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Abstract
Batch scheduling systems are usually designed to maximise fair resource utilisation and efficiency, but are less well designed 
for demanding interactive processing, which requires fast access to resources while low upstart latency is only of secondary 
significance for high throughput of high performance computing scheduling systems. The computing clusters at DESY are 
intended as batch systems for end users to run massive analysis and simulation jobs enabling fast turnaround systems, in 
particular when processing is expected to feed back to operation of instruments in near real-time. The continuously increas-
ing popularity of Jupyter Notebooks for interactive and online processing made an integration of this technology into the 
DESY batch systems indispensable. We present here our approach to utilise the HTCondor and SLURM backends to integrate 
Jupyter Notebook servers and the techniques involved to provide fast access. The chosen approach offers a smooth user 
experience allowing users to customize resource allocation tailored to their computational requirements. In addition, we 
outline the differences between the HPC and the HTC implementations and give an overview of the experience of running 
Jupyter Notebook services.
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Introduction

DESY is a major research laboratory in Germany, carry-
ing out fundamental research in particle and astroparticle 
physics, photon science and accelerator R&D. DESY oper-
ates several large particle accelerators, which are used by 
DESY scientists as well as a variety of international user 
communities.

Data management and analysis in all its aspects is a key 
component of every branch of science carried out at DESY. 
DESY offers several computing facilities, which we will 
briefly describe in the following.

The NAF: national analysis facility

Founded in 2007 to complement the DESY Grid resources, 
the NAF enables particle physicists from German institutes 
working on LHC, as well as worldwide BELLE II users, 
to use interactive and fast-response compute and batch 
resources, with dedicated fast storage systems. For interac-
tive access, the NAF has several work-group-servers (WGS), 
that can be accessed via ssh. Graphical login is possible 
through dedicated systems equipped with the FastX server 
software, allowing for fast graphical response even when 
accessing the NAF via low-bandwidth, high-latency net-
work connections. A novel addition to the NAF interactive 
access methods is the Jupyter Notebook service, which will 
be described in this paper. The NAF has about 20 interac-
tive work-group-server systems, and a batch farm (BIRD) 
managed by the HTCondor scheduling system [1] of about 
8000 CPU cores. The sizing of the BIRD farm aims for an 
average utilisation of 75%, allowing for free resources for 
peak demands and fast turnaround times. The hardware in 
BIRD is partially renewed usually once per year, thus 5–7 
generations and hardware setups are present in the cluster. 
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A small number of nodes are equipped with GPUs. Jobs are 
scheduled on a per core basis, multi-core jobs are supported, 
as long as they run in one single server. Jobs have access to 
the AFS global filesystem, and user Kerberos credentials are 
provided during the whole job run-time.

DESY Maxwell HPC system

Since 2011, DESY IT operates a high performance compute 
cluster system named “Maxwell”. The Maxwell cluster is 
tightly integrated with the data acquisition systems at Petra3, 
FLASH and the European XFEL (Eu.XFEL) as well as the 
electron microscopy facility of the Centre for Structural Sys-
tems Biology (CSSB). Not surprisingly, about 80% of the 
1500 active users are associated with the photon science 
community, but only consume a comparably small fraction 
of the CPU cycles. The most demanding applications origi-
nate from accelerator R&D and electron microscopy data 
processing pipelines. The applications supported by the clus-
ter cover diverse scientific areas like structural biology [2], 
material science [3], plasma driven accelerators [4], axion 
dark matter fields [5] or time-resolved serial crystallogra-
phy [6], to name a few examples.

In addition to classical interactive WGS, the cluster is 
equipped with 10 GPU accelerated front-end nodes enabling 
full graphical, interactive access to the cluster also support-
ing 3D visualisation of large data sets via FastX. The bulk 
compute power stems from a ∼ 500 server, ∼ 16,000 CPU 
core batch system, managed using the SLURM schedul-
ing system [7]. Hardware in the Maxwell system usually is 
equipped with large RAM, powerful CPU, and InfiniBand 
network for data access and inter-process communication. 
The detailed configuration is not homogeneous as in typical 
HPC clusters, since it’s not a monolithic system, but rather 
a discontinuously growing organism where groups and insti-
tutes on campus can contribute their own hardware to the 
Maxwell setup. Substantial investments also go into GPU-
accelerated systems serving all AI-related computational 
tasks, and primarily the processing of data originating from 
e.g. electron microscopy, ptychography or X-ray computed 
tomography. The ownership model is reflected in SLURM 
via a prorogation scheme on a rather complex partition lay-
out. The extremely heterogeneous zoo of applications, and 
the focus on photon science demands for the vast majority of 
compute jobs and exclusive access to entire nodes.

JupyterHub concepts

JupyterHub is a software package that implements a set of 
features to facilitate the usage of Jupyter Notebooks in multi-
user environments like high-performance computing clusters 
or cloud computing sites [8, 9]. It is a Python process that 
is modular and can be adapted for various environments. 

The first part is the Authenticator. It handles user login and 
can be done by the host system (using PAM) or delegated 
to an external service, like LDAP, Oauth2 or OpenID Con-
nect. The second part is the Spawner, that starts the single-
user process. This can be a separate process on the same 
machine (SudoSpawner), a job submitted to a cluster via 
BatchSpawner [10]. Depending on the Cluster management 
software, there are different subclasses available in order to 
account for their individual configuration options. The sin-
gleuser process can also be spawned in a Docker Container 
either locally with DockerSpawner or in a Kubernetes Clus-
ter through KubeSpawner. By using the base classes pro-
vided by the packages from the Python Package Index PyPI, 
we adapted the Spawner Class for the DESY batch systems 
and the Authenticator using DESY LDAP for the Maxwell 
Cluster and regular PAM Authentication on the BIRD clus-
ter. After successful user login a job is then submitted to the 
batch system and the JupyterHub polls if the job has started 
and then connects to the jupyterhub-singleuser 
process via a random port and adding the route to the proxy, 
another part of the JupyterHub software. Once the singleuser 
process has started in its environment users can use a web 
browser to see the files in their home directory or other file 
system locations that have been integrated. This is typically 
a shared file system where experiment data is stored. The 
user can then create Jupyter Notebooks or start existing 
.ipynb files as notebooks. The notebook consists of cells 
that can either contain code or markdown. The code is exe-
cuted by the notebook’s kernel which is a new sub-process 
that receives and processes input. Typically this would be a 
Python process but other languages have added support for 
Jupyter Notebooks and a large ecosystem has evolved around 
jupyter. Using markdown gives users the possibility to add 
documentation to their code and makes notebooks more eas-
ily readable than regular scripts.

Scheduling: batch vs. interactive

Jupyter Notebook jobs represent an interactive way of 
working on a compute cluster. Interactive jobs have differ-
ent requirement than batch jobs, users expect them to start 
within a short time and typically only one job per user is 
running whereas a user can submit thousands of non-inter-
active batch jobs at once and then wait for some time for 
them to complete. The difference in compute requirements 
is strongly reflected in the resource consumption: batch jobs 
are typically using a very large fraction of the available cpu-
power, whereas interactive jobs are typically wasting most 
of the cpu-cycles, as illustrated in Figs.  1 and  2.

Figure  1 shows the typical load pattern on a node in a 
partition of the Maxwell cluster, which is dedicated to jupy-
ter jobs. Despite serving about a dozen concurrent jupyter 
servers, the usage of the 48 physical cores on that machine 
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is largely negligible, showing only peaks when single users 
launch short multi-core computations from individual note-
book cells. At the same time, the memory consumption is 
very significant (the jupyter compute nodes are equipped 
with 512 GB of memory), which is in part due to the global 
memory scope of cells in a notebook making garbage collec-
tion in jupyter notebooks a difficult task. The typical use of 
jupyter notebooks to dynamically display and update plots 
based on processing of (large data frames), which are usu-
ally kept entirely in memory unless explicitly de-referenced, 
doutblessly has a significant contribution to the observed 
usage patterns.

For comparison, Fig. 2 shows a very typical load pat-
tern on a non-dedicated batch node for the same time span. 
The traditional batch job usually make use of most if not 
all physical (and logical) cores, while only consumung a 
fraction of the available memory. In this particular case, 
the memory was 256 GB on a node with 20 physical cores, 
which is comparably large for conventional batch systems.

Of course, there are workflows like 3-D image reconstruc-
tion in electron microscopy or X-ray tomography, which can 
easily exceed memory usage of 100 GB/core, but the two 
figures illustrate exemplary the very different requirements 
from different classes of workloads on the batch clusters, 
and indicate that in particular multi-node compute jobs 
connected to jupyter notebooks might require a special 
treatment.

Jupyter on batch systems

The two different batch systems at DESY share quite a bit 
of commonalities, but differ substantially in some aspects. 
The network stack for example is very similar for both sys-
tems, whereas the authentication and the handling of tokens 
as well as the accommodation of resource requests differ 
substantially. We will outline below some of the commonali-
ties and differences requiring adjustments of the JupyterHub 
configuration in the following sections.

Network

The hosts that serve the the JupyterHub web-services on 
both Maxwell (HPC) and BIRD (HTC) are located in the 
Demilitarized Zone (DMZ), due to open ports for http 
and https providing the Jupyter Notebook services to 
users outside the campus, which is actually the case for the 
majority of the JupyterHub users (on the Maxwell cluster). 
Consequently, JupyterHub servers and execution hosts reside 
in different subnets separated by the firewall, so that the 
scheduler ports for SLURM and HTCondor have to opened, 
as well as broader port ranges (40,000–41,000) for the indi-
vidual singleuser servers.

Fig. 1  Memory usage (top panel) and CPU usage (bottom panel) of 
one node on the Maxwell cluster that exclusively runs Jupyter Note-
book jobs shown for a period of 20 h in July

Fig. 2  Memory usage (top panel) and CPU usage (bottom panel) of 
one node on the Maxwell cluster that runs batch jobs, shown for the 
same period of time as Fig. 1
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The frontend of the JuypterHub is provided by Nginx 
which acts as a reverse proxy and SSL termination to serve 
the JupyterHub Python application, and is worldwide accesi-
ble (https:// max- jhub. desy. de/ and https:// naf- jhub. desy. de 
for Maxwell resp. NAF). The JupyterHub service uses a 
nodejs configurable-http-proxy which proxies to the sin-
gleuser processes on the batch nodes once the jobs have 
started (Fig. 3). The entire configuration is managed and 
monitored through standard service stacks provided by e.g. 
the DESY puppet environment.

Jupyter on HTCondor

In this section we describe the optimizations for the Jupy-
terHub to minimize the startup time of single-user processes 
on the HTCondor Cluster BIRD.

Startup time

In order to have a service that can be used interactively, users 
expect it to very responsive like for any other web-service. 
The time beetween login on the JupyterHub and actually 
seeing juypters filemanager or a kernel running hence needs 
to be as minimal as possible. For HTCondor with the con-
figuration used on the cluster some adjustments to the setup 
had to be implemented.

The concept of high throughput computing with HTCon-
dor is based on classadds and negotiation. It does provide 
some configuration means to accelerate the negotiation of 
certain type of jobs but a dedicated fast lane is not part of 
the design and idea. The focus is far more on the overall 
throughput in a pool of worker nodes than on the accelera-
tion of single jobs or jobclasses.

While in a test environment it was possible to obtain a 
decent time span from job submission to a running Jupyter 
Notebook with login, it turned out that the goal to get an 
acceptable interactive work feeling by starting a notebook 

in less than a minute for a user could only be realized in an 
overall medium busy HTCondor pool.

Supported by the HTCondor developers, a decoupled 
model including a dedicated scheduler, collector and nego-
tiator for the Jupyter Notebook jobs was developed in order 
to be able to tune the negotiation system for very short, more 
frequent negotiation cycles and very fast starts of single jobs. 
In the following section we describe what was needed to 
implement these changes to HTCondor at DESY for Jupyter 
notebook jobs.

Obviously, first the Jupyter Notebook jobs neeeded to be 
tagged as such and a number of dedicated, reserved slots 
needed to be created. Interactive usage was not meant to be 
coupled to the rest of the group quota system. To ensure that 
at any time everyone could start interactive work inside a 
Jupyter Notebook, a separate accounting group was created 
with unlimited quota. Misuse of this is unlikely as the Jupy-
terHub will forward a second login to a running notebook 
job if there is one, hence it should be impossible for any user 
to run more than one job using the notebook quota.

This ensures that the Jupyter jobs can only run in the 
dedicated slots and those slots are not occupied by non-Jupy-
ter jobs at any time, which rules out one of the more basic 
problems (no slots available) that could occur otherwise in 
a very busy pool. Usually, the maximum number of slots is 
equal to the number of CPU cores without Hyperthreading. 

Fig. 3  Illustration of the 
JupyterHub setup at DESY. 
The JupyterHub VM runs the 
web application and sub-
mits HTCondor jobs. The 
configurable-host-proxy (CHP) 
establishes connections to the 
singleuser servers and connects 
them to the outside world 
through the nginx reverse proxy
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Since CPU utilization of Jupyter jobs is usually small, we 
add one over-committed slot to all batch nodes that run on 
CentOS 7. This extra slot can only be consumed by Jupyter 
jobs, ensuring that Jupyter Notebook servers can be spawned 
even if regular jobs get queued due to a full cluster.

Dedicated scheduler, collector and negotiator are all 
common condor daemons running on one physical host and 
decouple the negotiation of the jupyter jobs from the rest of 
the scheduling in the pool.

The expression NEGOTIATOR_JOB_CONSTRAINT 
must be used on both negotiators to exclude the jupyter jobs 
from being negotiated on the main negotiator:

and to make the jupyter jobs exclusive on the dedicated 
scheduler:

On the dedicated negotiator the expression NEGOTIA-
TOR_ SLOT_CONSTRAINT is used to narrow down the 
considered slots and collected slot classadds to the tagged 
jupyter slots.

With such a configuration, the workload on dedicated 
negotiator/scheduler is diminished to a bare minimum the 
reducing the scheduling and negotiation rate to a very short 
timespan which results in a startup of incoming jobs within 
a couple of seconds, no matter what the overall pool status 
is at that time.

The ranking expression NEGOTIATOR_PRE_JOB_RANK 
is used to rank the possible worker nodes according to the 
needs of a jupyter job.

Kerberos integration

Jobs on the BIRD batch farm and any login to batch submis-
sion hosts rely on Kerberos authentication and presence of 
AFS-tokens to access users home-directories, which reside 
in the DESY-afs cell. Jupyter notebook servers spawned 

from the Hub therefore also need access to kerberos tickets 
and afs tokens to provide users with a proper environment. 
The kerberos integration demanded some adjustments to the 
JupyterHub configuration.

The login to the JupyterHub uses the default PAMAuthen-
ticator, so the system authenticates the user credentials like 
any other DESY machine. During the login a Kerberos token 
is created and saved in the /tmp folder on the host. The 
Condor job is submitted by the JupyterHub process using 
sudo, with the flag -E that preserves the environment vari-
able, so the variable KRB5CCNAME needs to be set before 
the job is submitted. This is done by checking all the files in 
/tmp directory that belong to the user for whom a notebook 
server is spawned. The following code snippet shows the 
idea of how this is done: 

A function is defined that discovers the users krb5 file 
and sets the environment variable. The pre_spawn _hook 
executes this function before a jupyter job is spawned. For 
simplicity, the function find_krb_file is not shown here 
but it is just a combination of file and ownership lookups. 
At submit time the local Kerberos ticket (created during 
login on the JupyterHub) of the user is read and transfered 
to the credd on the scheduler. On the scheduler the ticket 
gets enhanced to become forwardable and renewable. The 
credd transfers the ticket together with the job to the work-
ernode and a local shepherd on the workernode creates an 
AFS token and takes care of the ticket for the user during 
the runtime of the slot.

User customization

We provide support for different options and customiza-
tions for the jobs that start the Jupyter Notebook. The 
first is the use of GPUs, which are especially useful for 
machine learning applications. Another option is the 
choice between the classical Jupyter Notebook interface 
and the JupyterLab interface which is gaining in popu-
larity. We also provide the option to add environment 
variables that are used in the HTCondor job. This can be 
useful since it can add to the $PATH so the jupyter-
hub-singleuser executable finds custom kernels 
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supplied by the user or the experiments. The options to 
configure the jupyter job can be seen in Fig. 4. These 
user customizations have to happen before the singleuser 
job has started but after user authentication. In order to 
apply these options, the job submission script is adapted 
to reflect the user choices, so for example in the case of a 
GPU requirement the line Request_GPUs = 1 is added 
to the job script.

Jupyter on SLURM

In this part of the paper we explain the details of our imple-
mentation of the JupyterHub on the Maxwell Cluster avail-
able at https:// max- jhub. desy. de. The main concept which 
includes a host virtual machine that serves the web service 
and talks to the batch system is the same as the HTCondor 
implementation. The queue and resulting job handling are 
different in the Maxwell setup because the amount of jobs 
and their requirements are very different for high-perfor-
mance computing compared to high-throughput computing, 
so two setups are required. Both services are also hosted on 
individual virtual machines to keep the use-cases, the net-
work setup and their individualisations separate. In general, 
the focus of the high performance cluster Maxwell is on 
fewer jobs, with each job using multiple CPU cores or com-
pute nodes for parallel computation, and often runtimes of 
a few days. Compared to the high-throughput cluster BIRD 
that processes orders of magnitudes more jobs each using 
only very little resources up to a few CPU cores and running 
for a few hours. This means that SLURM can schedule jobs 
more almost instantaneously, as long as resources requested 
are available. There is no lengthy negotiation cycle like on 
HTCondor. The main complexity in SLURM comes not 
from the number of jobs it handles but from the different 
job queues and its different hardware capabilities and user 
permissions.

Development of the jupyter service

Deployment of the jupyter services started end of 2018 on 
demand by a few users of the HPC cluster. Originally, the 
scope of jupyter notebooks was mainly to provide user-
friendly hands-on tutorials, to provide reference workflows 
or develop (mostly) python code. These type of applica-
tions did not require a high-availability, or dedicated com-
pute resources. So initially, the jupyter single-user could be 
spawned only on a dedicated slurm partition (named jhub) 
equipped with three already decommisioned AMD-Opteron 
nodes, which were more than sufficient to handle the jupyter 
jobs.

The usage of the JupyterHub was constantly raising once 
available in production. We count meanwhile up to 100 dif-
ferent users per day (Fig. 5), and regularly more than 300 
per month, which is quite a substantial fraction of users on 
the cluster.

Not surprisingly, the scope of the JupyterHub quickly 
expanded to multi-node jobs, online-processing along run-
ning experiments (e.g. [11, 12]), the wide spectrum of ML 
training and inference up to quantum computing simulations, 
which naturally altered restraints on implementations and 
operation as outlined below.

SLURM partitions

The Maxwell cluster follows a co-operative model. It’s core 
consists of storage systems, infiniband-infrastructure and 
compute nodes (maxwell partition) provided by DESYÍT 
department. The SLURM maxwell partition serves all users 
on campus with typical HPC applications. The Maxwell 
core does not satisfy all needs, particularly not of groups 
operating instruments at one the large user facilities, namely 
FLASH, PETRA3 or the European XFEL, which require for 

Fig. 4  User options for the Jupyter Jobs on the HTCondor compute 
farm BIRD at DESY. The most important feature is the ability to 
select one of the GPU node for the jupyter job Fig. 5  Development of individual users on the Maxwell Jupyter-

Hub per day. The pattern is typical for interactive processes showing 
reduced activity outside working hours

https://max-jhub.desy.de
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example different or specialized hardware, guaranteed avail-
ability during experiments or different storage backends. The 
groups can contribute and integrate their own resources to 
the maxwell cluster available in restricted SLURM parti-
tions with configurations tailored to their needs. The groups 
largely benefit from central infrastructures, like from the 
fast Infiniband network connections and the highly scal-
able shared file systems BeeGFS and IBM Spectrum Scale 
(GPFS). In return, all contributed resources become avail-
able to all users of the cluster in a specialized partition (all 
partition). The all partition is generously configured allow-
ing a single user to allocate literally all resources in the clus-
ter for up to 14 days—as long as resources are not requested 
by users in any of the other partitions, in which case com-
peting jobs in the all partition get terminated (preempted) 
and nodes freed with a maximum delay of 300 s. Jobs inca-
pable of capturing the textitsigint signal sent by SLURM to 
preempted jobs, and that’s the majority of jobs, will termi-
nate after 30 s.

This concept offers quite a bit of flexibility, but leads to a 
very complex partitioning scheme, and to quite some inho-
mogenity in available hardware depending on the partition 
and users privileges. To serve the needs of the users also 
from within Jupyter, the job submission process must reflect 
at least part of these complexities.

The majority of users or Jupyter jobs can however be 
satisfied by the dedicated jhub partition (Fig. 6).

Dedicated partition for jupyter jobs

Most of the partitions in the cluster provide entire nodes to 
user jobs, only exceptions are the jhub partitions and parti-
tions used for reservation which allow concurrent usage by 
users of specific groups, for example associated to a particu-
lar experiment. Jupyter jobs are to a larger interactive, and 
are hardly able to consume resources a significant fraction of 

cpu cycles, but are most of the time running idly. To avoid a 
very poor resource utilization, we configured a light-weight 
partition named jhub exclusively to Jupyter jobs. The parti-
tion comprises just three AMD EPYC nodes, each with 48 
cores and 256 GB of memory. The partition is configured 
for 40-fold oversubscription, allowing for a total of 120 con-
current jobs, which so far was fully sufficient (Fig. 6 shows 
that it is rare to run more than 50 concurrent notebook jobs).

Very similar to the HTCondor configuration, this allows 
close to immediate startup of jupyter sessions, regardless 
of the load on the cluster, providing a smooth user experi-
ence. If there are no slots in the jhub partition, which can 
happen if one or more nodes are in drain mode, users see 
an error in the jupyter starting page that says that a server 
could not be started in the given time. They can then go 
back and select a different startup option (usually a dedicated 
node) and try again. The Hub catches failed starts without 
displaying HTTP error codes. We monitor the amount of 
parallel sessions on the jhub partition and if the user base 
increases and demand more resources, this partition can be 
adjusted in size, with more HPC nodes for a larger amount 
of user sessions in parallel. The runtime for a jupyter job 
on the dedicated jhub partition is pre-defined by the hub 
to 7 days. Particularly for code development, this is quite 
convenient without wasting too many resources. Even after 
a logout a session persists and users can come back to run-
ning notebooks and kernels with variables in memory. A 
manual jupyter server shutdown is possible through the Hub 
Control Panel.

Intentionally, we do not impose cgroups to limit memory 
or CPU resources. Due to the peculiar memory consump-
tion of jupyter jobs (Fig. 1) cgroups might become disrup-
tive to notebook jobs, and being able to consume multiple 
cores for example to develop distributed tasks is an intended 
application. It bears of course the risk of excessive resource 
cosumption by a single user, affecting up to 39 competing 
jupyter jobs on that node, but such incidences are (also 
illustrated by Fig. 1) extremely rare. In our experience, this 
simplistic approach is a quite feasible way to accommodate 
jupyter workflows efficiently while giving users a reasonable 
amount of flexibility.

User customization

As mentioned, Jupyter is increasingly being used for online 
processing while experiments are running at one of the 
facilities. Results are continously being visualized in note-
books and demanding compute jobs are distributed across 
several cores or nodes. This requires the ability for users to 
select their partition or even slurm reservation. We hence 
had to interface the batchspawner of the JupyterHub with 
SLURM (utilizing pyslurm), to present all allowed—and 
only allowed—partitions to the user (Fig. 7). The user can 

Fig. 6  Distributions of concurrent jupyter jobs over the various parti-
tions. The stacked plot shows, that the majority of jobs are running 
in the jhub partition (shown in orange). The upex partition (shown 
in green) serving users of the Eur. XFEL is the other partition with 
a quite substantial number of concurrent jobs, accounting for about 
35% of the JupyterHub processes
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select a partition of his choice, but is generally limited to a 
runtime of 8 hours, to avoid massive wasting of resources. 
For long running experiments this might turn out to be rather 
inconvenient. For such cases we implemented a rather sim-
ple web-based reservation services, which allows admin-
strative staff to create reservations on specific partitions 
through a REST API, without giving administrative rights 
on any other part in SLURM. Users or groups entitled to 
use the reservation, can also select that from the JupyterHub 
startup page, which automatically configures the runtime to 
the remaining lifetime of the reservation. This way resources 
can be fine-grained assigned to user groups in an automatic 
manner.

As mentioned, the Maxwell cluster is fairly untypical for 
a conventional HPC platform due to it’s heterogenity. The 
continous extension of the cluster unavoidably comes with 
many generations of CPUs and GPUs, different hardware 
features like memory and core counts. The JupyterHub fron-
tend was customized to allow for selection of specific fea-
tures, and a free-text declaration of any constraint definition 
(Fig. 7). The choice of specific partitions or reservations, or 
selection of constraints can depend on resources currently 
available, in particular when the cluster is heavily oversub-
scribed. The login page of the Jupyterhub presents a small 
table to the user, showing currently available resources to 
hint at potential delays when selecting specific resources, so 
that users are not badly surprised when notebook requests 
run into timeouts, but it’s currently not more than a hint 
lacking dynamic updates.

Other options allow the pre-selection between a classi-
cal jupyter notebook and a jupyterlab instance, instantia-
tion of preconfigured notebooks, or the on-demand crea-
tion of memory-resident conda environments from github 

repositories. Some of the options turned out to be not par-
ticularly useful or are better suited for kubernetes based 
deployment.

The number of different choices to launch a single-user 
server can make the configuration by the user a bit tedious. 
Assuming that users usually choose a rather similar setup 
every time, the last configuration is stored in a simple sqlite 
database, which is being used to provide users with the con-
figuration last used upon on the JupyterHub.

Operational experience and current work

The JupyterHub instances for both HPC and HTC clusters 
are in operation for more than a year. Efforts to run and 
maintain the services are quite moderate and some aspects 
are discussed in the following sections. Most of the efforts 
actually go into user driven problems, like user installed, 
incompatible python packages or conda environments. The 
JupyterHub services are still being developed aiming to 
improve the operation and overall user experience of the 
JupyterHub, which will also be described in the following.

Jupyter kernels

Starting the jupyterhub-singleuser process within 
the SLURM or HTCondor job gives the web UI that displays 
the files in der users’ home directory and gives the ability to 
create new Notebooks or edit and run existing notebooks. A 
notebook connects to a jupyter kernel which typically is a 
Python kernel, but there are multiple options available, both 
for Python version and other programming languages that 
make use of the Jupyter Notebook interface. In the following 
part we describe how the choice and installation is realized 
on Maxwell and for Belle II users on BIRD.

Maxwell conda environments

On Maxwell we use the Anaconda Python distribution 
which is installed on a shared filesystem available on all 
nodes. The Anaconda distribution is not centrally managed 
by Puppet, updates to package versions require a login by 
an admin. Anaconda uses so called environments to sepa-
rate individual Python versions and packages. Maxwell 
comes with multiple environments preinstalled, for exam-
ple for the data analysis tools pytorch, pyFAI, tomopy, or 
special environments for GPU optimized machine learn-
ing, like tensorflow-GPU. The Python module nb_conda_
kernels makes conda environments available as kernels 
on Maxwell, and environments created by users will also 
be added to the list if the ipykernel module is installed. 
Kernels for other software that is installed on the Max-
well Cluster can be added to the jupyterhub. The most 

Fig. 7  User options for Jupyter Jobs on the Maxwell Cluster. Note the 
different partitions that can be selected which is different from BIRD
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prominent examples for this are Matlab and Mathematica, 
but a wide range of kernels is available for users to install, 
if they need anything beyond the default software.

Software on NAF and Belle2 kernels in CVMFS

The worker nodes in BIRD are managed by Puppet and 
only CentOS 7 nodes can run Jupyter Notebook jobs. This 
means that the most straightforward way of installing 
Python is the package from the EPEL repository, which is 
currently at version 3.6 We also curate a list of packages 
from the Python package index PyPI, which are installed 
by using pip3 install. This list contains the most 
commonly used packages but users can then add further 
modules by installing them into their home directory. The 
Belle2 experiment has developed software that builds on 
Python but adds specific routines for their own data analy-
sis pipelines. As nowadays common in high energy physics 
experiments, the software is distributed globally via the 
CernVM filesystem (CVMFS), and accessible via a fuse 
mount from the worker node. Since their users wanted to 
integrate theses software packages into the JupyterHub 
custom kernels were created by the Belle2 experiment. 
Those kernels are json files that specify the format of input 
and locations of executable, in this case the belle2 Python 
software binary. By adding the location of the json files 
to the JUPYTER_PATH users that specify belle2 as their 
group automatically get the option of using the belle2 
software in the JupyterHub. This method can be extended 
and used by other groups in the future, if they wish to cre-
ate own Python kernels and environments that need to be 
made available in the JupyterHub interface.

DASK Jobqueue on Maxwell

On Maxwell it is possible to submit jobs to SLURM from 
another job. If the Jupyter Notebook runs as a SLURM 
job one can offload memory intensive or CPU heavy com-
putations by submit more jobs to SLURM and doing the 
work in those jobs. This process can be done from the 
Notebook, either by using the pyslurm package, slurm 
magic or using the SLURM commands directly without 
Python. Dask [13] has become a popular package in data 
analysis since it makes it very easy to parallelize large 
Numpy array operations using multiple workers. One can 
do this on SLURM with the dask_jobqueue packages, 
which allows creating workers on the fly. Figure 8 shows 
the widget which can be used to scale up the cluster and 
add the workers to the scheduler. It submits SLURM jobs 
in the background which then execute the Python dask 
commands.

Blackbox testing for monitoring

Starting a single job and expecting it to start in a small time-
frame of less than 60 s is an unusual way of using HTCondor. 
It can be quite error prone since HTCondor is built to pro-
cess a large number of jobs most efficiently and reschedule 
a job if it fails. Some issues can arise for example if a node 
seems healthy to the scheduler and accepts job starts but 
then does not execute the jupyterhub-singleuser 
fast enough. The JupyterHub will then wait until a timeout 
has been reached and then show the error page and displays 
a message that the spawn was unsuccessful. Or if an issue 
with the network filesystem exists on the executing compute 
node it will lead to an error and the job start will not be suc-
cessful. In order to check if starting the singleuser notebook 
server works correctly, we implemented a scheduled pipeline 
in our Gitlab instance. The Gitlab runner starts a pod on 
Kubernetes that runs a Python script. This script uses the 
selenium module in order to emulate the login process and 
to start a notebook server. Selenium, which usually is used 
for browser testing purposes, is used here because the login 
process creates a Kerberos ticket which is necessary for the 
HTCondor job. If we used the JupyterHub’s REST API to 
create a singleuser server this would not be the case and 
a spawn would not succeed so the workaround of browser 
emulation is needed for the C/I pipeline that automates user 
startup monitoring. The pipeline is scheduled to run daily 
and notifies the JupyterHub admins if it fails. This makes it 
easier to find issues and fix them before users start experi-
encing any problems.

Hold jobs

The current Batchspawner does not account for jobs in 
HTCondor that go into a hold state. This can happen for var-
ious reasons, for example if the user selects a primary group 
for the job to run but does not have the required resources 
in our LDAP server. Another reason for jobs not starting 
is if there is an issue with the kerberos token and HTCon-
dor can’t open the output file in the AFS directory. In those 

Fig. 8  Jupyter Notebook widget from the dask_jobqueue package that 
allows for manual or adaptive scaling of dask workers. In this exam-
ple 5 SLURM jobs were started on 40 core nodes allowing for large 
scale data analysis with a total of 1.28 TB or memory



 Computing and Software for Big Science (2021) 5:16

1 3

16 Page 10 of 11

cases the job scheduler put the jobs into a hold state but the 
batchspawner only checks if the job is either pending or 
running. If the job is in hold state, the JupyterHub waits for 
the singleuser process to start. When this does not happen 
after a timeout, an error message is shown. We are working 
on adding this additional hold state to the batchspawner, so 
it recognises this fact that there is a problem either with the 
user configuration or with the batch system. This should then 
give users enough feedback so they can take appropriate 
actions or simply try again and start another job.

Condor jobs from the notebook

In order to utilise the power of the high-throughput cluster 
BIRD and the Jupyter Notebook, it is necessary to be able to 
submit jobs from within the Jupyter Notebook. HTCondor 
has Python bindings the wrap the submission in a very sim-
ple way using HTmap or condorpy. HTmap is especially 
interesting since one can replace the Python map function 
with the htmap function and do work on the whole htcondor 
cluster instead of locally on the node that runs the note-
book. The implementation of HTCondor at DESY uses ker-
beros tickets to authenticate users’ job submissions, though. 
This mechanism is not integrated in the Python bindings of 
HTCondor yet, so if a user wants to submit the submission 
will fail. Work is ongoing1 to integrate the Kerberos cre-
dentials into the Python bindings but as long as this has not 
happened the users are bound to using the resources that are 
provided by HTCondor for the Jupyter Notebook job.

Outlook

While we have reached a production state of out Jupyter 
Notebook services on the BIRD and Maxwell clusters, 
research is still ongoing here of how to move into an era of 
cloud computing at DESY. In this section we will present the 
current state of these projects and how they relate to interac-
tive data analysis via Jupyter Notebooks.

Cloud computing

DESY operates on-premise compute cloud resources using 
OpenStack. Differnt methods are possible to enable sci-
entific computing use cases, in the context of application 
deployment, Kubernetes is a common approach. We use 
Rancher to set up clusters, provisioning Openstack VMs in 
the background and installing the kubernetes runtimes via 
docker images. This allows us to scale clusters in a flexible 
manner and use Openstack features to administer the cloud 

infrastructure in the background and use its features like 
software defined networks (Neutron), block storage (through 
Cinder), and others.

Jupyter on Kubernetes

One of the first deployments on our Kubernetes cluster was 
a JupyterHub. Within the JupyterHub development commu-
nity a subset of developers has specialized on kubernetes 
with a project which is called zero to JupyterHub. This 
project contains a Helm Chart which consists of templates 
for Kubernetes deployment files. By setting values for the 
templates one can install the deployment onto a cluster and 
the JupyterHub web service starts up. Using the kubernets 
allows for specification of users’ resources in a fine-grained 
manner using CPU and memory limits. One major research 
area is the treatment of users’ data. While the distribution of 
jupyter notebooks can be done from within a running jupyter 
session via git or http requests, even with authentication, 
this syncing process is not a viable option for experiment 
data, which is why the data location is usually mounted via 
network storage protocols, like NFS, GPFS or others. In 
this case though, the mount must also be accessible in the 
Docker container, and the authentication and authorisation 
must match, and be secure along the whole set of layers. 
While it is possible, to start the Jupyter Pod in Kubernetes 
with a UID that can be obtained from a REST API endpoint, 
handling the file system and the ACLs through the Open-
Stack layer has not been solved, and is topic of investigation.

Conclusions

In this work we described the setup and process of making 
Jupyter Notebooks available to users the high performance 
cluster Maxwell as well as on the high throughput cluster 
BIRD. At first the computing environment at DESY was 
presented with a brief summary of the two main compute 
clusters, Maxwell and BIRD, highlighting the differences in 
usage by the photon science community that utilises high 
performance computing resources and the high energy phys-
ics (HEP) community that does most of its data analysis on 
high throughput computing resource where many low CPU 
core jobs are run. The general architecture of the JupyterHub 
and its concepts was presented and we explained how these 
concepts were implemented at DESY, including the details 
of how the spawning of a Jupyter Notebook server works 
and what the network architecture of the JupyterHub and its 
spawned notebook servers looks like. We then presented the 
work we did in order to achieve a reasonable startup time 
on the HTC cluster, which is critical for the user experience 
since the JupyterHub is meant as an interactive web service 
it needs to be highly responsive and with out setup we have 1 https:// htcon dor- wiki. cs. wisc. edu/ index. cgi/ tktvi ew? tn= 6734.

https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6734
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starting times of 10–20 s. On the HPC cluster the time in 
which a job starts was not the issue but many Jupyter jobs 
share few HPC nodes which is not the case for regular batch 
jobs. We then explained other customisations of the Jupyter-
Hub, allowing people to use different computing resources 
like GPUs or their groups’ specific computing jobs queues. 
Finally, we showed what work is still ongoing, describing 
job submission from a Jupyter Notebook job and how that 
will also be achieved from HTCondor.

The Jupyter Notebook service has been well received by 
the users, it has become a regular part of the workflow for 
many scientists. There have been many requests, both from 
long term users and new users and communities. The Jupy-
ter Notebook service that is now available at DESY is also 
well suited for schools and workshops where new computing 
concepts can be presented together with documentations in 
the form of notebooks. This service opens the door to many 
more novel developments in high-performance and high-
throughput computing and might give a completely new 
view on scheduling and batch systems. We plan to build on 
this service in the future and integrate new developments 
and establish the Jupyter Notebooks as an integral part of 
accessing computing resources at DESY.
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