
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:9
https://doi.org/10.1007/s41781-020-00050-y

ORIGINAL ARTICLE

Operating an HPC/HTC Cluster with Fully Containerized Jobs Using
HTCondor, Singularity, CephFS and CVMFS

Oliver Freyermuth1  · Peter Wienemann1  · Philip Bechtle1  · Klaus Desch1 

Received: 28 May 2020 / Accepted: 16 December 2020 / Published online: 29 March 2021
© The Author(s) 2021

Abstract
High performance and high throughput computing (HPC/HTC) is challenged by ever increasing demands on the software
stacks and more and more diverging requirements by different research communities. This led to a reassessment of the
operational concept of HPC/HTC clusters at the Physikalisches Institut at the University of Bonn. As a result, the present
HPC/HTC cluster (named BAF2) introduced various conceptual changes compared to conventional clusters. All jobs are
now run in containers and a container-aware resource management system is used which allowed us to switch to a model
without login/head nodes. Furthermore, a modern, feature-rich storage system with powerful interfaces has been deployed.
We describe the design considerations, the implemented functionality and the operational experience gained with this new-
generation setup which turned out to be very successful and well-accepted by its users.

Keywords  Scientific computing · Containers · Distributed file systems · Batch processing · Host management

Introduction

High performance and high throughput computing (HPC/
HTC) is an integral part of scientific progress in many areas
of science. Researchers require more and more computing
and storage resources allowing them to solve ever more com-
plex problems. But just scaling up existing resources is not
sufficient to handle the ever increasing amount of data. New
tools and technologies keep showing up and users are asking
for them. As a result of these continuously emerging new
tools, software stacks on which jobs rely become increas-
ingly complex, data management is done with more and
more sophisticated tools and the demands of users on HPC/
HTC clusters evolve with breathtaking speed [1]. Therefore,
the diversity and complexity of services run by HPC/HTC

cluster operators has increased significantly over time. To
cope with the increased demands, an ongoing trend to con-
solidate different communities and fulfil their requirements
with larger, commonly operated systems is observed [2].

This work describes the commissioning and first oper-
ational experience gained with an HPC/HTC cluster at
the Physikalisches Institut at the University of Bonn. We
call this cluster second generation Bonn Analysis Facility
(BAF2) in the following. Occasionally we compare the setup
of this cluster with the one of its predecessor (BAF1). Both
BAF1 and BAF2 were purchased to perform fundamental
research work in all kinds of physics fields ranging from
high energy physics (HEP), hadron physics, theoretical par-
ticle physics, theoretical condensed matter physics to math-
ematical physics. BAF1 was a rather conventional cluster
whose commissioning started in 2009. It used a TORQUE/
Maui-based resource management system [3] whose jobs
were run directly on its worker nodes, a Lustre distributed
file system [4] without any redundancy (except for RAID
5 disk arrays) for data storage and an OpenAFS file sys-
tem [5] to distribute software which was later supplemented
by CVMFS [6] clients (see “CVMFS” for more informa-
tion on CVMFS). The latter provides software maintained
by CERN and HEP collaborations. BAF1 maintenance was
characterized by a large collection of home-brewed shell
scripts and other makeshift solutions.

 *	 Peter Wienemann
	 peter.wienemann@uni-bonn.de

	 Oliver Freyermuth
	 freyermuth@physik.uni-bonn.de

	 Philip Bechtle
	 bechtle@physik.uni-bonn.de

	 Klaus Desch
	 desch@physik.uni-bonn.de

1	 Physikalisches Institut, Universität Bonn, Nußallee 12,
53115 Bonn, Germany

https://orcid.org/0000-0001-8053-6283
http://orcid.org/0000-0003-4094-6493
https://orcid.org/0000-0003-3479-2221
https://orcid.org/0000-0001-5836-6118
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-020-00050-y&domain=pdf

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 2 of 20

In contrast, BAF2 is adapted to the increasingly varying
demands of the different communities. These requirements
and which solutions we chose to tackle them will be discussed
in “BAF2 Requirements” followed by a short overview of the
new concepts of this cluster in “Cluster Concept”. After this
introduction, we will present the key components of the clus-
ter in “CVMFS”, “Containerization”, “CephFS”, “XRootD”,
“Cluster Management” and “HTCondor” in-depth. The paper
will conclude with a presentation of experiences and observa-
tions collected in the first two years of operation in “Opera-
tional Experience”. On purpose, benchmarks of the system
are not presented. While we performed some benchmarking
of the components before putting the system into operation,
we believe that our results cannot be easily transferred one-
to-one to setups using different hardware or which operate at
different scales. Another aspect which comes into play is that
even refined synthetic benchmarks are quite different from
the constantly evolving load submitted by users. A realistic
simulation of the load caused by a diverse mix of jobs is very
difficult, and even after the two years of operations, new use
cases and workloads appear on a regular basis.

For this reason, we consider the presentation of experi-
ences with the operational system in its entirety under realis-
tic production workloads of users to be more useful and will
present the observed effects in “Operational Experience” in
detail before concluding in “Conclusion”.

BAF2 Requirements

The requirements on BAF2 are as broad as the range of
research fields it serves. The most challenging constraints are
imposed by running analysis jobs of the ATLAS high energy
physics experiment [7]. This experiment uses a huge software
stack which is provided and maintained centrally by a dedi-
cated team on a specific platform (at the time of writing the
migration from Scientific Linux 6 to CentOS 7 is still not fully
completed). Given the rapid development of software of a col-
laboration of O(3000) members, it would be unfeasible for
each collaborating institute to maintain and validate its own
software installation. Therefore, the software is distributed
to all participating institutes via the CVMFS file system [6,
8–10]. We will describe this file system, for which we now
also operate our own server infrastructure, in more detail in
“CVMFS”. The collaboratively maintained software also puts
constraints on the platform of computing resources used for
ATLAS purposes. At present, the software framework only
runs on x86_64 Scientific Linux 6 [11] and CentOS 7 [12]
machines (with Scientific Linux 6 slowly dying out). Given the
age of Scientific Linux 6 and CentOS 7, there is an increasing
tension between ATLAS requirements and other applications
which require a more up-to-date software stack. The same is
true for support of modern hardware components. Luckily,

modern virtualization technology provides an attractive solu-
tion to this constraint. We set up the cluster in such a way that
each user can choose the operating system (OS) in which her/
his jobs should run using modern container technology [13],
and the actual bare metal operating system is never exposed
to the user. The container setup is described in “Containeriza-
tion”. Thanks to the container awareness of the HTCondor
resource management system [14–21] the implementation of
such a setup is straightforward. More details on how we use
HTCondor are given in “HTCondor”.

Another particular requirement for ATLAS data analysis
is providing interfaces for the distributed data management
(DDM) tools deployed in ATLAS [22, 23]. Most importantly,
we are running an XRootD service [24]. This allows automatic
transfers and subscription of datasets with high throughput
to the BAF2 cluster. More information on XRootD is given
in “XRootD”. The datasets shipped to the BAF2 cluster are
finally analyzed by reading the corresponding data files from
a POSIX file system. As POSIX file system, we have chosen
CephFS [25] due to the reasons explained in “CephFS”.

All mentioned resources are deployed and orchestrated
using Foreman [26] and Puppet [27]. We describe this setup
in “Cluster Management”.

As a general objective, free and open source software
(FOSS) tools are used for cluster management and operation
wherever possible. Reasons are not only financial ones but
also our appreciation of the possibility to easily debug, patch
and extend available software. When patching software we
always try to feed the modifications back into the respective
developer community to avoid accumulating large patch sets
over time which could diverge from the upstream project and
make future upgrades more difficult.

Cluster Concept

While the previously operated BAF1 cluster was convention-
ally set up using login nodes and without redundancy of the
cluster services, a different approach was chosen for BAF2
due to the increasing diversity of requirements.

The new workflow from the users’ perspective is that the
jobs are submitted directly from their desktop machines.
On that very machines, not only access to kerberized home
directories maintained and backed up by the central uni-
versity computing centre and mounted via NFS v4.2 [28]
is provided, but the cluster file system CephFS can also be
accessed directly (via NFS v4.2). The users’ jobs can then
either access CephFS with high bandwidth or use HTCon-
dor’s file transfer mechanism to store smaller input and out-
put files in the home directories.

For each job, users can choose the operating system which
should be used, and the cluster workload manager HTCon-
dor takes care to instantiate the corresponding container

Computing and Software for Big Science (2021) 5:9	

1 3

Page 3 of 20  9

behind the scenes. This means that from the users’ point
of view, the ssh command to a login node is replaced by
submission of an interactive job, and a manifold of required
environments can be offered without maintaining separate,
dedicated login nodes.

Additionally, almost all components of the new setup are
designed to provide high availability to ensure continuous
service availability, reduce pressure on operators in case of
failures and to ease upgrade procedures. This is true for the
cluster workload management system HTCondor, for which
two separate central manager virtual machines are operated
as discussed in “HTCondor”, the CernVM file system as
illustrated in “CVMFS”, the cluster file system CephFS
as explained in “CephFS” and also the connectivity to the
distributed data management (DDM) system of the experi-
ments via XRootD as detailed in “XRootD”. The cluster
gateway machine is currently not operated redundantly, but
work is ongoing to merge the gateway functionality into the
redundant main gateways, keeping the network separation
via firewall rules, but gaining redundancy and bandwidth.

As visualized in Fig. 1, the network topology was
designed to clearly separate the cluster network from
the general purpose network in which the users’ desktop
machines are located. The ethernet network used within
the cluster is set up to use private addresses which are then
masqueraded by the cluster gateway while the InfiniBand
network operates with private addresses only and has no sep-
arate outbound connectivity. This separation was part of the
operational security considerations and is mostly invisible

to the users, since an interactive cluster job emulates an ssh
connection to a worker node which HTCondor realizes via
the Connection Broker service as explained in “HTCondor”.

Using this approach, full flexibility is exposed to the
users. The scheduling is based on a fair-share algorithm,
so any user can submit as many jobs as needed and may at
times use the full cluster resources.

We monitor our complete setup (servers, desktops, print-
ers, environmental parameters like temperatures and humid-
ity, etc.) with Zabbix [29]. It collects values from monitored
devices, plots them and notifies operators in case defined
threshold values are reached. An intuitive web user inter-
face allows one to easily configure all relevant monitoring
settings and to define who is allowed to see which systems/
services.

Compared to BAF1 which in its final state comprised of
roughly 800 CPU cores and 370 TB of net storage space the
hardware upgrade to BAF2 is not as large as the conceptual
differences. At the end of 2019, the BAF2 resources com-
prise of 1120 CPU cores (IntelⓇ XeonⓇ CPU E5-2680 v4)
which add up to 2240 virtual CPUs due to enabled simul-
taneous multithreading (SMT). Those cores are distributed
over 40 compute nodes which are equipped with between
128 GB and 1 TB of RAM. The CPUs are supplemented by
one GPU server with four NvidiaⓇ GeForceⓇ GTX 1080 Ti
GPUs with 11 GB of memory each. In total, 580 TB of net
space is available for data storage. The corresponding stor-
age system comprises in total eleven nodes.

CVMFS

The CernVM File System (CVMFS) has been developed by
the European Organization for Nuclear Research (CERN)
to distribute centrally maintained software to data centres
spread around the globe. It is extensively used by high-
energy physics experiments to make their centrally main-
tained software frameworks available on computing clusters
at participating institutions which are run by local operators.
Given the development speed and complexity of the soft-
ware of large collaborations, decentralized maintenance of
the experiment software would be too inefficient and error
prone.

Since software frameworks are quasi-static contents,
CVMFS has been designed as read-only file system. The
read-only design makes aggressive multi-tiered caching—
both on the provider and on the consumer side—relatively
simple. Delivered content can be hosted on standard web
servers and HTTP is chosen as transfer protocol. As a result,
standard web tools can be used to deliver and cache con-
tent and problems with firewall rules are minimized. Even
if the content is delivered via untrusted caches and network
connections, the authenticity and integrity of the delivered

Fig. 1   Schematic overview of the BAF2 network setup. Storage nodes
(osdXYZ, monXYZ) and worker nodes (wnXYZ) are connected to an
InfiniBand and a cluster-specific Ethernet network (BAF network). To
avoid the cluster gateway node (bafgw) with 1 Gbit/s network inter-
faces to become a throughput bottleneck for grid data transfers, the
osdXYZ nodes are also connected to the public Physikalisches Insti-
tut network (PI). The PI network is also the place where additional
infrastructure nodes like CVMFS servers and the HTCondor central
manager nodes are located. This is also the network from which jobs
are submitted (desktopXYZ). The PI network in turn is connected
via a redundant (2 × 10 Gbit/s) gateway setup to the campus network
(BONNET)

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 4 of 20

content is ensured using cryptographic hashes. CVMFS also
offers transparent file (de-)compression and deduplication
which is very valuable e.g. in cases where multiple versions
of software packages are stored. Additionally, catalogues
are created at directory or directory tree level and are put
under version control to always serve a consistent state to
the clients.

Technically, CVMFS is implemented as a POSIX compli-
ant file system using the Linux kernel FUSE module. Unlike
many distributed file systems, it is very efficient in reading
many small files scattered over plenty of directories like it is
typical for storage hosting software frameworks.

CVMFS is structured in “repositories”. The typical mount
point convention for a repository with the name repository
by an organization with the DNS domain name example.
com would be the FQRN (fully qualified repository name) /
cvmfs/repository.example.com.

An example for the data flow in CVMFS is shown in
Fig. 2. The provider runs a “Stratum 0” system which allows
to temporarily access the read-only repositories in read-
write mode by overlaying them with an overlay file system
(AUFS [30] or OverlayFS [31]). All data written is chunked,
compressed, checksummed and deduplicated when commit-
ted and served via a standard HTTP server software. The
“Stratum 1” machines are optional mirrors of the full reposi-
tory content and commonly used to reduce the load on the
“Stratum 0” node and to provide a backup, additional load
balancing and high availability (HA).

The client could directly access the “Stratum” servers (if
public), but for larger sites, it is very common to put Squid
caches [32, 33] in between to significantly reduce the latency
and provide load balancing (LB) and high availability. Addi-
tionally, the clients keep local caches of the catalogues and
the accessed data.

While the current design of CVMFS requires clients to
poll for changes1, future plans for CVMFS involve the addi-
tion of a message brokering system to inform clients or other
subscribers about changes to the repository. On the other
end, a repository gateway allows to scale out the commit
operation to the “Stratum 0” machine to multiple responsible
repository managers, which both distributes the load and
will allow to delegate privileges for committing changes.

We employ CVMFS for two purposes at the University
of Bonn:

–	 Software distribution,
–	 Distribution of extracted container images.

For these two purposes, we run two different repositories
with the respective mount points:

–	 /cvmfs/software.physik.uni-bonn.de
–	 /cvmfs/container.physik.uni-bonn.de

In addition, we use nine CVMFS repositories provided
by CERN both on end user desktop machines and cluster
worker nodes.

The software provided via the local repository extends the
CERN repositories and distribution packages. To prevent an
unnecessary maintenance burden, we only provide software
which matches at least one of the following conditions:

–	 Only for use within the institute (proprietary or licensed
software that allows for storage on a shared file system),

–	 Software maintained by local developers for local work-
ing groups or teaching,

–	 Software not provided by Linux distributions, either not
at all or with an inappropriate version.

Notably, we do not rebuild a full software stack with tools
such as Spack [34] or EasyBuild [35] as is often done in
HPC centres, since most of the software tools used in the
community are provided by the CERN repositories and
rebuilding and revalidating all of them with a different soft-
ware stack is not feasible at the scale of a single data centre.

To ease the selection of software from our local repository
for users, we employ Lmod [36], a Lua [37] based system
for environment modules. Using a hierarchical structure, a

Fig. 2   Schematic overview of the CVMFS data flow. The data origi-
nates from a stratum 0 node. This is mirrored on stratum 1 servers
for load balancing (LB) and high availability (HA) purposes on the
provider side. On the consumer end, the data can be cached by local
Squid servers to reduce latency in addition to client side disk-based
caches. If desired the Squid servers can also be run in a highly avail-
able, load balanced setup

1  This is by default performed every 5 min.

Computing and Software for Big Science (2021) 5:9	

1 3

Page 5 of 20  9

single Lua module is written setting up the software-specific
environment for each version. With one command, users can
list the available software for the container environment they
have chosen and load a software version of their choice.

Lmod takes care of manipulating the environment vari-
ables accordingly and also allows users to “unload” modules
and “reload” another version, cleaning up and adjusting the
environment accordingly. This allows us to expose various
software packages both on the computing cluster and on the
desktop machines without interference with the packages
provided by the Linux distribution.

This approach to distribute software has been well
accepted by the users, so it now also serves as data source
for laptops used within the institute or for teaching pur-
poses. In this case, a fraction of the available repositories is
automatically mirrored to the local disks of the devices to
guarantee operation without network connectivity. Ongo-
ing developments within CVMFS such as the “Shrinkwrap”
tool [38] which allows for partial deduplication in a regular
file system by the usage of hardlinks will improve the space
efficiency of this approach.

Containerization

Virtualization has revolutionized IT operations during the
last 15–20 years. The virtues are isolation of the host and the
guest system, easy preservation and recovery of computing
environments and to a certain extent, a decoupling of the
operations of host and guest systems. With the advent of
hypervisors like VMware [39], Xen [40], KVM [41], Vir-
tualBox [42], etc. virtualization started to conquer comput-
ing centres. But the high degree of isolation which virtual
machines (VMs) offer also comes with a price: A loss of
performance due to additional abstraction layers (hard-
ware emulation). The emulation overhead was reduced by
the introduction of para-virtualization [43]. Thanks to this
approach, it is not necessary anymore to emulate all hard-
ware components. Still, virtualization played a subordinate
role in high-performance and high-throughput computing
until recently. However, in recent years also, virtualization
options with a less strict isolation have become available.
They virtualize on the operating system (OS) level making
use of kernel namespaces [44] and partially also cgroups [45]
to provide so called containers. Well-known representatives
of container software are Jails [46], OpenVZ [47], Solaris
Containers [48], LXC [49] and Docker [50]. While Jails
and Solaris Containers are only available under FreeBSD
and Solaris, respectively, OpenVZ was the first container
implementation for Linux. But like LXC, it remained a niche
product. Containers became really popular with the advent
of Docker. These days they are widely used for quick service
deployment and have become an integral part of the DevOps

tool chain. Despite the fact that containers overcome the
performance issues of VMs, they still lacked acceptance in
the HPC/HTC community. One of the reasons is the need
of running a daemon with root privileges to enable access
to isolation and mounting functionalities not exposed to
unprivileged userspace. This design entails the danger of
privilege escalation vulnerabilities, such as those discovered
both in the early days of Docker (see for example [51, 52]
and also in recent years (e.g. [53]). As a result, adminis-
trators of clusters executing user code were cautious about
exposing this functionality. Therefore, containers were
mostly used for isolation of services and not for compute
jobs. In recent years, kernel development has caught up on
these requirements and with the advent of unprivileged user
namespaces2, most features are now accessible on recent
operating systems.

Following these developments, recently, new container
options have become available, for example Singularity [55],
Charliecloud [56, 57], runC [58] and Podman [59]. Some
of these are specifically designed for HPC/HTC applica-
tions, and they all support unprivileged user namespaces,
even though this may lead to a reduction of the feature set.
Namely, the main limitation is the mounting of arbitrary file
system images, since the involved parts of the kernel have
not been designed for exposure to unprivileged users [60].
On the other hand refraining from mounting images also
reduces the attack surface as the kernel vulnerability CVE-
2016-10208 [61] has shown.

A standardization effort in form of the Open Container
Initiative (OCI) [62] focuses on streamlining the interface
to configure these container runtime implementations and
specifying the layout and format of container images which
can be used with user namespaces. This initiative has been
started by Docker and is a project of the Linux Founda-
tion [63]. “runC” is the reference implementation of the
container runtime for OCI.

At the time of writing, we are offering Debian 10, Sci-
entific Linux 6, CentOS 7, CentOS 8 and Ubuntu 18.04 to
our users. Our container images are built locally based on
official DockerHub images maintained by the upstream dis-
tributions. We have chosen Singularity as container runtime
engine, because HTCondor offers an off-the-shelf interface
to Singularity. In the long run, we plan to switch to a fully
unprivileged OCI-based solution. Singularity is used to pull
the existing images from Docker Hub [64], install updates
and additional packages and add adaptions for local usage.
This includes the creation of directories for bind mounts,
setting up the Lmod environment modules system (see
“CVMFS”), the installation of base packages required for

2  Most of the unprivileged user namespace functionality is available
since kernel 3.8 [54].

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 6 of 20

HEP software, a CephFS quota checking tool, extensions to
the shell profile for more comfortable interactive usage and
GPU support and additional packages requested by local
groups.

The recipes to build the containers are stored in a git
repository and a rebuild is triggered either when the recipe
is changed or a day has passed since the last rebuild. This
ensures that the latest security updates are available. For
building the “sandbox” mode of Singularity is used which
means the “file system” is stored in a flat file structure. This
build artefact is subsequently compressed to a tarball. The
tarballs are then pulled by the CVMFS “Stratum 0” server
(see “CVMFS”) and deployed to CVMFS. The decoupling
of the build service and the CVMFS servers ensures contin-
ued function if one of the services is out of order temporar-
ily, and allows for easy extension to pull user images or other
user-created data to CVMFS.

The images are kept for 30 days such that running jobs
always keep the container they have started with (at present
the maximal job runtime is set to one week—see “HTCon-
dor”). Care has been taken to not make use of Singular-
ity-exclusive functionality as far as possible such that the
recipes can be carried over to a different container build
software in the future.

CephFS

Many distributed file systems suffer from the fact that they
need a central database to store information on the location
of the data objects which might be distributed over many
storage nodes. While such file systems scale quite well in
terms of storage capacity, the metadata handling can become
a problem for the systems. In addition, the database keeping
the metadata can easily become a single point of failure.

Ceph [25] has been designed to overcome these problems.
Instead of storing information on the location of data objects
in a central database, Ceph keeps this information in a so-
called CRUSH map (Controlled Replication Under Scal-
able Hashing) [65]. This approach allows clients to directly
contact storage nodes by algorithmically determining the
location of storage objects without consulting a metadata
server. To ensure good scalability, the CRUSH map ensures
a pseudo-random distribution of data objects. Another meas-
ure to ensure good scalability is the introduction of placement
groups. Keeping track of object placement on a per-object
basis becomes impractical with very large numbers of objects.
Therefore, each object is assigned to a so called placement
group (PG) and each PG is in turn assigned to one or more
storage devices. The number of recommended PGs in a Ceph
cluster depends on the number of storage devices [66], but a
typical number is O(100) per storage device. This number is
a compromise between resource usage (CPU, memory), data

durability and data distribution; the latter should be as even
as possible to maximize the usable space.

Ceph also allows to store multiple replicas of data objects
to cope with data unavailability, e.g. due to hardware fail-
ure or maintenance work. To save storage space, Ceph can
also apply erasure coding (EC) instead of replication. The
simplest form of erasure coding divides data objects into
K = 2 shards and adds M = 1 extra data chunk to ensure
data reconstruction in case one storage device is lost/unavail-
able. This is the equivalent of RAID 5. The distribution of
replicas/shards can be controlled by defining failure domains
in the CRUSH map. Therefore, data redundancy is imple-
mented in a host/rack/room/data centre/region-aware way.
Thanks to Ceph’s built-in data replication/erasure coding,
a Ceph cluster can be run on commodity hardware. A key
point of this is that there are commonly no RAID systems
running below Ceph, but each single disk is handled by one
Ceph object storage device (OSD) daemon and Ceph itself
takes care of recovery in case of disk failures. For an EC
setup, the reconstruction of the stored objects happens on
the OSD servers themselves, which means the clients contact
the primary OSD which in turn collects the K shards from
the other OSDs to reconstruct the object, so downsides of
the erasure coding technique are an amplification of overall
network traffic and increased latency.

In addition to OSD servers, Ceph also requires so-called
monitor (MON) daemons to watch the state of the cluster
and distribute the OSD maps to the clients such that they
are informed about the current CRUSH map to follow. They
also take care of distributing this information and the history
of these maps to the OSD daemons to coordinate potential
recovery activities. These MON daemons are usually run
on separate hardware from the OSD servers. To ensure a
quorum and prevent split-brain scenarios in case the MON
cluster is split into subsets which cannot communicate with
each other, an uneven number of monitor daemons should be
used. They can be combined with manager (MGR) daemons
which monitor the Ceph cluster or execute administrative
tasks at one central entry point.

All these components are designed with high availability
and scalability in mind. For example, a cluster continues to
operate as long as the majority of monitor nodes is online,
and clients perform fail-over without intervention. Failing
OSDs or complete hosts (depending on the CRUSH map)
can be excluded and data can be rebalanced to the remaining
hosts automatically. Increasing or decreasing the number of
nodes does not enforce a downtime, hence the same is true
for maintenance work on the actual hardware or software
upgrades.

The Ceph object storage can be used as foundation for
a multitude of different systems running on top. The most
common ones are the Ceph Object Gateway, a RESTful [67]
gateway to the Ceph object store, Ceph block devices

Computing and Software for Big Science (2021) 5:9	

1 3

Page 7 of 20  9

commonly used as volumes in virtualization clusters, and
the Ceph file system (short CephFS) which is a POSIX-com-
pliant file system running on top of an existing Ceph cluster.

Our setup makes use of the described erasure coding with
K = 4 and M = 2 . This means 33% of the raw disk space
is invested into redundancy. At least seven OSD servers
are required for a robust operation with this configuration
( K +M + 1 ). Otherwise the loss of a single node and host
as failure domain does not allow to fulfil the desired stor-
age constraints leading to an erroneous cluster state. While
this is not a catastrophic event by itself, an additional disk
failure can lead to a read-only state if only K data shards
remain. In addition our tests revealed that the recovery from
such a state likely triggers a chain reaction of problems (e.g.
overloaded servers becoming effectively unavailable, addi-
tional disk failures). Furthermore, all data are compressed
using the Snappy algorithm [68]. This is performed only if
a heuristic check of the first blocks of the object suggests
sufficient compressibility.

In terms of hardware configuration, we started off pro-
duction with seven OSD servers offering 36 HDD slots
each. While initially using two slots for small SSDs to
keep the metadata information for Ceph’s storage backend
BlueStore [69] of 16 HDDs each per server, we have since
migrated to the usage of larger PCIe-connected NVMe
devices [70] for increased I/O operations per second. The
HDDs are mostly of 4 TB size while we use 12 TB disks to
replace broken disks for a fluent upgrading of the cluster.
The NVMe devices which are keeping the metadata for 18
HDDs each in the changed configuration are of 1.6 TB size.

The memory usage by Ceph OSD processes can be quite
substantial, especially during recovery or rebalancing situ-
ations when a failure of the OSD daemon would trigger
additional recovery operations. For this reason, care must
be taken that sufficient memory is available on all Ceph stor-
age nodes. The oldest file servers are equipped with 192 GB
of memory for 36 OSD processes. In current Ceph releases3,
the OSD processes make use of a memory target value to
automatically trim their memory usage (for example, by
reducing cache size). The default target value is 4 GB for an
OSD process which works well in our configuration.

The hardware setup may not be considered as ideal,
since a failure of a single NVMe means that the data of 18
HDDs is effectively lost. However, error reporting and life
time estimates of NVMes for server usage are usually much
more reliable than information on mechanical HDDs, and
the used erasure coding allows for the temporary loss of two
full servers without data loss. In terms of I/O throughput,

the PCIe-NVMes are not heavily loaded even in large scale
data rebalancing situations.

The metadata kept on those NVMe devices in the file
servers are stored by Ceph in form of a RocksDB [71] data-
base and used to save key/value data to find back the objects
stored on the disk. These metadata are notably independent
from the metadata information for the actual Ceph file sys-
tem (which is also organized in a RocksDB), which we store
on NVMe devices within three separate, dedicated nodes in
a three-replica configuration. This separation was made to
ensure the metadata server processes taking care of the file
system metadata are as close as possible to the underlying
storage for maximum performance. These dedicated nodes
are also running the monitor and manager daemons.

Compared to other network file systems, locking in
CephFS is a very granular process. Clients query the file
system metadata server and are granted granular capabili-
ties on files or directories, such as accessing file ownership
information, extended attributes or access to the file contents
in read, write, buffered writing and many more modes. This
usually allows multiple clients to hold capabilities to the
same file as long as the capabilities do not conflict with each
other. In typical HPC / HTC workloads, parallel reading of
files by many clients works without further metadata server
interaction after fetching a capability to read the file once.
Such a capability-based system necessarily relies on the abil-
ity of the metadata server to request capabilities back from
the clients in case of memory pressure or urgent needs by
other clients, and—in the worst case of a client not respond-
ing—evicting the client. This is implemented in CephFS and
care must be taken that clients do not stop network com-
munication for a prolonged time due to system overload to
prevent unwanted eviction which is one of the reasons for
the health checking mechanism described in “HTCondor”.

Network connectivity is established both via classic
1 Gbit/s ethernet for administrative access and InfiniBand
making use of the IP-over-InfiniBand stack. While Remote
Direct Memory Access (RDMA) [72] could technically also
be used with Ceph, it did not work in our setup. The nodes
almost immediately lost communication over the RDMA
channel. It is likely that this is both due to usage of the older
Mellanox OpenFabrics Enterprise Distribution (OFEDⓇ) [73]
stack shipped with CentOS 7 which we have been using and
missing improvements within Ceph which are currently
under development.

For this reason, we configured our machines to use the
IP-over-InfiniBand stack for communication. Increasing the
maximum transmission unit (MTU) to the maximum possi-
ble value and switching the cards to connected mode allows
for sufficient throughput: using InfiniBand FDR (Fourteen
Data Rate) hardware which allows for a maximum through-
put of 56 Gbit/s, we achieve 20 Gbit/s to 25 Gbit/s in a direct,
simplex (uni-directional) test between two nodes using four

3  This is valid starting from version 12.2.9 of the Luminous release
series, 13.2.3 of the Mimic release series, and all stable Nautilus or
newer releases.

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 8 of 20

parallel streams over the IP-over-InfiniBand stack. This total
throughput is maintained in duplex mode which indicates the
limitation is not from the wire, and further improvements
can be expected from an update of the software stack or
future production-ready RDMA support within Ceph.

Our clients make use of the CephFS FUSE client to allow
for timely and safe upgrades to upstream releases, and to
make use of all functionality4. The increased latency of sys-
tem calls slowing down operations such as open, close
and stat are not harmful in a HPC/HTC environment with
a focus on high energy physics data, since data are usually
stored in big files which are only rarely rewritten and often
re-read. As a welcome side effect, bursts of metadata queries
are throttled on the client side which effectively means a
single user can not overload the metadata server with que-
ries anymore—a situation which we regularly faced with the
BAF1 Lustre system.

Additionally, we employ quotas and access control lists
(ACLs). In CephFS, quota support is implemented within
the clients, and quotas are bound to directories. They recur-
sively apply to all data stored within and can be set both for
the consumed space and the number of inodes. The nec-
essary recursive information is stored within the metadata
of CephFS which allows a client to immediately return the
recursive directory size and contained number of inodes.
This is exposed both via extended attributes and the classic
stat syscall, so usual Linux commandline utilities can lev-
erage this information and recursive stat syscalls are not
necessary anymore. The quotas themselves are also stored
within extended attributes and a convenient script to check
the available and used quota easily is provided for all users.

Since cluster file systems in general do not perform well
with many small files, we limit the space for each user to
500 GB and 100,000 inodes by default. The latter is mostly
meant as a “tripwire” to catch misuse of the cluster file sys-
tem for storage of software which is better kept on CVMFS
(see “CVMFS”). Instead, we encourage users to compile on
scratch space and use the HTCondor file transfer mechanism
or store the software either in a tarball on the cluster file sys-
tem or on CVMFS (see “CVMFS”). ACLs in turn are used
to offer group storage and allow sharing of data between
users. In addition users of the ATLAS experiment have sev-
eral hundreds of terabytes of group space which is reserved
for automatic data transfers handled by the distributed data
management (DDM) system (see “XRootD”).

Finally, it must be noted that both Ceph and CephFS
are evolving quickly. CephFS has recently added the abil-
ity to snapshot directory trees and even optionally expose

this functionality to users5, and an implementation of data
deduplication on the RADOS layer is under investigation.

XRootD

XRootD [24] is a modular software framework to provide
a well-scalable and fault-tolerant data access optimized for
performance. It is commonly used to grant access to file-
based data. It also incorporates authentication and authoriza-
tion functionalities and can be easily extended with plugins.

The data transfer protocol is highly efficient also for
small random reads, and multiple streams can be used to
exhaust high bandwidth or high latency links. Native imple-
mentations of the XRootD protocol exist for example in the
analysis software ROOT [74] which allows one to read files
exported via XRootD directly.

XRootD can also handle large distributed data, building
a file system with an hierarchical namespace from several
distributed disks or even whole clusters. For that reason, it
is often used at lightweight sites to replace a distributed file
system. Recent developments like XCache [75] also offer
transparent caching.

In our case, XRootD is used for connectivity to the
Worldwide LHC Computing Grid (WLCG) [76] and to offer
storage for usage by distributed data management (DDM).

There are in general two setups a site could implement
for this use case. One possibility would be to use separate
XRootD servers each exporting their own disk space, and
cluster them together behind an XRootD redirector.

Fig. 3   Schematic overview of the data flow for the XRootD setup in
Bonn. Incoming requests are initially received by the redirector which
redirects requests to a group of file servers (in our case the Ceph OSD
nodes which additionally run CephFS FUSE clients). This way the
load between the file servers is shared and the setup is insensitive to
outages of individual file servers

5  It has been considered to make use of this functionality, but the
CephFS developers are still fixing some caveats.

4  ACL (access control list) and quota support are not yet available in
longterm support distribution kernels.

Computing and Software for Big Science (2021) 5:9	

1 3

Page 9 of 20  9

Since a highly performing distributed filesystem is
already in use at Bonn (see “CephFS”), we have chosen
another model for the implementation. One XRootD server
process is running per OSD server, each exporting the
full CephFS, and a central redirector running on a virtual
machine handles all incoming connections (read and write
requests), checks authentication and authorization and auto-
matically load-balances these to all available data servers as
shown in Fig. 3. The XRootD redirector automatically takes
machine load6 and availability into account such that no sep-
arate high availability setup is necessary. Since the protocol
allows one to redirect the client to the data server directly,
the redirector itself has very low load and does not present
a bottleneck in this configuration. Furthermore, the redirec-
tor node does not need access to the underlying cluster file
system, but is aware that all data servers serve the same file
system and can cache file metadata (e.g. file existence).

In addition to the native XRootD protocol, basic Web-
DAV [77] commands can be handled by the very same infra-
structure. HTTP redirects are used to redirect the client to
the corresponding data server. This allows WebDAV com-
patible clients to store and retrieve data transparently.

For authentication and authorization, X.509 certificates
are used throughout WLCG which are extended by attrib-
utes from the Virtual Organization Membership Service
(VOMS) [78] granting special permissions, such as write
access to ATLAS sites in Germany. XRootD verifies the
X.509 certificates and handles these VOMS extensions via
a dedicated plugin.

In the context of WLCG, it must be noted that the bulk
of all data transfers happens via a Third Party Copy (TPC)
mechanism [79], which requires extensions to the data
transfer protocols to delegate authentication and authori-
zation. This means that a central instance (Rucio) [23] is
instructed to initiate a copy of a file from site A to site B.
This can happen by policy (e.g. requirement of a minimum
number of copies), automatically (by robots or automated
file restoration) or by user request. The central instance, in
turn, makes use of the File Transfer Service (FTS) [80] to
actually perform the copy. The FTS server contacts source
and destination servers and tries both a “push” and “pull”
mechanism to establish a direct copy operation between the
involved servers. A fallback to streaming the data is pos-
sible, but does not scale to the required bandwidths. For
these “push” and “pull” techniques, the FTS server needs
to delegate authentication and authorization to the servers.

This is achieved using various techniques. Currently X.509
proxy certificates are commonly used for XRootD while for
WebDAV so-called macaroons7 [81] are employed. Devel-
opments to move to a token-based authentication within
WLCG are ongoing and some communities have already
switched to a workflow based on SciTokens [82–86].

Cluster Management

We deploy and run all Linux machines—thus not only the
BAF2 cluster—in our institute using Puppet [27] and Fore-
man [26]. In total, these are more than 350 nodes at the time
of writing, some of which are bare metal installations and
others are virtual machines.

Puppet is a configuration management tool that ensures
that all nodes are in the desired state as specified by so-called
manifests which in turn specify required system resources.
Thanks to this abstraction layer it is rather easy to run differ-
ent Linux flavours (e.g. representatives of the Debian and the
Red Hat family) using the same language. Puppet takes care
of a large part of the translation work to convert those resource
statements into specific flavour-dependent commands to exe-
cute. Those manifests are written using a declarative language.
Manifests can be bundled in modules which typically combine
all the required functionality for running a certain service, e.g.
installing, configuring, enabling and starting an NTP service.

The Puppet architecture follows a client–server approach
where Puppet agents (clients) communicate with a Puppet
master (server) or vice versa. A Puppet agent is a service
required to run on all nodes under Puppet control. It is usu-
ally executed periodically to ensure the system state matches
the desired state retrieved from the server which interprets the
manifests and compiles a client-specific catalogue. Further-
more, the server collects machine-specific, extensible facts
reported by the Puppet agent, which can in turn be used to
define resources for the very same or other clients dynami-
cally. One example for this would be automatic installation
of RAID controller tools if the corresponding hardware is
detected. The communication is secured using X.509 certifi-
cates which are typically issued by a Puppet certificate author-
ity (CA)8. If communication to the server is interrupted, a
cached copy of the catalogue can be used.

Due to the widespread use of Puppet a huge amount of
Puppet modules has been developed by the Puppet user
community. Checking Puppet Forge [87] is a good starting
point if one wants to “puppetize” a service. From the rich
repertoire of available modules, we have collected more
than 100 Puppet modules used by us on GitHub (https://​
github.​com/​unibo​nn). Most of those repositories are forks.

6  The load estimate is based on the most loaded network interface’s
load, CPU load, system load average, and the fraction of available
memory.

7  Maracoons are bearer tokens encapsulating limited capabilities and
with expiration time.
8  It is also possible to use an external CA.

https://github.com/unibonn
https://github.com/unibonn

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 10 of 20

Only in rare cases, we were forced to develop our own mod-
ule because we did not find anything suitable on the market.
If we found a well-designed module which lacked some
functionality, we expanded it and tried to bring the patch
into the upstream code. Although this typically means some
small extra effort, we consider it worth the work in the long
run since it simplifies synchronizing our fork with updates
in the upstream code.

We keep track of all those modules using the Puppet
environment and module deployment tool r10k [88].
It allows to specify which modules one wants to use for
which Puppet environments. In addition the branch or the
commit to be used can be specified.

Foreman is a host management tool. It allows auto-
matic installations, configuration management, power state
switching and similar actions required by host operators.
Apart from bare metal installations, it can also deploy vir-
tual machines. To accomplish this, it provides interfaces
to libvirt [89], OpenStack [90], oVirt [91], VMware [39],
Amazon Elastic Compute Cloud [92], Google Compute
Engine [93] and more. If desired, Foreman can also handle
DNS and DHCP entries, manage Puppet masters and the
Puppet public key infrastructure. In addition to its base
functionality, there are numerous plugins available [94].
They add support for more compute resource technologies
(e.g. Docker), configuration management systems different
from Puppet, provisioning extensions (e.g. Metal-as-a-Ser-
vice), integration with monitoring or IP address manage-
ment systems, and many more functionalities.

Authorization is another important feature of Fore-
man. It allows to define fine-grained permissions who can
access, modify or delete which resources.

Foreman’s web interface provides an overview of the
Puppet health status of the Foreman managed hosts. It is
easy to spot hosts where Puppet runs have failed. In case
of failures one can nicely trace back the source of the prob-
lem and when it showed up for the first time. Foreman also
offers auditing, allowing one to see who performed which
change when. These features are very helpful for debug-
ging purposes.

In addition to its web interface, Foreman also provides a
commandline tool called hammer [95]. This is convenient
for automized tasks or bulk changes.

Our Puppet module structure is based on the roles and
profiles method [96, 97] although we do not follow it
strictly due to the additional availability of Foreman. One
difference is the absence of roles in our setup. They are
basically substituted by Foreman host groups. Profiles use
other modules to configure services in the desired way. A
file server profile could e.g. set up the file service and in
addition open the required firewall ports. If services have
to be configured differently for different host types, we
introduce Puppet class parameters for the corresponding

profiles. Those parameters are set in Foreman for specific
host groups, individual hosts or depending upon facts
reported by the Puppet agent, such as specific hardware
models. In order to avoid too crowded Foreman class list-
ings, we have set up a filter which ensures that only profile
classes are visible in Foreman.

HTCondor

HTCondor [14–21] is a workload management system
optimized for high throughput computing. It has been
formerly known as Condor from 1988 to 2012. Users
describe their workload using a job description language
and submit it to the workload management system on their
submission node which are in our case centrally managed
Linux desktop machines. These in turn announce the
workload to the available cluster resources, and a match-
making procedure takes place which fits the requested with
the available resources.

The advantages of HTCondor as compared to other
workload management systems such as TORQUE/Maui
or Slurm [98, 99] are the very flexible and extensible
job description language and the ClassAd [100] mecha-
nism. All resources, requests or constraints are expressed
as ClassAds, which are a set of uniquely named expres-
sions that allow for evaluation, comparison and merging.
They are the foundation for the matchmaking procedure
and allow for a flexible introduction of custom resources
and policies. Additionally, HTCondor offers support for
containerized jobs, GPU resources, spilling over jobs to
external clusters or even cloud resources and complex job
dependencies which can be expressed as a directed acyclic
graph, which is actively employed by our users to describe
complex job pipelines and expose their dependencies to
the scheduler.

Our choice of HTCondor over the other available solu-
tions was motivated by the high flexibility and the native
support for containerized jobs. One major requirement of
existing users is to run their software in the very same
environment used by their collaboration, which may be an
outdated operating system. The decoupling of actual oper-
ating system and job runtime environment is described in
more detail in “Containerization”.

We have configured all worker nodes to be completely
isolated in a private network hidden behind a network
address translation (NAT) gateway, and only be accessible
via HTCondor. This is facilitated by mediating connec-
tions via an HTCondor Connection Broker (CCB) running
on the HTCondor Central Manager machines operating as
redundant pair within the desktop network. Since HTCon-
dor also allows for interactive jobs including forwarding of
X11 by leveraging SSH even if a private cluster network

Computing and Software for Big Science (2021) 5:9	

1 3

Page 11 of 20  9

is used, users can access the worker nodes in a controlled
way with defined resource constraints.

Additionally, we have configured HTCondor to enforce
a container environment to be used for each job, such
that the user never accesses the bare metal machine. This
increases the portability of jobs, and they could be exe-
cuted on a different cluster if needed unless direct access
to the cluster file system or other local resources is explic-
itly required. The user can choose between different, cen-
trally maintained containers by adding a corresponding
expression to the job ClassAd.

Due to the ClassAd functionality, a major difference
between HTCondor and other workload management sys-
tems is that HTCondor does normally not have a concept of
different job queues with varying resource constraints, but
shares the resources fairly (or based on self-defined con-
straints) with dynamic partitioning.

This comes with several advantages over the approach
employing fixed queues:

1.	 Resource allocation for jobs of different classes is only
limited by the physical availability of resources, i.e. all
resources fulfilling specified requirements are available
to any job (unless administratively imposed constraints
are applied),

2.	 Users are forced to specify their required resources in a
more fine-grained way than by choosing a queue, which
may be slightly mismatched to the actual requirements,

3.	 Run priorities can be handled more fairly, since they
are not based on the queue, but on the actual resource
reservation and usage.

All these advantages lead to a higher throughput and fairer
scheduling. However, the flexible approach also leads to
several operational problems as compared to queue based
schedulers:

1.	 Jobs needing different resources than the bulk of jobs
might have to wait for a longer time until matching
resources are available,

2.	 Interactive resources may be used up completely.

HTCondor offers a DEFRAG​ daemon which can be config-
ured to regularly drain random machines fully or partially
to overcome parts of these issues. This naturally reduces the
overall throughput of the system slightly.

In our case, we are not employing the DEFRAG​ dae-
mon yet9, but have overcome all of these problems in a

satisfactory way by implementing a custom health check and
machine reboot automation system. Additionally, the custom
implementation also detects misbehaving or inefficient jobs
and protects the compute nodes from entering an unhealthy
system state by preventing that further jobs are sent to an
unhealthy machine.

The custom health checking script which is designed to
be extremely lightweight in terms of resource consump-
tion is executed by the STARTD which is the HTCondor
daemon handling the compute jobs on the compute node
every minute. It produces expressions describing the cur-
rent health state both in a simple logic information that can
be consumed programmatically and in human and machine
readable, detailed form. These are automatically merged
into the configuration of the STARTD and become part of
the machine’s ClassAds, and are not only referenced in the
expression which defines whether new jobs are accepted by
the node, but are also visible to the HTCondor central man-
ager nodes and hence can be monitored easily by both users
and monitoring systems. Due to the low execution period,
the script can actually throttle the job start rate, for example
in case the I/O to the local hard drive of the worker node is
overloaded by too many scratch intensive jobs starting in
parallel.

The list of checks performed by the script is easily exten-
sible. As of now, a node is set unhealthy if at least one of the
following conditions is met:

–	 The HTCondor pool directory (scratch space for jobs)
either does not exist, is not writable or has insufficient
free space;

–	 The cluster file system CephFS is either not accessible or
not writable;

–	 Number of processes running in D state (as a fraction of
the machine’s CPU cores) exceeds a threshold;

–	 Swap space almost completely exhausted;
–	 High I/O wait CPU percentage;
–	 One or more CVMFS repositories are not accessible;
–	 System uptime is too small;
–	 Speed of network interface too low (has reduced to less

than 1 Gbit/s due to a hardware issue);
–	 Kernel command line incorrect (allows administrative

reconfiguration).

In addition to these checks, the overall execution time of the
script is taken into account and if considered too high, the
machine may be marked as unhealthy. Further external input
for the script is provided by:

–	 Administratively configured health state deployed via
Puppet;

–	 Reboot of node needed, deployed via automated reboot
script.

9  The DEFRAG​ daemon might still be useful for jobs requiring a
significant fraction of a node’s resources when all nodes are used by
single-core jobs.

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 12 of 20

Furthermore, to prevent flapping between healthy and
unhealthy states, the script only marks a machine as healthy
again if it has been consistently found healthy for a mini-
mum time. This prevents issues for example in case of fluc-
tuating I/O patterns.

If any of these checks fails for several minutes, the
information is propagated to the central manager and it is

recorded by our monitoring system. An example for the sys-
tem reacting to an I/O overload triggered by jobs is shown in
Fig. 4. Quickly, the cluster was filled by jobs heavily over-
loading the local scratch disks, leading to a state of high I/O
wait CPU for all nodes, as visible in Fig. 5. The healthcheck
marked the nodes as unhealthy as shown in Fig. 6 prevent-
ing more inefficient I/O overload which would also affect
other running jobs (potentially including interactive jobs) on
these worker nodes. Of course, the resources are marked as
unavailable during that period, so user education is neces-
sary to prevent the issues in the first place. Still, the health
check prevents immediate damage which could be caused
e.g. by nodes becoming completely unresponsive and losing
network file system access in the process.

In addition to the health check system, a cron job exe-
cuted once per hour checks whether the machine is in need
of a reboot. If this is the case, a reboot marker file is created
which contains the reboot reasons for consumption by the
health check script. The eventual reboot reasons are also
added to the machine ClassAd.

Actual indicators for a necessary reboot may not only be
updated system components which require a reboot (such
as the kernel), but also a machine is marked for reboot after
a maximum uptime (30 days in our case) has been reached.

To prevent draining all nodes in parallel, a pseudo ran-
dom offset is assigned to each node based on the FQDN
of the machine and the health check script only marks the
node as “unhealthy” once a minimum time and the offset has
passed after the initial reboot marking. With this approach,
the times when the machines start to be drained are spread
out across a larger time scale (10 days in our case) than the
maximum expected job runtime (seven days in our case) to
maximize the throughput of the cluster.

Fig. 4   Health states of the various worker nodes. The states are
cumulated and any node may enter multiple health states, so the total
can exceed the number of worker nodes. Dominating colours are
bright yellow (administratively marked out), dark yellow (too high
I/O wait CPU), grey (the node was unhealthy recently), cyan (drain-
ing for reboot) and purple (many processes in D state)

Fig. 5   The CPU utilization across all worker nodes (percentages of
logical core usage for each node are stacked, thus summing up to
(number of nodes) x 100%). The most prominent colours are green
for “idle” load, red for system time, yellow for I/O wait CPU and
purple for “nice” CPU time. All user jobs are re-niced so their actual
compute time is part of the “nice” region

Fig. 6   Number of worker nodes and their status as function of time.
The red line corresponds to the total number of worker nodes, the
blue line is the number of nodes with StartJobs = True, the
green line shows the number of healthy worker nodes and purple dis-
plays the number of worker nodes that are marked for a reboot (inde-
pendent of actual draining for reboot)

Computing and Software for Big Science (2021) 5:9	

1 3

Page 13 of 20  9

Whenever a machine marked for reboot is empty from
running jobs during cron job execution, it is immediately
removed from the HTCondor cluster and marked for an
automatic reboot, even if the random offset time has not
yet passed. This allows the automated system to reboot all
machines automatically when there are no jobs running
instead of enforcing a draining of the nodes at a later time
when this may lead to blocking of needed resources. This
effect is also visible in Fig. 6 which shows that the number
of total machines is temporarily reduced when a machine is
removed from the cluster and rebooted. At any time, a reboot
can be prevented administratively.

Using this approach, automatic updates are not an issue
anymore for the compute nodes and it is feasible to comply
to requirements by computer emergency response teams
(CERTs). Furthermore, in case, hardware maintenance needs
to be performed, a node can be drained administratively.
Both administrators and users can always query the status of
the machines and, if needed, planned reboots of all machines
in a human-readable format.

Additionally, the regular reboots automatically lead to
a defragmentation of a small fraction of the nodes, hence
operating not unlike the HTCondor DEFRAG​ daemon, in a
less deterministic, but less resource consuming way.

Furthermore, we have reserved some nodes (or parts of
them) exclusively for interactive jobs, such that these can
usually be started within a few seconds after a request by the
user. This allows to use interactive jobs like “login nodes”,
but with the full flexibility of choosing one of the centrally
managed containers, and the possibility to request and use
a defined set of resources, reducing interference with other
interactive users.

In terms of actual machine configuration, all compute
nodes have 128 GB of swap space on a local, spinning disk,
where also the scratch space for user jobs resides. HTCondor
is configured to employ cgroups v1 [45] to limit resource
usage to what was requested by the user. This limits the CPU
share and maximum resident memory. This leads to some
special features:

1.	 In case a job spawns more threads and no other jobs are
running on the node, it is allowed to access all cores on
the node.

2.	 In case a job tries to allocate more memory than it has
reserved, it can spill over to swap. It is only killed when
also the swap space is filled up.

Especially the last of these points may come as a surprise.
However, we actually observed users running jobs with
short-term peaks in memory usage, or significant amounts
of dead / rarely used allocated memory that can be easily
spilt to swap and there is almost no gain from keeping it
resident10. By offering the swap space, there is effectively

more memory available for the system page cache which
increases throughput. For jobs which allocate and never use
their memory at all, we utilize zswap [101] to automatically
compress pages and still keep them in memory before swap-
ping them out to disk.

In case a misbehaving job exceeds the reservation drasti-
cally, the health check system will automatically block the
node due to the high I/O wait CPU percentage. The same is
true if swap is almost full. It also allows to offer job suspen-
sion functionality in the future, both in case jobs cause nodes
to become unhealthy and if higher priority jobs arrive.

In addition to the cgroup limit on CPU and memory, disk
space on the scratch disk is requested by users and accounted
for by HTCondor, but we do not enforce this limit yet.

Another special part of our configuration is that we
have enabled simultaneous multithreading (SMT) on all
worker nodes and fully expose all logical cores as possible
resources. This choice was made since the job workloads
are very diverse. A significant fraction of jobs waits for data
from storage or memory rather than for CPU cycles. The
additional capacity to store processor states due to SMT
allows better CPU usage efficiency. Cores assigned to a
cgroup specify a share of the available cores and are not
explicitly pinned. In addition, the usage of cgroups allows
jobs to use more cores than requested if they would be idle
otherwise. For this reason, we expect that thanks to the
diversity jobs will on average profit both from the availabil-
ity of SMT and also from exposing the logical cores as slots.

Finally, it must also be noted that there are still several
areas where HTCondor is not yet perfect. One example for
this is the handling of interactive jobs in containers. This
was realized by starting an SSH daemon inside the container
with user privileges, and then connecting to that from out-
side. This requires several tricks to work in an environment
with enabled security mechanisms such as SELinux [102],

Fig. 7   Number of users with submitted jobs versus time. The dark
green line displays the average while the light green and the light
pink lines show the minimum and maximum values, respectively

10  This commonly happens when code with memory leaks or hoards
is running, or programs written in languages employing garbage col-
lection are executed.

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 14 of 20

and means that all containers need to ship an SSH daemon.
Recent versions of HTCondor (starting with release 8.8.0)
have changed from this model to the usage of nsenter
which is a tool used to attach a new process to running
namespaces. This allows to run the SSH daemon outside of
the container, but still enter the very same environment. At
the time of writing, there are still open issues with the imple-
mentation of the new approach, but it is the most promising
solution which will work with all container runtimes.

Operational Experience

We have run the setup described in the previous sections for
almost two years now. Using this cluster meant a breaking
change for the users. Compared to the BAF1 setup they not
only had to learn how to use a new batch system but—due to
the absence of login nodes—also had to adopt a new work-
flow. The changes were quickly and well accepted. Out of
currently more than 130 registered users a fraction (with
varying composition) of typically 10–15% have jobs in the
queue (including interactive ones—see Fig. 7).

Figure 8 shows the number of submitted jobs versus time.
The submitted jobs are split into three different categories

depending on the job status: running (red), idle (green) and
held (blue). In particular, the number of idle jobs is subject to
large variations over time. Occasionally, there are more than
30,000 jobs waiting for free resources. This has to be related
to the maximal number of available slots which is given by the
number of virtual CPUs in the cluster worker nodes. Due to acti-
vated simultaneous multithreading (SMT), this number amounts
to 2240 for the currently available cluster hardware. As a con-
sequence the number of running jobs is only visible as a thin
red area at the bottom of the plot. Held jobs usually represent a
tiny fraction of all jobs. This state indicates a problem with the
affected jobs. For our setup, most jobs in hold state have expired
Kerberos tickets preventing access to the home directory. Unfor-
tunately, the present version of HTCondor (8.8.7) does not offer
convenient Kerberos ticket handling. It, therefore, falls on the
user to take care that (s)he always keeps a valid Kerberos ticket
granting ticket on the submit node of her/his jobs.

Figure 9 gives an idea of the average cluster utilization,
The red entries show the number of claimed CPU cores
and the green area denotes unclaimed compute resources.
Both information is stacked such that they always sum up
to the same number of CPU cores (2240) except for periods
when nodes are taken out of the cluster for maintenance. It
is apparent that even during times with tens of thousands
of pending jobs, the compute resources are not fully used.
This is partly since we reserved approximately 100 virtual
CPUs for interactive jobs to ensure a quick availability of
the requested container environment for interactive work.
Second, there are often some “unhealthy” nodes for various
reasons (see below). Such nodes are not accepting new jobs
until they recover. Another reason is that limitations by other
cluster resources like e.g. memory prevent full exploitation
of all CPU resources. Figure 10 sheds some light on the
memory utilization of the cluster. While in particular in the
first third of the displayed interval the available memory
has a very high average utilization, memory often cannot be
fully utilized although it is limiting the usage of computing

Fig. 8   Number of running, held and idle jobs versus time. The three
categories are stacked

Fig. 9   Number of claimed (red) and unclaimed (green) CPU cores
versus time. Both curves are stacked such that they always sum up to
the same total number of logical CPU cores (2240), unless there are
nodes taken offline

Fig. 10   Amount of claimed (red) and unclaimed (green) memory ver-
sus time. Both plots are stacked such that the sum always amounts to
the total amount of memory in all worker nodes. The clearly visible
steps correspond to performed RAM upgrades

Computing and Software for Big Science (2021) 5:9	

1 3

Page 15 of 20  9

resources. This happens when the way the memory is dis-
tributed over the worker nodes does not match sufficiently
well the memory requirements of the respective jobs on
those nodes. This effect is particularly pronounced if there
are many multi-core jobs requesting a significant fraction of
the total available RAM per worker node. The effect should
be kept in mind when evaluating cluster utilization.

This discussion also underlines that it is important that users
specify their needed resources reliably. Otherwise unnecessarily
large amounts of cluster resources become “unusable”. How
well the users’ estimated resources match their jobs’ actual
usage is displayed in Fig. 11 for memory as an example. Obvi-
ously the requested memory is on average roughly a factor of
two larger than the actual usage. This is not an alarming disa-
greement but still there is room for improvement. Getting better
estimates requires monitoring the situation, making users aware
of the problem and teaching them how to determine reliable
estimates. This is quite personnel-intensive work.

A possible way to reduce the amount of those “unusable”
cluster resource remnants which do not fit the requirements
of the available jobs at a given time is to backfill the cluster

with better suiting jobs. This is a topic which we are cur-
rently investigating.

The same phenomenon is apparent when looking at the
CPU usage and I/O to the storage system over time. Fig-
ure 12 shows the CPU load over a busy week. At times, the
cluster was used up to almost 100%, with a small fraction
being reserved for interactive usage. However, before this
high CPU load period, the jobs were apparently bound
by I/O from the cluster file system as becomes apparent
when comparing the data with Fig. 1311. The outgoing
traffic from the Ceph OSD servers usually saturates at
about 5 GB/s. It must be taken into account that the traffic
partially goes to other file servers for reconstruction of the

Fig. 11   Total requested (red) and used (green) memory of all jobs as
function of time

Fig. 12   Varying CPU load of all worker nodes over a week of inten-
sive usage. The most prominent colours are green for “idle” load, red
for system time, yellow for I/O wait CPU and purple for “nice” CPU
time. All user jobs are re-niced so their actual compute time is part of
the “nice” region

Fig. 13   Outgoing network traffic from the Ceph OSD nodes over a
week of intensive usage. The traffic through the InfiniBand devices of
the nodes is stacked in this visualization

Fig. 14   Number of worker nodes and their status as function of
time. The red line denotes the total number of worker nodes, blue
is the number of nodes with StartJobs = True, green shows
the number of healthy worker nodes and purple displays the number
of worker nodes that are marked for a reboot (independent of actual
draining for reboot)

11  CPU I/O wait from accessing CephFS is usually negligible in
these cases both since CPU time is actively spent polling the net-
work by the CephFS FUSE client and since other CPU tasks are
often available to take over the waiting CPU cores. Actual I/O wait is
mainly visible on the OSD nodes themselves.

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 16 of 20

erasure coded objects from the different shards, and is not
purely client traffic (see also “CephFS”). Furthermore, it
might happen that the 5 GB/s can not be achieved due to
the clients performing too many small random reads.

Figure 14 shows the status of worker nodes for a period
of three months. There are two noticeable structures in
this plot. First, it is apparent that typically every 20–30
days worker nodes are drained for reboots. This time pat-
tern is mostly imposed by the release of security patches
requiring reboots. The second interesting item is the health
status evolution. Very often, there are at least a few nodes
unhealthy. The underlying reasons why nodes are flagged
unhealthy are broken down in Fig. 15. There is no promi-
nent single cause but a plethora of possible events, like

e.g. CPU I/O wait too high, swap usage too high, job work-
ing directories too full, too many D-state processes, etc.
Those frequent issues clearly show the need for automatic
handling of such events. Improving the situation, again,
requires teaching users.

The new freedom to choose the job runtime environment
is particularly appreciated since it reduces some of the con-
tinuous tension of BAF1. Figure 16 shows the number of
chosen container OSes as a function of time. It is obvious
that BAF2 users do exploit the variety of offered OSes. The
chosen OS is highly correlated with the community the users
are associated with. This is no surprise since most com-
munities concentrate on a specific computing platform and
provide all needed tools for this environment. Offering a
wider range of OSes thus simplifies cross-community usage
of computing resources. Other aspects which come into play
when choosing the operation system are:

–	 Is software used whose vendor only supports specific
platforms?

–	 Is an operating system with long-term support needed?
–	 Does the used software framework rely on new software

tools which are not available on older, long-term support
platforms?

–	 Which operating system is used on desktop computers?

The GPU node was added to BAF2 later on while the rest
of the cluster was already in production. Unfortunately inte-
grating the GPUs turned out to be cumbersome. The reason
is on the one hand that we have to use an HTCondor version
from the 8.8 release series to get up-to-date CUDA support.
On the other hand, the upstream switch to nsenter caused
issues with interactive containerized jobs in this release
series which have only been partially resolved up to version
8.8.7 (see discussion in “HTCondor”). Fortunately, it was
possible to bypass those issues for interactive jobs by using
a series of workarounds, notably, a separate script submitted

Fig. 15   Number of unhealthy worker nodes as a function of time. The
reason why they are unhealthy is colour-coded (see legend)

Fig. 16   Number of chosen container OSes versus time. Debian 10
and CentOS 8 were only added at the end of the displayed interval
and are thus hardly used yet

Fig. 17   Outgoing traffic from Ceph OSD servers versus time

Computing and Software for Big Science (2021) 5:9	

1 3

Page 17 of 20  9

as a batch job to which the user connects to emulate an inter-
active job, a tool to create a pseudoterminal within the job
environment and restoration of the shell environment within
the job. Hopefully this will become obsolete with one of the
next HTCondor releases.

Figure 17 shows the outgoing traffic of all Ceph OSD
servers during heavy read I/O load. The network traffic
amplification due to erasure coding (see “CephFS”) has to
be taken into account, but still, the achieved throughput is
O(5GB∕s) when large files are processed sequentially. It is
expected that this bandwidth can be scaled up by increasing
the number of OSD servers and optimizing the bandwidth of

the utilized IP-over-InfiniBand stack further, but already at
this point the cluster file system is not the limiting resource
for most of the BAF2 jobs.

The performance of metadata queries / system calls is
not monitored yet, since an increased latency is taken for
granted by employing the Ceph FUSE client and not limiting
throughput for the compute jobs.

Table 1 in combination with Fig. 18 nicely illustrates
the power of CVMFS for software and (unpackaged) con-
tainer image distribution. At the end of the year 2019,
we stored in total more than 23 million files summing up
to 1198 GB of (uncompressed) software and container
images. Thanks to the deduplication and compression
features of CVMFS, this requires less than 100 GB of
disk space on the CVMFS stratum zero and the stratum
one servers. Larger steps in Fig. 18 usually happen if
completely new software or container images are added
whereas adding new releases or updated images of already
available software causes hardly visible increases in disk
requirements.

In addition to self-provided and self-maintained software
in our local CVMFS repositories, we also provide 24 TB
of software from nine CERN-hosted CVMFS repositories.
Many of our users crucially rely on software from the latter
repositories. Given the high frequency of changes in the used
software stack, a conventional, self-maintained software dis-
tribution via a local storage system would be unfeasible. The
importance of CVMFS for the cluster users is reflected by
the traffic on our Squid servers which cache accesses to both
local and remote stratum one servers as shown in Fig. 19.

Clearly, the incoming traffic is negligible as compared
to the outgoing traffic. The transferred outgoing data rate
amounts to O(1MB∕s) with occasional spikes being an
order of magnitude larger. This can be explained by check-
ing the average HTTP client request rate of O (10Hz) with
similar occasional spikes: the CVMFS client of each node
checks the catalogues of all repositories every 5 min for
updates, and the Squid servers reduce these many rand-
omized requests to a single outgoing request each 5 min.

Table 1   Usage statistics for the CVMFS repositories software.
physik.uni-bonn.de and container.physik.uni-bonn.de
on December 31, 2019. The given sizes are uncompressed file sizes

Fully qualified repository name Size/GB # files

software.physik.uni-bonn.de 248 3,238,748
container.physik.uni-bonn.de 950 20,014,623
Total 1198 23,253,371

Fig. 18   Used disk space on the CVMFS stratum zero (red) and stra-
tum one servers (green and blue). The temporary discrepancies in
space usage are caused by slightly delayed object expiration on the
stratum one servers, storage of software packages before deployment
on the stratum zero scratch space, and orphaned objects caused by
bug temporarily affecting our setup

Fig. 19   Network throughput for the first Squid server as function of
time. The blue region shows the outgoing traffic, the green region the
incoming traffic

Fig. 20   Cache hit fraction (for cached data in bytes) for the first Squid
server as function of time. The colours show different averaging inter-
vals: 1 min (pink), 5 min (green), 60 min (blue)

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 18 of 20

Furthermore, the Squid servers are also used to cache oper-
ating system package updates for all servers and desktop
machines, so a fraction of the regular requests is caused by
checking for system updates, and by the Frontier system [33]
used as distributed database caching system for compute
jobs in the HEP community. The latter is the main cause for
occasional major spikes in HTTP request rates.

The value of the Squid servers can additionally be seen in
Fig. 20 which illustrates that on average, 95% of the amount
of data requested from the Squid servers can be served from
the cache contents (cache hits).

Conclusion

The implementation and operation of the described BAF2
cluster has come with significant changes both to the choice
of technologies and to user workflows as compared to its
predecessor, breaking with the conventional concept of login
nodes and turning each desktop machine into a submit node.
Since it is difficult to simulate the interplay of the individ-
ual cluster components under realistic conditions in a test
environment, we only present performance measurements
from the production era here. Judging from approximately
two years of operational experience and user feedback, the
chosen approach turned out to be powerful and flexible. The
described design allows us to fulfil both our present users’
requirements and solve operational challenges in a much
better way than conventional concepts could do. It may be
considered as a successful model to satisfy the constantly
evolving needs of increasingly heterogeneous user groups on
a shared computing cluster, at the same time minimizing the
operational effort to cover the existing demands and adapt
to new requirements.

We hope to overcome some remaining minor issues (e.g.
removal of the workarounds for interactive, containerized
usage of GPUs, more user-friendly handling of Kerberos
ticket renewal) in the near future. In addition, we will soon
add the possibility for jobs using a message passing interface
(MPI) [103] implementation to use the resources of multiple
hosts for highly parallel computing tasks, and we have plans
to allow users to run Jupyter [104] jobs on BAF2 resources
via JupyterHub [105] and explore novel abstractions such
as HTMap [106]. It would also be desirable to extend our
monitoring to offer information about correlations.

Compared to its predecessor, BAF2 uses many more
standardized, widespread tools integrated into a more
modular operating concept. This allows us to perform fre-
quent micro-updates of the deployed software rather than
occasional huge changes. As a result, we are closer to the

respective development communities and can provide code
contributions or valuable feedback on new features with
short feedback loops. Last but not least, this community
involvement also means more joyful work.

The modular and standardized components enable us to
react more quickly to new developments and demands. In
addition, BAF2 runs more smoothly with less maintenance
work than its predecessor. So in summary, BAF2 is a suc-
cess story.

Acknowledgements  We would like to thank the German Research
Foundation (DFG) who provided funding under grant number INST
217/835-1 FUGG to build up the described infrastructure. We are
indebted to Anjishnu Bandyopadhyay, Frank Frommberger, Michael
Hübner, Katrin Kohl, Helmut Kortmann, Oliver Ricken, Christian Wes-
sel and Andreas Wißkirchen for their help during the commissioning
and operation of the described setup. In addition, we are grateful to Jan
Stillings and the University Computing Centre (Hochschulrechenzen-
trum)—in particular the network department, Achim Elsner and Martin
Ragg—for their support.

Funding  Open Access funding enabled and organized by Projekt
DEAL. The hardware used in this study was purchased using a grant
by the German Research Foundation (DFG) (grant number INST
217/835-1 FUGG). The personnel was financed by the University of
Bonn.

Data Availability Statement  All retained data generated and ana-
lysed during this study are included in the figures of this published
article. Data which go beyond the aggregate information shown
in the figures of this article are not retained. Data which allow
to infer information about individual users cannot be provided on
legal grounds.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

Code availability  Most of the employed software to run the described
setup is generally available as open source.

Open Access  This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

	 1.	 Albrecht J, Alves AA, Amadio G, Andronico G, Anh-Ky N,
Aphecetche L, Apostolakis J, Asai M, Atzori L et al (2019)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Computing and Software for Big Science (2021) 5:9	

1 3

Page 19 of 20  9

A roadmap for HEP software and computing R&D for the
2020s. Comput Softw Big Sci 3:1. https://​doi.​org/​10.​1007/​
s41781-​018-​0018-8

	 2.	 Huerta EA, Haas R, Jha S, Neubauer M, Katz DS (2019) Sup-
porting high-performance and high-throughput computing for
experimental science. Comput Softw Big Sci 3:1. https://​doi.​org/​
10.​1007/​s41781-​019-​0022-7

	 3.	 TORQUE/Maui. http://​adapt​iveco​mputi​ng.​com/​cherry-​servi​ces/​
torque-​resou​rce-​manag​er. Accessed 20 Jan 2020

	 4.	 Lustre. http://​lustre.​org. Accessed 20 Jan 2020
	 5.	 OpenAFS. https://​www.​opena​fs.​org. Accessed 20 Jan 2020
	 6.	 CVMFS. https://​cernvm.​cern.​ch/​portal/​files​ystem. Accessed 20

Jan 2020
	 7.	 Bird I, Buncic P, Carminati F, Cattaneo M, Clarke P, Fisk I,

Girone M, Harvey J, Kersevan B, Mato P, Mount R, Panzer-
Steindel B (2014) Update of the computing models of the
WLCG and the LHC experiments. Technical Report. CERN-
LHCC-2014-014. LCG-TDR-002. https://​cds.​cern.​ch/​record/​
16954​01. Accessed 20 Jan 2020

	 8.	 Buncic P, Sanchez C Aguado, Blomer J, Franco L, Harutyunian
A, Mato P, Yao Y (2010) J Phys Conf Ser 219: 042003. https://​
doi.​org/​10.​1088/​1742-​6596/​219/4/​042003. https://​cds.​cern.​ch/​
record/​12696​71. Accessed 20 Jan 2020

	 9.	 Blomer J, Fuhrmann T (2010) In: 2010 Proceedings of the inter-
national conference on computer communications and networks
(ICCCN) (IEEE, 2010). https://​ieeex​plore.​ieee.​org/​docum​ent/​
55600​54. Accessed 20 Jan 2020

	 10.	 Dykstra D, Bockelman B, Blomer J, Herner K, Levshina T, Slyz
M (2015) Engineering the CernVM-filesystem as a high band-
width distributed filesystem for auxiliary physics data. J Phys
Conf Ser 664:7. https://​doi.​org/​10.​1088/​1742-​6596/​664/4/​042012

	 11.	 Scientific Linux. https://​www.​scien​tific​linux.​org/. Accessed 20
Jan 2020

	 12.	 The CentOS Project. https://​www.​centos.​org/. Accessed 20 Jan
2020

	 13.	 Priedhorsky R, Randles T (2017) Linux containers for fun and
profit in HPC. https://​www.​usenix.​org/​system/​files/​login/​artic​les/​
login_​fall17_​03_​pried​horsky.​pdf. Accessed 20 Jan 2020

	 14.	 HTCondor. https://​resea​rch.​cs.​wisc.​edu/​htcon​dor. Accessed 20
Jan 2020

	 15.	 Litzkow M (1987) Remote Unix-turning idle workstations into
cycle servers. In: Proceedings of usenix summer conference, pp
381–384. https://​resea​rch.​cs.​wisc.​edu/​htcon​dor/​doc/​remot​eunix.​
pdf

	 16.	 Litzkow M, Livny M, Mutka MW (1988) Condor — a hunter of
idle workstations. In: Proceedings of the 8th international confer-
ence of distributed computing systems, pp 104–111. https://​resea​
rch.​cs.​wisc.​edu/​htcon​dor/​doc/​condor-​hunter.​pdf

	 17.	 Epema D, Livny M, van Dantzig R, Evers X, Pruyne J (1996) A
worldwide flock of condors: Load sharing among workstation
clusters. Future Gener Comput Syst 12:53

	 18.	 Livny M, Basney J, Raman R, Tannenbaum T (1997) Mecha-
nisms for high throughput computing, SPEEDUP 11. https://​
resea​rch.​cs.​wisc.​edu/​htcon​dor/​doc/​htc_​mech.​pdf

	 19.	 Basney J, Livny M (1999) High performance cluster computing:
architectures and systems.In: Buyya R (ed) Prentice Hall PTR,
vol 1, ISBN-13: 978-0130137845. https://​resea​rch.​cs.​wisc.​edu/​
htcon​dor/​doc/​hpcc-​chapt​er.​pdf

	 20.	 Tannenbaum T, Wright D, Miller K, Livny M (2001) In: Sterling
T (ed) Beowulf cluster computing with Linux, MIT Press, ISBN-
13: 978-0262692748. https://​resea​rch.​cs.​wisc.​edu/​htcon​dor/​doc/​
beowu​lf-​chapt​er-​rev1.​pdf

	 21.	 Thain D, Tannenbaum T, Livny M (2005) Distributed comput-
ing in practice: the condor experience. Concurr Pract Exp 17(2–
4):323. https://​doi.​org/​10.​1002/​cpe.​938

	 22.	 Garonne V, Graeme A, Lassnig M, Molfetas A, Barisits M,
Beermann T, Nairz A, Goossens L, Megino F Barreiro, Serfon
C, Oleynik D, Petrosyan A (2012) The ATLAS distributed data
management project: past and future. Technical Report. ATL-
SOFT-PROC-2012-049, CERN, Geneva. https://​cds.​cern.​ch/​
record/​14552​98. Accessed 20 Jan 2020

	 23.	 Rucio scientific data management. https://​rucio.​cern.​ch.
Accessed 20 Jan 2020

	 24.	 Furano F, Hanushevsky A (2009) Scalla/xrootd WAN glo-
balization tools: where we are. Technical report. CERN-IT-
Note-2009-003, CERN, Geneva. https://​doi.​org/​10.​1088/​
1742-​6596/​219/7/​072005, https://​cds.​cern.​ch/​record/​11771​51.
Accessed 20 Jan 2020

	 25.	 Ceph. https://​ceph.​io. Accessed 20 Jan 2020
	 26.	 Foreman. https://​thefo​reman.​org. Accessed 20 Jan 2020
	 27.	 Puppet. https://​puppet.​com. Accessed 20 Jan 2020
	 28.	 RFC 7862: Network file system (NFS) version 4 minor version

2 protocol. https://​tools.​ietf.​org/​html/​rfc78​62. Accessed 20 Jan
2020

	 29.	 Zabbix. https://​www.​zabbix.​com. Accessed 20 Jan 2020
	 30.	 AUFS. http://​aufs.​sourc​eforge.​net. Accessed 20 Jan 2020
	 31.	 OverlayFS. https://​www.​kernel.​org/​doc/​html/​latest/​files​ystems/​

overl​ayfs.​html. Accessed 20 Jan 2020
	 32.	 Squid. http://​www.​squid-​cache.​org. Accessed 20 Jan 2020
	 33.	 Frontier distributed database caching system. http://​front​ier.​cern.​

ch. Accessed 20 Jan 2020
	 34.	 Spack. https://​spack.​io. Accessed 20 Jan 2020
	 35.	 EasyBuild documentation. https://​easyb​uild.​readt​hedocs.​io.

Accessed 20 Jan 2020
	 36.	 Lmod: a new environment module system. https://​lmod.​readt​

hedocs.​io. Accessed 20 Jan 2020
	 37.	 Lua. https://​www.​lua.​org. Accessed 20 Jan 2020
	 38.	 CernVM-FS Shrinkwrap utility. https://​cvmfs.​readt​hedocs.​io/​en/​

stable/​cpt-​shrin​kwrap.​html. Accessed 20 Jan 2020
	 39.	 VMware. https://​www.​vmware.​com. Accessed 20 Jan 2020
	 40.	 Xen. https://​xenpr​oject.​org. Accessed 20 Jan 2020
	 41.	 KVM. http://​www.​linux-​kvm.​org. Accessed 20 Jan 2020
	 42.	 VirtualBox. https://​www.​virtu​albox.​org. Accessed 20 Jan 2020
	 43.	 Paravirtualization. https://​wiki.​xen.​org/​wiki/​Parav​irtua​lizat​ion_​

(PV). Accessed 20 Jan 2020
	 44.	 Namespaces in operation. https://​lwn.​net/​Artic​les/​531114.

Accessed 20 Jan 2020
	 45.	 cgroups. https://​www.​kernel.​org/​doc/​html/​latest/​admin-​guide/​

cgroup-​v1/​cgrou​ps.​html. Accessed 20 Jan 2020
	 46.	 Jails. https://​www.​freeb​sd.​org/​doc/​handb​ook/​jails.​html. Accessed

20 Jan 2020
	 47.	 OpenVZ. https://​openvz.​org. Accessed 20 Jan 2020
	 48.	 Solaris containers. https://​oracle.​com/​solar​is. Accessed 20 Jan

2020
	 49.	 LXC. http://​linux​conta​iners.​org. Accessed 20 Jan 2020
	 50.	 Docker. https://​www.​docker.​com. Accessed 20 Jan 2020
	 51.	 CVE-2014-3499. https://​nvd.​nist.​gov/​vuln/​detail/​CVE-​2014-​

3499. Accessed 20 Jan 2020
	 52.	 CVE-2014-9357. https://​nvd.​nist.​gov/​vuln/​detail/​CVE-​2014-​

9357. Accessed 20 Jan 2020
	 53.	 CVE-2019-5736. https://​nvd.​nist.​gov/​vuln/​detail/​CVE-​2019-​

5736. Accessed 20 Jan 2020
	 54.	 M. Kerrisk. Namespaces in operation, part 5: user namespaces.

https://​lwn.​net/​Artic​les/​532593. Accessed 20 Jan 2020
	 55.	 Singularity. https://​sylabs.​io. Accessed 20 Jan 2020
	 56.	 Charliecloud. https://​hpc.​github.​io/​charl​ieclo​ud. Accessed 20 Jan

2020
	 57.	 Priedhorsky R, Randles T (2017) In: SC ’17: Proceedings of

the international conference for high performance computing,
networking, storage and analysis, Association for computing
machinery, New York. https://​doi.​org/​10.​1145/​31269​08.​31269​25

https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-019-0022-7
https://doi.org/10.1007/s41781-019-0022-7
http://adaptivecomputing.com/cherry-services/torque-resource-manager
http://adaptivecomputing.com/cherry-services/torque-resource-manager
http://lustre.org
https://www.openafs.org
https://cernvm.cern.ch/portal/filesystem
https://cds.cern.ch/record/1695401
https://cds.cern.ch/record/1695401
https://doi.org/10.1088/1742-6596/219/4/042003
https://doi.org/10.1088/1742-6596/219/4/042003
https://cds.cern.ch/record/1269671
https://cds.cern.ch/record/1269671
https://ieeexplore.ieee.org/document/5560054
https://ieeexplore.ieee.org/document/5560054
https://doi.org/10.1088/1742-6596/664/4/042012
https://www.scientificlinux.org/
https://www.centos.org/
https://www.usenix.org/system/files/login/articles/login_fall17_03_priedhorsky.pdf
https://www.usenix.org/system/files/login/articles/login_fall17_03_priedhorsky.pdf
https://research.cs.wisc.edu/htcondor
https://research.cs.wisc.edu/htcondor/doc/remoteunix.pdf
https://research.cs.wisc.edu/htcondor/doc/remoteunix.pdf
https://research.cs.wisc.edu/htcondor/doc/condor-hunter.pdf
https://research.cs.wisc.edu/htcondor/doc/condor-hunter.pdf
https://research.cs.wisc.edu/htcondor/doc/htc_mech.pdf
https://research.cs.wisc.edu/htcondor/doc/htc_mech.pdf
https://research.cs.wisc.edu/htcondor/doc/hpcc-chapter.pdf
https://research.cs.wisc.edu/htcondor/doc/hpcc-chapter.pdf
https://research.cs.wisc.edu/htcondor/doc/beowulf-chapter-rev1.pdf
https://research.cs.wisc.edu/htcondor/doc/beowulf-chapter-rev1.pdf
https://doi.org/10.1002/cpe.938
https://cds.cern.ch/record/1455298
https://cds.cern.ch/record/1455298
https://rucio.cern.ch
https://doi.org/10.1088/1742-6596/219/7/072005
https://doi.org/10.1088/1742-6596/219/7/072005
https://cds.cern.ch/record/1177151
https://ceph.io
https://theforeman.org
https://puppet.com
https://tools.ietf.org/html/rfc7862
https://www.zabbix.com
http://aufs.sourceforge.net
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
http://www.squid-cache.org
http://frontier.cern.ch
http://frontier.cern.ch
https://spack.io
https://easybuild.readthedocs.io
https://lmod.readthedocs.io
https://lmod.readthedocs.io
https://www.lua.org
https://cvmfs.readthedocs.io/en/stable/cpt-shrinkwrap.html
https://cvmfs.readthedocs.io/en/stable/cpt-shrinkwrap.html
https://www.vmware.com
https://xenproject.org
http://www.linux-kvm.org
https://www.virtualbox.org
https://wiki.xen.org/wiki/Paravirtualization_(PV)
https://wiki.xen.org/wiki/Paravirtualization_(PV)
https://lwn.net/Articles/531114
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.freebsd.org/doc/handbook/jails.html
https://openvz.org
https://oracle.com/solaris
http://linuxcontainers.org
https://www.docker.com
https://nvd.nist.gov/vuln/detail/CVE-2014-3499
https://nvd.nist.gov/vuln/detail/CVE-2014-3499
https://nvd.nist.gov/vuln/detail/CVE-2014-9357
https://nvd.nist.gov/vuln/detail/CVE-2014-9357
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://lwn.net/Articles/532593
https://sylabs.io
https://hpc.github.io/charliecloud
https://doi.org/10.1145/3126908.3126925

	 Computing and Software for Big Science (2021) 5:9

1 3

9  Page 20 of 20

	 58.	 runC. https://​www.​docker.​com/​blog/​runc. Accessed 20 Jan 2020
	 59.	 Podman. https://​podman.​io. Accessed 20 Jan 2020
	 60.	 Corbet J (2018) Unprivileged filesystem mounts, 2018 edition.

https://​lwn.​net/​Artic​les/​755593. Accessed 20 Jan 2020
	 61.	 CVE-2016-10208. https://​nvd.​nist.​gov/​vuln/​detail/​CVE-​2016-​

10208. Accessed 20 Jan 2020
	 62.	 Open container initiative. https://​www.​openc​ontai​ners.​org.

Accessed 20 Jan 2020
	 63.	 Linux Foundation. https://​www.​linux​found​ation.​org. Accessed

20 Jan 2020
	 64.	 Docker Hub. https://​hub.​docker.​com. Accessed 20 Jan 2020
	 65.	 Weil SA, Brandt SA, Miller EL (2006) Maltzahn C (2006) in

SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing. Association for Computing Machinery, New
York, NY, USA. http://​www.​ssrc.​ucsc.​edu/​Papers/​weil-​sc06.​pdf.
Accessed 20 Jan 2020

	 66.	 Ceph Placement Groups Documentation. https://​docs.​ceph.​com/​
docs/​master/​rados/​opera​tions/​place​ment-​group​s/#​choos​ing-​the-​
number-​of-​place​ment-​groups. Accessed 20 Jan 2020

	 67.	 Fielding RT (2000) Architectural styles and the design of net-
work-based software architectures. Ph.D. thesis, University of
California, Irvine, USA. https://​www.​ics.​uci.​edu/​~field​ing/​pubs/​
disse​rtati​on/​field​ing_​disse​rtati​on.​pdf. Accessed 20 Jan 2020

	 68.	 Snappy, a fast compressor/decompressor. https://​github.​com/​
google/​snappy. Accessed 20 Jan 2020

	 69.	 New in Luminous: BlueStore. https://​ceph.​io/​commu​nity/​new-​
lumin​ous-​blues​tore/. Accessed 20 Jan 2020

	 70.	 NVM Express. https://​nvmex​press.​org. Accessed 20 Jan 2020
	 71.	 RocksDB: A persistent key-value store for fast storage environ-

ments. https://​rocks​db.​org. Accessed 20 Jan 2020
	 72.	 RDMA Consortium. http://​www.​rdmac​onsor​tium.​org. Accessed

20 Jan 2020
	 73.	 Mellanox OpenFabrics Enterprise Distribution for Linux. https://​

www.​mella​nox.​com/​produ​cts/​infin​iband-​drive​rs/​linux/​mlnx_​
ofed. Accessed 20 Jan 2020

	 74.	 ROOT Data Analysis Framework. https://​root.​cern.​ch. Accessed
20 Jan 2020

	 75.	 Yang W, Hanushevsky A, Ito H, Lassnig M, Popescu R, De Silva
A, Simon MK, Gardner R, Garonne V, Destefano J, Vukotic I
(2018) Xcache in the ATLAS distributed computing environ-
ment. Technical Report. ATL-SOFT-PROC-2018-031, CERN,
Geneva. https://​doi.​org/​10.​1051/​epjco​nf/​20192​14040​08. https://​
cds.​cern.​ch/​record/​26488​92. Accessed 20 Jan 2020

	 76.	 Bos K, Brook N, Duellmann D, Eck C, Fisk I, Foster D, Gibbard
B, Grandi C, Grey F, Harvey J, Heiss A, Hemmer F, Jarp S, Jones
R, Kelsey D, Knobloch J, Lamanna M, Marten H, Mato Vila P,
Ould-Saada F, Panzer-Steindel B, Perini L, Robertson L, Schutz
Y, Schwickerath U, Shiers J, Wenaus T (2005) LHC computing
grid: technical design report. Version 1.06. Technical Design
Report LCG (CERN, Geneva, 2005). https://​cds.​cern.​ch/​record/​
840543. Accessed 20 Jan 2020

	 77.	 WebDAV Resources. http://​www.​webdav.​org. Accessed 20 Jan
2020

	 78.	 Virtual Organization Membership Service. https://​itali​angrid.​
github.​io/​voms. Accessed 20 Jan 2020

	 79.	 Third Party Copy. https://​twiki.​cern.​ch/​twiki/​bin/​view/​LCG/​
Third​Party​Copy. Accessed 20 Jan 2020

	 80.	 File transfer service. https://​fts.​web.​cern.​ch. Accessed 20 Jan
2020

	 81.	 Birgisson A, Politz J Gibbs, Erlingsson U, Taly A, Vrable M,
Lentczner M (2014) In: NDSS ’14: Proceedings of the 2014
network and distributed system security (NDSS) symposium
(Internet Security, 2014). https://​resea​rch.​google.​com/​pubs/​archi​
ve/​41892.​pdf. Accessed 20 Jan 2020

	 82.	 SciTokens: federated authorization for distributed scientific com-
puting. https://​scito​kens.​org. Accessed 20 Jan 2020

	 83.	 Withers A, Bockelman B, Weitzel D, Brown DA, Gaynor J, Bas-
ney J, Tannenbaum T, Miller Z (2018) CoRR. Accessed 20 Jan
2020

	 84.	 Derek W, Brian B, Basney J, Todd T, Zach M, Jeff G (2019) In:
EPJ web conference 214:04014. https://​doi.​org/​10.​1051/​epjco​nf/​
20192​14040​14. Accessed 20 Jan 2020

	 85.	 Withers A, Bockelman B, Weitzel D, Brown DA, Patton J,
Gaynor J, Basney J, Tannenbaum T, Gao YA, Miller Z (2019)
CoRR

	 86.	 Altunay M, Bockelman B, Ceccanti A, Cornwall L, Crawford
M, Crooks D, Dack T, Dykstra D, Groep D, Igoumenos I, Jouvin
M, Keeble O, Kelsey D, Lassnig M, Liampotis N, Litmaath M,
McNab A, Millar P, Sallé M, Short H, Teheran J, Wartel R (2019)
WLCG Common JWT Profiles. https://​doi.​org/​10.​5281/​zenodo.​
34602​58

	 87.	 Puppet Forge. https://​forge.​puppet.​com. Accessed 20 Jan 2020
	 88.	 r10k. https://​github.​com/​puppe​tlabs/​r10k. Accessed 20 Jan 2020
	 89.	 libvirt. https://​libvi​rt.​org. Accessed 20 Jan 2020
	 90.	 OpenStack. https://​www.​opens​tack.​org. Accessed 20 Jan 2020
	 91.	 oVirt. https://​www.​ovirt.​org. Accessed 20 Jan 2020
	 92.	 Amazon Elastic Compute Cloud. https://​aws.​amazon.​com/​ec2.

Accessed 20 Jan 2020
	 93.	 Google Compute Engine. https://​cloud.​google.​com/​compu​te.

Accessed 20 Jan 2020
	 94.	 Foreman plugins. https://​proje​cts.​thefo​reman.​org/​proje​cts/​forem​

an/​wiki/​List_​of_​Plugi​ns. Accessed 20 Jan 2020
	 95.	 Hammer—the CLI tool (not only) for Foreman. https://​github.​

com/​thefo​reman/​hammer-​cli. Accessed 20 Jan 2020
	 96.	 Dunn C. Designing Puppet — Roles and Profiles. https://​www.​

craig​dunn.​org/​2012/​05/​239. Accessed 20 Jan 2020
	 97.	 The roles and profiles method. https://​puppet.​com/​docs/​pe/​

2018.1/​the_​roles_​and_​profi​les_​method.​html. Accessed 20 Jan
2020

	 98.	 Slurm Workload Manager. https://​slurm.​sched​md.​com. Accessed
20 Jan 2020

	 99.	 Yoo AB, Jette MA, Grondona M (2003) SLURM: Simple linux
utility for resource management. In: Feitelson D, Rudolph L,
Schwiegelshohn U (eds) Job Scheduling Strategies for Parallel
Processing. JSSPP 2003. Lecture Notes in Computer Science,
vol 2862. Springer, Berlin, Heidelberg. https://​doi.​org/​10.​1007/​
10968​987_3

	100.	 Raman R, Livny M, Solomon M (1998) Matchmaking: distrib-
uted resource management for high throughput computing. In:
Proceedings of the seventh IEEE international symposium on
high performance distributed computing (HPDC7), 98, Chicago,
Illinois,USA, pp 140–146, IEEE Computer Society. https://​doi.​
org/​10.​1109/​HPDC.​1998.​709966

	101.	 zswap. https://​www.​kernel.​org/​doc/​html/​latest/​vm/​zswap.​html.
Accessed 20 Jan 2020

	102.	 SELinux. https://​github.​com/​SELin​uxPro​ject. Accessed 20 Jan
2020

	103.	 MPI Forum. https://​www.​mpi-​forum.​org. Accessed 20 Jan 2020
	104.	 Project Jupyter. https://​jupyt​er.​org. Accessed 20 Jan 2020
	105.	 JupyterHub. https://​jupyt​er.​org/​hub. Accessed 20 Jan 2020
	106.	 HTMap. https://​htmap.​readt​hedocs.​io. Accessed 20 Jan 2020

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.docker.com/blog/runc
https://podman.io
https://lwn.net/Articles/755593
https://nvd.nist.gov/vuln/detail/CVE-2016-10208
https://nvd.nist.gov/vuln/detail/CVE-2016-10208
https://www.opencontainers.org
https://www.linuxfoundation.org
https://hub.docker.com
http://www.ssrc.ucsc.edu/Papers/weil-sc06.pdf
https://docs.ceph.com/docs/master/rados/operations/placement-groups/#choosing-the-number-of-placement-groups
https://docs.ceph.com/docs/master/rados/operations/placement-groups/#choosing-the-number-of-placement-groups
https://docs.ceph.com/docs/master/rados/operations/placement-groups/#choosing-the-number-of-placement-groups
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://github.com/google/snappy
https://github.com/google/snappy
https://ceph.io/community/new-luminous-bluestore/
https://ceph.io/community/new-luminous-bluestore/
https://nvmexpress.org
https://rocksdb.org
http://www.rdmaconsortium.org
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed
https://root.cern.ch
https://doi.org/10.1051/epjconf/201921404008
https://cds.cern.ch/record/2648892
https://cds.cern.ch/record/2648892
https://cds.cern.ch/record/840543
https://cds.cern.ch/record/840543
http://www.webdav.org
https://italiangrid.github.io/voms
https://italiangrid.github.io/voms
https://twiki.cern.ch/twiki/bin/view/LCG/ThirdPartyCopy
https://twiki.cern.ch/twiki/bin/view/LCG/ThirdPartyCopy
https://fts.web.cern.ch
https://research.google.com/pubs/archive/41892.pdf
https://research.google.com/pubs/archive/41892.pdf
https://scitokens.org
https://doi.org/10.1051/epjconf/201921404014
https://doi.org/10.1051/epjconf/201921404014
https://doi.org/10.5281/zenodo.3460258
https://doi.org/10.5281/zenodo.3460258
https://forge.puppet.com
https://github.com/puppetlabs/r10k
https://libvirt.org
https://www.openstack.org
https://www.ovirt.org
https://aws.amazon.com/ec2
https://cloud.google.com/compute
https://projects.theforeman.org/projects/foreman/wiki/List_of_Plugins
https://projects.theforeman.org/projects/foreman/wiki/List_of_Plugins
https://github.com/theforeman/hammer-cli
https://github.com/theforeman/hammer-cli
https://www.craigdunn.org/2012/05/239
https://www.craigdunn.org/2012/05/239
https://puppet.com/docs/pe/2018.1/the_roles_and_profiles_method.html
https://puppet.com/docs/pe/2018.1/the_roles_and_profiles_method.html
https://slurm.schedmd.com
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://doi.org/10.1109/HPDC.1998.709966
https://doi.org/10.1109/HPDC.1998.709966
https://www.kernel.org/doc/html/latest/vm/zswap.html
https://github.com/SELinuxProject
https://www.mpi-forum.org
https://jupyter.org
https://jupyter.org/hub
https://htmap.readthedocs.io

	Operating an HPCHTC Cluster with Fully Containerized Jobs Using HTCondor, Singularity, CephFS and CVMFS
	Abstract
	Introduction
	BAF2 Requirements
	Cluster Concept
	CVMFS
	Containerization
	CephFS
	XRootD
	Cluster Management
	HTCondor
	Operational Experience
	Conclusion
	Acknowledgements
	References

