
Vol.:(0123456789)1 3

Computing and Software for Big Science (2019) 3:8 
https://doi.org/10.1007/s41781-019-0023-6

ORIGINAL ARTICLE

Using ATLAS@Home to Exploit Extra CPU from Busy Grid Sites

Wenjing Wu1   · David Cameron2 · Di Qing3

Received: 26 November 2018 / Accepted: 10 April 2019 / Published online: 21 May 2019 
© The Author(s) 2019, corrected publication 2019

Abstract
Grid computing typically provides most of the data processing resources for large high-energy physics experiments. How-
ever, typical grid sites are not fully utilized by regular workloads. To increase the CPU utilization of these grid sites, the 
ATLAS@Home volunteer computing framework can be used as a backfilling mechanism. Results show an extra 15–42% 
of CPU cycles can be exploited by backfilling grid sites running regular workloads, while the overall CPU utilization can 
remain over 0.9. Backfilling has no impact on the failure rate of the grid jobs, and the impact on the CPU efficiency of grid 
jobs varies from 0.02 to 0.11 depending on the configuration of the site. In addition, the throughput of backfill jobs in terms 
of CPU time per simulated event is the same as for resources dedicated to ATLAS@Home. This approach is sufficiently 
generic that it can easily be extended to other clusters.

Keywords  BOINC · ATLAS@Home · CPU utilization · Grid site · Backfilling

Introduction

Large high-energy physics (HEP) experiments require a 
huge amount of computing resources for their data pro-
cessing [1, 2]. The ATLAS experiment is the largest of the 
LHC experiments in terms of both the pledged and acquired 
computing resources and its computing infrastructure [3, 4] 
is built on grid computing. ATLAS jobs are a mixture of 
single-core and multi-core [5] workflows which typically 
use between 4 and 12 cores on a single node (depending 
on site configuration). The real-time computing resources 
acquired from grid sites to ATLAS in 2018 are around 2.5 
million HEPSPEC061 [6]. ATLAS also uses an increasing 
level of opportunistic computing resources such as clouds, 
High-Performance Computing [7], and volunteer computing.

Even though grid sites provide 75% of the total comput-
ing resources to ATLAS, opportunistic computing resources 
play an important role. One such resource is the volunteer 
computing project ATLAS@Home [8, 9] which uses the 

BOINC [10, 11] middleware to harness worldwide hetero-
geneous volunteer computers. The ATLAS@Home project 
is integrated into the ATLAS workload management system 
PanDA [12, 13], and processes ATLAS simulation tasks [14, 
15]. Simulation is a CPU intensive task which, on average, 
consumes over half the wall time of ATLAS CPUs on grid 
sites.

Most grid sites are clusters managed by batch systems 
such as HTCondor [16], SLURM [17] and PBS [18], and 
the scale of the sites ranges from a few hundred to tens of 
thousands of cores. However, when the CPU time utiliza-
tion of several dedicated ATLAS grid sites was measured, 
results showed that none of these clusters were being fully 
used. In other words, both the wall time utilization and CPU 
time utilization rates were not as high as expected even there 
were enough jobs in the queues to saturate the sites. This 
means that a significant percentage of cluster resources were 
being wasted due to not fully utilizing the idle CPU cycles 
and, hence, the need to seek solutions to improve the CPU 
time utilization.

The rest of this paper is organized as follows: Sect. 2 
analyzes the CPU time utilization of the ATLAS grid sites, 
Sect. 3 introduces a new method of backfilling the grid 
sites, Sect. 4 presents results of backfilling two ATLAS grid 

 *	 Wenjing Wu 
	 wuwj@ihep.ac.cn

1	 Institute of High Energy Physics, CAS, 19B Yuquan Road, 
Beijing 100049, China

2	 Department of Physics, University of Oslo, P.b. 1048 
Blindern, 0316 Oslo, Norway

3	 TRIUMF, Vancouver, BC V6T2A3, Canada

1  HEPSPEC06 is the HEP-wide benchmark for measuring CPU 
performance and the official CPU performance metric used by the 
Worldwide LHC Computing Grid. The average performance of one 
CPU core is around 10 HEPSPEC06 for the ATLAS grid sites.

http://orcid.org/0000-0003-1128-884X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-019-0023-6&domain=pdf


	 Computing and Software for Big Science (2019) 3:8

1 3

8  Page 2 of 7

sites, Sect. 5 measures the impact of backfilling, and Sect. 6 
concludes.

Utilization of Grid Sites

Analysis from the ATLAS Job Archive

To understand the utilization rate of grid sites, a few exam-
ple sites from ATLAS are studied. The selected sites are 
of different scale and have a large geographic separation, 
and they are dedicated Tier 2 sites to ATLAS, so the CPU 
time and wall time of ATLAS jobs is representative of the 
overall usage of the clusters. CPU efficiency (ϵCPU) is used to 
measure the efficiency of the jobs, and wall time utilization 
(uwall) and CPU time utilization (ucpu) measure how fully 
these clusters are being utilized. Assuming that, in a given 
period M days(including downtime), the total wall time (in 
seconds) of all jobs is Twall, the total CPU time (in seconds) 
of all jobs is TCPU, and the total number of available cores 
of the site is Ncore, then:

As shown in Table 1, five ATLAS sites were chosen from 
Asia, North America, and Europe. They have different scales 
in terms of the number of cores, and they use different local 
batch systems. From the selected sites, the average uwall is 
around 0.85, and the corresponding ucpu is around 0.70. Ide-
ally, uwall should be close to 1, but there are several reasons 
why grid sites cannot achieve this, as follows.

1.	 Sites often have downtime for scheduled maintenance or 
unexpected problems.

(1)uwall =
Twall

3600 × 24 ×M × Ncore

,

(2)ucpu =

Tcpu

3600 × 24 ×M × Ncore

,

(3)SCPU =

Tcpu

Twall

.

2.	 The inefficiency of both the grid scheduling system and 
local batch systems. In the ATLAS case, the central 
PanDA scheduling system is rather conservative, and 
sites are assigned fewer jobs during the periods before 
and after downtimes.

3.	 Over 50% of the ATLAS worker nodes run multi-core 
jobs which have lower CPU efficiency compared to the 
single-core jobs (the same job running in multi-core can 
drop 0.05–0.15 in CPU efficiency value compared to 
single-core). This is due to the fact that certain stages of 
the multi-core job can only use a single core and, hence, 
leave the other allocated cores idle.

4.	 Sites with fixed partitioning of worker nodes between 
single-core and multi-core ATLAS jobs can have idle 
worker nodes when the mix of workloads assigned to 
the site does not well match the partition well.

5.	 For sites configured to mix single- and multi-core jobs 
(multi-core number could range from 4 to 128 depend-
ing on the sites’ configuration) on the same worker 
nodes, the multi-core jobs may need to wait for a num-
ber of single-core jobs to finish to obtain the number of 
cores which they require.

In the best case, even if the site has uwall of 1, ucpu would 
still be less than 1, because the CPU efficiency of the jobs is 
always less than 1, so the CPU time utilization is always lower 
than wall time utilization. Different types of job demonstrate 
different CPU efficiency, in the case of ATLAS computing, 
the CPU efficiency of jobs can range from lower than 0.5 to as 
high as 0.98 depending on the ratio of IO operations in the job.

Observations from a Site’s Local Monitoring

Using local monitoring tools to look at the CPU time uti-
lization of single-worker nodes in different periods, it was 
observed that, in the long run, the CPU time utilization of 
the worker nodes was not as high as expected.

On a worker node for the ATLAS BEIJING site, the CPU 
time utilization of grid jobs can reach 91% over a 24 hour 
period, because this worker node is running highly CPU 
efficient simulation jobs. However, on the same worker node, 
looking over a period of 2 weeks, the CPU time utilization is 
only 0.69. This is because the site had two scheduled down-
time in those 2 weeks, and also because of the inefficiency 
of the job scheduling and the jobs.

Using ATLAS@Home to Backfill the Sites

The Basic Idea

From Sect. 2, it can be seen that, with the traditional batch 
system assignment of one job slot per core, the CPU cycles 

Table 1   The average utilization of typical ATLAS grid sites over a 
period of 100 days

Site Amount of cores Avg. ϵCPU Avg. ucpu Avg. uwall

BEIJING 634 0.81 0.55 0.68
SiGNET 5288 0.77 0.68 0.88
TOKYO 6144 0.85 0.72 0.85
AGLT2 10,224 0.84 0.61 0.72
MWT2 16,250 0.84 0.70 0.83



Computing and Software for Big Science (2019) 3:8	

1 3

Page 3 of 7  8

can never be 100% utilized due to the job CPU efficiency. 
The key is to have more than one job slot on each core, but 
jobs must have different priorities; otherwise, more wall time 
and CPU time would be wasted on the scheduling of CPU 
cycles between different jobs at the operating system level. 
In addition, sites use different batch systems, so it is not easy 
to implement a universal configuration for all batch systems, 
and some batch systems may not support the feature of defin-
ing more than one job slot per core and assigning different 
priorities to different jobs.

Using ATLAS@Home meets the above requirements 
in terms of being independent from the site’s local batch 
system and having the ability to use different job priori-
ties. Using the ATLAS@Home platform to run ATLAS@
Home jobs in the background of the regular grid job work-
load effectively exploits CPU cycles which cannot be fully 
utilized by the grid jobs.

The Advantages of ATLAS@Home jobs

When ATLAS@Home started, it was aimed towards the 
general public; most of whom were running hosts with 
the Microsoft Windows operating system. Therefore, it 
was developed to use virtualization to provide the required 
Linux-based computing environment (operating system and 
dependent software installation). Later, as more and more 
Linux hosts joined the project, containerization and native 
running were developed to replace virtualization on Linux 
hosts. This improved the average CPU efficiency of the 
ATLAS@Home jobs by up to 0.1 and is also more light-
weight to deploy as it does not require the pre-installation 
of virtualization software.

Like many volunteer computing projects, the ATLAS@
Home project uses the BOINC middleware to manage job 
distribution to volunteer hosts. A BOINC project defines 
jobs in a central server, and volunteers install the BOINC 
client software and configure it to pull jobs from the servers 
of the projects to which they would like to contribute. A grid 
site volunteers to run ATLAS@Home installs the BOINC 
client on its worker nodes and configures it to take jobs from 
the ATLAS BOINC server. So far, five ATLAS Tier 2 sites 
have started to use ATLAS@Home to backfill their entire 
clusters. In this paper, “BOINC jobs” are defined as the jobs 
which BOINC controls on a worker node (as opposed to 
grid jobs controlled by a batch system), whereas ATLAS@
Home is the general framework for volunteer computing in 
ATLAS.

One key feature of BOINC is that the processes are set 
to the lowest priority in the operating system, so they only 
use CPU cycles when they are not being used by any other 
higher priority processes. In particular, for Linux systems, 
it uses the non-preempt scheduling mechanism for CPU 
cycles, which means that the higher priority processes will 

always occupy the CPU unless they voluntarily release 
it. This feature guarantees that starting low priority pro-
cesses, such as all the processes spawned by the BOINC 
jobs, will not increase the wall time of the higher priority 
processes due to switching CPU cycles between processes. 
Hence, BOINC should not impact the CPU efficiency of 
the higher priority grid jobs. Of course, the CPU efficiency 
might be lower due to the memory contention of both jobs 
(overflowing of memory into swap space can prolong the 
wall time of the jobs).

Another advantage of using BOINC to add the extra job 
slots is that these jobs are from two different batch sys-
tems: the higher priority jobs from the local batch system 
of the cluster and the lower priority jobs from BOINC. 
They are invisible to each other, and the local batch system 
does not know that the BOINC jobs exist, so it will still 
send as many jobs as it is configured to. In other words, 
this does not affect the wall time utilization of the higher 
priority grid jobs.

BOINC provides a convenient way to schedule payloads 
to the worker node, because it is already fully integrated 
into ATLAS distributed computing systems. Alternative 
methods of over-committing resources would require 
either requesting sites to re-configure batch systems to 
allow over-commit, or developing a way to schedule jobs 
behind the batch system—essentially duplicating BOINC’s 
functionality.

The multi-core simulation jobs of ATLAS@Home use 
very little memory (less than 300 MB per core for 12-core 
jobs), and the majority of ATLAS grid jobs (except for 
special jobs requiring higher memory) use less than 
1.5 GB memory per core. This means that grid jobs and 
BOINC jobs usually have enough memory to co-exist on 
the same worker node, and the BOINC jobs can also be 
kept in memory, while they are suspended (if, for example, 
no CPU cycles are available). Therefore, the BOINC jobs 
do not get preempted even if the grid jobs are using 100% 
of the CPU, and hence, no CPU cycles are wasted. The 
ATLAS@Home jobs can also run in the backfilling model 
on sites with jobs from other applications or VOs, as we 
also successfully tested this model in a cluster with a mix-
ture of jobs from over ten different applications and VOs.

There is on-going work to integrate ATLAS@Home 
with the ATLAS Event Service [19], a framework which 
reduces the granularity of processing from the job-level 
to the event-level. Events are uploaded to grid storage as 
they are produced which make it ideal for opportunistic 
resources where jobs may be terminated at any point. For 
ATLAS@Home, it will be useful in cases where memory 
requirements are tighter and BOINC jobs cannot be held 
in memory, so that, when a BOINC job is preempted, only 
the current event being processed is lost.



	 Computing and Software for Big Science (2019) 3:8

1 3

8  Page 4 of 7

The Harvest from the Grid Sites

The ATLAS@Home backfill method was tested on two 
ATLAS grid sites. The first is a small site in China (BEI-
JING) which has 464 cores and PBS as its batch system, and 
the second is a large site in Canada (TRIUMF) which has 
4816 cores and HTCondor as its batch system. Both sites 
are dedicated to ATLAS, so the ATLAS job measurements 
can serve as an overall measure of the sites’ efficiency. The 
BOINC software was deployed on both clusters, and the 
worker nodes received jobs from ATLAS@Home to run in 
the background, while the grid jobs were also running. To 
compare the difference, the CPU time utilization and wall 
time utilization defined in Sect. 2.1 are used.

Results from the BEIJING Site

Backfilling was started on the BEIJING site in Septem-
ber 2017. Results from both ATLAS job monitoring and 
local monitoring during this period suggest that the CPU 
time exploited by BOINC is dependent on the wall time 
and CPU time utilization of the grid jobs, having both a 
higher ucpu from grid jobs and the supplementary BOINC 
backfilling jobs can lead to a higher ucpu of the cluster. 
In addition to the ucpu, uwall, and SCPU metrics defined in 
Sect. 2.1, an additional metric fs was used to measure the 
effect of BOINC jobs on the success rate of grid jobs. fs is 
defined as the ratio between successful jobs and total jobs.

Tables 2, 3 show the utilization of BOINC, Grid, and 
All jobs over two different periods of 7 days. In a busy 
week, the average uwall of the grid jobs reaches 0.93, and 
the corresponding ucpu is 0.80. Under these circumstances, 
BOINC backfilling jobs can exploit an extra 15% CPU 
time from the cluster, which makes the average overall 
ucpu of the cluster reach 0.95. With backfilling jobs, the 

average overall uwall is 1.81, which means that there are, 
on average, 1.81 ATLAS processes (from both the grid and 
BOINC backfilling jobs) running or waiting on each core.

In an idle week, the uwall of the grid jobs is only 0.62, 
and the corresponding ucpu of grid jobs is 0.48. In this case, 
the BOINC backfilling jobs exploit an extra 42% CPU time, 
which makes that the overall ucpu of the cluster reach 0.90.

It can be seen that BOINC backfilling can exploit the 
CPU cycles which cannot be used by grid jobs, and the ucpu 
of BOINC jobs depends on the ucpu of the grid jobs. In addi-
tion, the overall ucpu also depends on the ucpu of the grid 
jobs; usually, higher ucpu of grid jobs yields higher overall 
ucpu; For 6 months in BEIJING, the average overall ucpu of 
the site remains above 0.85.

Results from the TRIUMF Site

For the TRIUMF site, the overall ucpu of the site before and 
after adding the BOINC backfilling jobs is compared.

Table 4 shows a 7-day period before adding the back-
filling jobs, during which the average overall ucpu is 0.69. 
Table 5 shows a 7-day period when backfilling was ena-
bled, when the average overall ucpu is 0.92 of which 0.27 is 
exploited by the backfilling jobs. It is also notable that the 
average uwall of grid jobs after is 0.09 higher; in other words, 
the backfilling jobs do not affect the throughput of the grid 
jobs; after adding the backfilling jobs, the overall uwall of the 
cluster is 1.88, corresponding to an average 1.88 ATLAS 
processes running or waiting on each core.

Measuring the Effects of Backfilling

To understand the impact of the backfilling jobs on the grid 
jobs and vice versa, several metrics are used to compare 
them: the ϵCPU and fs defined, respectively, in Sects. 2.1 and 
4 for grid jobs, and the CPU time per event for the BOINC 
jobs.

Failure of Grid Jobs

Tables 2, 3, 4, 5 show that the fs of jobs for both sites remains 
very high after adding the backfilling jobs. In fact, the fs is 
even 0.05 higher for TRIUMF after adding the backfilling 
jobs, indicating that the backfilling jobs do not have any 
negative effect on the grid job success rate.

CPU Efficiency of Grid Jobs

To study the effect of backfilling on CPU efficiency of grid 
jobs, a reliable and stable set of jobs needed to be found. 

Table 2   Utilization of BEIJING site in a busy week

fs ϵCPU ucpu uwall

BOINC 1.00 0.17 0.15 0.88
Grid 0.99 0.53 0.80 0.93
All 0.99 0.53 0.95 1.81

Table 3   Utilization of BEIJING site in an idle week

fs ϵCPU ucpu uwall

BOINC 1.00 0.47 0.42 0.88
Grid 0.96 0.61 0.48 0.62
All 0.98 0.61 0.90 1.50



Computing and Software for Big Science (2019) 3:8	

1 3

Page 5 of 7  8

Rather than using all the ATLAS jobs over a certain period 
of time, only simulation jobs whose wall time was longer 
than 0.3 CPU days were selected. There were several rea-
sons for this: simulation jobs, on average, use over 50% of 
a sites CPU time, there is usually a constant flow of them 
over time, and these jobs have much higher and more stable 
ϵCPU compared to the other types of ATLAS jobs. In addi-
tion, restricting to jobs longer than 0.3 CPU days leads to 
average ϵCPU above 0.95 and increases the sensitivity of the 
measurement of the effect of backfilling.

Table 6 shows the average ϵCPU for sample sets of simu-
lation tasks running on the BEIJING and TRIUMF sites, 
before and after backfilling. For BEIJING, the ϵCPU of grid 
simulation jobs drops by 0.0148 after adding the backfilling 
jobs. This is expected, as a little bit of extra wall time can be 
added to the grid jobs if there is memory contention between 
the grid and BOINC jobs when the work nodes are running 
the large memory ATLAS jobs (around 2% ATLAS jobs 
require more than 1.5 GB memory per core to run).

When comparing the ϵCPU in TRIUMF, the difference 
is larger. The ϵCPU of grid simulation jobs drops by 0.1113 
after adding the backfilling jobs. The drop can mainly be 
ascribed to two reasons. First, the memory usage of grid 
jobs in TRIUMF is higher, since it runs 6-core multi-core 
jobs compared to 12-core in BEIJING. TRIUMF also runs 
a larger variety of ATLAS jobs, some of which have higher 
memory requirements. Second, TRIUMF uses c groups 
[20] to control the resource allocation between grid and 
BOINC jobs. With cgroups, BOINC jobs could “steal” 
the CPU cycles from the grid jobs; in other words, with 
cgroups, BOINC is allocated more CPU cycles than it 
should have been.

However, this is tunable from both the BOINC and 
site’s resource allocation, depending on whether the goal 
of the site is to maximize the overall CPU time utilization 
of the cluster or to minimize the ϵCPU drop of the grid 
jobs. For sites dedicated to ATLAS, since both grid and 

backfilling jobs are ATLAS jobs, a simple policy could be 
to maximize the overall CPU time utilization. However, 
other considerations could have an effect on such a policy; 
for example, grid jobs generally have a higher priority than 
BOINC jobs and a site could decide the grid jobs should 
not be penalized in any way.

Impact of Backfilling on ATLAS@Home

The effects on running BOINC jobs in backfill mode can 
be measured by comparing similar jobs running on dedi-
cated (BOINC-only) nodes and backfill nodes which have 
the same hardware configuration. The following results 
came from one set of 48 cores dedicated for BOINC jobs 
and another set of 400 cores which ran both grid jobs and 
backfilling jobs. Both the dedicated and non-dedicated 
cores are from the BEIJING ATLAS Tier 2 site, and 
the work nodes have the same hardware, so the results 
are comparable. The metric used for comparison is the 
consumed CPU time per simulation event processed (a 
BOINC job consists of processing 200 events).

Since jobs from the same simulation task take a similar 
time to simulate each event, 8012 sample jobs from 8 dif-
ferent simulation tasks were selected to compare the dedi-
cated and backfill nodes. The sample jobs are the entire 
ATLAS@Home jobs finished on both the dedicated and 
non-dedicated cores of BEIJING Tier 2 site mentioned 
above. As shown in Table 7, for each task, the CPU time 
per event for the BOINC jobs differs by only 1–4% between 
the dedicated and backfill cores. In some cases, the CPU 
time per event on the dedicated cores could be higher than 
the non-dedicated cores, this is because the CPU time per 
event is not an absolutely fixed value for jobs within the 
same task even running on the exact same hardware, and 
they could vary by within 5%. This indicates that the CPU 
time exploited by the BOINC backfilling jobs (when they 
are actually using CPU) is similar to the CPU time from 
dedicated nodes. The ϵCPU is a clear indicator of whether 
the job is run on dedicated or backfilling cores—ϵCPU for 
backfilling jobs is much lower, because they have to wait 
for CPU cycles to be released by higher priority processes.

Table 4   Utilization of TRIUMF site before backfilling

fs ϵCPU ucpu uwall

BOINC 0 0 0 0
Grid 0.90 0.80 0.69 0.88
All 0.90 0.80 0.69 0.88

Table 5   Utilization of TRIUMF site after enabling backfilling

fs ϵCPU ucpu uwall

BOINC 0.97 0.29 0.27 0.91
Grid 0.95 0.50 0.65 0.97
All 0.95 0.50 0.92 1.88

Table 6   CPU efficiency of grid jobs before and after backfilling

Site Sample size Avg. ϵCPU

BEIJING before 930 0.97
BEIJING after 539 0.96
TRIUMF before 2872 0.97
TRIUMF after 3568 0.86



	 Computing and Software for Big Science (2019) 3:8

1 3

8  Page 6 of 7

Conclusion

There are many factors causing low overall CPU efficiency 
of grid sites, and this study shows that, for ATLAS grid sites, 
it is very difficult to achieve CPU time utilization above 0.70 
of the CPU time available from the site. The ATLAS@
Home framework provided a convenient solution to experi-
ment with backfilling grid sites thanks to a few unique and 
convenient features of the ATLAS@Home jobs. Running 
BOINC backfilling jobs on two ATLAS grid sites (one small 
site and one medium size site) has demonstrated that using 
backfilling can exploit a considerable amount of extra CPU 
time which could not otherwise be used by grid jobs. With 
backfilling jobs, the overall CPU time utilization reaches 
over 0.90 for both sites. This improves the overall CPU 
time utilization of the cluster by 0.15–0.42 depending on 
the workload of the grid jobs. The impact of the backfilling 
jobs was also measured. From the grid jobs’ point of view, 
there is no impact on the failure rate. The impact on the CPU 
efficiency of grid jobs is between 0.01 and 0.11 depending 
on the configuration of the site, the memory usage of grid 
jobs and the resource allocation configuration. From the 
BOINC jobs’ point of view, the CPU time exploited in the 
backfilling model generates the same amount of events as the 
CPU time from resources dedicated to BOINC.

Based on both the improvement of the overall CPU time 
utilization of the site and the impact on the CPU efficiency 
on the grid jobs, for the sites dedicated to ATLAS, it is rec-
ommended to prioritize the improvement of the overall CPU 
time utilization even if it means sacrificing a small amount 
of CPU efficiency of grid jobs. For non-dedicated sites, the 
BOINC resource allocation can be tuned to balance the over-
all CPU time utilization improvement and the sacrificing of 
the CPU efficiency of higher priority jobs. This method has 
so far been deployed on ATLAS grid sites, but, since deploy-
ing BOINC for backfilling does not use anything ATLAS-
specific, the approach and results could also be extended to 
general purpose (non-ATLAS) clusters, as long as the ucpu 
of the cluster does not reach 1. Due to the lack of supporting 

features from most batch systems and the SCPU of the jobs, it 
is impossible to have the ucpu of the cluster reach 1 even with 
fully saturated jobs to the batch system; neither can BOINC 
serving in a solo model. However, BOINC has the advantage 
of serving as the background jobs to exploit the idle CPU 
cycles which are not being fully utilized by the higher prior-
ity jobs and yet not impact the higher priority jobs.

Acknowledgements  This work was done as part of the distributed 
computing research and development programme within the ATLAS 
Collaboration, which we thank for their support. In particular, we wish 
to acknowledge the contribution of the ATLAS Distributed Comput-
ing team (ADC). This project is supported by the Chinese NSF Grants 
“Research on fine grained Event Service for the BESIII offline soft-
ware and its scheduling mechanism (No. 11675201)” and “Research 
on BESIII offline software and scheduling mechanism on desktop 
Grid No. 11405195”. We would also like to thank all the volunteers of 
ATLAS@Home who made this project possible, and also for the sup-
port of NCRC, CFI, and BCKDF (Canada) for the TRIUMF Tier 1 site. 
ATLAS@Home relies on many products that comprise the ATLAS dis-
tributed computing ecosystem, and so, we would like to acknowledge 
the help and support of PanDA, Rucio, and NorduGrid ARC. More 
information on running ATLAS@Home may be found on the LHC@
Home website: https​://lhcat​home.cern.ch/lhcat​home/

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

	 1.	 Shiers J (2007) The worldwide LHC computing grid (worldwide 
LCG). Comp Phys Commun 177:219–223

	 2.	 Bird I, Bos K, Brook N, Duellmann D, Eck C, Fisk I, Foster D, 
Gibbard B, Girone M, Grandi C et al (2005) LHC computing grid. 
Technical design report CERN-LHCC 2005-024

	 3.	 Campana S (2015) ATLAS distributed computing in LHC run 2. 
J Phys Conf Ser 664:032004

	 4.	 Filipcic A (2017) ATLAS distributed computing experience and 
performance during the LHC run-2. J Phys Conf Ser 895:052015

Table 7   CPU time per event comparison for BOINC jobs

Task Dedicated 
sample jobs

Dedicated cpu (s) 
per event

Dedicated ϵCPU Backfilling 
sample jobs

Backfilling cpu 
(s) per event

Backfilling ϵCPU Offset (%) CPU 
time per event

1 673 172.02 0.91 3235 165.59 0.35 4
2 15 225.21 0.93 241 219.68 0.32 2
3 59 255.41 0.94 320 246.82 0.49 3
4 255 200.99 0.92 1220 198.55 0.34 1
5 74 211.48 0.93 334 204.66 0.38 3
6 60 289.73 0.94 320 291.78 0.43 1
7 78 481.49 0.95 284 471.89 0.49 2
8 248 218.78 0.93 596 220.32 0.51 1

https://lhcathome.cern.ch/lhcathome/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Computing and Software for Big Science (2019) 3:8	

1 3

Page 7 of 7  8

	 5.	 Calafiura P, Leggett C, Seuster R, Tsulaia V, Van Gemmeren P 
(2015) Running ATLAS workloads within massively parallel 
distributed applications using Athena Multi-Process framework 
(AthenaMP). J Phys Conf Ser 664:072050

	 6.	 Bird I (2018) Worldwide LHC computing grid: report on 
project status, resources and financial plan. CERN report 
CERN-RRB-2018-023

	 7.	 Nilsson P, Panitkin S, Oleynik D, Maeno T, De K, Wu W, Filipcic 
A, Wenaus T, Klimentov A (2014) Extending ATLAS computing 
to commercial clouds and supercomputers PoS 034

	 8.	 Adam-Bourdarios C, Cameron D, Filipcic A, Lancon E, Wu W 
(2015) ATLAS@Home: harnessing volunteer computing for HEP. 
J Phys Conf Ser 664:022009

	 9.	 Adam-Bourdarios C, Bianchi R, Cameron D, Filipcic A, Isacchini 
G, Lancon E, Wu W (2017) Volunteer computing experience with 
ATLAS@Home. J Phys Conf Ser 898:052009

	10.	 Anderson D (2004) Boinc: a system for public-resource comput-
ing and storage. In: Proc. 5th IEEE/ACM international workshop 
on grid computing, pp 4–10

	11.	 Myers D, Bazinet A, Cummings M (2007) Expanding the reach of 
grid computing: combining Globus-and BOINC based systems. 
In: Grid computing for bioinformatics and computational biology, 
pp 71–84

	12.	 Maeno T (2008) PanDA: distributed production and distributed 
analysis system for ATLAS. J Phys Conf Ser 119:062036

	13.	 De K, Klimentov A, Maeno T, Nilsson P, Oleynik D, Panitkin S, 
Petrosyan A, Schovancova J, Vaniachine A, Wenaus T (2015) The 
future of PanDA in ATLAS distributed computing. J Phys Conf 
Ser 664:062035

	14.	 Rimoldi A, Dell’Acqua A, Gallas M, Nairz A, Boudreau J, Tsulaia 
V, Costanzo D (2004) The simulation for the ATLAS experiment: 
present status and outlook. Nucl Sci Symp Conf Rec 3:1886–1890

	15.	 Yamamoto S, Shapiro M et al (2010) The simulation principle and 
performance of the ATLAS fast calorimeter simulation FastCalo-
Sim. ATLAS report ATL-COM-PHYS 2010-838

	16.	 Thain D, Tannenbaum T, Livny M (2005) Distributed computing 
in practice: the condor experience. Concurr Comput Pract Exp 
17:323–356

	17.	 Yoo AB, Jette MA, Grondona M (2003) Slurm: simple linux 
utility for resource management. In: Lecture notes in computer 
science: proceedings of job scheduling strategies for parallel pro-
cessing (JSSPP). Springer, Berlin, pp 44–60

	18.	 Feng H, Misra V, Rubenstein D (2007) PBS: a unified prior-
ity-based scheduler. ACM SIGMETRICS Perform Eval Rev 
35:203–214

	19.	 Calafiura P, De K, Guan W, Maeno T, Nilsson P, Oleynik D, Panit-
kin S, Tsulaia V, Van Gemmeren P, Wenaus T (2015) The ATLAS 
event service: a new approach to event processing. J Phys Conf 
Ser 664:062065

	20.	 Heo T (2015) Control Group v2. https​://www.kerne​l.org/doc/
Docum​entat​ion/cgrou​pv2.txt. Accessed 4 Feb 2019

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.kernel.org/doc/Documentation/cgroupv2.txt
https://www.kernel.org/doc/Documentation/cgroupv2.txt

	Using ATLAS@Home to Exploit Extra CPU from Busy Grid Sites
	Abstract
	Introduction
	Utilization of Grid Sites
	Analysis from the ATLAS Job Archive
	Observations from a Site’s Local Monitoring

	Using ATLAS@Home to Backfill the Sites
	The Basic Idea
	The Advantages of ATLAS@Home jobs

	The Harvest from the Grid Sites
	Results from the BEIJING Site
	Results from the TRIUMF Site

	Measuring the Effects of Backfilling
	Failure of Grid Jobs
	CPU Efficiency of Grid Jobs
	Impact of Backfilling on ATLAS@Home

	Conclusion
	Acknowledgements 
	References




