
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:9 
https://doi.org/10.1007/s41781-020-00050-y

ORIGINAL ARTICLE

Operating an HPC/HTC Cluster with Fully Containerized Jobs Using 
HTCondor, Singularity, CephFS and CVMFS

Oliver Freyermuth1   · Peter Wienemann1   · Philip Bechtle1   · Klaus Desch1 

Received: 28 May 2020 / Accepted: 16 December 2020 / Published online: 29 March 2021 
© The Author(s) 2021

Abstract
High performance and high throughput computing (HPC/HTC) is challenged by ever increasing demands on the software 
stacks and more and more diverging requirements by different research communities. This led to a reassessment of the 
operational concept of HPC/HTC clusters at the Physikalisches Institut at the University of Bonn. As a result, the present 
HPC/HTC cluster (named BAF2) introduced various conceptual changes compared to conventional clusters. All jobs are 
now run in containers and a container-aware resource management system is used which allowed us to switch to a model 
without login/head nodes. Furthermore, a modern, feature-rich storage system with powerful interfaces has been deployed. 
We describe the design considerations, the implemented functionality and the operational experience gained with this new-
generation setup which turned out to be very successful and well-accepted by its users.
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Introduction

High performance and high throughput computing (HPC/
HTC) is an integral part of scientific progress in many areas 
of science. Researchers require more and more computing 
and storage resources allowing them to solve ever more com-
plex problems. But just scaling up existing resources is not 
sufficient to handle the ever increasing amount of data. New 
tools and technologies keep showing up and users are asking 
for them. As a result of these continuously emerging new 
tools, software stacks on which jobs rely become increas-
ingly complex, data management is done with more and 
more sophisticated tools and the demands of users on HPC/
HTC clusters evolve with breathtaking speed [1]. Therefore, 
the diversity and complexity of services run by HPC/HTC 

cluster operators has increased significantly over time. To 
cope with the increased demands, an ongoing trend to con-
solidate different communities and fulfil their requirements 
with larger, commonly operated systems is observed [2].

This work describes the commissioning and first oper-
ational experience gained with an HPC/HTC cluster at 
the Physikalisches Institut at the University of Bonn. We 
call this cluster second generation Bonn Analysis Facility 
(BAF2) in the following. Occasionally we compare the setup 
of this cluster with the one of its predecessor (BAF1). Both 
BAF1 and BAF2 were purchased to perform fundamental 
research work in all kinds of physics fields ranging from 
high energy physics (HEP), hadron physics, theoretical par-
ticle physics, theoretical condensed matter physics to math-
ematical physics. BAF1 was a rather conventional cluster 
whose commissioning started in 2009. It used a TORQUE/
Maui-based resource management system [3] whose jobs 
were run directly on its worker nodes, a Lustre distributed 
file system [4] without any redundancy (except for RAID 
5 disk arrays) for data storage and an OpenAFS file sys-
tem [5] to distribute software which was later supplemented 
by CVMFS [6] clients (see “CVMFS” for more informa-
tion on CVMFS). The latter provides software maintained 
by CERN and HEP collaborations. BAF1 maintenance was 
characterized by a large collection of home-brewed shell 
scripts and other makeshift solutions.
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In contrast, BAF2 is adapted to the increasingly varying 
demands of the different communities. These requirements 
and which solutions we chose to tackle them will be discussed 
in “BAF2 Requirements” followed by a short overview of the 
new concepts of this cluster in “Cluster Concept”. After this 
introduction, we will present the key components of the clus-
ter in “CVMFS”, “Containerization”, “CephFS”, “XRootD”, 
“Cluster Management” and “HTCondor” in-depth. The paper 
will conclude with a presentation of experiences and observa-
tions collected in the first two years of operation in “Opera-
tional Experience”. On purpose, benchmarks of the system 
are not presented. While we performed some benchmarking 
of the components before putting the system into operation, 
we believe that our results cannot be easily transferred one-
to-one to setups using different hardware or which operate at 
different scales. Another aspect which comes into play is that 
even refined synthetic benchmarks are quite different from 
the constantly evolving load submitted by users. A realistic 
simulation of the load caused by a diverse mix of jobs is very 
difficult, and even after the two years of operations, new use 
cases and workloads appear on a regular basis.

For this reason, we consider the presentation of experi-
ences with the operational system in its entirety under realis-
tic production workloads of users to be more useful and will 
present the observed effects in “Operational Experience” in 
detail before concluding in “Conclusion”.

BAF2 Requirements

The requirements on BAF2 are as broad as the range of 
research fields it serves. The most challenging constraints are 
imposed by running analysis jobs of the ATLAS high energy 
physics experiment [7]. This experiment uses a huge software 
stack which is provided and maintained centrally by a dedi-
cated team on a specific platform (at the time of writing the 
migration from Scientific Linux 6 to CentOS 7 is still not fully 
completed). Given the rapid development of software of a col-
laboration of O(3000) members, it would be unfeasible for 
each collaborating institute to maintain and validate its own 
software installation. Therefore, the software is distributed 
to all participating institutes via the CVMFS file system [6, 
8–10]. We will describe this file system, for which we now 
also operate our own server infrastructure, in more detail in 
“CVMFS”. The collaboratively maintained software also puts 
constraints on the platform of computing resources used for 
ATLAS purposes. At present, the software framework only 
runs on x86_64 Scientific Linux 6 [11] and CentOS 7 [12] 
machines (with Scientific Linux 6 slowly dying out). Given the 
age of Scientific Linux 6 and CentOS 7, there is an increasing 
tension between ATLAS requirements and other applications 
which require a more up-to-date software stack. The same is 
true for support of modern hardware components. Luckily, 

modern virtualization technology provides an attractive solu-
tion to this constraint. We set up the cluster in such a way that 
each user can choose the operating system (OS) in which her/
his jobs should run using modern container technology [13], 
and the actual bare metal operating system is never exposed 
to the user. The container setup is described in “Containeriza-
tion”. Thanks to the container awareness of the HTCondor 
resource management system [14–21] the implementation of 
such a setup is straightforward. More details on how we use 
HTCondor are given in “HTCondor”.

Another particular requirement for ATLAS data analysis 
is providing interfaces for the distributed data management 
(DDM) tools deployed in ATLAS [22, 23]. Most importantly, 
we are running an XRootD service [24]. This allows automatic 
transfers and subscription of datasets with high throughput 
to the BAF2 cluster. More information on XRootD is given 
in “XRootD”. The datasets shipped to the BAF2 cluster are 
finally analyzed by reading the corresponding data files from 
a POSIX file system. As POSIX file system, we have chosen 
CephFS [25] due to the reasons explained in “CephFS”.

All mentioned resources are deployed and orchestrated 
using Foreman [26] and Puppet [27]. We describe this setup 
in “Cluster Management”.

As a general objective, free and open source software 
(FOSS) tools are used for cluster management and operation 
wherever possible. Reasons are not only financial ones but 
also our appreciation of the possibility to easily debug, patch 
and extend available software. When patching software we 
always try to feed the modifications back into the respective 
developer community to avoid accumulating large patch sets 
over time which could diverge from the upstream project and 
make future upgrades more difficult.

Cluster Concept

While the previously operated BAF1 cluster was convention-
ally set up using login nodes and without redundancy of the 
cluster services, a different approach was chosen for BAF2 
due to the increasing diversity of requirements.

The new workflow from the users’ perspective is that the 
jobs are submitted directly from their desktop machines. 
On that very machines, not only access to kerberized home 
directories maintained and backed up by the central uni-
versity computing centre and mounted via NFS v4.2 [28] 
is provided, but the cluster file system CephFS can also be 
accessed directly (via NFS v4.2). The users’ jobs can then 
either access CephFS with high bandwidth or use HTCon-
dor’s file transfer mechanism to store smaller input and out-
put files in the home directories.

For each job, users can choose the operating system which 
should be used, and the cluster workload manager HTCon-
dor takes care to instantiate the corresponding container 
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behind the scenes. This means that from the users’ point 
of view, the ssh command to a login node is replaced by 
submission of an interactive job, and a manifold of required 
environments can be offered without maintaining separate, 
dedicated login nodes.

Additionally, almost all components of the new setup are 
designed to provide high availability to ensure continuous 
service availability, reduce pressure on operators in case of 
failures and to ease upgrade procedures. This is true for the 
cluster workload management system HTCondor, for which 
two separate central manager virtual machines are operated 
as discussed in “HTCondor”, the CernVM file system as 
illustrated in “CVMFS”, the cluster file system CephFS 
as explained in “CephFS” and also the connectivity to the 
distributed data management (DDM) system of the experi-
ments via XRootD as detailed in “XRootD”. The cluster 
gateway machine is currently not operated redundantly, but 
work is ongoing to merge the gateway functionality into the 
redundant main gateways, keeping the network separation 
via firewall rules, but gaining redundancy and bandwidth.

As visualized in Fig.  1, the network topology was 
designed to clearly separate the cluster network from 
the general purpose network in which the users’ desktop 
machines are located. The ethernet network used within 
the cluster is set up to use private addresses which are then 
masqueraded by the cluster gateway while the InfiniBand 
network operates with private addresses only and has no sep-
arate outbound connectivity. This separation was part of the 
operational security considerations and is mostly invisible 

to the users, since an interactive cluster job emulates an ssh 
connection to a worker node which HTCondor realizes via 
the Connection Broker service as explained in “HTCondor”.

Using this approach, full flexibility is exposed to the 
users. The scheduling is based on a fair-share algorithm, 
so any user can submit as many jobs as needed and may at 
times use the full cluster resources.

We monitor our complete setup (servers, desktops, print-
ers, environmental parameters like temperatures and humid-
ity, etc.) with Zabbix [29]. It collects values from monitored 
devices, plots them and notifies operators in case defined 
threshold values are reached. An intuitive web user inter-
face allows one to easily configure all relevant monitoring 
settings and to define who is allowed to see which systems/
services.

Compared to BAF1 which in its final state comprised of 
roughly 800 CPU cores and 370 TB of net storage space the 
hardware upgrade to BAF2 is not as large as the conceptual 
differences. At the end of 2019, the BAF2 resources com-
prise of 1120 CPU cores (IntelⓇ XeonⓇ CPU E5-2680 v4) 
which add up to 2240 virtual CPUs due to enabled simul-
taneous multithreading (SMT). Those cores are distributed 
over 40 compute nodes which are equipped with between 
128 GB and 1 TB of RAM. The CPUs are supplemented by 
one GPU server with four NvidiaⓇ GeForceⓇ GTX 1080 Ti 
GPUs with 11 GB of memory each. In total, 580 TB of net 
space is available for data storage. The corresponding stor-
age system comprises in total eleven nodes.

CVMFS

The CernVM File System (CVMFS) has been developed by 
the European Organization for Nuclear Research (CERN) 
to distribute centrally maintained software to data centres 
spread around the globe. It is extensively used by high-
energy physics experiments to make their centrally main-
tained software frameworks available on computing clusters 
at participating institutions which are run by local operators. 
Given the development speed and complexity of the soft-
ware of large collaborations, decentralized maintenance of 
the experiment software would be too inefficient and error 
prone.

Since software frameworks are quasi-static contents, 
CVMFS has been designed as read-only file system. The 
read-only design makes aggressive multi-tiered caching—
both on the provider and on the consumer side—relatively 
simple. Delivered content can be hosted on standard web 
servers and HTTP is chosen as transfer protocol. As a result, 
standard web tools can be used to deliver and cache con-
tent and problems with firewall rules are minimized. Even 
if the content is delivered via untrusted caches and network 
connections, the authenticity and integrity of the delivered 

Fig. 1   Schematic overview of the BAF2 network setup. Storage nodes 
(osdXYZ, monXYZ) and worker nodes (wnXYZ) are connected to an 
InfiniBand and a cluster-specific Ethernet network (BAF network). To 
avoid the cluster gateway node (bafgw) with 1 Gbit/s network inter-
faces to become a throughput bottleneck for grid data transfers, the 
osdXYZ nodes are also connected to the public Physikalisches Insti-
tut network (PI). The PI network is also the place where additional 
infrastructure nodes like CVMFS servers and the HTCondor central 
manager nodes are located. This is also the network from which jobs 
are submitted (desktopXYZ). The PI network in turn is connected 
via a redundant (2 × 10 Gbit/s) gateway setup to the campus network 
(BONNET)
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content is ensured using cryptographic hashes. CVMFS also 
offers transparent file (de-)compression and deduplication 
which is very valuable e.g. in cases where multiple versions 
of software packages are stored. Additionally, catalogues 
are created at directory or directory tree level and are put 
under version control to always serve a consistent state to 
the clients.

Technically, CVMFS is implemented as a POSIX compli-
ant file system using the Linux kernel FUSE module. Unlike 
many distributed file systems, it is very efficient in reading 
many small files scattered over plenty of directories like it is 
typical for storage hosting software frameworks.

CVMFS is structured in “repositories”. The typical mount 
point convention for a repository with the name repository 
by an organization with the DNS domain name example.
com would be the FQRN (fully qualified repository name) /
cvmfs/repository.example.com.

An example for the data flow in CVMFS is shown in 
Fig. 2. The provider runs a “Stratum 0” system which allows 
to temporarily access the read-only repositories in read-
write mode by overlaying them with an overlay file system 
(AUFS [30] or OverlayFS [31]). All data written is chunked, 
compressed, checksummed and deduplicated when commit-
ted and served via a standard HTTP server software. The 
“Stratum 1” machines are optional mirrors of the full reposi-
tory content and commonly used to reduce the load on the 
“Stratum 0” node and to provide a backup, additional load 
balancing and high availability (HA).

The client could directly access the “Stratum” servers (if 
public), but for larger sites, it is very common to put Squid 
caches [32, 33] in between to significantly reduce the latency 
and provide load balancing (LB) and high availability. Addi-
tionally, the clients keep local caches of the catalogues and 
the accessed data.

While the current design of CVMFS requires clients to 
poll for changes1, future plans for CVMFS involve the addi-
tion of a message brokering system to inform clients or other 
subscribers about changes to the repository. On the other 
end, a repository gateway allows to scale out the commit 
operation to the “Stratum 0” machine to multiple responsible 
repository managers, which both distributes the load and 
will allow to delegate privileges for committing changes.

We employ CVMFS for two purposes at the University 
of Bonn:

–	 Software distribution,
–	 Distribution of extracted container images.

For these two purposes, we run two different repositories 
with the respective mount points:

–	 /cvmfs/software.physik.uni-bonn.de
–	 /cvmfs/container.physik.uni-bonn.de

In addition, we use nine CVMFS repositories provided 
by CERN both on end user desktop machines and cluster 
worker nodes.

The software provided via the local repository extends the 
CERN repositories and distribution packages. To prevent an 
unnecessary maintenance burden, we only provide software 
which matches at least one of the following conditions:

–	 Only for use within the institute (proprietary or licensed 
software that allows for storage on a shared file system),

–	 Software maintained by local developers for local work-
ing groups or teaching,

–	 Software not provided by Linux distributions, either not 
at all or with an inappropriate version.

Notably, we do not rebuild a full software stack with tools 
such as Spack [34] or EasyBuild [35] as is often done in 
HPC centres, since most of the software tools used in the 
community are provided by the CERN repositories and 
rebuilding and revalidating all of them with a different soft-
ware stack is not feasible at the scale of a single data centre.

To ease the selection of software from our local repository 
for users, we employ Lmod [36], a Lua [37] based system 
for environment modules. Using a hierarchical structure, a 

Fig. 2   Schematic overview of the CVMFS data flow. The data origi-
nates from a stratum 0 node. This is mirrored on stratum 1 servers 
for load balancing (LB) and high availability (HA) purposes on the 
provider side. On the consumer end, the data can be cached by local 
Squid servers to reduce latency in addition to client side disk-based 
caches. If desired the Squid servers can also be run in a highly avail-
able, load balanced setup

1  This is by default performed every 5 min.
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single Lua module is written setting up the software-specific 
environment for each version. With one command, users can 
list the available software for the container environment they 
have chosen and load a software version of their choice.

Lmod takes care of manipulating the environment vari-
ables accordingly and also allows users to “unload” modules 
and “reload” another version, cleaning up and adjusting the 
environment accordingly. This allows us to expose various 
software packages both on the computing cluster and on the 
desktop machines without interference with the packages 
provided by the Linux distribution.

This approach to distribute software has been well 
accepted by the users, so it now also serves as data source 
for laptops used within the institute or for teaching pur-
poses. In this case, a fraction of the available repositories is 
automatically mirrored to the local disks of the devices to 
guarantee operation without network connectivity. Ongo-
ing developments within CVMFS such as the “Shrinkwrap” 
tool [38] which allows for partial deduplication in a regular 
file system by the usage of hardlinks will improve the space 
efficiency of this approach.

Containerization

Virtualization has revolutionized IT operations during the 
last 15–20 years. The virtues are isolation of the host and the 
guest system, easy preservation and recovery of computing 
environments and to a certain extent, a decoupling of the 
operations of host and guest systems. With the advent of 
hypervisors like VMware [39], Xen [40], KVM [41], Vir-
tualBox [42], etc. virtualization started to conquer comput-
ing centres. But the high degree of isolation which virtual 
machines (VMs) offer also comes with a price: A loss of 
performance due to additional abstraction layers (hard-
ware emulation). The emulation overhead was reduced by 
the introduction of para-virtualization [43]. Thanks to this 
approach, it is not necessary anymore to emulate all hard-
ware components. Still, virtualization played a subordinate 
role in high-performance and high-throughput computing 
until recently. However, in recent years also, virtualization 
options with a less strict isolation have become available. 
They virtualize on the operating system (OS) level making 
use of kernel namespaces [44] and partially also cgroups [45] 
to provide so called containers. Well-known representatives 
of container software are Jails [46], OpenVZ [47], Solaris 
Containers [48], LXC [49] and Docker [50]. While Jails 
and Solaris Containers are only available under FreeBSD 
and Solaris, respectively, OpenVZ was the first container 
implementation for Linux. But like LXC, it remained a niche 
product. Containers became really popular with the advent 
of Docker. These days they are widely used for quick service 
deployment and have become an integral part of the DevOps 

tool chain. Despite the fact that containers overcome the 
performance issues of VMs, they still lacked acceptance in 
the HPC/HTC community. One of the reasons is the need 
of running a daemon with root privileges to enable access 
to isolation and mounting functionalities not exposed to 
unprivileged userspace. This design entails the danger of 
privilege escalation vulnerabilities, such as those discovered 
both in the early days of Docker (see for example [51, 52] 
and also in recent years (e.g. [53]). As a result, adminis-
trators of clusters executing user code were cautious about 
exposing this functionality. Therefore, containers were 
mostly used for isolation of services and not for compute 
jobs. In recent years, kernel development has caught up on 
these requirements and with the advent of unprivileged user 
namespaces2, most features are now accessible on recent 
operating systems.

Following these developments, recently, new container 
options have become available, for example Singularity [55], 
Charliecloud [56, 57], runC [58] and Podman [59]. Some 
of these are specifically designed for HPC/HTC applica-
tions, and they all support unprivileged user namespaces, 
even though this may lead to a reduction of the feature set. 
Namely, the main limitation is the mounting of arbitrary file 
system images, since the involved parts of the kernel have 
not been designed for exposure to unprivileged users [60]. 
On the other hand refraining from mounting images also 
reduces the attack surface as the kernel vulnerability CVE-
2016-10208 [61] has shown.

A standardization effort in form of the Open Container 
Initiative (OCI) [62] focuses on streamlining the interface 
to configure these container runtime implementations and 
specifying the layout and format of container images which 
can be used with user namespaces. This initiative has been 
started by Docker and is a project of the Linux Founda-
tion [63]. “runC” is the reference implementation of the 
container runtime for OCI.

At the time of writing, we are offering Debian 10, Sci-
entific Linux 6, CentOS 7, CentOS 8 and Ubuntu 18.04 to 
our users. Our container images are built locally based on 
official DockerHub images maintained by the upstream dis-
tributions. We have chosen Singularity as container runtime 
engine, because HTCondor offers an off-the-shelf interface 
to Singularity. In the long run, we plan to switch to a fully 
unprivileged OCI-based solution. Singularity is used to pull 
the existing images from Docker Hub [64], install updates 
and additional packages and add adaptions for local usage. 
This includes the creation of directories for bind mounts, 
setting up the Lmod environment modules system (see 
“CVMFS”), the installation of base packages required for 

2  Most of the unprivileged user namespace functionality is available 
since kernel 3.8 [54].
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HEP software, a CephFS quota checking tool, extensions to 
the shell profile for more comfortable interactive usage and 
GPU support and additional packages requested by local 
groups.

The recipes to build the containers are stored in a git 
repository and a rebuild is triggered either when the recipe 
is changed or a day has passed since the last rebuild. This 
ensures that the latest security updates are available. For 
building the “sandbox” mode of Singularity is used which 
means the “file system” is stored in a flat file structure. This 
build artefact is subsequently compressed to a tarball. The 
tarballs are then pulled by the CVMFS “Stratum 0” server 
(see “CVMFS”) and deployed to CVMFS. The decoupling 
of the build service and the CVMFS servers ensures contin-
ued function if one of the services is out of order temporar-
ily, and allows for easy extension to pull user images or other 
user-created data to CVMFS.

The images are kept for 30 days such that running jobs 
always keep the container they have started with (at present 
the maximal job runtime is set to one week—see “HTCon-
dor”). Care has been taken to not make use of Singular-
ity-exclusive functionality as far as possible such that the 
recipes can be carried over to a different container build 
software in the future.

CephFS

Many distributed file systems suffer from the fact that they 
need a central database to store information on the location 
of the data objects which might be distributed over many 
storage nodes. While such file systems scale quite well in 
terms of storage capacity, the metadata handling can become 
a problem for the systems. In addition, the database keeping 
the metadata can easily become a single point of failure.

Ceph [25] has been designed to overcome these problems. 
Instead of storing information on the location of data objects 
in a central database, Ceph keeps this information in a so-
called CRUSH map (Controlled Replication Under Scal-
able Hashing) [65]. This approach allows clients to directly 
contact storage nodes by algorithmically determining the 
location of storage objects without consulting a metadata 
server. To ensure good scalability, the CRUSH map ensures 
a pseudo-random distribution of data objects. Another meas-
ure to ensure good scalability is the introduction of placement 
groups. Keeping track of object placement on a per-object 
basis becomes impractical with very large numbers of objects. 
Therefore, each object is assigned to a so called placement 
group (PG) and each PG is in turn assigned to one or more 
storage devices. The number of recommended PGs in a Ceph 
cluster depends on the number of storage devices [66], but a 
typical number is O(100) per storage device. This number is 
a compromise between resource usage (CPU, memory), data 

durability and data distribution; the latter should be as even 
as possible to maximize the usable space.

Ceph also allows to store multiple replicas of data objects 
to cope with data unavailability, e.g. due to hardware fail-
ure or maintenance work. To save storage space, Ceph can 
also apply erasure coding (EC) instead of replication. The 
simplest form of erasure coding divides data objects into 
K = 2 shards and adds M = 1 extra data chunk to ensure 
data reconstruction in case one storage device is lost/unavail-
able. This is the equivalent of RAID 5. The distribution of 
replicas/shards can be controlled by defining failure domains 
in the CRUSH map. Therefore, data redundancy is imple-
mented in a host/rack/room/data centre/region-aware way. 
Thanks to Ceph’s built-in data replication/erasure coding, 
a Ceph cluster can be run on commodity hardware. A key 
point of this is that there are commonly no RAID systems 
running below Ceph, but each single disk is handled by one 
Ceph object storage device (OSD) daemon and Ceph itself 
takes care of recovery in case of disk failures. For an EC 
setup, the reconstruction of the stored objects happens on 
the OSD servers themselves, which means the clients contact 
the primary OSD which in turn collects the K shards from 
the other OSDs to reconstruct the object, so downsides of 
the erasure coding technique are an amplification of overall 
network traffic and increased latency.

In addition to OSD servers, Ceph also requires so-called 
monitor (MON) daemons to watch the state of the cluster 
and distribute the OSD maps to the clients such that they 
are informed about the current CRUSH map to follow. They 
also take care of distributing this information and the history 
of these maps to the OSD daemons to coordinate potential 
recovery activities. These MON daemons are usually run 
on separate hardware from the OSD servers. To ensure a 
quorum and prevent split-brain scenarios in case the MON 
cluster is split into subsets which cannot communicate with 
each other, an uneven number of monitor daemons should be 
used. They can be combined with manager (MGR) daemons 
which monitor the Ceph cluster or execute administrative 
tasks at one central entry point.

All these components are designed with high availability 
and scalability in mind. For example, a cluster continues to 
operate as long as the majority of monitor nodes is online, 
and clients perform fail-over without intervention. Failing 
OSDs or complete hosts (depending on the CRUSH map) 
can be excluded and data can be rebalanced to the remaining 
hosts automatically. Increasing or decreasing the number of 
nodes does not enforce a downtime, hence the same is true 
for maintenance work on the actual hardware or software 
upgrades.

The Ceph object storage can be used as foundation for 
a multitude of different systems running on top. The most 
common ones are the Ceph Object Gateway, a RESTful [67] 
gateway to the Ceph object store, Ceph block devices 
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commonly used as volumes in virtualization clusters, and 
the Ceph file system (short CephFS) which is a POSIX-com-
pliant file system running on top of an existing Ceph cluster.

Our setup makes use of the described erasure coding with 
K = 4 and M = 2 . This means 33% of the raw disk space 
is invested into redundancy. At least seven OSD servers 
are required for a robust operation with this configuration 
( K +M + 1 ). Otherwise the loss of a single node and host 
as failure domain does not allow to fulfil the desired stor-
age constraints leading to an erroneous cluster state. While 
this is not a catastrophic event by itself, an additional disk 
failure can lead to a read-only state if only K data shards 
remain. In addition our tests revealed that the recovery from 
such a state likely triggers a chain reaction of problems (e.g. 
overloaded servers becoming effectively unavailable, addi-
tional disk failures). Furthermore, all data are compressed 
using the Snappy algorithm [68]. This is performed only if 
a heuristic check of the first blocks of the object suggests 
sufficient compressibility.

In terms of hardware configuration, we started off pro-
duction with seven OSD servers offering 36 HDD slots 
each. While initially using two slots for small SSDs to 
keep the metadata information for Ceph’s storage backend 
BlueStore [69] of 16 HDDs each per server, we have since 
migrated to the usage of larger PCIe-connected NVMe 
devices [70] for increased I/O operations per second. The 
HDDs are mostly of 4 TB size while we use 12 TB disks to 
replace broken disks for a fluent upgrading of the cluster. 
The NVMe devices which are keeping the metadata for 18 
HDDs each in the changed configuration are of 1.6 TB size.

The memory usage by Ceph OSD processes can be quite 
substantial, especially during recovery or rebalancing situ-
ations when a failure of the OSD daemon would trigger 
additional recovery operations. For this reason, care must 
be taken that sufficient memory is available on all Ceph stor-
age nodes. The oldest file servers are equipped with 192 GB 
of memory for 36 OSD processes. In current Ceph releases3, 
the OSD processes make use of a memory target value to 
automatically trim their memory usage (for example, by 
reducing cache size). The default target value is 4 GB for an 
OSD process which works well in our configuration.

The hardware setup may not be considered as ideal, 
since a failure of a single NVMe means that the data of 18 
HDDs is effectively lost. However, error reporting and life 
time estimates of NVMes for server usage are usually much 
more reliable than information on mechanical HDDs, and 
the used erasure coding allows for the temporary loss of two 
full servers without data loss. In terms of I/O throughput, 

the PCIe-NVMes are not heavily loaded even in large scale 
data rebalancing situations.

The metadata kept on those NVMe devices in the file 
servers are stored by Ceph in form of a RocksDB [71] data-
base and used to save key/value data to find back the objects 
stored on the disk. These metadata are notably independent 
from the metadata information for the actual Ceph file sys-
tem (which is also organized in a RocksDB), which we store 
on NVMe devices within three separate, dedicated nodes in 
a three-replica configuration. This separation was made to 
ensure the metadata server processes taking care of the file 
system metadata are as close as possible to the underlying 
storage for maximum performance. These dedicated nodes 
are also running the monitor and manager daemons.

Compared to other network file systems, locking in 
CephFS is a very granular process. Clients query the file 
system metadata server and are granted granular capabili-
ties on files or directories, such as accessing file ownership 
information, extended attributes or access to the file contents 
in read, write, buffered writing and many more modes. This 
usually allows multiple clients to hold capabilities to the 
same file as long as the capabilities do not conflict with each 
other. In typical HPC / HTC workloads, parallel reading of 
files by many clients works without further metadata server 
interaction after fetching a capability to read the file once. 
Such a capability-based system necessarily relies on the abil-
ity of the metadata server to request capabilities back from 
the clients in case of memory pressure or urgent needs by 
other clients, and—in the worst case of a client not respond-
ing—evicting the client. This is implemented in CephFS and 
care must be taken that clients do not stop network com-
munication for a prolonged time due to system overload to 
prevent unwanted eviction which is one of the reasons for 
the health checking mechanism described in  “HTCondor”.

Network connectivity is established both via classic 
1 Gbit/s ethernet for administrative access and InfiniBand 
making use of the IP-over-InfiniBand stack. While Remote 
Direct Memory Access (RDMA) [72] could technically also 
be used with Ceph, it did not work in our setup. The nodes 
almost immediately lost communication over the RDMA 
channel. It is likely that this is both due to usage of the older 
Mellanox OpenFabrics Enterprise Distribution (OFEDⓇ) [73] 
stack shipped with CentOS 7 which we have been using and 
missing improvements within Ceph which are currently 
under development.

For this reason, we configured our machines to use the 
IP-over-InfiniBand stack for communication. Increasing the 
maximum transmission unit (MTU) to the maximum possi-
ble value and switching the cards to connected mode allows 
for sufficient throughput: using InfiniBand FDR (Fourteen 
Data Rate) hardware which allows for a maximum through-
put of 56 Gbit/s, we achieve 20 Gbit/s to 25 Gbit/s in a direct, 
simplex (uni-directional) test between two nodes using four 

3  This is valid starting from version 12.2.9 of the Luminous release 
series, 13.2.3 of the Mimic release series, and all stable Nautilus or 
newer releases.
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parallel streams over the IP-over-InfiniBand stack. This total 
throughput is maintained in duplex mode which indicates the 
limitation is not from the wire, and further improvements 
can be expected from an update of the software stack or 
future production-ready RDMA support within Ceph.

Our clients make use of the CephFS FUSE client to allow 
for timely and safe upgrades to upstream releases, and to 
make use of all functionality4. The increased latency of sys-
tem calls slowing down operations such as open, close 
and stat are not harmful in a HPC/HTC environment with 
a focus on high energy physics data, since data are usually 
stored in big files which are only rarely rewritten and often 
re-read. As a welcome side effect, bursts of metadata queries 
are throttled on the client side which effectively means a 
single user can not overload the metadata server with que-
ries anymore—a situation which we regularly faced with the 
BAF1 Lustre system.

Additionally, we employ quotas and access control lists 
(ACLs). In CephFS, quota support is implemented within 
the clients, and quotas are bound to directories. They recur-
sively apply to all data stored within and can be set both for 
the consumed space and the number of inodes. The nec-
essary recursive information is stored within the metadata 
of CephFS which allows a client to immediately return the 
recursive directory size and contained number of inodes. 
This is exposed both via extended attributes and the classic 
stat syscall, so usual Linux commandline utilities can lev-
erage this information and recursive stat syscalls are not 
necessary anymore. The quotas themselves are also stored 
within extended attributes and a convenient script to check 
the available and used quota easily is provided for all users.

Since cluster file systems in general do not perform well 
with many small files, we limit the space for each user to 
500 GB and 100,000 inodes by default. The latter is mostly 
meant as a “tripwire” to catch misuse of the cluster file sys-
tem for storage of software which is better kept on CVMFS 
(see “CVMFS”). Instead, we encourage users to compile on 
scratch space and use the HTCondor file transfer mechanism 
or store the software either in a tarball on the cluster file sys-
tem or on CVMFS (see “CVMFS”). ACLs in turn are used 
to offer group storage and allow sharing of data between 
users. In addition users of the ATLAS experiment have sev-
eral hundreds of terabytes of group space which is reserved 
for automatic data transfers handled by the distributed data 
management (DDM) system (see “XRootD”).

Finally, it must be noted that both Ceph and CephFS 
are evolving quickly. CephFS has recently added the abil-
ity to snapshot directory trees and even optionally expose 

this functionality to users5, and an implementation of data 
deduplication on the RADOS layer is under investigation.

XRootD

XRootD [24] is a modular software framework to provide 
a well-scalable and fault-tolerant data access optimized for 
performance. It is commonly used to grant access to file-
based data. It also incorporates authentication and authoriza-
tion functionalities and can be easily extended with plugins.

The data transfer protocol is highly efficient also for 
small random reads, and multiple streams can be used to 
exhaust high bandwidth or high latency links. Native imple-
mentations of the XRootD protocol exist for example in the 
analysis software ROOT [74] which allows one to read files 
exported via XRootD directly.

XRootD can also handle large distributed data, building 
a file system with an hierarchical namespace from several 
distributed disks or even whole clusters. For that reason, it 
is often used at lightweight sites to replace a distributed file 
system. Recent developments like XCache [75] also offer 
transparent caching.

In our case, XRootD is used for connectivity to the 
Worldwide LHC Computing Grid (WLCG) [76] and to offer 
storage for usage by distributed data management (DDM).

There are in general two setups a site could implement 
for this use case. One possibility would be to use separate 
XRootD servers each exporting their own disk space, and 
cluster them together behind an XRootD redirector.

Fig. 3   Schematic overview of the data flow for the XRootD setup in 
Bonn. Incoming requests are initially received by the redirector which 
redirects requests to a group of file servers (in our case the Ceph OSD 
nodes which additionally run CephFS FUSE clients). This way the 
load between the file servers is shared and the setup is insensitive to 
outages of individual file servers

5  It has been considered to make use of this functionality, but the 
CephFS developers are still fixing some caveats.

4  ACL (access control list) and quota support are not yet available in 
longterm support distribution kernels.
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Since a highly performing distributed filesystem is 
already in use at Bonn (see “CephFS”), we have chosen 
another model for the implementation. One XRootD server 
process is running per OSD server, each exporting the 
full CephFS, and a central redirector running on a virtual 
machine handles all incoming connections (read and write 
requests), checks authentication and authorization and auto-
matically load-balances these to all available data servers as 
shown in Fig. 3. The XRootD redirector automatically takes 
machine load6 and availability into account such that no sep-
arate high availability setup is necessary. Since the protocol 
allows one to redirect the client to the data server directly, 
the redirector itself has very low load and does not present 
a bottleneck in this configuration. Furthermore, the redirec-
tor node does not need access to the underlying cluster file 
system, but is aware that all data servers serve the same file 
system and can cache file metadata (e.g. file existence).

In addition to the native XRootD protocol, basic Web-
DAV [77] commands can be handled by the very same infra-
structure. HTTP redirects are used to redirect the client to 
the corresponding data server. This allows WebDAV com-
patible clients to store and retrieve data transparently.

For authentication and authorization, X.509 certificates 
are used throughout WLCG which are extended by attrib-
utes from the Virtual Organization Membership Service 
(VOMS) [78] granting special permissions, such as write 
access to ATLAS sites in Germany. XRootD verifies the 
X.509 certificates and handles these VOMS extensions via 
a dedicated plugin.

In the context of WLCG, it must be noted that the bulk 
of all data transfers happens via a Third Party Copy (TPC) 
mechanism  [79], which requires extensions to the data 
transfer protocols to delegate authentication and authori-
zation. This means that a central instance (Rucio) [23] is 
instructed to initiate a copy of a file from site A to site B. 
This can happen by policy (e.g. requirement of a minimum 
number of copies), automatically (by robots or automated 
file restoration) or by user request. The central instance, in 
turn, makes use of the File Transfer Service (FTS) [80] to 
actually perform the copy. The FTS server contacts source 
and destination servers and tries both a “push” and “pull” 
mechanism to establish a direct copy operation between the 
involved servers. A fallback to streaming the data is pos-
sible, but does not scale to the required bandwidths. For 
these “push” and “pull” techniques, the FTS server needs 
to delegate authentication and authorization to the servers. 

This is achieved using various techniques. Currently X.509 
proxy certificates are commonly used for XRootD while for 
WebDAV so-called macaroons7 [81] are employed. Devel-
opments to move to a token-based authentication within 
WLCG are ongoing and some communities have already 
switched to a workflow based on SciTokens [82–86].

Cluster Management

We deploy and run all Linux machines—thus not only the 
BAF2 cluster—in our institute using Puppet [27] and Fore-
man [26]. In total, these are more than 350 nodes at the time 
of writing, some of which are bare metal installations and 
others are virtual machines.

Puppet is a configuration management tool that ensures 
that all nodes are in the desired state as specified by so-called 
manifests which in turn specify required system resources. 
Thanks to this abstraction layer it is rather easy to run differ-
ent Linux flavours (e.g. representatives of the Debian and the 
Red Hat family) using the same language. Puppet takes care 
of a large part of the translation work to convert those resource 
statements into specific flavour-dependent commands to exe-
cute. Those manifests are written using a declarative language. 
Manifests can be bundled in modules which typically combine 
all the required functionality for running a certain service, e.g. 
installing, configuring, enabling and starting an NTP service.

The Puppet architecture follows a client–server approach 
where Puppet agents (clients) communicate with a Puppet 
master (server) or vice versa. A Puppet agent is a service 
required to run on all nodes under Puppet control. It is usu-
ally executed periodically to ensure the system state matches 
the desired state retrieved from the server which interprets the 
manifests and compiles a client-specific catalogue. Further-
more, the server collects machine-specific, extensible facts 
reported by the Puppet agent, which can in turn be used to 
define resources for the very same or other clients dynami-
cally. One example for this would be automatic installation 
of RAID controller tools if the corresponding hardware is 
detected. The communication is secured using X.509 certifi-
cates which are typically issued by a Puppet certificate author-
ity (CA)8. If communication to the server is interrupted, a 
cached copy of the catalogue can be used.

Due to the widespread use of Puppet a huge amount of 
Puppet modules has been developed by the Puppet user 
community. Checking Puppet Forge [87] is a good starting 
point if one wants to “puppetize” a service. From the rich 
repertoire of available modules, we have collected more 
than 100 Puppet modules used by us on GitHub (https://​
github.​com/​unibo​nn). Most of those repositories are forks. 

6  The load estimate is based on the most loaded network interface’s 
load, CPU load, system load average, and the fraction of available 
memory.

7  Maracoons are bearer tokens encapsulating limited capabilities and 
with expiration time.
8  It is also possible to use an external CA.

https://github.com/unibonn
https://github.com/unibonn
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Only in rare cases, we were forced to develop our own mod-
ule because we did not find anything suitable on the market. 
If we found a well-designed module which lacked some 
functionality, we expanded it and tried to bring the patch 
into the upstream code. Although this typically means some 
small extra effort, we consider it worth the work in the long 
run since it simplifies synchronizing our fork with updates 
in the upstream code.

We keep track of all those modules using the Puppet 
environment and module deployment tool r10k [88]. 
It allows to specify which modules one wants to use for 
which Puppet environments. In addition the branch or the 
commit to be used can be specified.

Foreman is a host management tool. It allows auto-
matic installations, configuration management, power state 
switching and similar actions required by host operators. 
Apart from bare metal installations, it can also deploy vir-
tual machines. To accomplish this, it provides interfaces 
to libvirt [89], OpenStack [90], oVirt [91], VMware [39], 
Amazon Elastic Compute Cloud [92], Google Compute 
Engine [93] and more. If desired, Foreman can also handle 
DNS and DHCP entries, manage Puppet masters and the 
Puppet public key infrastructure. In addition to its base 
functionality, there are numerous plugins available [94]. 
They add support for more compute resource technologies 
(e.g. Docker), configuration management systems different 
from Puppet, provisioning extensions (e.g. Metal-as-a-Ser-
vice), integration with monitoring or IP address manage-
ment systems, and many more functionalities.

Authorization is another important feature of Fore-
man. It allows to define fine-grained permissions who can 
access, modify or delete which resources.

Foreman’s web interface provides an overview of the 
Puppet health status of the Foreman managed hosts. It is 
easy to spot hosts where Puppet runs have failed. In case 
of failures one can nicely trace back the source of the prob-
lem and when it showed up for the first time. Foreman also 
offers auditing, allowing one to see who performed which 
change when. These features are very helpful for debug-
ging purposes.

In addition to its web interface, Foreman also provides a 
commandline tool called hammer [95]. This is convenient 
for automized tasks or bulk changes.

Our Puppet module structure is based on the roles and 
profiles method  [96, 97] although we do not follow it 
strictly due to the additional availability of Foreman. One 
difference is the absence of roles in our setup. They are 
basically substituted by Foreman host groups. Profiles use 
other modules to configure services in the desired way. A 
file server profile could e.g. set up the file service and in 
addition open the required firewall ports. If services have 
to be configured differently for different host types, we 
introduce Puppet class parameters for the corresponding 

profiles. Those parameters are set in Foreman for specific 
host groups, individual hosts or depending upon facts 
reported by the Puppet agent, such as specific hardware 
models. In order to avoid too crowded Foreman class list-
ings, we have set up a filter which ensures that only profile 
classes are visible in Foreman.

HTCondor

HTCondor  [14–21] is a workload management system 
optimized for high throughput computing. It has been 
formerly known as Condor from 1988 to 2012. Users 
describe their workload using a job description language 
and submit it to the workload management system on their 
submission node which are in our case centrally managed 
Linux desktop machines. These in turn announce the 
workload to the available cluster resources, and a match-
making procedure takes place which fits the requested with 
the available resources.

The advantages of HTCondor as compared to other 
workload management systems such as TORQUE/Maui 
or Slurm  [98, 99] are the very flexible and extensible 
job description language and the ClassAd [100] mecha-
nism. All resources, requests or constraints are expressed 
as ClassAds, which are a set of uniquely named expres-
sions that allow for evaluation, comparison and merging. 
They are the foundation for the matchmaking procedure 
and allow for a flexible introduction of custom resources 
and policies. Additionally, HTCondor offers support for 
containerized jobs, GPU resources, spilling over jobs to 
external clusters or even cloud resources and complex job 
dependencies which can be expressed as a directed acyclic 
graph, which is actively employed by our users to describe 
complex job pipelines and expose their dependencies to 
the scheduler.

Our choice of HTCondor over the other available solu-
tions was motivated by the high flexibility and the native 
support for containerized jobs. One major requirement of 
existing users is to run their software in the very same 
environment used by their collaboration, which may be an 
outdated operating system. The decoupling of actual oper-
ating system and job runtime environment is described in 
more detail in “Containerization”.

We have configured all worker nodes to be completely 
isolated in a private network hidden behind a network 
address translation (NAT) gateway, and only be accessible 
via HTCondor. This is facilitated by mediating connec-
tions via an HTCondor Connection Broker (CCB) running 
on the HTCondor Central Manager machines operating as 
redundant pair within the desktop network. Since HTCon-
dor also allows for interactive jobs including forwarding of 
X11 by leveraging SSH even if a private cluster network 
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is used, users can access the worker nodes in a controlled 
way with defined resource constraints.

Additionally, we have configured HTCondor to enforce 
a container environment to be used for each job, such 
that the user never accesses the bare metal machine. This 
increases the portability of jobs, and they could be exe-
cuted on a different cluster if needed unless direct access 
to the cluster file system or other local resources is explic-
itly required. The user can choose between different, cen-
trally maintained containers by adding a corresponding 
expression to the job ClassAd.

Due to the ClassAd functionality, a major difference 
between HTCondor and other workload management sys-
tems is that HTCondor does normally not have a concept of 
different job queues with varying resource constraints, but 
shares the resources fairly (or based on self-defined con-
straints) with dynamic partitioning.

This comes with several advantages over the approach 
employing fixed queues: 

1.	 Resource allocation for jobs of different classes is only 
limited by the physical availability of resources, i.e. all 
resources fulfilling specified requirements are available 
to any job (unless administratively imposed constraints 
are applied),

2.	 Users are forced to specify their required resources in a 
more fine-grained way than by choosing a queue, which 
may be slightly mismatched to the actual requirements,

3.	 Run priorities can be handled more fairly, since they 
are not based on the queue, but on the actual resource 
reservation and usage.

All these advantages lead to a higher throughput and fairer 
scheduling. However, the flexible approach also leads to 
several operational problems as compared to queue based 
schedulers: 

1.	 Jobs needing different resources than the bulk of jobs 
might have to wait for a longer time until matching 
resources are available,

2.	 Interactive resources may be used up completely.

HTCondor offers a DEFRAG​ daemon which can be config-
ured to regularly drain random machines fully or partially 
to overcome parts of these issues. This naturally reduces the 
overall throughput of the system slightly.

In our case, we are not employing the DEFRAG​ dae-
mon yet9, but have overcome all of these problems in a 

satisfactory way by implementing a custom health check and 
machine reboot automation system. Additionally, the custom 
implementation also detects misbehaving or inefficient jobs 
and protects the compute nodes from entering an unhealthy 
system state by preventing that further jobs are sent to an 
unhealthy machine.

The custom health checking script which is designed to 
be extremely lightweight in terms of resource consump-
tion is executed by the STARTD which is the HTCondor 
daemon handling the compute jobs on the compute node 
every minute. It produces expressions describing the cur-
rent health state both in a simple logic information that can 
be consumed programmatically and in human and machine 
readable, detailed form. These are automatically merged 
into the configuration of the STARTD and become part of 
the machine’s ClassAds, and are not only referenced in the 
expression which defines whether new jobs are accepted by 
the node, but are also visible to the HTCondor central man-
ager nodes and hence can be monitored easily by both users 
and monitoring systems. Due to the low execution period, 
the script can actually throttle the job start rate, for example 
in case the I/O to the local hard drive of the worker node is 
overloaded by too many scratch intensive jobs starting in 
parallel.

The list of checks performed by the script is easily exten-
sible. As of now, a node is set unhealthy if at least one of the 
following conditions is met:

–	 The HTCondor pool directory (scratch space for jobs) 
either does not exist, is not writable or has insufficient 
free space;

–	 The cluster file system CephFS is either not accessible or 
not writable;

–	 Number of processes running in D state (as a fraction of 
the machine’s CPU cores) exceeds a threshold;

–	 Swap space almost completely exhausted;
–	 High I/O wait CPU percentage;
–	 One or more CVMFS repositories are not accessible;
–	 System uptime is too small;
–	 Speed of network interface too low (has reduced to less 

than 1 Gbit/s due to a hardware issue);
–	 Kernel command line incorrect (allows administrative 

reconfiguration).

In addition to these checks, the overall execution time of the 
script is taken into account and if considered too high, the 
machine may be marked as unhealthy. Further external input 
for the script is provided by:

–	 Administratively configured health state deployed via 
Puppet;

–	 Reboot of node needed, deployed via automated reboot 
script.

9  The DEFRAG​ daemon might still be useful for jobs requiring a 
significant fraction of a node’s resources when all nodes are used by 
single-core jobs.
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Furthermore, to prevent flapping between healthy and 
unhealthy states, the script only marks a machine as healthy 
again if it has been consistently found healthy for a mini-
mum time. This prevents issues for example in case of fluc-
tuating I/O patterns.

If any of these checks fails for several minutes, the 
information is propagated to the central manager and it is 

recorded by our monitoring system. An example for the sys-
tem reacting to an I/O overload triggered by jobs is shown in 
Fig. 4. Quickly, the cluster was filled by jobs heavily over-
loading the local scratch disks, leading to a state of high I/O 
wait CPU for all nodes, as visible in Fig. 5. The healthcheck 
marked the nodes as unhealthy as shown in Fig. 6 prevent-
ing more inefficient I/O overload which would also affect 
other running jobs (potentially including interactive jobs) on 
these worker nodes. Of course, the resources are marked as 
unavailable during that period, so user education is neces-
sary to prevent the issues in the first place. Still, the health 
check prevents immediate damage which could be caused 
e.g. by nodes becoming completely unresponsive and losing 
network file system access in the process.

In addition to the health check system, a cron job exe-
cuted once per hour checks whether the machine is in need 
of a reboot. If this is the case, a reboot marker file is created 
which contains the reboot reasons for consumption by the 
health check script. The eventual reboot reasons are also 
added to the machine ClassAd.

Actual indicators for a necessary reboot may not only be 
updated system components which require a reboot (such 
as the kernel), but also a machine is marked for reboot after 
a maximum uptime (30 days in our case) has been reached.

To prevent draining all nodes in parallel, a pseudo ran-
dom offset is assigned to each node based on the FQDN 
of the machine and the health check script only marks the 
node as “unhealthy” once a minimum time and the offset has 
passed after the initial reboot marking. With this approach, 
the times when the machines start to be drained are spread 
out across a larger time scale (10 days in our case) than the 
maximum expected job runtime (seven days in our case) to 
maximize the throughput of the cluster.

Fig. 4   Health states of the various worker nodes. The states are 
cumulated and any node may enter multiple health states, so the total 
can exceed the number of worker nodes. Dominating colours are 
bright yellow (administratively marked out), dark yellow (too high 
I/O wait CPU), grey (the node was unhealthy recently), cyan (drain-
ing for reboot) and purple (many processes in D state)

Fig. 5   The CPU utilization across all worker nodes (percentages of 
logical core usage for each node are stacked, thus summing up to 
(number of nodes)  x  100%). The most prominent colours are green 
for “idle” load, red for system time, yellow for I/O wait CPU and 
purple for “nice” CPU time. All user jobs are re-niced so their actual 
compute time is part of the “nice” region

Fig. 6   Number of worker nodes and their status as function of time. 
The red line corresponds to the total number of worker nodes, the 
blue line is the number of nodes with StartJobs = True, the 
green line shows the number of healthy worker nodes and purple dis-
plays the number of worker nodes that are marked for a reboot (inde-
pendent of actual draining for reboot)
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Whenever a machine marked for reboot is empty from 
running jobs during cron job execution, it is immediately 
removed from the HTCondor cluster and marked for an 
automatic reboot, even if the random offset time has not 
yet passed. This allows the automated system to reboot all 
machines automatically when there are no jobs running 
instead of enforcing a draining of the nodes at a later time 
when this may lead to blocking of needed resources. This 
effect is also visible in Fig. 6 which shows that the number 
of total machines is temporarily reduced when a machine is 
removed from the cluster and rebooted. At any time, a reboot 
can be prevented administratively.

Using this approach, automatic updates are not an issue 
anymore for the compute nodes and it is feasible to comply 
to requirements by computer emergency response teams 
(CERTs). Furthermore, in case, hardware maintenance needs 
to be performed, a node can be drained administratively. 
Both administrators and users can always query the status of 
the machines and, if needed, planned reboots of all machines 
in a human-readable format.

Additionally, the regular reboots automatically lead to 
a defragmentation of a small fraction of the nodes, hence 
operating not unlike the HTCondor DEFRAG​ daemon, in a 
less deterministic, but less resource consuming way.

Furthermore, we have reserved some nodes (or parts of 
them) exclusively for interactive jobs, such that these can 
usually be started within a few seconds after a request by the 
user. This allows to use interactive jobs like “login nodes”, 
but with the full flexibility of choosing one of the centrally 
managed containers, and the possibility to request and use 
a defined set of resources, reducing interference with other 
interactive users.

In terms of actual machine configuration, all compute 
nodes have 128 GB of swap space on a local, spinning disk, 
where also the scratch space for user jobs resides. HTCondor 
is configured to employ cgroups v1 [45] to limit resource 
usage to what was requested by the user. This limits the CPU 
share and maximum resident memory. This leads to some 
special features: 

1.	 In case a job spawns more threads and no other jobs are 
running on the node, it is allowed to access all cores on 
the node.

2.	 In case a job tries to allocate more memory than it has 
reserved, it can spill over to swap. It is only killed when 
also the swap space is filled up.

Especially the last of these points may come as a surprise. 
However, we actually observed users running jobs with 
short-term peaks in memory usage, or significant amounts 
of dead / rarely used allocated memory that can be easily 
spilt to swap and there is almost no gain from keeping it 
resident10. By offering the swap space, there is effectively 

more memory available for the system page cache which 
increases throughput. For jobs which allocate and never use 
their memory at all, we utilize zswap [101] to automatically 
compress pages and still keep them in memory before swap-
ping them out to disk.

In case a misbehaving job exceeds the reservation drasti-
cally, the health check system will automatically block the 
node due to the high I/O wait CPU percentage. The same is 
true if swap is almost full. It also allows to offer job suspen-
sion functionality in the future, both in case jobs cause nodes 
to become unhealthy and if higher priority jobs arrive.

In addition to the cgroup limit on CPU and memory, disk 
space on the scratch disk is requested by users and accounted 
for by HTCondor, but we do not enforce this limit yet.

Another special part of our configuration is that we 
have enabled simultaneous multithreading (SMT) on all 
worker nodes and fully expose all logical cores as possible 
resources. This choice was made since the job workloads 
are very diverse. A significant fraction of jobs waits for data 
from storage or memory rather than for CPU cycles. The 
additional capacity to store processor states due to SMT 
allows better CPU usage efficiency. Cores assigned to a 
cgroup specify a share of the available cores and are not 
explicitly pinned. In addition, the usage of cgroups allows 
jobs to use more cores than requested if they would be idle 
otherwise. For this reason, we expect that thanks to the 
diversity jobs will on average profit both from the availabil-
ity of SMT and also from exposing the logical cores as slots.

Finally, it must also be noted that there are still several 
areas where HTCondor is not yet perfect. One example for 
this is the handling of interactive jobs in containers. This 
was realized by starting an SSH daemon inside the container 
with user privileges, and then connecting to that from out-
side. This requires several tricks to work in an environment 
with enabled security mechanisms such as SELinux [102], 

Fig. 7   Number of users with submitted jobs versus time. The dark 
green line displays the average while the light green and the light 
pink lines show the minimum and maximum values, respectively

10  This commonly happens when code with memory leaks or hoards 
is running, or programs written in languages employing garbage col-
lection are executed.
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and means that all containers need to ship an SSH daemon. 
Recent versions of HTCondor (starting with release 8.8.0) 
have changed from this model to the usage of nsenter 
which is a tool used to attach a new process to running 
namespaces. This allows to run the SSH daemon outside of 
the container, but still enter the very same environment. At 
the time of writing, there are still open issues with the imple-
mentation of the new approach, but it is the most promising 
solution which will work with all container runtimes.

Operational Experience

We have run the setup described in the previous sections for 
almost two  years now. Using this cluster meant a breaking 
change for the users. Compared to the BAF1 setup they not 
only had to learn how to use a new batch system but—due to 
the absence of login nodes—also had to adopt a new work-
flow. The changes were quickly and well accepted. Out of 
currently more than 130 registered users a fraction (with 
varying composition) of typically 10–15% have jobs in the 
queue (including interactive ones—see Fig. 7).

Figure 8 shows the number of submitted jobs versus time. 
The submitted jobs are split into three different categories 

depending on the job status: running (red), idle (green) and 
held (blue). In particular, the number of idle jobs is subject to 
large variations over time. Occasionally, there are more than 
30,000 jobs waiting for free resources. This has to be related 
to the maximal number of available slots which is given by the 
number of virtual CPUs in the cluster worker nodes. Due to acti-
vated simultaneous multithreading (SMT), this number amounts 
to 2240 for the currently available cluster hardware. As a con-
sequence the number of running jobs is only visible as a thin 
red area at the bottom of the plot. Held jobs usually represent a 
tiny fraction of all jobs. This state indicates a problem with the 
affected jobs. For our setup, most jobs in hold state have expired 
Kerberos tickets preventing access to the home directory. Unfor-
tunately, the present version of HTCondor (8.8.7) does not offer 
convenient Kerberos ticket handling. It, therefore, falls on the 
user to take care that (s)he always keeps a valid Kerberos ticket 
granting ticket on the submit node of her/his jobs.

Figure 9 gives an idea of the average cluster utilization, 
The red entries show the number of claimed CPU cores 
and the green area denotes unclaimed compute resources. 
Both information is stacked such that they always sum up 
to the same number of CPU cores (2240) except for periods 
when nodes are taken out of the cluster for maintenance. It 
is apparent that even during times with tens of thousands 
of pending jobs, the compute resources are not fully used. 
This is partly since we reserved approximately 100 virtual 
CPUs for interactive jobs to ensure a quick availability of 
the requested container environment for interactive work. 
Second, there are often some “unhealthy” nodes for various 
reasons (see below). Such nodes are not accepting new jobs 
until they recover. Another reason is that limitations by other 
cluster resources like e.g. memory prevent full exploitation 
of all CPU resources. Figure 10 sheds some light on the 
memory utilization of the cluster. While in particular in the 
first third of the displayed interval the available memory 
has a very high average utilization, memory often cannot be 
fully utilized although it is limiting the usage of computing 

Fig. 8   Number of running, held and idle jobs versus time. The three 
categories are stacked

Fig. 9   Number of claimed (red) and unclaimed (green) CPU cores 
versus time. Both curves are stacked such that they always sum up to 
the same total number of logical CPU cores (2240), unless there are 
nodes taken offline

Fig. 10   Amount of claimed (red) and unclaimed (green) memory ver-
sus time. Both plots are stacked such that the sum always amounts to 
the total amount of memory in all worker nodes. The clearly visible 
steps correspond to performed RAM upgrades
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resources. This happens when the way the memory is dis-
tributed over the worker nodes does not match sufficiently 
well the memory requirements of the respective jobs on 
those nodes. This effect is particularly pronounced if there 
are many multi-core jobs requesting a significant fraction of 
the total available RAM per worker node. The effect should 
be kept in mind when evaluating cluster utilization.

This discussion also underlines that it is important that users 
specify their needed resources reliably. Otherwise unnecessarily 
large amounts of cluster resources become “unusable”. How 
well the users’ estimated resources match their jobs’ actual 
usage is displayed in Fig. 11 for memory as an example. Obvi-
ously the requested memory is on average roughly a factor of 
two larger than the actual usage. This is not an alarming disa-
greement but still there is room for improvement. Getting better 
estimates requires monitoring the situation, making users aware 
of the problem and teaching them how to determine reliable 
estimates. This is quite personnel-intensive work.

A possible way to reduce the amount of those “unusable” 
cluster resource remnants which do not fit the requirements 
of the available jobs at a given time is to backfill the cluster 

with better suiting jobs. This is a topic which we are cur-
rently investigating.

The same phenomenon is apparent when looking at the 
CPU usage and I/O to the storage system over time. Fig-
ure 12 shows the CPU load over a busy week. At times, the 
cluster was used up to almost 100%, with a small fraction 
being reserved for interactive usage. However, before this 
high CPU load period, the jobs were apparently bound 
by I/O from the cluster file system as becomes apparent 
when comparing the data with Fig. 1311. The outgoing 
traffic from the Ceph OSD servers usually saturates at 
about 5 GB/s. It must be taken into account that the traffic 
partially goes to other file servers for reconstruction of the 

Fig. 11   Total requested (red) and used (green) memory of all jobs as 
function of time

Fig. 12   Varying CPU load of all worker nodes over a week of inten-
sive usage. The most prominent colours are green for “idle” load, red 
for system time, yellow for I/O wait CPU and purple for “nice” CPU 
time. All user jobs are re-niced so their actual compute time is part of 
the “nice” region

Fig. 13   Outgoing network traffic from the Ceph OSD nodes over a 
week of intensive usage. The traffic through the InfiniBand devices of 
the nodes is stacked in this visualization

Fig. 14   Number of worker nodes and their status as function of 
time. The red line denotes the total number of worker nodes, blue 
is the number of nodes with StartJobs = True, green shows 
the number of healthy worker nodes and purple displays the number 
of worker nodes that are marked for a reboot (independent of actual 
draining for reboot)

11  CPU I/O wait from accessing CephFS is usually negligible in 
these cases both since CPU time is actively spent polling the net-
work by the CephFS FUSE client and since other CPU tasks are 
often available to take over the waiting CPU cores. Actual I/O wait is 
mainly visible on the OSD nodes themselves.
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erasure coded objects from the different shards, and is not 
purely client traffic (see also “CephFS”). Furthermore, it 
might happen that the 5 GB/s can not be achieved due to 
the clients performing too many small random reads.

Figure 14 shows the status of worker nodes for a period 
of three months. There are two noticeable structures in 
this plot. First, it is apparent that typically every 20–30 
days worker nodes are drained for reboots. This time pat-
tern is mostly imposed by the release of security patches 
requiring reboots. The second interesting item is the health 
status evolution. Very often, there are at least a few nodes 
unhealthy. The underlying reasons why nodes are flagged 
unhealthy are broken down in Fig. 15. There is no promi-
nent single cause but a plethora of possible events, like 

e.g. CPU I/O wait too high, swap usage too high, job work-
ing directories too full, too many D-state processes, etc. 
Those frequent issues clearly show the need for automatic 
handling of such events. Improving the situation, again, 
requires teaching users.

The new freedom to choose the job runtime environment 
is particularly appreciated since it reduces some of the con-
tinuous tension of BAF1. Figure 16 shows the number of 
chosen container OSes as a function of time. It is obvious 
that BAF2 users do exploit the variety of offered OSes. The 
chosen OS is highly correlated with the community the users 
are associated with. This is no surprise since most com-
munities concentrate on a specific computing platform and 
provide all needed tools for this environment. Offering a 
wider range of OSes thus simplifies cross-community usage 
of computing resources. Other aspects which come into play 
when choosing the operation system are:

–	 Is software used whose vendor only supports specific 
platforms?

–	 Is an operating system with long-term support needed?
–	 Does the used software framework rely on new software 

tools which are not available on older, long-term support 
platforms?

–	 Which operating system is used on desktop computers?

The GPU node was added to BAF2 later on while the rest 
of the cluster was already in production. Unfortunately inte-
grating the GPUs turned out to be cumbersome. The reason 
is on the one hand that we have to use an HTCondor version 
from the 8.8 release series to get up-to-date CUDA support. 
On the other hand, the upstream switch to nsenter caused 
issues with interactive containerized jobs in this release 
series which have only been partially resolved up to version 
8.8.7 (see discussion in “HTCondor”). Fortunately, it was 
possible to bypass those issues for interactive jobs by using 
a series of workarounds, notably, a separate script submitted 

Fig. 15   Number of unhealthy worker nodes as a function of time. The 
reason why they are unhealthy is colour-coded (see legend)

Fig. 16   Number of chosen container OSes versus time. Debian 10 
and CentOS 8 were only added at the end of the displayed interval 
and are thus hardly used yet

Fig. 17   Outgoing traffic from Ceph OSD servers versus time
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as a batch job to which the user connects to emulate an inter-
active job, a tool to create a pseudoterminal within the job 
environment and restoration of the shell environment within 
the job. Hopefully this will become obsolete with one of the 
next HTCondor releases.

Figure 17 shows the outgoing traffic of all Ceph OSD 
servers during heavy read I/O load. The network traffic 
amplification due to erasure coding (see “CephFS”) has to 
be taken into account, but still, the achieved throughput is 
O(5GB∕s) when large files are processed sequentially. It is 
expected that this bandwidth can be scaled up by increasing 
the number of OSD servers and optimizing the bandwidth of 

the utilized IP-over-InfiniBand stack further, but already at 
this point the cluster file system is not the limiting resource 
for most of the BAF2 jobs.

The performance of metadata queries / system calls is 
not monitored yet, since an increased latency is taken for 
granted by employing the Ceph FUSE client and not limiting 
throughput for the compute jobs.

Table 1 in combination with Fig. 18 nicely illustrates 
the power of CVMFS for software and (unpackaged) con-
tainer image distribution. At the end of the year 2019, 
we stored in total more than 23 million files summing up 
to 1198 GB of (uncompressed) software and container 
images. Thanks to the deduplication and compression 
features of CVMFS, this requires less than 100 GB of 
disk space on the CVMFS stratum zero and the stratum 
one servers. Larger steps in Fig.  18 usually happen if 
completely new software or container images are added 
whereas adding new releases or updated images of already 
available software causes hardly visible increases in disk 
requirements.

In addition to self-provided and self-maintained software 
in our local CVMFS repositories, we also provide 24 TB 
of software from nine CERN-hosted CVMFS repositories. 
Many of our users crucially rely on software from the latter 
repositories. Given the high frequency of changes in the used 
software stack, a conventional, self-maintained software dis-
tribution via a local storage system would be unfeasible. The 
importance of CVMFS for the cluster users is reflected by 
the traffic on our Squid servers which cache accesses to both 
local and remote stratum one servers as shown in Fig. 19.

Clearly, the incoming traffic is negligible as compared 
to the outgoing traffic. The transferred outgoing data rate 
amounts to O(1MB∕s) with occasional spikes being an 
order of magnitude larger. This can be explained by check-
ing the average HTTP client request rate of O (10Hz) with 
similar occasional spikes: the CVMFS client of each node 
checks the catalogues of all repositories every 5 min for 
updates, and the Squid servers reduce these many rand-
omized requests to a single outgoing request each 5 min. 

Table 1   Usage statistics for the CVMFS repositories software.
physik.uni-bonn.de and container.physik.uni-bonn.de 
on December 31, 2019. The given sizes are uncompressed file sizes

Fully qualified repository name Size/GB # files

software.physik.uni-bonn.de 248 3,238,748
container.physik.uni-bonn.de 950 20,014,623
Total 1198 23,253,371

Fig. 18   Used disk space on the CVMFS stratum zero (red) and stra-
tum one servers (green and blue). The temporary discrepancies in 
space usage are caused by slightly delayed object expiration on the 
stratum one servers, storage of software packages before deployment 
on the stratum zero scratch space, and orphaned objects caused by 
bug temporarily affecting our setup

Fig. 19   Network throughput for the first Squid server as function of 
time. The blue region shows the outgoing traffic, the green region the 
incoming traffic

Fig. 20   Cache hit fraction (for cached data in bytes) for the first Squid 
server as function of time. The colours show different averaging inter-
vals: 1 min (pink), 5 min (green), 60 min (blue)
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Furthermore, the Squid servers are also used to cache oper-
ating system package updates for all servers and desktop 
machines, so a fraction of the regular requests is caused by 
checking for system updates, and by the Frontier system [33] 
used as distributed database caching system for compute 
jobs in the HEP community. The latter is the main cause for 
occasional major spikes in HTTP request rates.

The value of the Squid servers can additionally be seen in 
Fig. 20 which illustrates that on average, 95% of the amount 
of data requested from the Squid servers can be served from 
the cache contents (cache hits).

Conclusion

The implementation and operation of the described BAF2 
cluster has come with significant changes both to the choice 
of technologies and to user workflows as compared to its 
predecessor, breaking with the conventional concept of login 
nodes and turning each desktop machine into a submit node. 
Since it is difficult to simulate the interplay of the individ-
ual cluster components under realistic conditions in a test 
environment, we only present performance measurements 
from the production era here. Judging from approximately 
two years of operational experience and user feedback, the 
chosen approach turned out to be powerful and flexible. The 
described design allows us to fulfil both our present users’ 
requirements and solve operational challenges in a much 
better way than conventional concepts could do. It may be 
considered as a successful model to satisfy the constantly 
evolving needs of increasingly heterogeneous user groups on 
a shared computing cluster, at the same time minimizing the 
operational effort to cover the existing demands and adapt 
to new requirements.

We hope to overcome some remaining minor issues (e.g. 
removal of the workarounds for interactive, containerized 
usage of GPUs, more user-friendly handling of Kerberos 
ticket renewal) in the near future. In addition, we will soon 
add the possibility for jobs using a message passing interface 
(MPI) [103] implementation to use the resources of multiple 
hosts for highly parallel computing tasks, and we have plans 
to allow users to run Jupyter [104] jobs on BAF2 resources 
via JupyterHub [105] and explore novel abstractions such 
as HTMap [106]. It would also be desirable to extend our 
monitoring to offer information about correlations.

Compared to its predecessor, BAF2 uses many more 
standardized, widespread tools integrated into a more 
modular operating concept. This allows us to perform fre-
quent micro-updates of the deployed software rather than 
occasional huge changes. As a result, we are closer to the 

respective development communities and can provide code 
contributions or valuable feedback on new features with 
short feedback loops. Last but not least, this community 
involvement also means more joyful work.

The modular and standardized components enable us to 
react more quickly to new developments and demands. In 
addition, BAF2 runs more smoothly with less maintenance 
work than its predecessor. So in summary, BAF2 is a suc-
cess story.
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