
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:16
https://doi.org/10.1007/s41781-021-00058-y

ORIGINAL ARTICLE

Interactive analysis notebooks on DESY batch resources

Bringing Juypter to HTCondor and Maxwell at DESY

J. Reppin1 · C. Beyer1 · T. Hartmann1 · F. Schluenzen1 · M. Flemming1 · S. Sternberger1 · Y. Kemp1

Received: 21 October 2020 / Accepted: 24 April 2021 / Published online: 9 June 2021
© The Author(s) 2021

Abstract
Batch scheduling systems are usually designed to maximise fair resource utilisation and efficiency, but are less well designed
for demanding interactive processing, which requires fast access to resources while low upstart latency is only of secondary
significance for high throughput of high performance computing scheduling systems. The computing clusters at DESY are
intended as batch systems for end users to run massive analysis and simulation jobs enabling fast turnaround systems, in
particular when processing is expected to feed back to operation of instruments in near real-time. The continuously increas-
ing popularity of Jupyter Notebooks for interactive and online processing made an integration of this technology into the
DESY batch systems indispensable. We present here our approach to utilise the HTCondor and SLURM backends to integrate
Jupyter Notebook servers and the techniques involved to provide fast access. The chosen approach offers a smooth user
experience allowing users to customize resource allocation tailored to their computational requirements. In addition, we
outline the differences between the HPC and the HTC implementations and give an overview of the experience of running
Jupyter Notebook services.

Keywords Jupyter · Notebooks · Interactive analysis · HTCondor · SLURM · Batch system

Introduction

DESY is a major research laboratory in Germany, carry-
ing out fundamental research in particle and astroparticle
physics, photon science and accelerator R&D. DESY oper-
ates several large particle accelerators, which are used by
DESY scientists as well as a variety of international user
communities.

Data management and analysis in all its aspects is a key
component of every branch of science carried out at DESY.
DESY offers several computing facilities, which we will
briefly describe in the following.

The NAF: national analysis facility

Founded in 2007 to complement the DESY Grid resources,
the NAF enables particle physicists from German institutes
working on LHC, as well as worldwide BELLE II users,
to use interactive and fast-response compute and batch
resources, with dedicated fast storage systems. For interac-
tive access, the NAF has several work-group-servers (WGS),
that can be accessed via ssh. Graphical login is possible
through dedicated systems equipped with the FastX server
software, allowing for fast graphical response even when
accessing the NAF via low-bandwidth, high-latency net-
work connections. A novel addition to the NAF interactive
access methods is the Jupyter Notebook service, which will
be described in this paper. The NAF has about 20 interac-
tive work-group-server systems, and a batch farm (BIRD)
managed by the HTCondor scheduling system [1] of about
8000 CPU cores. The sizing of the BIRD farm aims for an
average utilisation of 75%, allowing for free resources for
peak demands and fast turnaround times. The hardware in
BIRD is partially renewed usually once per year, thus 5–7
generations and hardware setups are present in the cluster.

 * J. Reppin
 johannes.reppin@desy.de

1 Deutsches Elektronen-Synchrotron DESY Hamburg,
Hambug, Germany

http://orcid.org/0000-0002-4118-1528
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00058-y&domain=pdf

 Computing and Software for Big Science (2021) 5:16

1 3

16 Page 2 of 11

A small number of nodes are equipped with GPUs. Jobs are
scheduled on a per core basis, multi-core jobs are supported,
as long as they run in one single server. Jobs have access to
the AFS global filesystem, and user Kerberos credentials are
provided during the whole job run-time.

DESY Maxwell HPC system

Since 2011, DESY IT operates a high performance compute
cluster system named “Maxwell”. The Maxwell cluster is
tightly integrated with the data acquisition systems at Petra3,
FLASH and the European XFEL (Eu.XFEL) as well as the
electron microscopy facility of the Centre for Structural Sys-
tems Biology (CSSB). Not surprisingly, about 80% of the
1500 active users are associated with the photon science
community, but only consume a comparably small fraction
of the CPU cycles. The most demanding applications origi-
nate from accelerator R&D and electron microscopy data
processing pipelines. The applications supported by the clus-
ter cover diverse scientific areas like structural biology [2],
material science [3], plasma driven accelerators [4], axion
dark matter fields [5] or time-resolved serial crystallogra-
phy [6], to name a few examples.

In addition to classical interactive WGS, the cluster is
equipped with 10 GPU accelerated front-end nodes enabling
full graphical, interactive access to the cluster also support-
ing 3D visualisation of large data sets via FastX. The bulk
compute power stems from a ∼ 500 server, ∼ 16,000 CPU
core batch system, managed using the SLURM schedul-
ing system [7]. Hardware in the Maxwell system usually is
equipped with large RAM, powerful CPU, and InfiniBand
network for data access and inter-process communication.
The detailed configuration is not homogeneous as in typical
HPC clusters, since it’s not a monolithic system, but rather
a discontinuously growing organism where groups and insti-
tutes on campus can contribute their own hardware to the
Maxwell setup. Substantial investments also go into GPU-
accelerated systems serving all AI-related computational
tasks, and primarily the processing of data originating from
e.g. electron microscopy, ptychography or X-ray computed
tomography. The ownership model is reflected in SLURM
via a prorogation scheme on a rather complex partition lay-
out. The extremely heterogeneous zoo of applications, and
the focus on photon science demands for the vast majority of
compute jobs and exclusive access to entire nodes.

JupyterHub concepts

JupyterHub is a software package that implements a set of
features to facilitate the usage of Jupyter Notebooks in multi-
user environments like high-performance computing clusters
or cloud computing sites [8, 9]. It is a Python process that
is modular and can be adapted for various environments.

The first part is the Authenticator. It handles user login and
can be done by the host system (using PAM) or delegated
to an external service, like LDAP, Oauth2 or OpenID Con-
nect. The second part is the Spawner, that starts the single-
user process. This can be a separate process on the same
machine (SudoSpawner), a job submitted to a cluster via
BatchSpawner [10]. Depending on the Cluster management
software, there are different subclasses available in order to
account for their individual configuration options. The sin-
gleuser process can also be spawned in a Docker Container
either locally with DockerSpawner or in a Kubernetes Clus-
ter through KubeSpawner. By using the base classes pro-
vided by the packages from the Python Package Index PyPI,
we adapted the Spawner Class for the DESY batch systems
and the Authenticator using DESY LDAP for the Maxwell
Cluster and regular PAM Authentication on the BIRD clus-
ter. After successful user login a job is then submitted to the
batch system and the JupyterHub polls if the job has started
and then connects to the jupyterhub-singleuser
process via a random port and adding the route to the proxy,
another part of the JupyterHub software. Once the singleuser
process has started in its environment users can use a web
browser to see the files in their home directory or other file
system locations that have been integrated. This is typically
a shared file system where experiment data is stored. The
user can then create Jupyter Notebooks or start existing
.ipynb files as notebooks. The notebook consists of cells
that can either contain code or markdown. The code is exe-
cuted by the notebook’s kernel which is a new sub-process
that receives and processes input. Typically this would be a
Python process but other languages have added support for
Jupyter Notebooks and a large ecosystem has evolved around
jupyter. Using markdown gives users the possibility to add
documentation to their code and makes notebooks more eas-
ily readable than regular scripts.

Scheduling: batch vs. interactive

Jupyter Notebook jobs represent an interactive way of
working on a compute cluster. Interactive jobs have differ-
ent requirement than batch jobs, users expect them to start
within a short time and typically only one job per user is
running whereas a user can submit thousands of non-inter-
active batch jobs at once and then wait for some time for
them to complete. The difference in compute requirements
is strongly reflected in the resource consumption: batch jobs
are typically using a very large fraction of the available cpu-
power, whereas interactive jobs are typically wasting most
of the cpu-cycles, as illustrated in Figs. 1 and 2.

Figure 1 shows the typical load pattern on a node in a
partition of the Maxwell cluster, which is dedicated to jupy-
ter jobs. Despite serving about a dozen concurrent jupyter
servers, the usage of the 48 physical cores on that machine

Computing and Software for Big Science (2021) 5:16

1 3

Page 3 of 11 16

is largely negligible, showing only peaks when single users
launch short multi-core computations from individual note-
book cells. At the same time, the memory consumption is
very significant (the jupyter compute nodes are equipped
with 512 GB of memory), which is in part due to the global
memory scope of cells in a notebook making garbage collec-
tion in jupyter notebooks a difficult task. The typical use of
jupyter notebooks to dynamically display and update plots
based on processing of (large data frames), which are usu-
ally kept entirely in memory unless explicitly de-referenced,
doutblessly has a significant contribution to the observed
usage patterns.

For comparison, Fig. 2 shows a very typical load pat-
tern on a non-dedicated batch node for the same time span.
The traditional batch job usually make use of most if not
all physical (and logical) cores, while only consumung a
fraction of the available memory. In this particular case,
the memory was 256 GB on a node with 20 physical cores,
which is comparably large for conventional batch systems.

Of course, there are workflows like 3-D image reconstruc-
tion in electron microscopy or X-ray tomography, which can
easily exceed memory usage of 100 GB/core, but the two
figures illustrate exemplary the very different requirements
from different classes of workloads on the batch clusters,
and indicate that in particular multi-node compute jobs
connected to jupyter notebooks might require a special
treatment.

Jupyter on batch systems

The two different batch systems at DESY share quite a bit
of commonalities, but differ substantially in some aspects.
The network stack for example is very similar for both sys-
tems, whereas the authentication and the handling of tokens
as well as the accommodation of resource requests differ
substantially. We will outline below some of the commonali-
ties and differences requiring adjustments of the JupyterHub
configuration in the following sections.

Network

The hosts that serve the the JupyterHub web-services on
both Maxwell (HPC) and BIRD (HTC) are located in the
Demilitarized Zone (DMZ), due to open ports for http
and https providing the Jupyter Notebook services to
users outside the campus, which is actually the case for the
majority of the JupyterHub users (on the Maxwell cluster).
Consequently, JupyterHub servers and execution hosts reside
in different subnets separated by the firewall, so that the
scheduler ports for SLURM and HTCondor have to opened,
as well as broader port ranges (40,000–41,000) for the indi-
vidual singleuser servers.

Fig. 1 Memory usage (top panel) and CPU usage (bottom panel) of
one node on the Maxwell cluster that exclusively runs Jupyter Note-
book jobs shown for a period of 20 h in July

Fig. 2 Memory usage (top panel) and CPU usage (bottom panel) of
one node on the Maxwell cluster that runs batch jobs, shown for the
same period of time as Fig. 1

 Computing and Software for Big Science (2021) 5:16

1 3

16 Page 4 of 11

The frontend of the JuypterHub is provided by Nginx
which acts as a reverse proxy and SSL termination to serve
the JupyterHub Python application, and is worldwide accesi-
ble (https:// max- jhub. desy. de/ and https:// naf- jhub. desy. de
for Maxwell resp. NAF). The JupyterHub service uses a
nodejs configurable-http-proxy which proxies to the sin-
gleuser processes on the batch nodes once the jobs have
started (Fig. 3). The entire configuration is managed and
monitored through standard service stacks provided by e.g.
the DESY puppet environment.

Jupyter on HTCondor

In this section we describe the optimizations for the Jupy-
terHub to minimize the startup time of single-user processes
on the HTCondor Cluster BIRD.

Startup time

In order to have a service that can be used interactively, users
expect it to very responsive like for any other web-service.
The time beetween login on the JupyterHub and actually
seeing juypters filemanager or a kernel running hence needs
to be as minimal as possible. For HTCondor with the con-
figuration used on the cluster some adjustments to the setup
had to be implemented.

The concept of high throughput computing with HTCon-
dor is based on classadds and negotiation. It does provide
some configuration means to accelerate the negotiation of
certain type of jobs but a dedicated fast lane is not part of
the design and idea. The focus is far more on the overall
throughput in a pool of worker nodes than on the accelera-
tion of single jobs or jobclasses.

While in a test environment it was possible to obtain a
decent time span from job submission to a running Jupyter
Notebook with login, it turned out that the goal to get an
acceptable interactive work feeling by starting a notebook

in less than a minute for a user could only be realized in an
overall medium busy HTCondor pool.

Supported by the HTCondor developers, a decoupled
model including a dedicated scheduler, collector and nego-
tiator for the Jupyter Notebook jobs was developed in order
to be able to tune the negotiation system for very short, more
frequent negotiation cycles and very fast starts of single jobs.
In the following section we describe what was needed to
implement these changes to HTCondor at DESY for Jupyter
notebook jobs.

Obviously, first the Jupyter Notebook jobs neeeded to be
tagged as such and a number of dedicated, reserved slots
needed to be created. Interactive usage was not meant to be
coupled to the rest of the group quota system. To ensure that
at any time everyone could start interactive work inside a
Jupyter Notebook, a separate accounting group was created
with unlimited quota. Misuse of this is unlikely as the Jupy-
terHub will forward a second login to a running notebook
job if there is one, hence it should be impossible for any user
to run more than one job using the notebook quota.

This ensures that the Jupyter jobs can only run in the
dedicated slots and those slots are not occupied by non-Jupy-
ter jobs at any time, which rules out one of the more basic
problems (no slots available) that could occur otherwise in
a very busy pool. Usually, the maximum number of slots is
equal to the number of CPU cores without Hyperthreading.

Fig. 3 Illustration of the
JupyterHub setup at DESY.
The JupyterHub VM runs the
web application and sub-
mits HTCondor jobs. The
configurable-host-proxy (CHP)
establishes connections to the
singleuser servers and connects
them to the outside world
through the nginx reverse proxy

DESY DMZ

Jupyterhub VM

DESY INTRANET

jupyterhub

F
IR
E
W
A
LL

CHP

nginx

sched-
jupy01

sched-
cms01

sched-
[...]

F
IR
E
W
A
LLWORLD

Client1

Client2

Client3

Batch1000

jupyterhub-singleuser

Batch1000

jupyterhub-singleuser

Batch1000

jupyterhub-singleuser

https://max-jhub.desy.de/
https://naf-jhub.desy.de

Computing and Software for Big Science (2021) 5:16

1 3

Page 5 of 11 16

Since CPU utilization of Jupyter jobs is usually small, we
add one over-committed slot to all batch nodes that run on
CentOS 7. This extra slot can only be consumed by Jupyter
jobs, ensuring that Jupyter Notebook servers can be spawned
even if regular jobs get queued due to a full cluster.

Dedicated scheduler, collector and negotiator are all
common condor daemons running on one physical host and
decouple the negotiation of the jupyter jobs from the rest of
the scheduling in the pool.

The expression NEGOTIATOR_JOB_CONSTRAINT
must be used on both negotiators to exclude the jupyter jobs
from being negotiated on the main negotiator:

and to make the jupyter jobs exclusive on the dedicated
scheduler:

On the dedicated negotiator the expression NEGOTIA-
TOR_ SLOT_CONSTRAINT is used to narrow down the
considered slots and collected slot classadds to the tagged
jupyter slots.

With such a configuration, the workload on dedicated
negotiator/scheduler is diminished to a bare minimum the
reducing the scheduling and negotiation rate to a very short
timespan which results in a startup of incoming jobs within
a couple of seconds, no matter what the overall pool status
is at that time.

The ranking expression NEGOTIATOR_PRE_JOB_RANK
is used to rank the possible worker nodes according to the
needs of a jupyter job.

Kerberos integration

Jobs on the BIRD batch farm and any login to batch submis-
sion hosts rely on Kerberos authentication and presence of
AFS-tokens to access users home-directories, which reside
in the DESY-afs cell. Jupyter notebook servers spawned

from the Hub therefore also need access to kerberos tickets
and afs tokens to provide users with a proper environment.
The kerberos integration demanded some adjustments to the
JupyterHub configuration.

The login to the JupyterHub uses the default PAMAuthen-
ticator, so the system authenticates the user credentials like
any other DESY machine. During the login a Kerberos token
is created and saved in the /tmp folder on the host. The
Condor job is submitted by the JupyterHub process using
sudo, with the flag -E that preserves the environment vari-
able, so the variable KRB5CCNAME needs to be set before
the job is submitted. This is done by checking all the files in
/tmp directory that belong to the user for whom a notebook
server is spawned. The following code snippet shows the
idea of how this is done:

A function is defined that discovers the users krb5 file
and sets the environment variable. The pre_spawn _hook
executes this function before a jupyter job is spawned. For
simplicity, the function find_krb_file is not shown here
but it is just a combination of file and ownership lookups.
At submit time the local Kerberos ticket (created during
login on the JupyterHub) of the user is read and transfered
to the credd on the scheduler. On the scheduler the ticket
gets enhanced to become forwardable and renewable. The
credd transfers the ticket together with the job to the work-
ernode and a local shepherd on the workernode creates an
AFS token and takes care of the ticket for the user during
the runtime of the slot.

User customization

We provide support for different options and customiza-
tions for the jobs that start the Jupyter Notebook. The
first is the use of GPUs, which are especially useful for
machine learning applications. Another option is the
choice between the classical Jupyter Notebook interface
and the JupyterLab interface which is gaining in popu-
larity. We also provide the option to add environment
variables that are used in the HTCondor job. This can be
useful since it can add to the $PATH so the jupyter-
hub-singleuser executable finds custom kernels

 Computing and Software for Big Science (2021) 5:16

1 3

16 Page 6 of 11

supplied by the user or the experiments. The options to
configure the jupyter job can be seen in Fig. 4. These
user customizations have to happen before the singleuser
job has started but after user authentication. In order to
apply these options, the job submission script is adapted
to reflect the user choices, so for example in the case of a
GPU requirement the line Request_GPUs = 1 is added
to the job script.

Jupyter on SLURM

In this part of the paper we explain the details of our imple-
mentation of the JupyterHub on the Maxwell Cluster avail-
able at https:// max- jhub. desy. de. The main concept which
includes a host virtual machine that serves the web service
and talks to the batch system is the same as the HTCondor
implementation. The queue and resulting job handling are
different in the Maxwell setup because the amount of jobs
and their requirements are very different for high-perfor-
mance computing compared to high-throughput computing,
so two setups are required. Both services are also hosted on
individual virtual machines to keep the use-cases, the net-
work setup and their individualisations separate. In general,
the focus of the high performance cluster Maxwell is on
fewer jobs, with each job using multiple CPU cores or com-
pute nodes for parallel computation, and often runtimes of
a few days. Compared to the high-throughput cluster BIRD
that processes orders of magnitudes more jobs each using
only very little resources up to a few CPU cores and running
for a few hours. This means that SLURM can schedule jobs
more almost instantaneously, as long as resources requested
are available. There is no lengthy negotiation cycle like on
HTCondor. The main complexity in SLURM comes not
from the number of jobs it handles but from the different
job queues and its different hardware capabilities and user
permissions.

Development of the jupyter service

Deployment of the jupyter services started end of 2018 on
demand by a few users of the HPC cluster. Originally, the
scope of jupyter notebooks was mainly to provide user-
friendly hands-on tutorials, to provide reference workflows
or develop (mostly) python code. These type of applica-
tions did not require a high-availability, or dedicated com-
pute resources. So initially, the jupyter single-user could be
spawned only on a dedicated slurm partition (named jhub)
equipped with three already decommisioned AMD-Opteron
nodes, which were more than sufficient to handle the jupyter
jobs.

The usage of the JupyterHub was constantly raising once
available in production. We count meanwhile up to 100 dif-
ferent users per day (Fig. 5), and regularly more than 300
per month, which is quite a substantial fraction of users on
the cluster.

Not surprisingly, the scope of the JupyterHub quickly
expanded to multi-node jobs, online-processing along run-
ning experiments (e.g. [11, 12]), the wide spectrum of ML
training and inference up to quantum computing simulations,
which naturally altered restraints on implementations and
operation as outlined below.

SLURM partitions

The Maxwell cluster follows a co-operative model. It’s core
consists of storage systems, infiniband-infrastructure and
compute nodes (maxwell partition) provided by DESYÍT
department. The SLURM maxwell partition serves all users
on campus with typical HPC applications. The Maxwell
core does not satisfy all needs, particularly not of groups
operating instruments at one the large user facilities, namely
FLASH, PETRA3 or the European XFEL, which require for

Fig. 4 User options for the Jupyter Jobs on the HTCondor compute
farm BIRD at DESY. The most important feature is the ability to
select one of the GPU node for the jupyter job Fig. 5 Development of individual users on the Maxwell Jupyter-

Hub per day. The pattern is typical for interactive processes showing
reduced activity outside working hours

https://max-jhub.desy.de

Computing and Software for Big Science (2021) 5:16

1 3

Page 7 of 11 16

example different or specialized hardware, guaranteed avail-
ability during experiments or different storage backends. The
groups can contribute and integrate their own resources to
the maxwell cluster available in restricted SLURM parti-
tions with configurations tailored to their needs. The groups
largely benefit from central infrastructures, like from the
fast Infiniband network connections and the highly scal-
able shared file systems BeeGFS and IBM Spectrum Scale
(GPFS). In return, all contributed resources become avail-
able to all users of the cluster in a specialized partition (all
partition). The all partition is generously configured allow-
ing a single user to allocate literally all resources in the clus-
ter for up to 14 days—as long as resources are not requested
by users in any of the other partitions, in which case com-
peting jobs in the all partition get terminated (preempted)
and nodes freed with a maximum delay of 300 s. Jobs inca-
pable of capturing the textitsigint signal sent by SLURM to
preempted jobs, and that’s the majority of jobs, will termi-
nate after 30 s.

This concept offers quite a bit of flexibility, but leads to a
very complex partitioning scheme, and to quite some inho-
mogenity in available hardware depending on the partition
and users privileges. To serve the needs of the users also
from within Jupyter, the job submission process must reflect
at least part of these complexities.

The majority of users or Jupyter jobs can however be
satisfied by the dedicated jhub partition (Fig. 6).

Dedicated partition for jupyter jobs

Most of the partitions in the cluster provide entire nodes to
user jobs, only exceptions are the jhub partitions and parti-
tions used for reservation which allow concurrent usage by
users of specific groups, for example associated to a particu-
lar experiment. Jupyter jobs are to a larger interactive, and
are hardly able to consume resources a significant fraction of

cpu cycles, but are most of the time running idly. To avoid a
very poor resource utilization, we configured a light-weight
partition named jhub exclusively to Jupyter jobs. The parti-
tion comprises just three AMD EPYC nodes, each with 48
cores and 256 GB of memory. The partition is configured
for 40-fold oversubscription, allowing for a total of 120 con-
current jobs, which so far was fully sufficient (Fig. 6 shows
that it is rare to run more than 50 concurrent notebook jobs).

Very similar to the HTCondor configuration, this allows
close to immediate startup of jupyter sessions, regardless
of the load on the cluster, providing a smooth user experi-
ence. If there are no slots in the jhub partition, which can
happen if one or more nodes are in drain mode, users see
an error in the jupyter starting page that says that a server
could not be started in the given time. They can then go
back and select a different startup option (usually a dedicated
node) and try again. The Hub catches failed starts without
displaying HTTP error codes. We monitor the amount of
parallel sessions on the jhub partition and if the user base
increases and demand more resources, this partition can be
adjusted in size, with more HPC nodes for a larger amount
of user sessions in parallel. The runtime for a jupyter job
on the dedicated jhub partition is pre-defined by the hub
to 7 days. Particularly for code development, this is quite
convenient without wasting too many resources. Even after
a logout a session persists and users can come back to run-
ning notebooks and kernels with variables in memory. A
manual jupyter server shutdown is possible through the Hub
Control Panel.

Intentionally, we do not impose cgroups to limit memory
or CPU resources. Due to the peculiar memory consump-
tion of jupyter jobs (Fig. 1) cgroups might become disrup-
tive to notebook jobs, and being able to consume multiple
cores for example to develop distributed tasks is an intended
application. It bears of course the risk of excessive resource
cosumption by a single user, affecting up to 39 competing
jupyter jobs on that node, but such incidences are (also
illustrated by Fig. 1) extremely rare. In our experience, this
simplistic approach is a quite feasible way to accommodate
jupyter workflows efficiently while giving users a reasonable
amount of flexibility.

User customization

As mentioned, Jupyter is increasingly being used for online
processing while experiments are running at one of the
facilities. Results are continously being visualized in note-
books and demanding compute jobs are distributed across
several cores or nodes. This requires the ability for users to
select their partition or even slurm reservation. We hence
had to interface the batchspawner of the JupyterHub with
SLURM (utilizing pyslurm), to present all allowed—and
only allowed—partitions to the user (Fig. 7). The user can

Fig. 6 Distributions of concurrent jupyter jobs over the various parti-
tions. The stacked plot shows, that the majority of jobs are running
in the jhub partition (shown in orange). The upex partition (shown
in green) serving users of the Eur. XFEL is the other partition with
a quite substantial number of concurrent jobs, accounting for about
35% of the JupyterHub processes

 Computing and Software for Big Science (2021) 5:16

1 3

16 Page 8 of 11

select a partition of his choice, but is generally limited to a
runtime of 8 hours, to avoid massive wasting of resources.
For long running experiments this might turn out to be rather
inconvenient. For such cases we implemented a rather sim-
ple web-based reservation services, which allows admin-
strative staff to create reservations on specific partitions
through a REST API, without giving administrative rights
on any other part in SLURM. Users or groups entitled to
use the reservation, can also select that from the JupyterHub
startup page, which automatically configures the runtime to
the remaining lifetime of the reservation. This way resources
can be fine-grained assigned to user groups in an automatic
manner.

As mentioned, the Maxwell cluster is fairly untypical for
a conventional HPC platform due to it’s heterogenity. The
continous extension of the cluster unavoidably comes with
many generations of CPUs and GPUs, different hardware
features like memory and core counts. The JupyterHub fron-
tend was customized to allow for selection of specific fea-
tures, and a free-text declaration of any constraint definition
(Fig. 7). The choice of specific partitions or reservations, or
selection of constraints can depend on resources currently
available, in particular when the cluster is heavily oversub-
scribed. The login page of the Jupyterhub presents a small
table to the user, showing currently available resources to
hint at potential delays when selecting specific resources, so
that users are not badly surprised when notebook requests
run into timeouts, but it’s currently not more than a hint
lacking dynamic updates.

Other options allow the pre-selection between a classi-
cal jupyter notebook and a jupyterlab instance, instantia-
tion of preconfigured notebooks, or the on-demand crea-
tion of memory-resident conda environments from github

repositories. Some of the options turned out to be not par-
ticularly useful or are better suited for kubernetes based
deployment.

The number of different choices to launch a single-user
server can make the configuration by the user a bit tedious.
Assuming that users usually choose a rather similar setup
every time, the last configuration is stored in a simple sqlite
database, which is being used to provide users with the con-
figuration last used upon on the JupyterHub.

Operational experience and current work

The JupyterHub instances for both HPC and HTC clusters
are in operation for more than a year. Efforts to run and
maintain the services are quite moderate and some aspects
are discussed in the following sections. Most of the efforts
actually go into user driven problems, like user installed,
incompatible python packages or conda environments. The
JupyterHub services are still being developed aiming to
improve the operation and overall user experience of the
JupyterHub, which will also be described in the following.

Jupyter kernels

Starting the jupyterhub-singleuser process within
the SLURM or HTCondor job gives the web UI that displays
the files in der users’ home directory and gives the ability to
create new Notebooks or edit and run existing notebooks. A
notebook connects to a jupyter kernel which typically is a
Python kernel, but there are multiple options available, both
for Python version and other programming languages that
make use of the Jupyter Notebook interface. In the following
part we describe how the choice and installation is realized
on Maxwell and for Belle II users on BIRD.

Maxwell conda environments

On Maxwell we use the Anaconda Python distribution
which is installed on a shared filesystem available on all
nodes. The Anaconda distribution is not centrally managed
by Puppet, updates to package versions require a login by
an admin. Anaconda uses so called environments to sepa-
rate individual Python versions and packages. Maxwell
comes with multiple environments preinstalled, for exam-
ple for the data analysis tools pytorch, pyFAI, tomopy, or
special environments for GPU optimized machine learn-
ing, like tensorflow-GPU. The Python module nb_conda_
kernels makes conda environments available as kernels
on Maxwell, and environments created by users will also
be added to the list if the ipykernel module is installed.
Kernels for other software that is installed on the Max-
well Cluster can be added to the jupyterhub. The most

Fig. 7 User options for Jupyter Jobs on the Maxwell Cluster. Note the
different partitions that can be selected which is different from BIRD

Computing and Software for Big Science (2021) 5:16

1 3

Page 9 of 11 16

prominent examples for this are Matlab and Mathematica,
but a wide range of kernels is available for users to install,
if they need anything beyond the default software.

Software on NAF and Belle2 kernels in CVMFS

The worker nodes in BIRD are managed by Puppet and
only CentOS 7 nodes can run Jupyter Notebook jobs. This
means that the most straightforward way of installing
Python is the package from the EPEL repository, which is
currently at version 3.6 We also curate a list of packages
from the Python package index PyPI, which are installed
by using pip3 install. This list contains the most
commonly used packages but users can then add further
modules by installing them into their home directory. The
Belle2 experiment has developed software that builds on
Python but adds specific routines for their own data analy-
sis pipelines. As nowadays common in high energy physics
experiments, the software is distributed globally via the
CernVM filesystem (CVMFS), and accessible via a fuse
mount from the worker node. Since their users wanted to
integrate theses software packages into the JupyterHub
custom kernels were created by the Belle2 experiment.
Those kernels are json files that specify the format of input
and locations of executable, in this case the belle2 Python
software binary. By adding the location of the json files
to the JUPYTER_PATH users that specify belle2 as their
group automatically get the option of using the belle2
software in the JupyterHub. This method can be extended
and used by other groups in the future, if they wish to cre-
ate own Python kernels and environments that need to be
made available in the JupyterHub interface.

DASK Jobqueue on Maxwell

On Maxwell it is possible to submit jobs to SLURM from
another job. If the Jupyter Notebook runs as a SLURM
job one can offload memory intensive or CPU heavy com-
putations by submit more jobs to SLURM and doing the
work in those jobs. This process can be done from the
Notebook, either by using the pyslurm package, slurm
magic or using the SLURM commands directly without
Python. Dask [13] has become a popular package in data
analysis since it makes it very easy to parallelize large
Numpy array operations using multiple workers. One can
do this on SLURM with the dask_jobqueue packages,
which allows creating workers on the fly. Figure 8 shows
the widget which can be used to scale up the cluster and
add the workers to the scheduler. It submits SLURM jobs
in the background which then execute the Python dask
commands.

Blackbox testing for monitoring

Starting a single job and expecting it to start in a small time-
frame of less than 60 s is an unusual way of using HTCondor.
It can be quite error prone since HTCondor is built to pro-
cess a large number of jobs most efficiently and reschedule
a job if it fails. Some issues can arise for example if a node
seems healthy to the scheduler and accepts job starts but
then does not execute the jupyterhub-singleuser
fast enough. The JupyterHub will then wait until a timeout
has been reached and then show the error page and displays
a message that the spawn was unsuccessful. Or if an issue
with the network filesystem exists on the executing compute
node it will lead to an error and the job start will not be suc-
cessful. In order to check if starting the singleuser notebook
server works correctly, we implemented a scheduled pipeline
in our Gitlab instance. The Gitlab runner starts a pod on
Kubernetes that runs a Python script. This script uses the
selenium module in order to emulate the login process and
to start a notebook server. Selenium, which usually is used
for browser testing purposes, is used here because the login
process creates a Kerberos ticket which is necessary for the
HTCondor job. If we used the JupyterHub’s REST API to
create a singleuser server this would not be the case and
a spawn would not succeed so the workaround of browser
emulation is needed for the C/I pipeline that automates user
startup monitoring. The pipeline is scheduled to run daily
and notifies the JupyterHub admins if it fails. This makes it
easier to find issues and fix them before users start experi-
encing any problems.

Hold jobs

The current Batchspawner does not account for jobs in
HTCondor that go into a hold state. This can happen for var-
ious reasons, for example if the user selects a primary group
for the job to run but does not have the required resources
in our LDAP server. Another reason for jobs not starting
is if there is an issue with the kerberos token and HTCon-
dor can’t open the output file in the AFS directory. In those

Fig. 8 Jupyter Notebook widget from the dask_jobqueue package that
allows for manual or adaptive scaling of dask workers. In this exam-
ple 5 SLURM jobs were started on 40 core nodes allowing for large
scale data analysis with a total of 1.28 TB or memory

 Computing and Software for Big Science (2021) 5:16

1 3

16 Page 10 of 11

cases the job scheduler put the jobs into a hold state but the
batchspawner only checks if the job is either pending or
running. If the job is in hold state, the JupyterHub waits for
the singleuser process to start. When this does not happen
after a timeout, an error message is shown. We are working
on adding this additional hold state to the batchspawner, so
it recognises this fact that there is a problem either with the
user configuration or with the batch system. This should then
give users enough feedback so they can take appropriate
actions or simply try again and start another job.

Condor jobs from the notebook

In order to utilise the power of the high-throughput cluster
BIRD and the Jupyter Notebook, it is necessary to be able to
submit jobs from within the Jupyter Notebook. HTCondor
has Python bindings the wrap the submission in a very sim-
ple way using HTmap or condorpy. HTmap is especially
interesting since one can replace the Python map function
with the htmap function and do work on the whole htcondor
cluster instead of locally on the node that runs the note-
book. The implementation of HTCondor at DESY uses ker-
beros tickets to authenticate users’ job submissions, though.
This mechanism is not integrated in the Python bindings of
HTCondor yet, so if a user wants to submit the submission
will fail. Work is ongoing1 to integrate the Kerberos cre-
dentials into the Python bindings but as long as this has not
happened the users are bound to using the resources that are
provided by HTCondor for the Jupyter Notebook job.

Outlook

While we have reached a production state of out Jupyter
Notebook services on the BIRD and Maxwell clusters,
research is still ongoing here of how to move into an era of
cloud computing at DESY. In this section we will present the
current state of these projects and how they relate to interac-
tive data analysis via Jupyter Notebooks.

Cloud computing

DESY operates on-premise compute cloud resources using
OpenStack. Differnt methods are possible to enable sci-
entific computing use cases, in the context of application
deployment, Kubernetes is a common approach. We use
Rancher to set up clusters, provisioning Openstack VMs in
the background and installing the kubernetes runtimes via
docker images. This allows us to scale clusters in a flexible
manner and use Openstack features to administer the cloud

infrastructure in the background and use its features like
software defined networks (Neutron), block storage (through
Cinder), and others.

Jupyter on Kubernetes

One of the first deployments on our Kubernetes cluster was
a JupyterHub. Within the JupyterHub development commu-
nity a subset of developers has specialized on kubernetes
with a project which is called zero to JupyterHub. This
project contains a Helm Chart which consists of templates
for Kubernetes deployment files. By setting values for the
templates one can install the deployment onto a cluster and
the JupyterHub web service starts up. Using the kubernets
allows for specification of users’ resources in a fine-grained
manner using CPU and memory limits. One major research
area is the treatment of users’ data. While the distribution of
jupyter notebooks can be done from within a running jupyter
session via git or http requests, even with authentication,
this syncing process is not a viable option for experiment
data, which is why the data location is usually mounted via
network storage protocols, like NFS, GPFS or others. In
this case though, the mount must also be accessible in the
Docker container, and the authentication and authorisation
must match, and be secure along the whole set of layers.
While it is possible, to start the Jupyter Pod in Kubernetes
with a UID that can be obtained from a REST API endpoint,
handling the file system and the ACLs through the Open-
Stack layer has not been solved, and is topic of investigation.

Conclusions

In this work we described the setup and process of making
Jupyter Notebooks available to users the high performance
cluster Maxwell as well as on the high throughput cluster
BIRD. At first the computing environment at DESY was
presented with a brief summary of the two main compute
clusters, Maxwell and BIRD, highlighting the differences in
usage by the photon science community that utilises high
performance computing resources and the high energy phys-
ics (HEP) community that does most of its data analysis on
high throughput computing resource where many low CPU
core jobs are run. The general architecture of the JupyterHub
and its concepts was presented and we explained how these
concepts were implemented at DESY, including the details
of how the spawning of a Jupyter Notebook server works
and what the network architecture of the JupyterHub and its
spawned notebook servers looks like. We then presented the
work we did in order to achieve a reasonable startup time
on the HTC cluster, which is critical for the user experience
since the JupyterHub is meant as an interactive web service
it needs to be highly responsive and with out setup we have 1 https:// htcon dor- wiki. cs. wisc. edu/ index. cgi/ tktvi ew? tn= 6734.

https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6734

Computing and Software for Big Science (2021) 5:16

1 3

Page 11 of 11 16

starting times of 10–20 s. On the HPC cluster the time in
which a job starts was not the issue but many Jupyter jobs
share few HPC nodes which is not the case for regular batch
jobs. We then explained other customisations of the Jupyter-
Hub, allowing people to use different computing resources
like GPUs or their groups’ specific computing jobs queues.
Finally, we showed what work is still ongoing, describing
job submission from a Jupyter Notebook job and how that
will also be achieved from HTCondor.

The Jupyter Notebook service has been well received by
the users, it has become a regular part of the workflow for
many scientists. There have been many requests, both from
long term users and new users and communities. The Jupy-
ter Notebook service that is now available at DESY is also
well suited for schools and workshops where new computing
concepts can be presented together with documentations in
the form of notebooks. This service opens the door to many
more novel developments in high-performance and high-
throughput computing and might give a completely new
view on scheduling and batch systems. We plan to build on
this service in the future and integrate new developments
and establish the Jupyter Notebooks as an integral part of
accessing computing resources at DESY.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Thain D, Tannenbaum T, Livny M (2005) Distributed comput-
ing in practice: the Condor experience. Concurren Pract Exp
17:323–356

 2. Goessweiner-Mohr N, Kotov V, Brunner Vadim MJ, Mayr J, Wald
J, Kuhlen L, Miletic S, Vesper O, Lugmayr W, Wagner S, Di
Maio F-, Lea S, Marlovits TC (2019) Structural control for the
coordinated assembly into functional pathogenic type-3 secretion
systems. bioRxiv. https:// doi. org/ 10. 1101/ 714097

 3. Abuin M, Kim YY, Runge H, Maier S, Dzhigaev D, Lazarev S,
Gelisio L, Seitz C, Richard M, Zhou T, Vonk V, Keller TF, Vartan-
yants IA, Stierle A (2019) Coherent X-ray imaging of CO-adsorp-
tion-induced structural changes in Pt nanoparticles: implications
for catalysis. ACS Appl Nano Mater 2:4818–4824

 4. Pousa AF, de la Ossa AM, Brinkmann R, Assmann RW (2019)
Compact multistage plasma-based accelerator design for corre-
lated energy spread compensation. Phys. Rev. Lett. 123:054801

 5. Knirck S, Schütte-Engel J, Millar A, Redondo J, Reimann O,
Ringwald A, Steffen F (2019) A first look on 3D effects in open
axion haloscopes. J Cosmol Astropart Phys 2019:026. https:// doi.
org/ 10. 1088/ 1475- 7516/ 2019/ 08/ 026

 6. Pandey S, Bean R, Sato T, Poudyal I, Bielecki J, Cruz Villarreal
J, Yefanov O, Mariani V, White TA, Kupitz C, Hunter M, Abdel-
latif MH, Bajt S, Bondar V, Echelmeier A, Doppler D, Emons M,
Frank M, Fromme R, Gevorkov Y, Giovanetti G, Jiang M, Kim
D, Kim Y, Kirkwood H, Klimovskaia A, Knoska J, Koua FHM,
Letrun R, Lisova S, Maia L, Mazalova V, Meza D, Michelat T,
Ourmazd A, Palmer G, Ramilli M, Schubert R, Schwander P,
Silenzi A, Sztuk-Dambietz J, Tolstikova A, Chapman HN, Ros
A, Barty A, Fromme P, Mancuso AP, Schmidt M (2020) Time-
resolved serial femtosecond crystallography at the European
XFEL. Nat Methods 17:73–78

 7. Jette MA, Yoo AB, Grondona M (2003) SLURM: simple linuxu-
tility for resource management. Lecture notes in computer science:
proceedings of job scheduling strategies for parallel processing
(JSSPP), pp 44–60

 8. Pérez F, Granger BE (2007) IPython: a system for interactive sci-
entific computing. Comput Sci Eng 9:21–29

 9. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier
M, Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, Ivanov
P, Avila D, Abdalla S, Willing C (2016) Jupyter notebooks: a
publishing format for reproducible computational workflows. In:
Loizides F, Schmidt B (eds) Positioning and power in academic
publishing: players, agents and agendas. IOS Press, Amsterdam,
pp 87–90

 10. Milligan MB (2018) Jupyter as common technology platform for
interactive HPC services, PEARC ’18: Proceedings of the practice
and experience on advanced research computing. Association for
Computing Machinery, NY, 17, pp 1–6

 11. Hafner AJCE, Kluyver T, Bertelsen M, Upadhyay KM, Lecz Z,
Nourbakhsh S, Mancuso AP, Fortmann-Grote C (2020) VINYL:
the VIrtual Neutron and X-ray laboratory and its applications. Adv
Comput Methods X Ray Opt 5:114930Z

 12. Bücker R, Hogan-Lamarre P, Mehrabi P, Schulz EC, Bultema
LA, Gevorkov Y, Brehm W, Yefanov O, Oberthür D, Kassier G,
Miller RJD (2020) Serial protein crystallography in an electron
microscope. Nat Commun 11:996

 13. Dask Development Team, Dask: Library for dynamic task sched-
uling (2016). https:// docs. dask. org/ en/ latest/ cite. html. Accessed
Aug 2020

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/714097
https://doi.org/10.1088/1475-7516/2019/08/026
https://doi.org/10.1088/1475-7516/2019/08/026
https://docs.dask.org/en/latest/cite.html

	Interactive analysis notebooks on DESY batch resources
	Abstract
	Introduction
	The NAF: national analysis facility
	DESY Maxwell HPC system
	JupyterHub concepts
	Scheduling: batch vs. interactive

	Jupyter on batch systems
	Network
	Jupyter on HTCondor
	Startup time
	Kerberos integration
	User customization

	Jupyter on SLURM
	Development of the jupyter service
	SLURM partitions
	Dedicated partition for jupyter jobs
	User customization

	Operational experience and current work
	Jupyter kernels
	Maxwell conda environments
	Software on NAF and Belle2 kernels in CVMFS

	DASK Jobqueue on Maxwell
	Blackbox testing for monitoring
	Hold jobs
	Condor jobs from the notebook

	Outlook
	Cloud computing
	Jupyter on Kubernetes

	Conclusions
	References

