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Abstract
As the world becomes increasingly aware of the devastating effects of climate change, the need for sustainable building 
materials that are both durable and environmentally friendly increases. Geopolymer and alkali-activated materials formed 
by a chemical reaction between an alkaline activator solution and an aluminosilicate source have gained popularity in recent 
years. The alkaline activator solution dissolves the aluminosilicate source, which then undergoes a polycondensation reaction 
to form a three-dimensional geopolymeric gel network. The development of this network ensures the strength and durabil-
ity of the material. Today, this phenomenon of durability has been studied in detail to enable the development of superior 
construction materials, taking into account degradation mechanisms such as carbonation, leaching, shrinkage, fire, freezing 
and thawing, and exposure to aggressive environments (chlorides, acids, and sulphates). Although there are many unsolved 
problems in their engineering applications, slag-based alkali-activated materials appear to be more advantageous and are 
promising as alternative materials to ordinary Portland cement. First of all, it should not be ignored that the cure sensitivity 
is high in these systems due to compressive strength losses of up to 69%. Loss of strength of alkali-activated materials is 
considered an important indicator of degradation. In binary precursors, the presence of fly ash in slag can result in an improve-
ment of over 10% in compressive strength of the binary-based alkali-activated materials after undergoing carbonation. The 
binary systems can provide superior resistance to many degradation mechanisms, especially exposure to high-temperature. 
The partial presence of class F fly ash in the slag-based precursor can overcome the poor ability of alkali-activated materials 
to withstand high temperatures. Due to the desired pore structure, alkali-activated materials may not be damaged even after 
300 freeze–thaw cycles. Their superior permeability compared to cementitious counterparts can extend service life against 
chloride corrosion by more than 20 times. While traditional (ordinary Portland cement-based) concrete remains the most 
widely used material in construction, geopolymer concrete’s superior performance makes it an increasingly emerging option 
for sustainable and long-lasting infrastructure.
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Introduction

Geopolymer and alkali-activated material technology is still 
in its early stages. Therefore, a lot of research is being car-
ried out to improve the quality, economy and environmental 
cost-effectiveness of such materials [1–4]. Although geo-
polymers and alkali-activated materials are defined sepa-
rately by Davidovits [5] due to their different chemistries 

that play a critical role in their durability, van Deventer et al. 
[6] define geopolymers as a special type of alkali-activated 
materials. Based on the data from Scopus (see Fig. 1) [7], 
these binders developed by CaO-dominated precursors such 
as slag are often referred to as alkali-activated materials 
rather than geopolymers [8]. In this critical review, both of 
these terms have been used to describe these materials as 
presented in the address sources.

Researchers are exploring new methods to produce geo-
polymer materials [9, 10] as well as new areas of application 
to meet the current construction needs [11–13]. One of the 
research areas focuses mainly on the development of activa-
tors for these materials that can improve their performance 
and reduce costs. Another area of research is focused on 
developing feasible applications for geopolymer materials 

 * H. S. Gökçe 
 suleyman.gokce@idu.edu.tr

1 Department of Civil Engineering, Izmir Democracy 
University, Izmir, Türkiye

2 Department of Civil Engineering, Bayburt University, 
Bayburt, Türkiye

http://orcid.org/0000-0002-6978-0135
http://crossmark.crossref.org/dialog/?doi=10.1007/s41779-024-01011-z&domain=pdf


 Journal of the Australian Ceramic Society

such as 3D printing and prefabricated building components. 
Overall, the future looks bright for alkali-activated material 
technology as it continues to gain popularity as a sustainable 
and long-lasting (durable) construction material [14]. The 
issue of durability examined in contemporary materials dates 
back to ancient times. “De Architectura” a series of books 
by the architecture Marcus Vitruvius Pollio (probably dating 
back to between 30–20 BC), is the first printed evidence of 
primitive approaches to the durability of building materials 
[15]. Today, understanding the causes of carbonation, leach-
ing, efflorescence, shrinkage, resistance to fire, freeze–thaw, 
and aggressive environments, and the solutions to deteriora-
tion mechanisms has become essential in order to ensure the 
durability, strength, and safety of the material. By optimiz-
ing the mix design, using appropriate curing methods, and 
incorporating specific additives, engineers and builders can 
overcome the emerging challenges and improve the specified 
durability performances of the material [16–24].

The geopolymer binders can be synthesized by a num-
ber of precursor sources in alkaline or acidic environments 
[25–27]. Slag (ground granulated blast furnace slag), a 
by-product of the ever-growing steelmaking industry, is 
becoming the most promising precursor in terms of cost, 
environmental and sustainability concerns in the near future 
when compared to residues or products from other industries 
such as fly ash, metakaolin and red mud. The existence of 
an exothermal reaction mechanism between the activator 
and CaO in the slag allows the geopolymerization process 
without thermal curing [28, 29]. Accordingly, the content of 
this paper is mostly addressed with data obtained from the 
test results of slag-based alkali-activated materials cured at 
ambient temperatures. This content has been supported by 
the partial use of other aluminosilicate sources, which have 
a much larger crystalline phase, reactive alumina, and lower 

CaO content, requiring a special curing regime [19, 30–32]. 
In contrast to the advantage of alkali-activated slag to easily 
gain strength at ambient temperatures, the stability of the 
resulting geopolymerization gels such as C-(N)-A-S–H and 
weakly linked Si networks (≤  Q2) for leaching out in contact 
with water is highly questionable [33]. Many studies have 
been conducted to understand its degradation mechanism, 
especially on carbonation [34–37], leaching [38–41], shrink-
age [42–45], fire [46–49], freezing and thawing [50–53], and 
exposure to aggressive environments (chlorides, acids, and 
sulphates) [54–61].

The durability aspects of alkali-activated slag pose chal-
lenges for researchers working in cement and concrete tech-
nology due to the complexity of their design compared to 
the well-established chemistry of ordinary Portland cement. 
Although today’s research may seem like a small step, all 
scientific initiatives are necessary to contribute to overcom-
ing these current challenges. The author believes that this 
critical review on the durability of geopolymer and alkali-
activated material will encourage researchers to produce 
these sustainable materials from blast furnace slag, a by-
product of vital industry (iron and steel), rather than by-
products of other industries (e.g., coal-fired thermal power 
plants), which is under discussion due to global warming.

Objectives, methodology and data analysis

The term “durability” has recently gained popularity in 
many fields of science, especially in engineering, as seen in 
Fig. 2 [62]. Only 3.4% of these documents (in engineering 
field) are review documents. The number of review stud-
ies addressing research articles on durability has become 
critical to responding to the world’s sustainability goals. 

Fig. 1  Number of documents 
from 1984 to 2024, which 
include “alkali-activated slag” 
and “slag-based geopolymer” 
in their title, abstract, and 
keywords
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This critical review aims to investigate the degradation of 
alkali-activated slag/slag-based geopolymer when exposed 
to the deterioration mechanisms commonly encountered in 
the construction industry.

Considering the large number of relevant publications, 
a specific methodology was followed to consider the most 
suitable documents to be included in the literature search 
to achieve the above-mentioned aims of the critical review. 
Accordingly, a systematic approach was adopted: (I) identi-
fying the most relevant keywords; (II) listing relevant publi-
cations obtained from Google Scholar, Web of Science, and 
Scopus databases; (III) ignoring documents that are out of 
scope or unnecessary after a preliminary analysis focusing 
on the title, abstract and concluding remarks; (IV) second 
screening to focus more on the most relevant documents, 
taking into account more details of the available documents; 
(V) deciding on the final list of documents and outline of the 
paper; (VI) writing the first draft; (VII) determining weak 
parts of the draft; (VIII) researching additional documents 
with new keywords to strengthen weak sections; (IX) ade-
quately addressing durability aspects of alkali-activated slag/
slag-based geopolymer in the text; (X) critically discuss and 
develop results, and identify the need for future perspective; 
(XI) concluding the final text of this study. Accordingly, a 
total of 188 documents obtained from journals, conferences, 

books, and the Internet were examined and discussed in this 
critical review. A significant part of these documents was 
taken from reputable journals. In order to better contribute 
to the collective knowledge in the field, 66% of the refer-
ences are current sources published in the last five years 
(2018–2023). Table 1 lists the category, source, and number 
of these documents.

Carbonation, leaching, and efflorescence

As a quantitative indicator of durability, the link between 
strength loss and degradation mechanism is mainly inves-
tigated in studies for geopolymers [63–65]. In addition to 
environmental variables, some compositional characteristics, 
including microcracks, porosity (determining the diffusivity 
of  CO2 into the matrix), and water availability in the pores, are 
the well-known parameters affecting the carbonation rate of 
composites [66]. The presence of unbonded and solved alka-
lis (Na and K) and calcium ions is the main reason for these 
types of degradation in geopolymers when exposed to certain 
environmental conditions. A reduction in strength results from 
the carbonation of free alkalis (Na, and K) not playing a role 
in geopolymerization reactions [67]. In addition, a lower pH 
below 11 may induce the risk of corrosion of the reinforcing 
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Table 1  Category, source, and numerical analysis of documents

Category Source Number %

Journal Construction and Building Materials 50 26.6 93.6
Cement and Concrete Research 16 8.5

Cement and Concrete Composites 8 4.3

Journal of Building Engineering 8 4.3

Journal of Cleaner Production 8 4.3

Case Studies in Construction Materials 5 2.7

Composites Part B: Engineering 5 2.7

Advances in Cement Research 3 1.6

Ceramics International 3 1.6

Journal of Materials in Civil Engineering 3 1.6

Materials (Basel) 3 1.6

Arabian Journal for Science and Engineering 2 1.1

Engineering 2 1.1

Materialia 2 1.1

Materials and Structures 2 1.1

Materials Letters 2 1.1

Materials Today: Proceedings 2 1.1

Journal of Hazardous Materials 2 1.1

Journal of Materials Science 2 1.1

Journal of Sustainable Cement-Based Materials 2 1.1

Polymers (Basel) 2 1.1

Silicon 2 1.1

Structural Concrete 2 1.1

ACS Omega 1 0.5

Advances in Civil Engineering 1 0.5

Ain Shams Engineering Journal 1 0.5

Annual Review of Materials Research 1 0.5

Arabian Journal of Chemistry 1 0.5

ARPN Journal of Engineering and Applied Sciences 1 0.5

Ceramics-Silikáty 1 0.5

Coatings 1 0.5

Corrosion Science 1 0.5

Crystals 1 0.5

Developments in the Built Environment 1 0.5

El-Cezeri Journal of Science and Engineering 1 0.5

European Journal of Environmental and Civil Engineering 1 0.5

Fuel 1 0.5

Geopolymer Institute Library 1 0.5

International Journal of Civil Engineering 1 0.5
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steel [68]. Due to the role of CaO in C-(N)-A-S–H gels and 
pH, Ca-rich slag content contributes to the carbonation resist-
ance of geopolymers, and even to some extent improvement 
in strength can be achieved at various carbonation exposures 
[69]. An increment in the initial pH (from 10.8 to 12.2) of 
geopolymers, including slag in terms of fly ash, can be docu-
mented to be another reason for the lower carbonation level 
and its benefit in mechanical results, as given in Fig. 3.

The leaching potential of geopolymer composites has 
not been reported enough, while numerous studies evalu-
ate the leaching potential of ordinary Portland cement 
composites [70]. Besides, the leaching of geopolymers 
requires more attention than cement counterparts due to 
additional concerns. Not only does its durability suffer 
from the dissolution of aluminosilicate gel and free alkali 
ions, but geopolymer can create a further threat for the 

Table 1  (continued)

Category Source Number %

International Journal of Damage Mechanics 1 0.5
International Journal of Minerals, Metallurgy, and Materials 1 0.5

International Journal of Sustainable Engineering 1 0.5

Iranian Journal of Science and Technology, Transactions of Civil Engineering 1 0.5

Journal of Building Physics 1 0.5

Journal of Ceramic Science and Technology 1 0.5

Journal of Environmental Management 1 0.5

Journal of Material Cycles and Waste Management 1 0.5

Journal of Materials and Environmental Sciences 1 0.5

Journal of Materials Research and Technology 1 0.5

Journal of Non-Crystalline Solids 1 0.5

Journal of Petroleum Science and Engineering 1 0.5

Journal of Wuhan University of Technology-Mater. Sci. Ed 1 0.5

Magazine of Concrete Research 1 0.5

Materials and Design 1 0.5

Microporous and Mesoporous Materials 1 0.5

Minerals 1 0.5

Reviews on Advanced Materials Science 1 0.5

Science of The Total Environment 1 0.5

Scientia Iranica 1 0.5

Structures 1 0.5

Transactions of Nonferrous Metals Society of China 1 0.5

Waste and Biomass Valorization 1 0.5

Waste Management 1 0.5

Conference CONCES 2004 3 1.6 3.2
IOP Conference Series 1 0.5
SPE/IADC International Drilling Conference and Exhibition 1 0.5
The Saudi International Building and Constructions Technology Conference 1 0.5

Book CRC Press 1 0.5 2.1
Elsevier 1 0.5
Harvard University Press 1 0.5
RILEM Bookseries 1 0.5

Internet Scopus 2 1.1 1.1
Total 188 100.0 100.0
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environment as it contains high-volume industrial by-
products with concentrated toxic heavy metal contents 
[71, 72]. Upcycling these industrial wastes into compos-
ites can limit the leakage potential of toxic metals into the 
ground by capturing them in geopolymeric products. In 
fact, Sun and Vollpracht [73] stated that As, Ba, Cd, Co, 
Cr, Cu, Ni, Pb, Sb, Se, Tl, and Zn are in similar leaching 
amounts with the cement-based counterparts except V and 
Mo. These leachable toxic contents of geopolymers are 
directly proportional to the leachable contents in precur-
sors [71]. On the other hand, when specimens are exposed 
to water, leaching of unreacted sodium silicate can cause 
up to a 25% strength loss [74]. Under open curing con-
ditions, interruption of geopolymeric reactions by water 
evaporation may result in a higher strength loss reaching 
69% due to the solid body’s increased porosity (around 
50%) [75].

While a high concentration of alkalis is required for 
favorable strength development of geopolymers, it increases 
the solubility and absorption rate of  CO2 and accelerates 
efflorescence [76]. The visible deposits of efflorescence on 
the surface can or cannot result in the degradation of geo-
polymeric structures depending on the original strength, 
porosity, and crystallization pressure [77, 78]. Silica modu-
lus (Ms,  SiO2/Na2O ratio) is one of the most pronounced 
characteristics of geopolymers’ strength, porosity, and leach-
able alkalis [79–81]. Thus, original strength and its loss can 
be significantly affected by its variation, as seen in Fig. 4. To 
be a deleterious and internal part of the efflorescence mecha-
nism, subflorescence in pores below 360 nm creates exces-
sive pressure compared to the tensile strength capability of 
geopolymer products during the evaporation of water [82, 
83]. According to Zhang et al. [84], even if the relationship 
between subflorescence and tensile strength has not been 
investigated by experiments, its impact cannot be ignored 
for understanding the fracture mechanism of geopolymers.

Shrinkage

One of the biggest challenges that engineers and builders 
face is the issue of shrinkage when working with geopolymer 
and alkali-activated materials. Shrinkage is the reduction in 
the size or volume of a material, which can lead to cracking, 
reduced strength, and ultimately compromise the structural 
integrity of a building [86, 87]. Four types of shrinkage can 
occur in geopolymer and alkali-activated materials: chemi-
cal, autogenous, drying, and carbonation shrinkage. The 
chemical shrinkage, which occurs when the volume of the 
reaction products is less than its ingredients, and the autog-
enous shrinkage, which results from the increase in capillary 
pressure in the matrix, are defined in the same way up to the 
initial setting [88]. Autogenous shrinkage occurs when the 
material undergoes self-desiccation during the setting and 
hardening process. The water consumed during the chemi-
cal reaction is not replaced, which can result in shrinkage. 
This shrinkage typically occurs in the early stages of the 
hardening process. Drying shrinkage occurs when the mate-
rial loses moisture due to evaporation. This can occur during 
the curing process, or after the material has been placed in 
its final position. Drying shrinkage can be particularly prob-
lematic in hot and dry climates, where evaporation rates are 
high. Carbonation shrinkage occurs when carbon dioxide in 
the atmosphere reacts with the alkaline activator solution in 
the material. This can cause the material to expand initially, 
but over time, the reaction can lead to shrinkage. Carbona-
tion shrinkage is typically a long-term issue and can take 
years to manifest [89].

Understanding the causes of shrinkage is crucial to finding 
effective solutions to this problem. One of the leading causes 
of shrinkage in geopolymer and alkali-activated materials is 
the chemical reaction that occurs during the setting and hard-
ening process. These materials are typically made by mixing 
an alkaline activator solution, such as sodium hydroxide or 
potassium hydroxide, with an aluminosilicate source, such as 

Fig. 3  Carbonation statement (a) and strength variations (b) of geo-
polymer samples at various amounts of GGBS [69] Fig. 4  Mechanical deterioration of geopolymer samples with various 

silica modulus (Ms) ranging from 0 to 1.5 [85]
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slag, fly ash, or clay. This results in the formation of a three-
dimensional network of geopolymeric gels that provide the 
strength and durability of the material [90, 91]. However, dur-
ing the chemical reaction, water is consumed, which can result 
in shrinkage. Another factor that can contribute to shrinkage 
is the microstructure of the material. Geopolymer and alkali-
activated materials have a unique microstructure different from 
traditional cement-based materials. In particular, geopolymer 
slurries cured at high temperatures result in higher chemical 
shrinkage than ordinary Portland cement [92]. The gel struc-
ture of these materials is more porous and has a higher surface 
area, which can lead to more shrinkage. Additionally, the pore 
size distribution and the presence of unreacted particles can 
also have an impact on the amount of shrinkage that occurs. A 
smaller critical pore size and a higher fraction of mesopores 

(2.5–50 nm) result in a higher shrinkage [93]. An increment 
in the amount of slag and NaOH contributes to the pore struc-
ture of geopolymers, resulting in lower drying and autogenous 
shrinkage but higher chemical shrinkage, as seen in Fig. 5 [94].

There are several solutions to shrinkage in geopolymer 
and alkali-activated materials. One solution is to add cer-
tain additives, such as silica fume, to the mix [95]. These 
additives can help reduce the amount of water consumed 
during the chemical reaction, which can reduce shrinkage. 
The use of nanomaterials as additives in the mix, such as 
nanosilica, nanoalumina, and carbon nanotubes, has unique 
properties that can improve the microstructure of the mate-
rial and reduce shrinkage [96, 97]. Another area of research 
is the usage of alternative aluminosilicate sources, such as 
rice husk ash and zeolite [98, 99]. These sources have the 

Fig. 5  Effect of (a) slag 
(0–50%) and (b) NaOH content 
(8–12%) on the shrinkage 
results of geopolymers [94]
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potential to reduce the carbon footprint of the material, as 
well as improve its durability and strength. Other additives, 
such as fibers, can help to improve the toughness and ductil-
ity of the material, which can reduce cracking [100, 101]. 
Curing done using various methods, such as steam curing, 
water curing, or ambient curing, is also an essential factor 
in reducing shrinkage [102, 103]. Proper curing can help to 
control the amount of water consumed during the chemical 
reaction. It can reduce the amount of drying shrinkage that 
occurs, as well as improve the durability and strength of the 
material [104, 105]. Mix design is also important in reduc-
ing shrinkage. The amount of alkaline activator solution, the 
type of aluminosilicate source, and the water content can all 
impact the shrinkage that occurs [106–108]. By optimiz-
ing the mix design, engineers and builders can reduce the 
amount of shrinkage that occurs and improve the durability 
and strength of the material. Another kind of shrinkage to be 
considered is that the geopolymer specimens demonstrate a 
significant volumetric shrinkage reaching 20% at exposure 
to elevated temperatures [109].

Fire resistance

While traditional cement-based concrete can spall and crack 
when exposed to high temperatures, reducing its ability to 
resist fire, geopolymers and alkali-activated materials have 
shown excellent fire resistance properties [110, 111]. One 
study found that geopolymer concrete had fire resistance 
without any exhibited spalling at various fire regimes com-
pared to traditional concrete due to its high connected pore 
structure allowing water vapor escape [112]. Similarly, Duan 
et al. [113] exposed samples of geopolymer and OPC to tem-
peratures of up to 1000 °C for several hours and found that 
geopolymers maintained their structural integrity and did 
not exhibit any signs of spalling, unlike the OPC samples. In 
fact, the desirable fire behavior are controlled by two oppo-
site phenomena: (1) damage to the matrix due to thermal 
incompatibility of ingredients, and (2) further hydration or 
geopolymerization that densifies the matrix [114]. Le et al. 
[115] reported that up to 2 times, a significant improvement 
in strength can be achieved for geopolymer foams after expo-
sure to a temperature of 1200 ℃. These results suggest that 
geopolymers and alkali-activated materials have the poten-
tial to be used in a wide range of applications where fire 
resistance is a critical consideration. These include:

• Fire-resistant cladding and facades for buildings [116]
• Fire-resistant insulation materials [117]
• Fire-resistant coatings for steel structures [118]
• Fire-resistant flooring and paving materials [119]
• Fire-resistant radiation shields [11]

Many factors can affect the ability of geopolymers to 
resist fire. These include the type of precursor used, the type 
and concentration of activator used, fibers, and the curing 
conditions of the material [115, 120–123]. For example, the 
concentration of the activator used can also affect the mate-
rial’s fire resistance, with higher concentrations generally 
resulting in better fire resistance [120]. In addition, studies 
have shown that using slag as a precursor can decrease fire 
resistance compared to other types of precursors, such as fly 
ash [120, 124]. As documented by Luo et al. [125], a minor 
use (5%) of slag within siliceous (class F) fly ash-based geo-
polymers can cause higher crack intensities reaching five 
times in the matrix after exposure to elevated temperatures. 
To understand the fire resistance of geopolymers in detail, 
not only the crack density, crack rehabilitation, transfor-
mation of phase chemistry, and pore structure are needed 
further investigations [126, 127]. The loss in compressive 
strength of fly ash-based geopolymers can reach 65% by 
using slag instead of the siliceous precursor at elevated 
temperatures, as observed in Fig. 6 [125, 127]. Although a 
significant loss of compressive strength was observed with 
increasing slag content in the current literature, Junru et al. 
[128] reported that 100% slag-based geopolymer concrete 
has superior fire resistance than OPC concrete.

In addition to their fire resistance properties, geopolymers 
and alkali-activated materials also have several other desir-
able properties that make them a good choice for sustain-
able construction, including their low carbon footprint and 

Fig. 6  The effect of slag on (a) matrix, on residual compressive 
strength of (b) 5% slag bearing specimens [125] and (c) specimens at 
various amounts of slag content [127]
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high durability [14, 129]. While there is still much research 
and development needed to fully understand the potential of 
these materials, they offer a glimpse into a more sustainable 
and fire-resistant future for the construction industry.

Freeze–thaw resistance

In addition to superior durability and heat resistance, geo-
polymers’ ability to resist freeze–thaw damage, a common 
problem that plagues conventional concrete and other build-
ing materials, is truly fascinating [130]. Before delving into 
how geopolymer resists freeze–thaw damage, it’s essential 
to understand the effects of freeze–thaw cycles on traditional 
concrete. When water freezes in voids, it expands by about 
9%, and this expansion exerts pressure on the surrounding 
materials. When this freeze–thaw cycle is repeated, the 
pressure becomes too much for the concrete to bear, and 
it begins to crack and break apart. This damage not only 
affects the appearance of the building but also weakens the 
structural integrity of the concrete. Once the concrete is 
damaged, it becomes more porous, allowing water to seep 
in and exacerbate the freeze–thaw cycle. This vicious cycle 
can lead to costly repairs, and in extreme cases, it can even 
lead to the total failure of the structures. In this respect, 
air-entraining admixtures are often studied in conventional 
concrete products [131]. Unlike OPC, these additives can 
impair the freeze–thaw performance of geopolymers [132, 
133]. So, it is clear that finding a solution to this problem 
in a material scale is of utmost importance. Compared to 
low-calcium geopolymers, including fly ash and natural 
zeolite, slag-based geopolymers present better resistance to 
freeze–thaw cycles [123, 134, 135]. Slag-based concrete can 
withstand even after 300 freeze–thaw cycles [51]. This is 
possibly caused by their favorable pore structure in denser 
microstructure and high-strength matrix proportional to the 
slag content, as seen in Fig. 7.

Geopolymers are formed by the reaction between alumi-
nosilicate and alkali solutions, which results in the formation 
of a three-dimensional network of Si–O-Al bonds [12]. This 
network is highly stable and resistant to both physical and 
chemical degradation [137]. One of the main reasons why 
geopolymer is able to resist freeze–thaw damage is its low 
permeability, as known in concrete technology [138]. Unlike 
cement paste, geopolymer has a much lower porosity, which 
means that it is less likely to absorb water [139]. When water 
does come into contact with the material, it is less likely 
to penetrate deep into the structure, and this reduces the 
risk of freeze–thaw damage. Another factor that contributes 
to the durability of geopolymer is its microstructure [136]. 
Geopolymer has a unique microstructure that is made up 
of a dense matrix of interlocking crystals. These crystals 
are tightly packed together, leaving very little space for 

water to seep in. This dense structure makes it difficult for 
water to penetrate the material, making it more resistant to 
freeze–thaw damage. The curing temperature of geopolymer 
is another factor that affects its ability to resist freeze–thaw 
damage [140]. Studies have shown that geopolymer cured at 
higher temperatures is more resistant to freeze–thaw damage 
than geopolymer cured at lower temperatures [141]. This is 
because higher curing temperatures result in a more compact 
microstructure, which makes it even more difficult for water 
to penetrate the material.

Resistance to aggressive solutions

The most aggressive challenges that traditional construction 
materials face are known as chloride permeability, sulfate, 
and acid attack for long-lasting performance [142]. While 
reported to be more resistant than OPC mortar [143], these 
degradation mechanisms are mostly also questioned for geo-
polymers as basic durability aspects to provide a comprehen-
sive breakdown of how they are changing the game in the 
construction industry. The potential for use of geopolymer 
concrete in various applications worldwide has been investi-
gated. In Australia, geopolymer mortar has been used in the 
construction of a wastewater treatment plant, where it has 
been found to provide superior resistance to chemical attack 
compared to sulphate-resistant traditional mortar [144]. In 
India, geopolymer concrete can be promising for construct-
ing a bridge, high-rise buildings, highways, tunnels, dams, 
and hydraulic structures, to reduce the economic and envi-
ronmental costs and natural resources, to utilize waste mate-
rials, to ensure long-life infrastructure construction, societal 
income, and employment generation compared to traditional 
concrete [145]. In Malaysia and Germany, geopolymer con-
crete has been used in the construction of tunnel segments, 
where it has been found to provide superior resistance to 

Fig. 7  Effect of slag content on (a) pore structure and microstructure 
of specimens, (b) without slag, and (c) with 50% slag [136]
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sulphate and acid attacks and chloride ion ingress [146]. 
Overall, geopolymer concrete has been found to be a ver-
satile and effective material for use in various construction 
projects.

Chlorides are commonly found in seawater, de-icing salts, 
and other sources, and they can penetrate concrete over time, 
leading to corrosion of embedded steel reinforcement. The 
corrosion statement can cause structural damage and shorten 
the lifespan of concrete structures [147]. Geopolymers, 
made from a combination of industrial waste and natural 
materials, have been found to be highly resistant to chloride 
penetration [148]. The structure of geopolymers is based on 
a three-dimensional network of covalently bonded tetrahe-
dral units, which makes them highly resistant to water and 
chloride permeability. A chloride level of more than 0.07% 
by weight of concrete can be considered critical to initiate 
the corrosion of embedded steel [149]. Given this threshold 
chloride level in a certain depth (40 mm) of concrete, Ten-
nakoon et al. [150] reported that it is required a significantly 
higher exposure time, reaching 21 times for high-volume 
slag-based geopolymer concrete compared to OPC concrete 
(please see Fig. 8). With increasing slag content, geopoly-
mers have been found to have a low permeability to chlo-
ride ions, which means they are less susceptible to corrosion 
caused by chloride penetration [136]. The longer lifespan of 
geopolymers than traditional concrete reduces the need for 
frequent repairs and replacements [151]. This makes geo-
polymers an ideal material for use in coastal areas or other 
environments where chloride exposure is a concern.

In addition to chloride permeability, geopolymer products 
are also less susceptible to sulfate and acid attack compared 
to traditional cement products [152, 153]. Sulfate attack 
occurs when sulfate ions in water or soil react with the cal-
cium hydroxide in concrete, forming calcium sulfate [154]. 
This can cause the concrete to expand and crack, leading to 

structural damage [155]. Unlike cementitious composites, 
a better sulfate performance has been reported for geopoly-
mers thanks to the contribution of sodium and magnesium 
sulfate solutions to a more stable cross-linked aluminosili-
cate polymer structure [156]. Compared to sodium sulfate, 
magnesium sulfate can cause higher strength losses, reach-
ing ten times for slag-based geopolymers due to degradation 
of gypsum formation and transformation of C-A-S–H bind-
ing gels to non-cementitious and fibrous M-A-S–H products 
(please see Fig. 9) [157].

Acid attack occurs when acid rain or other acidic 
solutions come into contact with concrete, causing the 
surface to erode and weaken [158]. Geopolymers have 
been found to be highly resistant to both sulfate and acid 
attack [159]. This is because the chemical structure of 
geopolymers makes them less susceptible to chemical 
attack than OPC composites [153]. Using slag in geo-
polymers improves the pore structure, mass loss, and 
deterioration caused by acid attack, as seen in Fig. 10 
[160]. These deteriorations are proportionally followed 
by strength loss of geopolymer composites. Overall, slag-
based geopolymers have been found to provide superior 
protection against both sulfate and acid attack, making 
them an ideal material for use in harsh environments. 
While traditional concrete remains the most widely used 
material in construction, the superior performance of 
geopolymer concrete is making it an increasingly popu-
lar choice for sustainable and long-lasting infrastructure.

Fig. 8  Chloride content of various concrete series (a) at 5-week and 
(b) 500-day exposure time, (c) corrosion statement at 150-day expo-
sure time, and (d) predicted service life (exposure time) of concrete 
series for chloride threshold level at 25- and 50-mm concrete depth 
[150]

Fig. 9  The effect of (a) sodium and (b) magnesium sulfate on the 
microstructural deterioration of slag-based geopolymers [157]
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Basic and recent approaches for improving 
durability aspects

The inherent complexity of alkali-activated materials can 
pose a major challenge in overcoming their poor durability 
aspects. Unlike its cementitious counterparts, it is not pos-
sible to improve these durability properties by controlling 
limited parameters such as water/cement ratio, binder dos-
age and binder type. The degradation mechanisms of these 
binders are significantly affected by many factors, includ-
ing the mixing details, the type, chemistry, fineness, and 
amorphous content of precursors, the type and molarity of 
activator, silicate modulus, curing regime, pressing, etc. [28, 
161–175]. Alkali-activated materials can be made into a 
more durable material by appropriate selection of precur-
sors and alkaline activators, optimization of mixing ratios, 
and appropriate curing [176]. Enhancing the reactivity of 
aluminosilicates contributes to the development of geopoly-
meric network and strength [177].  SiO2 and  Al2O3, the main 
components of zeolitic structures, are the most important 
oxides to be considered in geopolymerization [178]. For 
superior mechanical properties, it is recommended by many 
researchers that the  SiO2/Al2O3 ratio be in the range of 
3.2–3.8 [179, 180]. In addition, a suitable CaO/SiO2 ratio, 
which is mainly controlled by the slag ratio in the mixture 
precursors, can result in better durability of alkali-activated 
materials [54, 181]. A strong connection between strength 
and durability is expected due to the presence of stable 
reaction products in alkali-activated and geopolymer sys-
tems [182]. Therefore, all attempts increasing the strength 
can contribute the development of durability. Unlike 

cementitious systems, threshold content of aggregate has 
been found to be a specific approach to increase the strength 
of geopolymer concrete [183]. This is probably due to the 
strong bond between the aggregate and the matrix [184]. 
The mechanical performance of geopolymers is related 
to their porosity structure. When a pre-setting pressure is 
applied to geopolymer mixtures, air bubbles are removed 
and macroporosity is significantly reduced, resulting in 
high mechanical strength [1]. Zivica et al. [185] developed 
a geopolymer material with low alkaline activator content 
by pressing the mixtures under 300 MPa pressure for 1 min. 
It was announced that 500 times higher mechanical results 
were obtained compared to the reference sample, and this 
increase was achieved by the decrease in porosity and pore 
size. Another parameter that affects this process with the 
hot press method is the temperature applied. As the applied 
temperature and application time increased, mechanical 
performances also increased. Ranjbar et al. [186] showed 
that samples with a compressive strength of up to 185 MPa 
were produced with a temperature between 110–400 °C and 
a pressing pressure of 74 MPa for a period of 10–40 min. 
In this application, it is understood that the microstructure 
improves significantly as the temperature increases from 
110 °C to 400 °C (Fig. 11).

Recently, hot-pressed geopolymers have been introduced as a 
ceramic-like material that can be produced in a very short time, 
has a low amount of alkaline activator, and has high strength 
[187]. This method uses a simultaneous combination of continu-
ous heating and pressing to eliminate the macropore structure, 
facilitate the dissolution of the reacted oxides, and accelerate the 
subsequent geopolymerization reaction. The material proper-
ties of hot-pressed geopolymers largely depend on the param-
eters of temperature, pressure and curing time. In a study, it 
was observed that increasing the temperature accelerated the 
dissolution of amorphous phases, the removal of water and the 
densification process of geopolymers [186]. The densification 
regarding the formation amount of geopolymer bonds under the 
influence of temperature and pressure parameters is visually pre-
sented in Fig. 12.

Fig. 10  Effect of slag content on (a) the porosity, (b) surface deterio-
ration, and (c) the schematical deterioration mechanism of geopoly-
mers [160]

Fig. 11  Samples cured at (a) 110 °C (b) 400 °C for 30 min [186]
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Conclusions and future perspective

As the demand for sustainable and low-carbon footprint 
materials continues to grow, it seems important that we con-
tinue to innovate and advance the science of geopolymers 
and alkali-activated materials. Recently, a lot of research has 
done on the durability of these materials to great success. 
However, compared with the current progress of ordinary 
Portland cement, there is still a lot of work to be done in the 
coming years to overcome inherent problems and difficulties. 
The following conclusions and future recommendations can 
be drawn from this critical review on the durability of slag-
based alkali-activated materials:

– The complexity in durability of alkali-activated systems 
appears by researchers as the most significant obstacle 
to becoming commercial-off-the-shelf products of them. 
Mechanical loss, a quantitative indicator for durability, is 
mostly used in order to evaluate the degradation level of 
alkali-activated and geopolymer systems. However, over-
coming durability deficiencies is not as easy to manage 
as mechanical aspects because of complex chemistry, 
strongly affected by many factors, including compositional 
details, curing regimes, pre-setting pressure, environmen-
tal degradation mechanisms, etc. For this reason, recently, 
durability studies have come to the fore in research rather 
than their mechanical, cost and environmental properties.

– Inappropriate design of these systems can cause dimensional 
stability problems, including micro and macro cracks that 
appear during setting and hardening. Therefore, unbound 

and dissolved alkalis (Na and K) and calcium ions in the 
matrix are easily leached and carbonated. Not only is dura-
bility compromised by the dissolution of the aluminosilicate 
gel and free alkaline ions during leaching, but the alkali-
activated materials may also pose a further threat to the envi-
ronment as it contains high volumes of industrial byproducts 
with concentrated toxic heavy metal contents. When speci-
mens are exposed to water, leaching of sodium silicate can 
produce a strength loss of up to 25%, while interruption of 
geopolymeric reactions by evaporation of water can result 
in a higher strength loss of up to 69% due to the increased 
porosity (around 50%) of the solid body. A high concentra-
tion of alkalis is required for favorable strength development 
of alkali-activated materials. However, their increased solu-
bility and absorption rate of  CO2 accelerate efflorescence. 
An increment of slag content instead of fly ash contributes 
to the carbonation resistance of them, and even some extent 
improvement in strength can be achieved at various carbona-
tion exposures.

– One of the main reasons for shrinkage in geopolymer 
and alkali-activated materials is the chemical reaction 
that occurs during the setting and hardening process. 
Water is consumed during the chemical reaction, which 
can cause shrinkage. Another factor that can contrib-
ute to shrinkage is the microstructure of the material. 
The gel structure of these materials is more porous 
and has a higher surface area than OPC, which can 
lead to greater shrinkage. The increase in the amount 
of slag and NaOH contributes to the pore structure of 
alkali-activated materials, resulting in lower drying and 

Fig. 12  Image analysis of the hot-pressed geopolymer produced 
at (a) and (b) 110  °C-6.1  MPa, (c) and (d) 400  °C-73.2  MPa; (e) 
phase distribution of the specimens processed at 110  °C-6.1  MPa, 

200 °C-24.4 MPa, 300 °C-48.7 MPa, and 350 °C-73.2 MPa; and (f) 
geopolymer gel to solid ratio [188]
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autogenous shrinkage but higher chemical shrinkage. 
By optimizing the mix design, engineers and builders 
can reduce the amount of shrinkage and improve the 
durability and strength of the material.

– These materials are fire resistant without showing any 
spalling in various fire regimes compared to conven-
tional concrete, due to the highly interconnected pore 
structure that allows water vapor to escape. Alkali-
activated materials exposed to temperatures of up to 
1000 °C for several hours can maintain their structural 
integrity and show no signs of spalling, unlike OPC 
samples. Current results demonstrate that geopolymers 
and alkali-activated materials have the potential to be 
used in a wide variety of applications where fire resist-
ance is critical: (1) fire-resistant cladding and facades 
for buildings, (2) fire-resistant insulation materials, 
(3) fire-resistant coatings for steel structures, (4) fire-
resistant flooring and paving materials, and (5) fire-
resistant radiation shields. Studies show that the use of 
slag as a precursor can lead to a decrease in fire resist-
ance compared to other types of precursors, such as 
fly ash. Even the use of small amounts (5%) of slag in 
siliceous fly ash-based materials can cause higher crack 
densities in the matrix, up to fivefold, after exposure to 
high temperatures. To understand the fire resistance of 
alkali-activated materials in detail, further research is 
needed not only on topics such as crack density, crack 
rehabilitation, transformation of phase chemistry, and 
pore structure.

– Unlike OPC, air-entraining admixtures can impair the 
freeze–thaw performance of alkali-activated materials. 
Therefore, it is clear that finding a solution to this prob-
lem at a material scale is of utmost importance. Com-
pared to low-calcium ones, including fly ash and natural 
zeolite, slag-based materials have better resistance to 
freeze–thaw cycles. This is probably due to suitable pore 
structures with denser microstructure and high strength 
matrix proportional to the slag content. One of the main 
reasons why these materials are resistant to freeze–thaw 
damage is their low permeability, as is known in con-
crete technology. Unlike cement paste, alkali-activated 
materials have much lower porosity, meaning they are 
less likely to absorb water. Another factor is a unique 
microstructure consisting of a dense matrix of interlock-
ing crystals. These crystals are packed tightly together, 
leaving little space for water to seep in. This dense struc-
ture makes it harder for water to penetrate the material, 
making it more resistant to freeze–thaw damage.

– These degradation mechanisms examined in the article 
are mostly interrogated as key durability considerations 
for alkali-activated materials to provide a comprehensive 
breakdown of how they are changing the game in the con-
struction industry. Overall, it is understood that this concrete 

will be a versatile and effective material for use in a vari-
ety of construction projects, such as wastewater treatment 
plants, bridges, high-rise buildings, highways, tunnels, dams, 
hydraulic structures, and tunnel segments. A higher exposure 
time of up to 21 times is reported for high-volume slag-based 
material concrete compared to OPC concrete in terms of 
threshold chloride level. With increasing slag content, these 
materials were found to have lower permeability to chlo-
ride ions; this means they are less susceptible to corrosion 
caused by chloride penetration. This makes alkali-activated 
materials an ideal material for use in coastal areas or other 
environments where chloride exposure is a concern. Unlike 
cementitious composites, a better sulfate performance has 
been reported for these materials, thanks to the contribution 
of sodium and magnesium sulfate solutions to a more stable 
cross-linked aluminosilicate polymer structure. Compared to 
sodium sulfate, magnesium sulfate can cause higher strength 
losses, up to tenfold for slag-based materials due to the deg-
radation of gypsum formation and transformation of C-A-
S–H binding gels to non-cementitious and fibrous M-A-S–H 
products. The favorable chemical structure of alkali-activated 
materials makes them less susceptible to chemical attack 
than OPC composites. The use of slag improves the pore 
structure, mass loss, and deterioration caused by acid attack. 
In general, slag-based materials have been found to provide 
superior protection against both sulfate and acid attack, mak-
ing them an ideal material for use in harsh environments.
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