in
Sect. 4.2. In particular, we performed several benchmarks
using the TFaaS server running on CentOS 7 Linux, 16
cores, 30 GB of RAM. The benchmarks were done in two
modes: using 1k calls with 100 concurrent clients and 5k
calls with 200 concurrent clients. We tested both JSON and
ProtoBuffer [37] data formats while sending and fetching the
data to/from the TFaaS server. In both cases, we achieved a
throughput of ∼ 500 req/sec. These numbers were obtained
by serving the mid-size pre-trained model with 27 features
and 1024x1024 hidden layers used in the physics analysis
discussed in Sect. 4.1. A similar performance was found
for image classification data sets (MNIST). The actual per-
formance of TFaaS will depend on the complexity of the
served ML model and the available hardware resources.
Even though a single TFaaS server may not be as efficient
as an integrated solution, it can be easily horizontally scaled,
e.g., using Kubernetes or other cluster orchestrated solu-
tions, and may provide the desired throughput for concurrent
clients. It also decouples the application layer/framework
from the inference phase which can be easily integrated into
any existing infrastructure using the HTTP protocol.

Future Directions

In the previous section, we discussed the usage of
MLaaS4HEP in the scope of a real HEP physics analysis.
We found the following:

– the usage of MLaaS4HEP is transparent to the chosen
HEP data set, i.e., data can be read locally or from remote
storage;

– the discussed architecture is HEP experiment agnostic
and can be used with any existing ML (Python-based)

framework as well as easily integrated into existing infra-
structure;

– the data can be read in chunks from remote storage, and
this allows continuous ML training over large data sets,
and further parallelization.

These observations open up a possibility to train ML mod-
els over large data sets, potentially at Peta-Byte scale while
using existing Python-based open-source ML frameworks.
Therefore, we foresee that the Machine Learning as a Ser-
vice approach can be widely applicable in HEP. For exam-
ple, future directions of this work might include the exploi-
tation of this architecture to streamline the access to cloud
and HPC resources for training and inference tasks. It can
represent an attractive option to open up HPC resources for
large scale ML training in HEP along with required secu-
rity measurements, resource provisioning, and remote data
access to WLCG sites. To move in this direction additional
work will be required. Below, we discuss a possible set of
improvements that can be explored.

Data Streaming Layer

To improve the Data Streaming Layer a multi-threaded I/O
layer can be implemented. This can be achieved by wrap-
ping up the data reader code-base into a service that will
deliver the data chunks in parallel upon requests from the
upstream layer. In addition, the chunks can be pre-fetched
from XrootD servers into a local cache to improve the I/O
throughput. In particular, there are several R&D’s under-
ways to demonstrate intelligence smart caching [38] for
Dynamic On-Demand Analysis Service (DODAS) at com-
puter centers, such as HPC, national Tier centers, etc. Such
a DODAS facility can reduce the time spent on the Data
Streaming Layer by pre-fetching ROOT files into local cache
and use them for ML training.

Data Training Layer

If data I/O parallelism can be achieved, further improve-
ments can be made via implementation of distributed
training [39]. There are several R&D developments in this
direction, from adapting the Dask Python framework [40],
or using distributed Keras [41], to using MPI-Based Python
framework for distributed training [42], or using MLflow
framework [43] on an HDFS+Spark infrastructure, which
explores both task and data parallelism approaches.

The current landscape of ML frameworks is changing
rapidly, and we should adjust MLaaS4HEP to existing
and future ML framework and innovations. For instance,
Open Network Exchange Format [44] opens up the door
to migration of models from one framework into another.
This may open up a possibility to use MLaaS4HEP for the

 Computing and Software for Big Science (2021) 5:17

1 3

17 Page 14 of 16

next generation of Open-Source ML frameworks and ensure
that end-users will not be locked into a particular one. For
instance, we are working on the automatic transformation of
PyTorch [20] and fast.ai [23] models into TensorFlow which
later can be uploaded and used through TFaaS service [11].

As discussed in Sect. 3.2, there are different approaches
to feed Jagged Arrays into ML framework and R&D in
this direction is in progress. For instance, for AutoEncoder
models, the vector representation with padded values should
always keep around a cast vector which later can be used
to decode back the vector representation of the data back
to Jagged Array or ROOT TTree data structures. We also
would like to explore matrix representation of Jagged Array
data and see if it can be applied to certain types of use-cases,
e.g., in calorimetry or tracking, where image representation
of the objects can be used.

Data Inference Layer

On the inference side, several approaches can be used. As
discussed above, the TFaaS [11] throughput can be further
improved by switching from HTTP to a gRPC-based solu-
tion such as SONIC [45] which can provide a fast inference
layer based on FPGAs and GPUs-based infrastructures.

The current implementation of TFaaS can be used as a
repository of pre-trained models which can be easily shared
across experiment boundaries or domains thanks to serv-
ing ML models via HTTP protocol. For instance, the cur-
rent implementation of TFaaS allows visual inspection of
uploaded models, versioning, tagging, etc. We foresee the
next logical step is towards a repository of pre-trained mod-
els with flexible search capabilities, extended model tag-
ging, and versioning. This can be achieved by providing
a dedicated service for ML models with proper meta-data
description. For instance, such meta-data can capture model
parameters, details of used software, releases, data input, and
performance output. With a proper search engine in place,
users may search for available ML models related to their
use-case.

MLaaS4HEP Services

The proposed architecture allows us to develop and deploy
training and inference layers as independent services. The
separate resource providers can be used and dynamically
scaled if necessary, e.g., GPUs/TPUs can be provisioned on-
demand using the commercial cloud(s) for training purposes
of specific models, while inference TFaaS service can reside
elsewhere, e.g., on a dedicated Kubernetes cluster at some
computer center. For instance, the continuous training of
complex DL models would be possible when data produced
by the experiment will be placed on WLCG sites. The train-
ing service will receive a set of notifications about newly

available data, and re-train specific model(s). When a new
ML model is ready it can be easily pushed to TFaaS and be
available for end-users immediately without any intervention
on the existing infrastructure as part of CD/CI (Continuous
Development and Continuous Integration) workflows. The
TFaaS can be further adapted to use FPGAs to speed up the
inference phase. We foresee that such an approach may be
more flexible and cost-effective for HEP experiments in the
HL-LHC era. As such, we plan to perform additional R&D
studies in this direction and evaluate further MLaaS4HEP
services using available resources.

Summary

In this paper, we presented a modern approach to train HEP
ML models using the native ROOT data-format either from
local or remote storage. The MLaaS4HEP consists of three
layers: the Data Streaming and Data Training layers as part
of the MLaaS4HEP framework [10], and the Data Infer-
ence Layer implemented in the TFaaS framework based on
the TensorFlow library. All three layers are implemented as
independent components. The Data Streaming Layer relies
on the uproot library for reading data from ROOT files (local
or remote) and yielding NumPy (Jagged) arrays. The Data
Training Layer transforms the input Jagged Array into a
vector representation and passes it into the ML framework
provided by the user. Finally, the Data Inference Layer was
implemented as an independent HTTP service. We foresee
that it can be useful in a variety of use-cases such as quick
evaluation of ML models in physics analysis, or online appli-
cations, where new models can be built periodically. The
TFaaS implementation allows to use itself as a repository
of ML pre-trained models, and it can be a valuable com-
ponent in the agile ML development cycle of any group,
from small physics analysis group(s) to cross-experiment
collaborations.

The flexible architecture we implemented allows per-
forming ML training over a large set of distributed HEP
ROOT data without physically downloading data into local
storage. We demonstrated that such architecture is capa-
ble of reading local and distributed data sets, available via
XrootD protocol on WLCG infrastructure. We validate the
MLaaS4HEP architecture using an official CMS tt̄ Higgs
analysis (tt̄H(bb)) in the boosted, all-hadronic final state,
and we obtained comparable ML model performance with
respect to a traditional physics analysis based on data extrac-
tion from ROOT files into custom Ntuples.

Acknowledgements This work was done as a part of the CMS
experiment R&D program. We would like to thank Jim Pivarski for
his numerous and helpful discussions, and hard work on uproot (and

Computing and Software for Big Science (2021) 5:17

1 3

Page 15 of 16 17

many other) packages which open up a possibility to work on the
MLaaS4HEP implementation. We would like to thank Fabio Iemmi for
the helpful discussions we had on the aspects of the physics use-case.

Funding Open access funding provided by Alma Mater Studiorum
- Università di Bologna within the CRUI-CARE Agreement. Not
applicable

Data Availibility Statement This manuscript has associated data in a
data repository. [Authors’ comment: The details about data sets used
in current study are available from the corresponding author on rea-
sonable request. The availability of CMS data set itself is a subject of
CMS policy].

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Code availability The code is available at [10, 11] under MIT license.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Albertsson K et al (2018) Machine Learning in High Energy
Physics Community White Paper. arXiv: 1807. 02876 [physics.
comp-ph]

 2. A Living Review of Machine Learning for Particle Physics.
https:// iml- wg. github. io/ HEPML- Livin gRevi ew/

 3. A modular scientific toolkit used in HEP for analysis and as a
data-storage format. https:// root. cern. ch

 4. Comma Separated Values (CSV) data-format. https:// www. wikiw
and. com/ en/ Comma- separ ated_ values

 5. Scientific package to represent data as multi-dimensional arrays.
http:// www. numpy. org

 6. Hierarchical Data Format. https:// www. wikiw and. com/ en/ Hiera
rchic al_ Data_ Format

 7. Higgs Boson Machine Learning Challenge used by ATLAS
experiment to identify Higgs boson. https:// www. kaggle. com/c/
higgs- boson

 8. High Energy Physics particle tracking in CERN detectors. https://
www. kaggle. com/c/ track ml- parti cle- ident ifica tion

 9. Flavours of Physics: Finding � → ��� . https:// www. kaggle.
com/c/ flavo urs- of- physi cs/ data

 10. Kuznetsov V, Giommi L (2018) MLaaS4HEP is set of MLaaS
components for HEP. DOI: https:// doi. org/ 10. 5281/ zenodo. 14817
85, https:// github. com/ vkuzn et/ MLaaS 4HEP

 11. Kuznetsov V (2018) TensorFlow as a Service. https:// doi. org/ 10.
5281/ zenodo. 13080 49, http:// github. com/ vkuzn et/ TFaaS

 12. Yao Y et al (2017) Complexity vs. performance: empirical analy-
sis of machine learning as a service. In: Proceedings of the 2017
Internet Measurement Conference, pp 384-397. https:// doi. org/ 10.
1145/ 31313 65. 31313 72

 13. CERN Openlab. https:// home. cern/ scien ce/ compu ting/ cern- openl
ab

 14. A package for machine learning inference in FPGAs. https:// hls-
fpga- machi ne- learn ing. github. io/ hls4ml

 15. Services for Optimal Network Inference on Coprocessors. https://
github. com/ hls- fpga- machi ne- learn ing/ Sonic CMS

 16. Machine Learning Pipelines for High Energy Physics Using
Apache Spark with BigDL and Analytics Zoo. https:// db- blog.
web. cern. ch/ blog/ luca- canali/ machi ne- learn ing- pipel ines- high-
energy- physi cs- using- apache- spark- bigdl

 17. CMS Collaboration (2020) A deep neural network to search for
new long-lived particles decaying to jets. Mach. Learn.: Sci. Tech-
nol. 1: 035012. DOI: https:// doi. org/ 10. 1088/ 2632- 2153/ ab9023

 18. DIANA-HEP Scikit-hep uproot library. Minimalist ROOT I/O in
pure Python and NumPy. https:// github. com/ scikit- hep/ uproot

 19. A high performance, scalable fault tolerant access to data reposi-
tories of many kinds. http:// xrootd. org

 20. PyTorch AI library. https:// www. pytor ch. org
 21. Keras AI library. https:// keras. io
 22. Tensor Flow AI library. http:// www. tenso rflow. org
 23. Fast AI library. https:// www. fast. ai
 24. Kuznetsov V (2018) Machine Learning as a Service for HEP.

arXiv: 1811. 04492 [hep-ex]
 25. An umbrella organization for bringing state-of-the art for HEP

experiments. http:// diana- hep. org
 26. Python Generator concept. https:// wiki. python. org/ moin/ Gener

ators
 27. Géron A (2019) Hands-On Machine Learning with Scikit-Learn,

Keras, and TensorFlow. O’Reilly, ISBN: 9781492032632
 28. Stochastic Gradient Descent. https:// scikit- learn. org/ stable/ modul

es/ sgd. html
 29. DNN/TensorFlow interface for CMSSW. https:// github. com/ mharr

end/ CMSSW- DNN
 30. ATLAS Lightweight Trained Neural Network. https:// doi. org/ 10.

5281/ zenodo. 42991 14, https:// github. com/ lwtnn/ lwtnn
 31. Go programming language. http:// www. golang. org
 32. CMS Collaboration (2016) Search for tt̄ H production in the H

→bb decay channel with
√

s = 13 TeV pp collisions at the CMS
experiment. CMS PAS HIG-16-004

 33. Iemmi F (2020) tt̄H associated production in the all-jets final state
with the CMS experiment. Nuovo Cim. C 43(2–3):77. https:// doi.
org/ 10. 1393/ ncc/ i2020- 20077-4

 34. Collaboration ATLAS (2012) Observation of a New Particle in
the Search for the Standard Model Higgs Boson with the ATLAS
Detector at the LHC. Phys Lett B 716(1):1–29. https:// doi. org/ 10.
1016/j. physl etb. 2012. 08. 020

 35. Collaboration CMS (2012) Observation of a New Boson at a Mass
of 125 GeV with the CMS Experiment at the LHC. Phys Lett B
716(1):30–61. https:// doi. org/ 10. 1016/j. physl etb. 2012. 08. 021

 36. Hoecker A, Speckmayer P, Stelzer J, Therhaag J, von Toerne E,
Voss H (2007) TMVA: Toolkit for Multivariate Data Analysis.
arXiv: physi cs/ 07030 39 [physics.data-an]

 37. ProtoBuffer library. https:// github. com/ proto colbu ffers/ proto buf
 38. Tracolli M et al (2020) Using DODAS as deployment manager for

smart caching of CMS data management system. J. Phys.: Conf.
Ser. 1525: 012057. https:// doi. org/ 10. 1088/ 1742- 6596/ 1525/1/
012057

 39. Ben-Nun T, Hoefler T (2018) Demystifying Parallel and Distrib-
uted Deep Learning: An In-Depth Concurrency Analysis. arXiv:
1802. 09941 [cs.LG]

 40. Scalable Analytics framework in Python. https:// dask. org
 41. Distributed Keras framework. https:// github. com/ cerndb/ dist- keras

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1807.02876
https://iml-wg.github.io/HEPML-LivingReview/
https://root.cern.ch
https://www.wikiwand.com/en/Comma-separated_values
https://www.wikiwand.com/en/Comma-separated_values
http://www.numpy.org
https://www.wikiwand.com/en/Hierarchical_Data_Format
https://www.wikiwand.com/en/Hierarchical_Data_Format
https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/flavours-of-physics/data
https://www.kaggle.com/c/flavours-of-physics/data
https://doi.org/10.5281/zenodo.1481785
https://doi.org/10.5281/zenodo.1481785
https://github.com/vkuznet/MLaaS4HEP
https://doi.org/10.5281/zenodo.1308049
https://doi.org/10.5281/zenodo.1308049
http://github.com/vkuznet/TFaaS
https://doi.org/10.1145/3131365.3131372
https://doi.org/10.1145/3131365.3131372
https://home.cern/science/computing/cern-openlab
https://home.cern/science/computing/cern-openlab
https://hls-fpga-machine-learning.github.io/hls4ml
https://hls-fpga-machine-learning.github.io/hls4ml
https://github.com/hls-fpga-machine-learning/SonicCMS
https://github.com/hls-fpga-machine-learning/SonicCMS
https://db-blog.web.cern.ch/blog/luca-canali/machine-learning-pipelines-high-energy-physics-using-apache-spark-bigdl
https://db-blog.web.cern.ch/blog/luca-canali/machine-learning-pipelines-high-energy-physics-using-apache-spark-bigdl
https://db-blog.web.cern.ch/blog/luca-canali/machine-learning-pipelines-high-energy-physics-using-apache-spark-bigdl
https://doi.org/10.1088/2632-2153/ab9023
https://github.com/scikit-hep/uproot
http://xrootd.org
https://www.pytorch.org
https://keras.io
http://www.tensorflow.org
https://www.fast.ai
http://arxiv.org/abs/1811.04492
http://diana-hep.org
https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Generators
https://scikit-learn.org/stable/modules/sgd.html
https://scikit-learn.org/stable/modules/sgd.html
https://github.com/mharrend/CMSSW-DNN
https://github.com/mharrend/CMSSW-DNN
https://doi.org/10.5281/zenodo.4299114
https://doi.org/10.5281/zenodo.4299114
https://github.com/lwtnn/lwtnn
http://www.golang.org
https://doi.org/10.1393/ncc/i2020-20077-4
https://doi.org/10.1393/ncc/i2020-20077-4
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/physics/0703039
https://github.com/protocolbuffers/protobuf
https://doi.org/10.1088/1742-6596/1525/1/012057
https://doi.org/10.1088/1742-6596/1525/1/012057
http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941
https://dask.org
https://github.com/cerndb/dist-keras

 Computing and Software for Big Science (2021) 5:17

1 3

17 Page 16 of 16

 42. Anderson D et al (2017) An MPI-Based Python Framework for
Distributed Training with Keras. arXiv: 1712. 05878 [cs.DC]

 43. An open source platform for the machine learning life cycle.
https:// www. mlflow. org

 44. Open Neural Network Exchange format. http:// www. onnx. ai
 45. Duarte J et al (2019) FPGA-accelerated machine learning infer-

ence as a service for particle physics computing. Comput Softw
Big Sci 3:13. https:// doi. org/ 10. 1007/ s41781- 019- 0027-2

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1712.05878
https://www.mlflow.org
http://www.onnx.ai
https://doi.org/10.1007/s41781-019-0027-2

	MLaaS4HEP: Machine Learning as a Service for HEP
	Abstract
	Introduction
	Related Works and Solutions
	Novelty of the Proposed Solution

	MLaaS4HEP Architecture
	Data Streaming Layer
	Data Training Layer
	ML Training Workflow Implementation
	Data Inference Layer
	MLaaS4HEP: Proof-of-Concept Prototype

	Real Case Scenario
	 all-hadronic Analysis Strategy
	MLaaS4HEP Validation
	MLaaS4HEP Performance
	MLaaS4HEP Performance Projection
	TFaaS Performance

	Future Directions
	Data Streaming Layer
	Data Training Layer
	Data Inference Layer
	MLaaS4HEP Services

	Summary
	Acknowledgements
	References

